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ABSTRACT

Estimating Treatment Effect in the Presence of Noncompliance Measured with

Error: Power, Precision, and Robustness of Data Analysis Methods

Leslie Anne Kenna

Fractional compliance (C) with the assigned, or nominal, dose (Dr) gives rise to

unintended variability in exposure (D) during confirmatory clinical trials. If C is not a

confounder, that is, C only influences response through its influence on drug exposure,

then in principle, assuming a model D=f(C,Dn) allows one to estimate the exposure

response relationship P(Y|D).

The measurement of C presents many challenges. The most accurate measures of

compliance are often the least feasible to obtain. Given that biased compliance

questionnaire assessments (Co; Co-C) are available in all N subjects enrolled in a clinical

trial, but accurate compliance measures (CM; CM=C), for example, from electronic

medication caps which record openings, are only known in a random fraction of N, how

does one estimate P(Y|D)? Simulation studies are performed to compare several analysis

methods in terms of their precision for estimates of P(Y|D) and their power to reject

P(Y|D>0) = P(YID=0). A “maximum likelihood” (ML) method, which uses all Co,CM,Y

data, and calibrates Co to CM is compared to other methods, which use only one, or both,

or neither of CM and Co but do not calibrate (neither = Intention-to-Treat (ITT) which

assumes C=100% in all).



Given that the key assumptions of ML are met (A3: CM accurately measures C,

and A2: M is assigned at random), ML yields the most precise estimates of P(Y|D) over

widely varying clinical trial designs, extremes in quality and quantity of compliance

information, and a range of drug effect sizes. ML is most beneficial given data sets

having sparse compliance information. However, ITT can be just as powerful as ML.

ML maintains its superior precision when A3 is violated and is equivalent to the best

performing methods when A2 is violated. When A3 and A2 are violated simultaneously,

ML has the second best performance. The relative performance of all methods is

maintained when a real data set is analyzed.

In conclusion, ML is an efficient and robust method for determining P(Y|D) given

a trial with compliance measured via a calibration design.

64, sº º
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ABBREVIATIONS AND SYMBOLS

Complete Data for a Generic Individual in a Clinical Trial

Y = Pharmacodynamic response

C = True compliance

CM = Compliance measured with an electronic monitor (“M” = Monitor)

Co = Compliance measured via patient self-report (“o” = Questionnaire)

Dn = Assigned dose (“n” = nominal)

D = D(C,Da) = Exposure

M = Indicator variable: electronically monitored (M=1) / not monitored (M=0)

Note:

1. Any of above, when subscripted using the index i, explicitly denotes the "

individual's value.

2. For random variables a and b,

a. P(a): the density or probability mass function of a

b. P(a,b): the conditional density of a given b

c. alb: a is distributed independently of b.

d. “” denotes an estimate

Experimental Set Up

N Number of subjects in the clinical trial

NM Number of subjects with M=1; NMs N
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fM Fraction of subjects with M=1; f■ = NM/N

Y, M, Dn Binary

C, CM, Co, D Categorical (3 levels)

Y, Co, D, and M Observed in all

CM Observed in subjects with M-1

C Unobserved

Simulation Models

Nihs The number of sets of parameter values drawn by Latin Hypercube

Sampling

D(C,D) Function mapping compliance and nominal dose (C, Dn) to

exposure (D); for more details refer to “Simulation Design For

Each Clinical Trial” in section A.1 of the Appendix

Simulation Microparameters

p Logit{P(Y|D=0)}

a, b Parameters of P(CoC)

Model Parameters

Estimated

6 All parameters to be estimated; 6 = 91,02 for the ML method of

analysis, 0 = 0 for all other methods of analysis

61 Parameters of the model P(Y|D)



02

Fixed Constants

Parameters of the model P(CCO)

9 prior Prior mean of 61

92prior Prior mean of 62

M Weight of the prior penalty for 0+0 prior

M2 Weight of the prior penalty for 03:02prior

Methods of analysis

ALL CM is known in "All" subjects (N subjects) and used to estimate 6

BA Uses “Best Available” compliance data to estimate 6

CD “Complete Data”; uses only CM data in M=1 to estimate 6

ITT “Intention-To-Treat”; Assumes C=100% to estimate 6

ML “Maximum Likelihood” Estimator; uses all CM and Co data to estimate 6

BSR “Believe Self-Report”; uses only Co data to estimate 6



SECTION I

GENERAL INTRODUCTION



Chapter 1: Patient Compliance During Clinical Trials and its Influence on the

Estimated Drug Effect

1.1 Overview of Compliance

1.1.1 Definition

Neglecting to take medication as prescribed is a major cause of variability in drug

exposure and has been associated with the failure of many treatments (Didlake, Dreyfus

et al. 1988; Bond and Hussar 1991; Cramer and Spilker 1991; Harter and Peck 1991;

Urquhart 1992; Urquhart 1997; Kastrissios and Blaschke 1998). Compliance, a term used

to describe the agreement between a patient’s actual drug taking and the prescribed

regimen(Urquhart 1992; Urquhart 1994), is not a new problem in therapeutics. Records

documenting physician concern about patient compliance date to the time of Hippocrates

(Didlake, Dreyfus et al. 1988; Bond and Hussar 1991; Cramer 1991; Ickovic and Meisler

1997).

