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Abstract

Numerous effective medium models have been proposed for the effective optical
properties nanoporous media. However, validations of these models against exper-
imental data are often contradictory and inconclusive. This issue was numerically
investigated by solving the two-dimensional Maxwell’s equations in non-absorbing
nanoporous thin-films with various morphologies. It was found that below a certain
critical film thickness, the effective index of refraction depends on the porosity and
on the pore size, shape and spatial distribution. For thick enough films the effective
index of refraction depends solely on porosity and on the indices of refraction of
the two phases. The numerical results agree very well with a recent model obtained
by applying the Volume Averaging Theory to the Maxwell’s equations. However,
commonly used models systematically and sometimes significantly underpredict the
numerical results.
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NOMENCLATURE

a ellipse dimension parallel to incident radiation

b ellipse dimension perpandicular to incident radiation

C electrical capacitance

c speed of light
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D pore diameter

~E electric field vector

~H magnetic field vector

k absorption index

L thickness of a thin-film

m complex index of refraction

n real part of the complex index of refraction

~n normal vector

r Fresnel reflection coefficient

R electrical resistance, reflectance

t Fresnel transmission coefficient

T transmittance

Greek symbols

β phase difference between interfering waves

χ scattering size parameter

ε electric permitivity

φ porosity

λ wavelength of the electromagnetic wave

µ magnetic permeability

~π Poynting vector

ω angular frequency of electromagnetic wave

ψ general property
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Subscripts

0 refers to vacuum, or an incident property

1, 2, 3 refers to surrounding air, thin-film, and substrate, respectively

A refers to analytically attained value

avg refers to time-averaged value

c refers to continuous phase

cr refers to critical point

d refers to dispersed phase (nanobubbles)

eff refers to effective properties

film refers to thin-film

N refers to numerically attained value

r refers to relative property, e.g. relative permittivity (dielectric constant)

r refers to the reflected Poynting vector

t refers to the transmitted Poynting vector

x refers to x-direction

y refers to y-direction

z refers to z-direction
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1 INTRODUCTION

Nanoporous materials consist of nanosize air pockets embedded in a solid ma-

trix. The pores can assume different shapes and sizes and can be closed or

open (i.e. connected). Nanoporous media are characterized by their bubble

size distribution and porosity which can significantly affect their electrical,

thermal, radiation, and optical properties. Progress in synthesizing, charac-

terizing, and modelling such materials would enable technological innovations

in various applications ranging from microelectronics to optical devices, and

biosensors.

As integrated circuit process technology progresses, the device density in-

creases and chip performance improves continuously [1]. The signal propaga-

tion is delayed by the resistance-capacitance time constant RC. The resis-

tance R has been reduced by replacing Al-Cu alloy by Cu metal lines. Further

reduction can be achieved via minimizing the capacitance C. This can be

accomplished by replacing the current circuit interconnect material, silicon

dioxide (εr = 3.9 at 1 MHz), with new low-k dielectric materials having di-

electric constant εr less than 2.0. Unfortunately, there are no known dense

materials that meet the semiconductor manufacturing requirements and have

a dielectric constant less than 2. During the last decade, however, nanoporous

media made of polymer [2,3] and SiO2 [4–9] have been identified as potential

solutions. In this approach, nano-size air bubbles (εr = 1.0) are incorporated
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into a continuous matrix, thus reducing the effective dielectric constant of the

nanoporous material. Thus, the specific effective dielectric constant is tailored

by varying the porosity.

In a similar manner, nanoporous silicon and SiO2 have been used to manu-

facture waveguides [9–11], Bragg reflectors [12–18], Fabry-Perot filters [12,14,

16, 17, 19], and antireflection coatings [20, 21]. For example, in order to con-

fine and propagate electromagnetic (EM) radiation within a waveguide, the

guide region itself must have a higher index of refraction than the surrounding

cladding [22]. Moreover, Bragg reflectors and Fabry-Perot filters are built by

generating alternating layers with prescribed thickness and index of refraction.

This geometry takes advantage of constructive and destructive interferences

to selectively reflect or transmit at desired wavelengths. Destructive interfer-

ences are also used by simple quarter-wave antireflection coatings to reduce

or eliminate reflection from a surface. The effect is optimized by utilizing a

coating material with index of refraction equal to the geometric mean of the

two surrounding indices [22]. In all of these optical applications, the use of

nanoporous media enables tuning of the index of refraction by simply control-

ling the morphology and porosity of the nanosize voids.

In order to design a material with the desired properties one needs to un-

derstand and predict the effect of the pores (shape, size, and concentration)

on the properties of the host medium. This paper aims at understanding and

quantifying these effects. First, the various models commonly used in the lit-
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erature are reviewed. Then, numerical simulations of EM wave transport in

non-absorbing nanoporous media are presented. Finally, comparisons with ef-

fective property models are discussed.

2 CURRENT STATE OF KNOWLEDGE

Effective medium models treat heterogeneous media as homogeneous media

with some effective properties. However, there are no explicit criteria as for

when this approach is valid. The rule of thumb stating that the overall char-

acteristic length L of the system should be much larger than the average

pore diameter D has been used extensively. Typically, one uses the criteria

L ≥ 10D. Unfortunately, this rule seems to be arbitrary and is not supported

by any rigorous analysis. Moreover, numerous effective media models have

been suggested including (1) the Maxwell-Garnett Theory, (2) the Brugge-

man effective medium approximation, (3) the parallel and (4) series models,

and (5) those recently derived from the volume averaging method.

The Maxwell-Garnett Theory (MGT) [23] was first developed to model the

effective electric permittivity of heterogeneous media consisting of monodis-

persed spheres arranged in a cubic lattice structure within a continuous matrix

and of diameter much smaller than the wavelength of the incident EM wave.
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Then, the effective dielectric constant εr,eff is expressed as,

εr,eff = εr,c

[
1− 3φ(εr,c − εr,d)

2εr,c + εr,d + φ(εr,c − εr,d)

]
(1)

where εr,c and εr,d are the dielectric constant of the continuous and dispersed

phases, respectively, while φ is the porosity. The MGT is not valid over the

entire range of porosities since the spheres start overlapping for porosity values

of π/6 ' 52% for 3D cubic lattice arrangement.

To address this issue, Bruggeman [24] considered a similar situation of polydis-

persed spheres distributed in a continuous medium. The effective dielectric constant εr,eff

is obtained by solving the following implicit equation,

1− φ =

(
εr,eff
εr,c

− εr,d
εr,c

)

[(
εr,eff
εr,c

)1/3 (
1− εr,d

εr,c

)] (2)

Despite applicability to the full range of porosity (0 ≤ φ ≤ 1) [25], the Brugge-

man model is not used as often as MGT in the literature.

Other commonly encountered models are the parallel and series models which

have been used, for example, for the effective dielectric constant, index of refraction,

as well as thermal and electrical conductivities. The parallel model gives the

effective property ψeff as a linear function of the properties of the continuous

and dispersed phases, i.e.,

ψeff = (1− φ)ψc + φψd (3)
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The series model on the other hand, gives

1

ψeff

=
1− φ

ψc

+
φ

ψd

(4)

Alternatively, del Rio et al. [26] suggested the following effective model for elec-

trical conductivity based on the reciprocity theorem,

σeff = σc

1 + φ
(√

σc/σd − 1
)

1 + φ
(√

σd/σc − 1
) (5)

The authors successfully validated this model against experimental data for

the electrical conductivity of several binary metallic mixtures.

A more rigorous approach, albeit more mathematically involved, was recently

derived [27–29] by applying the volume averaging theory (VAT) to the Maxwell’s

equations. Models were proposed for the effective dielectric constant εr,eff and

relative permeability µr,eff of a two-phase mixture as,

εr,eff = (1− φ)εr,c + φεr,d and 1/µr,eff = (1− φ)/µr,c + φ/µr,d (6)

The range of validity of these expressions was discussed in depth, and a set

of inequalities to be satisfied was developed. The authors conclude that “the

constraints [posed by these inequalities] are very severe and are not satisfied for

many processes. Note also that the Equations (6) do not satisfy the reciprocity

theorem [26,30]. This can be attributed to the fact that the reciprocity theorem

applies to irrotational vector fields [30]. However, in electromagnetic wave

propagation, the curl of the electric and magnetic fields are non-zero as the
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time-dependent fields are coupled through Faraday’s law of induction and

Ampere’s law.