1.1.2 Measurement

Centuries ago, physicians may have asked patients about their compliance or

inferred it from their response to treatment. Today, investigators still elicit patient self

reports of compliance(de Klerk, van der Heijde et al. 1999; Chesney, Ickovics et al.

2000), but may perform pill counts(Lee, Kusek et al. 1996), check plasma

levels(Maenpaa, Javela et al. 1987; Hardy, Kumar et al. 1990; Kapur, Ganguli et al. 1991;

Bloch, Gur et al. 1992), or monitor medication bottle opening and closing with an



electronic device wired into the cap(Cramer, Mattson et al. 1989; Urquhart 1997), as

well. Each offers a different approach to quantifying drug intake.

A pill count compares the number of pills in the patient’s possession at the end of

a dosing period to the amount that should have been remaining if compliance were

perfect. Self-report tools, such as diaries and questionnaires, ask the patient how many

pills they recall taking (or missing) during an interval of time. Biological assays infer

compliance through the presence of drug, metabolite, or other intake markers in bodily

fluids. Electronic chips in a medication bottle cap continuously record the time of pill

bottle opening and closing. Presumably, an opening and closing event signals that the

appropriate dose has been ingested. Biological assays and a clinician's observation of the

patient ingesting medication, known as directly observed therapy (Weis, Slocum et al.

1994), are considered direct measures of compliance. Self-report, pill counts, and

electronic monitors are labeled indirect measures (Farmer 1999).

1.1.3 Metrics

Numerous approaches to transforming the data collected using compliance

measuring tools into a univariate summary of intake have been reported (Vrijens and

Goetghebeur 1997). Percent compliance is most commonly used and most often defined

as the fraction of prescribed doses taken during some interval of intake observation. That

interval may be the entire duration of dosing, or, perhaps, just a few days prior to a visit

with the clinician. The duration of time is dictated by the technique used to measure

compliance.



For example, an observed drug level reflects compliance over the compound's

previous four half lives (Urquhart 1997) while pill counts reflect compliance over the

entire period of time between counts. Self-reported compliance can reflect intake over the

entire study duration if the patient uses a diary to record compliance daily. Due to the

limitations imposed by memory, when questionnaires are used, subjects are usually asked

to recall their intake just a few days prior to visiting the clinician. Electronic caps monitor

compliance continuously, so there is no technically imposed limit on the duration of time

over which percent compliance can be measured with this tool.

In addition to percent compliance, other compliance metrics reported in the

literature include “percentage of prescribed dosing days with the correct intake”(Vrijens

and Goetghebeur 1997), (which is equivalent to “compliance rate”(Cramer, Mattson et al.

1989)) “therapeutic coverage”(Detry 1994; Meredith and Elliott 1994; Urquhart 1994;

Meredith 1999), frequency of “drug holidays”(Urquhart and Chevalley 1988), and

various metrics for describing dose timing—variability around the median dosing time,

percentage of too short or too long dosing intervals, and median and quantiles of the

dosing intervals (Vrijens and Goetghebeur 1997).

Percent dosing days refers to the percent of days on which the patient took the

prescribed number of pills. Therapeutic coverage refers to the fraction of time during

which a patient ingests sufficient medication to keep drug concentrations above some

minimum efficacious level. This is related to a drug’s “forgiveness”, or the period of time

during which an effect persists despite the absence of drug in the measurement

compartment (Urquhart 1997). A drug holiday was originally defined as a discontinuation

of drug intake for three or more consecutive days (Urquhart and Chevalley 1988;



Urquhart and De Klerk 1998). Others later defined it as one or more days without drug

intake (Vrijens and Goetghebeur 1997).

Self-reported compliance is often quantified using a coarse description of dosing

(discrete categories) rather than using continuous values on a 0-100% scale. Labeling

patients as compliant, non-compliant, or moderately compliant has intuitive appeal for

the clinician. In contrast, some have culled a multivariate description of drug intake from

compliance records. The entire time series of bottle opening and closing events has been

captured with several parameters by modeling the data as a Markov process(Girard,

Blaschke et al. 1998).

One goal of developing such summary statistics is to identify predictors of patient

dosing behavior. For example, the Markov model reveals that the day of the week

correlates with percent compliance—patients tend to skip more pills and take morning

doses later on the weekend compared to weekdays(Girard, Blaschke et al. 1998).

Predictors of compliance tend to be factors such as dosing frequency, dietary restrictions,

pill burden, and patient-provider relationships(Chesney 2000), while sociodemographic

variables are not predictive of one's drug intake behavior(Chesney 2000; Wright 2000).

For example, compliance, defined as the percent of days on which the medication bottle

was opened, was not influenced by age, sex or nationality, in a clinical trial comparing

the cardiovascular effects of aspirin to placebo(Waeber, Leonetti et al. 1999). The

Markov model, however, identified age as a predictor of compliance(Girard, Blaschke et

al. 1998). Perhaps this reflects the model's ability to capture dose amount and timing

information.