Moreover, all the above models disregard the shape, the size distribution,

and the spatial distribution of the pores. However, these characteristics were

stated to affect the effective properties of the heterogeneous medium [2, 3].

Attempts have been made to account for non-spherical cell geometry by mod-

ifying the Maxwell-Garnett [31] and the Bruggeman [32,33] models. For exam-

ple, Schultz [33] generalized the Bruggeman model for dispersions of randomly

oriented spheroids. This model also accounts for the orientation of the cells by

incorporating the angle between the revolution axis of the spheroid and the

incident energy direction. Similarly, Robles et al. [30] proposed a model for

randomly distributed and oriented elliptical inclusions using the reciprocity

theorem and accounting for possible overlapping. Models such as these are

difficult to use in practice because they are involved and/or require specific

knowledge of the shape and orientation of the cells.

Finally, note that the above models have been used to predict properties for

which they were not necessarily derived. For example, the MGT developed for

the electric permittivity ε has been used for the index of refraction [34, 35].

Overall, it is not always clear to the user which model is the most appropri-

ate in any particular situation. Experimental data could be used to evaluate

the various models, however the conclusions drawn can be contradictory [36].

For example, Si et al. [7] concluded that the series model best describes the
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dielectric constant of nanoporous silica thin-films with uniformly distributed

closed voids. Krause et al. [3], on the other hand, concluded that the Maxwell-

Garnett model is more appropriate for polymeric closed-cell nanofoam. This

apparent contradiction may be attributed to the difficulties and uncertainties

in measuring the film porosity, the pore size and shape, and also the opti-

cal properties of a nanoporous thin-film. To address this issue, the present

study aims at numerically simulating EM wave transport in non-absorbing

nanoporous media in order to determine (1) the range of validity of the effec-

tive medium approach and (2) the most appropriate effective property model

for the dielectric constant and for the index of refraction of non-absorbing

nanoporous media.

3 ANALYSIS

3.1 Index of Refraction from the Volume Averaging Theory

A dielectric but non-magnetic material is characterized by its real dielectric

constant εr and its real index of refraction n such that n =
√

εr. Then, recast-

ing the dielectric constants of the continuous and dispersed phases in terms of

their indices of refraction, i.e. εr,c = n2
c and εr,d = n2

d, the VAT model for εr,eff

given by Equation (6) can be rewritten for the effective index of refraction as,

neff =
√

εr,eff =
√

(1− φ)n2
c + φn2

d (7)
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This relationship can be extended to semi-conductor materials at wavelengths

at which they do not absorb.

3.2 Governing Equations and Numerical Implementation

In order to develop the numerical model let us first, consider a surrounding

environment (medium 1, n1) from which the incident EM wave is incident

on a non-absorbing dense thin-film (medium 2, n2) deposited onto a non-

absorbing dense substrate (medium 3, n3). A linearly polarized plane wave in

transverse electric mode (TE mode) is incident normal to the film top surface

and propagates through the two-dimensional thin-film along the x-direction

(see Figure 1). As the wave propagates in the x-y plane, it has only one

electric field component in the z-direction, while the magnetic field has two

components in the x-y plane (i.e. perpendicularly polarized), such that in a

general time-harmonic form,

~E(x, y, t) = Ez(x, y)eiωt~ez (8)

and ~H(x, y, t) = [Hx(x, y)~ex + Hy(x, y)~ey]e
iωt (9)

Here, ~E is the electric field vector, ~H is the magnetic field vector, and ω =

2πc0/λ is the angular frequency of the wave. The unit vectors for the Cartesian

coordinate system are ~ex, ~ey and ~ez. For general time-varying fields in a non-

conducting medium, the Maxwell’s Equations can be written as

1

µrµ0

∇× [∇× ~E(x, y, t)]− ω2εrε0
~E(x, y, t) = 0 (10)
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1

εrε0

∇× [∇× ~H(x, y, t)]− ω2µrµ0
~H(x, y, t) = 0 (11)

where µ0 and µr are the magnetic permeability of vacuum and the relative

magnetic permeability, respectively. The associated boundary conditions are

~n× ( ~H1 − ~H2) = 0 at the surroundings-film interface (12)

~n× ~H = 0 at the symmetry boundaries (13)

µ
1/2
0 (~n× ~H) + n2ε

1/2
0

~E = 0 at the film-substrate interface (14)

µ
1/2
0 (~n× ~H) + n1ε

1/2
0

~E = 2n1ε
1/2
0

~E0 at the source surface (15)

where ~n is the normal vector to the appropriate interface. Equation (14) cor-

responds to a semi-infinite substrate while Equation (15) models the source

surface from which the incident EM wave ~E0 is emitted, but that will be

transparent to the reflected waves.

Moreover, the Poynting vector ~π is defined as the cross product of the electric

and magnetic field vectors, i.e. ~π = ~E × ~H. Its magnitude corresponds to the

energy flux carried by the propagating EM wave. Solving Maxwell’s equations

for the nonzero component of the electric field vector Ez, and relating it to

the magnetic field yields,

Hy =
n

µrµ0c0

Ez (16)

Averaging the Poynting vector over an appropriate time interval yields [22],

|π|avg =
n

2µrµ0c0

E2
z (17)

The incident electric field E0z and therefore the incident time-averaged Poynt-
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ing vector |π0|avg are imposed at all locations along the source surface. The

values of the Poynting vector along the film-substrate interface are then calcu-

lated numerically and averaged along the boundary to yield |πt|avg. The trans-

mittance of the thin-film is then recovered by taking the ratio of the transmit-

ted to incident values, Tfilm = |πt|avg/|π0|avg. Similarly, the magnitude of the

reflected time-averaged Poynting vector |πr|avg is computed numerically, and

the reflectance of the film is computed according to Rfilm = |πr|avg/|π0|avg.

Finally, the above equations were solved numerically using a commercially

available finite element solver applying the Galerkin finite element method on

unstructured meshes. The two dimensional Maxwell’s equations are solved in

the frequency domain using a 2D transverse electric (TE) wave formulation as

described by Equation (8). In particular, the discretization uses second order

elements to solve for the electric field. In order to validate the numerical imple-

mentation of the equations and boundary conditions, the interference pattern

of a dense and non-absorbing thin-film of SiO2 with thickness L and index

of refraction n2 deposited on a silicon substrate with index of refraction n3

and subject to normal incident light of variable wavelength λ was simulated.

Numerical results fall within rounding error on the sixth recorded significant

digit of the well-known analytical solution expressing the transmissivity and

reflectivity as a function of the product n2L/λ (Ref. [22] p.140).
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3.3 Simulations of Nanoporous Thin-films

Figure 1b shows a schematic of a nanoporous thin-film on a semi-infinite

substrate. The heterogeneous medium is assumed to be axisymmetric and

isotropic with randomly distributed pores which can be modelled as a two-

dimensional structure. Moreover, all interfaces were treated as optically smooth.

As the EM wave travels through the nanoporous thin film, interferences and

scattering take place. However, scattering can be neglected if the size of the

individual inhomogeneities dispersed in an otherwise homogeneous matrix is

much smaller than the wavelength of the incident radiation [37, 38]. A quan-

titative criteria requires that the size parameter χ = πD/λ be much smaller

than unity, where D is the pore diameter (or an equivalent) and λ the inci-

dent wavelength [38]. In the present study χ varies between 0.0023 and 0.23,

and the fraction of energy scattered by pores of various shape and size was

neglected relative to that transmitted and reflected by the film in the inci-

dent direction. This assumption was confirmed numerically by comparing the

magnitude of the y-component of the Poynting vector perpendicular to the

incident directions with its x-component at all locations in the x-y plane. For

χ=0.23, the maximum value of the y-component of the Poynting vector was

conservatively estimated to be less than 0.5% of the minimum x-component.

For the smaller pore sizes this value was several orders of magnitude smaller

(0.05% for χ=0.023 and negligibly small for χ=0.0023).
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The geometry was further simplified for numerical simulations by building a

simple 2D unit cell consisting of domains of dispersed phase embedded in a

matrix as shown in Figure 2. Multiple cells were then added on top of each

other to simulate nanoporous thin-films of various thicknesses but identical

porosities. This results in a regular periodic structure similar to those used in

simulations of photonic band gap crystals. However, all cases in the current

study are outside of the zero transmission bands for the wavelengths considered

[39]. The surrounding environment and the dispersed phase were treated as

vacuum (n1 = nd = 1). Silicon dioxide was used as the thin-film continuous

phase characterized by a real index of refraction equal to nc = 1.4442 at 1.55

µm [40]. The silicon substrate is weakly absorbing about this wavelength with

an absorption index k3 less than 1.5 × 10−6 [22]. Therefore, as a first order

approximation, the silicon substrate was modelled as non-absorbing with an

index of refraction n3 = 3.48. Moreover, the wavelength of 1.55 µm was chosen

because of its predominant use in the telecommunication industry, and ready

production by AlGaAs semiconductor laser diodes.

The Maxwell’s equations are solved numerically to simulate the EM wave

transport in each phase of the nanoporous thin-films. Equation (12) is used

as the boundary condition not only at the vacuum-film interface but also at

the SiO2-pore interfaces. It is important to note that Maxwell’s equations are

generally applied to macroscopic averages of the fields which can vary widely

in the vicinity of individual atoms where they undergo quantum mechanical
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effects. These effects are neglected in the present study and all phases are

treated as homogeneous and isotropic media for which dielectric constants εr

and indices of refraction n are defined. This is a reasonable assumption for

length scales on the order of ten lattice constants, or about 5 nm ( [41] p.

387).

Figure 3 is a schematic representation of a model consisting of three unit cells

with φ = 19.63%. It indicates material properties of the various domains and

the locations at which each of the boundary conditions are applied. To ensure

proper application of the symmetry boundary condition, a 10×10 and a 10×1

unit cell arrangement were modelled. In both cases, the average transmittance

and reflectance were identical. Thus, one-unit-cell-wide models are used in all

other cases so as to reduce computational time.

Finally, the computed local transmitted Poynting vector is averaged along the

film-substrate interface for calculating the film transmittance, Tfilm. The lo-

cal transmitted energy flux varies slightly as a function of position for the

nanoporous geometries considered in this study. For example, the relative dif-

ference between the local and averaged transmittance along the nanoporous

film/substrate interface for several film thicknesses and constant porosity φ=19.63%

is less than 1% in the case of spherical pores 100 nm in diameter, 0.01% for

10 nm, and negligibly small for 1 nm.
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3.4 Recovery of the Effective Index of Refraction

Numerous methods have been proposed for determining the film thickness

and the real and imaginary components of the complex index of refraction

from reflectance and transmittance data [42–48]. In the present study, this

process is greatly simplified because the absorption coefficient vanishes for

both phases and the film thickness is known. Then, the system of equations

valid for a non-absorbing homogeneous media on a substrate under normal

incidence and accounting for interferences is [22],

Tfilm =
n3t

2
12t

2
23

1 + r2
12r

2
23 + 2r12r23cos2β

(18)

Rfilm =
r2
12 + r2

23 + 2r12r23cos2β

1 + r2
12r

2
23 + 2r12r23cos2β

(19)

where

r12 =
1− neff

1 + neff

, t12 =
2

1 + neff

, r23 =
neff − n3

neff + n3

, t23 =
2neff

neff + n3

(20)

and β =
2πneffL

λ
(21)

Here, neff is the effective index of refraction of the nanoporous film, n3 is

the index of refraction of the silicon substrate, and Tfilm and Rfilm are the

transmittance and reflectance, respectively. Equation (20) gives the Fresnel

coefficients for non-absorbing media where medium 1 has index of refraction n1

equal to 1. Finally, β is the phase difference in the wave of incident wavelength

λ after one pass through the film of thickness L.
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In the present study, the Maxwell’s equations are solved numerically and the

transmittance Tfilm computed for 201 values of λ in the spectral interval from

1.05 to 2.05 µm. The analytical solution for the transmittance Tfilm is also

calculated using Equations (18) through (21) for an arbitrary value of neff .

The quadratic relative differences between the numerical and analytical val-

ues of the transmittance are then computed at each wavelength and summed

according to

FT =
201∑

i=1

(Tfilm,A,i − Tfilm,N,i)
2 (22)

where the subscripts N and A denote numerical and analytical values, respec-

tively. Then, an iterative procedure is followed so as to identify the value of

neff that minimizes the difference FT . Figure 4 shows the evolution of FT as

a function of the guessed value neff for a 400 nm thick SiO2 thin-film with 10

nm pores and 19.63% porosity. It clearly shows that the error reaches a mini-

mum in the interval of possible solutions bounded by the indices of refraction

of the dispersed and continuous phase, since a priori neff should fall between

nd and nc.

4 RESULTS AND DISCUSSION

The numerical simulations performed explore (i) the effect of the film thickness

and the validity of the effective medium approach, (ii) the effect of pore shape,
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(iii) the effect of the pore spatial distribution, and (iv) the effect of the overall

film porosity on the refraction index of non-absorbing nanoporous thin-films.

4.1 Effect of Film Thickness

Figure 5 shows the evolution of the retrieved index of refraction as a function

of the ratio of the film thickness L to the diameter of the spherical pores D for

a film with 19.63% porosity and three different pore diameters equal to 1, 10,

and 100 nm. For each data set, only the film thickness L is varied by varying

the number of unit cells stacked in the layer. Then, several conclusions can be

drawn:

(1) For any given pore diameter D and small values of film thickness L,

the effective index of refraction is a function of L and D. Therefore the

effective medium approach is not valid.

(2) Beyond a critical thickness Lcr, the effective medium approach is valid

and an effective index of refraction can be defined as a function of porosity

φ and of the constituent phase indices of refraction nc and nd only.

(3) The magnitude of the critical film thickness Lcr is a function of the pore

diameter and the incident radiation wavelength λ. In Figure 5, the Lcr/D

values are arbitrarily defined so that all subsequent values of neff fall

within 0.05% of the converged solution. In the present case, Lcr is found

to be up to 50 times the pore diameter for 100 nm pores.
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4.2 Effect of Pore Shape

Several experimental studies of nanoporous media have concluded that flat-

tened cells affect the effective dielectric constant and index of refraction of

the medium [2, 3]. To explore this question, simulations were performed for

various pore shapes including elliptical pores, overlapping spherical pores, and

columnar pores. Also, this resulted in simulations of both open and closed-cell

nanoporous structures.

First, elliptical pores characterized by thickness b and width a, as depicted

in Figure 2b, are considered. The porosity was varied by changing the length

and width of the unit cell. The degree of scattering was found to be negligible

in most cases by comparing the magnitude of the x and y-components of the

Poynting vector at all locations in the computational domain. When it was

not deemed negligible, the uncertainty due to scattering was calculated and

considered when determining the critical thickness Lcr. First, two values (1 and

10 nm) of the parameter b were considered while maintaining a constant ratio

a/b = 2 and porosity φ = 19.63%. As in the case of spherical pores, variations

in the effective properties are observed for low values of L/b, and a single value

is reached for larger values of L/b, as shown in Figure 6. Additionally, cases

were computed this time with b = 10 nm, and a/b = 1/6, 2, 6, and 12 at

various porosities (not shown). In all cases, the converged effective properties

were equal to those found using spherical pores (a/b = 1) with the same
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porosity.

Moreover, in order to simulate porous silicon, which features open-cell mor-

phology, simulations were performed for geometries consisting of columnar

pores, as shown in Figure 2c. The same value of the index of refraction was

retrieved for all film thicknesses, i.e., the effective medium approximation is

valid for all film thicknesses. In addition, the retrieved value of neff was identi-

cal to that for nanoporous thin-film of equal porosity but containing spherical

or elliptical pores.

An open-cell morphology intended to represent overlapping spherical pores,

such as those found in aerogels, was also simulated (see Figure 2d). The same

effective index of refraction was retrieved for all thicknesses; its value was equal

to that found for all other pore shapes and nanoporous thin-films of identical

porosity.

Another simulated pore geometry included spherical pores with partially over-

lapping cross sections as illustrated in Figure 2e. Once again, it was found that

the effective index of refraction converged to the same value as that of the pre-

viously considered morphologies with identical porosity.

Finally, fluctuations in the value of neff for small values of L/D are caused

by interferences due to reflections off the interfaces perpendicularly oriented

to the direction of wave propagation. Beyond Lcr this effect averages out, and

a constant value of neff is displayed. This is first demonstrated by the lack
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of variation seen in neff for the simulations of open-cell geometries depicted

in Figure 2c and 2d. These geometries have no internal surfaces from which

waves can reflect, thus inhibiting the interference effect. As a result, the re-

trieved neff is constant for all film thicknesses. For closed pores, however, the

fluctuation in the retrieved index of refraction as a function of film thickness

increases significantly as the pore diameter increases. This phenomenon can

be explained simply by considering the length scales of the films relative to

the wavelength of the incident radiation. For example, for spherical pores with

D = 1, 10, and 100 nm, Lcr can be found to be approximately 10 nm, 600

nm, and 30 µm, respectively for an incident radiation wavelength of 1.55 µm

(Figure 5). In the case of 1 nm pore size, the phase difference β between inter-

fering waves is negligibly small. In the case of the 100 nm pore size, however,

the phase difference is larger and responsible for the large fluctuations in neff

versus L/D as illustrated in Figure 5. Thus, the critical thickness Lcr, beyond

which the effective medium approach is valid, depends also on the wavelength

λ.

4.3 Effect of Pore Spatial Arrangement

Thus far, all simulations were performed on models built from basic unit cells.

To explore a situation where the pores are not arranged in a regular cubic

distribution, several simulations were performed on films of varying thickness

with pores distributed at random locations between 0 and L along the x-axis.
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Values that would have resulted in overlapping pores were eliminated so as

to maintain a closed-cell structure. Cases with pores’ diameters of 1 and 10

nm were simulated. Figure 7 compares the evolution of the effective index of

refraction as a function of L/D for randomly located pores and that for regu-

lar cubic pore distribution while maintaining constant porosity (φ=19.63%).

Larger values of Lcr are obtained for each pore diameter in the cases of ran-

domly distributed pores. However, beyond Lcr the retrieved effective index of

refraction is the same as that found using previously discussed pore morpholo-

gies of equal porosity. The 1 nm pore case is fully converged to this value at

Lcr/D=100, and the 10 nm case is within 0.5% at L/D=200.

4.4 Effect of Porosity

¿From the above analysis, one can conclude that beyond a critical thickness,

the effective medium approach is valid and the effective index of refraction

depends only on the porosity and index of refraction of each of the two con-

stituent phases, but not on the pore shape, size distribution, or spatial dis-

tribution. This confirms the general form of commonly used effective medium

models such that neff = f(φ, nc, nd) [see Eqs. (1) to (6)].

To assess the validity of the commonly used models, simulations were run for

silicon dioxide with 10 nm spherical closed pores, and for porous silicon with

columnar pores. For silicon, the incident wavelength was chosen to be λ = 2.71
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µm at which the complex index of refraction is mSi = 3.44− i2.5× 10−9 [22].

Thus, the absorption coefficient can also safely be neglected. Figure 8 shows

the converged values of the effective index of refraction plotted versus porosity

along with predictions of the above discussed models. The Bruggeman model

differed from the MGT model by a maximum of only 2.3% for silicon, and by

only 0.1% for SiO2. Thus, the Bruggeman model will not be discussed further.

The numerical values retrieved for neff match those predicted by the volume

averaging technique [Equation (7)] within rounding error. The relative differ-

ence between the parallel, Maxwell-Garnett, reciprocity, and series models and

the numerical results for nanoporous SiO2 was up to 1.7%, 2.6%, 3.3%, and

4.9%, respectively. In the case of porous silicon, these differences are larger and

can reach up to 16.4%, 22.4%, 29.3%, and 39.5%, respectively. Therefore, as

the index of refraction of the continuous phase material increases, the percent

difference between the various effective medium models and the numerically

predicted value of neff increases.

Moreover, simulations were also conducted to investigate a hypothetical medium

in which the dispersed phase has a larger index of refraction than the con-

tinuous phase. Specifically, the supposed case of spherical silicon particles

(nd=3.44) distributed in an otherwise continuous SiO2 matrix (nc=1.426) was

considered. The incident wavelength was chosen as 2.71 µm such that both

phases could be considered as non-absorbing. As in the previous cases, the

effective index of refraction initially varied for relatively thin films before con-
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verging to a value equal to that predicted by the VAT model. Note that here,

the effective index of refraction increases with porosity since nd > nc.

Finally, the conditions for the validity of the VAT model proposed by del Rio

and Whitaker [27, 28] based on order of magnitude estimates seem to be too

stringent [36]. Indeed, even though they are not satisfied, the formulae for the

effective properties compare very well with those computed from numerical

results.

5 CONCLUSIONS

Numerous effective medium models have been proposed and used in the lit-

erature. However, it remained unclear which model is applicable to a specific

situation. In order to address this issue, numerical solutions of the Maxwell’s

equations for axisymmetric nanoporous thin-films of various porosity and with

open and closed pores of various shape, size, and spatial distribution have been

presented and discussed. Several conclusions can be drawn.

First, there exists a critical nanoporous film thickness Lcr below which the

effective index of refraction is a function of (i) the film thickness, (ii) the pore

shape, (iii) their size, (iv) their spatial distribution, and (v) the wavelength

considered. For film thickness less than Lcr, the effective medium approach is

not applicable and the heterogeneous nature of the medium should be taken

into account.
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For films thicker than the critical thickness Lcr, the effective medium approach

is valid and an effective index of refraction can be defined only as a function

of porosity φ and of the indices of refraction of the constituent phases, nc and

nd. In other words, the pore shape, size, and spatial distribution have no effect

on the effective index of refraction of the nanoporous medium.

Unfortunately, it was not possible to find a simple correlation between the

critical thickness Lcr and the pore shape, size, spatial distribution, or the

wavelength considered. Qualitatively, Lcr increases as the pore size increases

for pores that are randomly distributed.

Finally, the models obtained from the VAT are recommended for calculat-

ing the effective index of refraction and the effective dielectric constant of

the two-phase non-absorbing nanoporous media when the effective medium

approximation is valid (L > Lcr). Then,

neff =
√

(1− φ)n2
c + φn2

d and εr,eff = (1− φ)εr,c + φεr,d (23)

Practically, models other than the VAT model give acceptable predictions

when the continuous and dispersed phases have similar indices of refraction.

However, the predictions can be significantly erroneous for nanoporous media

when one of the constituting phases features an index of refraction significantly

different from the other.

The discrepancies between the different models and reported experimental
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data for εr,eff and neff can be attributed to (1) the fact that the film thickness

was smaller than Lcr such that the effective medium approach is not valid,

and (2) experimental uncertainty associated with the porosity φ, and with the

properties of the continuous phase. Uncertainty in these values could result in

significant error in the model predictions. Together, these effects could lead to

erroneous and often contradictory conclusions about the effect of the size and

shape of the pores on the effective optical properties of nanoporous media.
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Figure and Table Captions

Figure 1. Schematic of two-dimensional (a) dense and (b) closed-cell nanoporous

thin-film exposed to a linearly polarized plane wave.

Figure 2. Geometry of the various unit cells investigated.

Figure 3. Schematic of model composed of three unit cells. Each contains

a centered pore and has porosity 19.63%. The schematic also depicts where

boundary conditions and domain properties are assigned.

Figure 4. Error as calculated according to Eq.(22) versus effective index of

refraction neff .

Figure 5. Evolution of effective index of refraction as a function of L/D for

films with 19.63% porosity and three different pore diameters.

Figure 6. Evolution of effective index of refraction as a function of L/b for for

elliptical pores with aspect ratio a/b = 2 and b = 1 and 10 nm for an overall

porosity of φ = 19.63%.

Figure 7. Evolution of effective index of refraction as a function of L/D for

regular and random pore distribution and porosity φ = 19.63%.

Figure 8. Numerical result for effective index of refraction as a function of

porosity for (a) nanoporous SiO2 at λ = 1.55 µm and (b) nanoporous Si at λ

= 2.71 µm.
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Fig. 1. Schematic of two-dimensional (a) dense and (b) closed-cell nanoporous thin–

film exposed to a linearly polarized plane wave.
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Fig. 2. Geometry of the various unit cells investigated.
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Fig. 8. Numerical result for effective index of refraction as a function of porosity for

(a) nanoporous SiO2 at λ = 1.55 µm and (b) nanoporous Si at λ = 2.71 µm.
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