Wide intra-(Cramer, Scheyer et al. 1990; Waeber, Leonetti et al. 1999) and inter

individual(Kastrissios and Blaschke 1997) variability in compliance has been observed in

controlled clinical trials. Urquhart compared reported values of electronically monitored

compliance for three different drugs—therapies for glaucoma, epilepsy, and arthritis and

noted that the distribution of patient compliance appears similar across diverse medical

conditions(Urquhart and De Klerk 1998). Patients took an average of 76% (range: 0–

100%)(Kass, Meltzer et al. 1986) of prescribed topical pilocarpine for glaucoma, 76%

(range: 30-100%)(Cramer, Mattson et al. 1989) of an oral epileptic, and 81% of a non

steroidal anti-inflammatory drug (range: 10-100%)(de Klerk and van der Linden 1996).

The similarity between compliance distributions for a wide variety of ambulatory patients

suggests that patient compliance is more related to behavioral qualities, rather than

pathophysiological conditions. It suggests why an individual’s compliance is difficult to

predict(Kastrissios and Blaschke 1997).

There are exceptions to this rule. Compliance may be lower with drugs to which

patients can attribute unpleasant side effects(Chesney 2000). An example is

cholestyramine—a drug whose side effects include gastrointestinal discomfort. Patients

who received the drug during clinical trials were less compliant than patients who

received placebo(Program 1984; Urquhart 1991).

Note that a doctor's intuition about compliance is poorly predictive of

compliance(Kass, Gordon et al. 1986; Turner and Hecht 2001). Physicians have been

shown to correctly label patients as compliant or noncompliant only 1 out of every 2

times—as poor as flipping a coin to decide(De Geest, Borgermans et al. 1995; Rich, Gray

et al. 1996). One study revealed that provider estimates of compliance explain only 26%



(95% CI, 6%-47%) of the variation in pill count adherence, while patient self-report

explains 72% (95% CI, 52%-96%)(Bangsberg, Hecht et al. 2001).

1.2 Compliance and Drug Effect

1.2.1 Influence of Compliance on Pharmacodynamic Response to Efficacious Drugs

It is difficult to say whether failing to comply would have helped or harmed one's

health in the early days of medicine. However, safe and effective medications cannot

work in people who do not take them(Koop 1984). There is considerable evidence that

forgetting to take several doses of an immunosuppressive results in the rejection of a

transplanted organ. One group reported that noncompliance accounts for 13% of graft

loss(Hong, Sumrani et al. 1992) and increases to 27.6% of graft loss 2-3 years post

transplantation(Dunn, Golden et al. 1990). The level of compliance among transplant

recipients is less than ideal. In one study, 22% of 148 adult renal transplant recipients

admitted missing several doses each month during the past year(De Geest, Borgermans et

al. 1995).

For some medications, there are risks associated with skipping pills beyond the

anticipated loss of drug effect. It may be equally dangerous to self-medicate

intermittently than to take no drug at all! Patients are prone to develop a hypertensive

crisis after several doses of a 3-blocker are missed(Urquhart 1997). (Upregulation of

beta-adrenergic receptor production in patients exposed to 3–blockers is the proposed

mechanistic basis for this effect. The degradation of 3-receptors occurs over a longer

period of time than the duration over which patients may alter their 3–antagonist plasma

levels through self-medication. When patients skip several doses in a row, the resultant



drop in drug level increases the fraction of unbound 3—receptors. This sudden change in

free 3—receptor level enhances sensitivity to endogenous 3–agonists.) Psaty and

coworkers report a fourfold increase in the relative risk of coronary heart disease in

subjects whose record of beta blocker prescription filling revealed less than 80%

compliance(Psaty, Koepsell et al. 1990).

More insidious are the public health risks of noncompliance, as evidenced by the

well-known example of incomplete dosing with antibiotics. Drug-resistant infectious

strains are likely to proliferate when patients fail to self-medicate above the minimum

effective concentration for an adequate period of time(Lipsitch and Levin 1998;

Mitchison 1998). Lack of efficacy and the emergence of drug-resistant strains of HIV

have been linked to non-adherence with antiretroviral therapy(Chesney, Ickovics et al.

1999). Compliance is a particularly thorny issue for patients taking anti-HIV medications

due to the complexity of the regimens prescribed(Chesney, Morin et al. 2000). Only half

of patients take all antiretroviral medication in accordance with time and dietary

instructions in a given week(Nieuwkerk, Sprangers et al. 2001).

1.2.2 Compliance and Confirmatory Clinical Trials

Compliance in clinical trials is as much a determinant of outcome as in clinical

practice(Peck 1999). The standard clinical trial analysis method, the intention-to-treat

(ITT) procedure, estimates drug efficacy by pooling the outcomes of patients who are

assigned to drug but do not take it compared with the outcomes of those who are fully

compliant. Because of this, ITT is said to estimate ‘use effectiveness’(Sheiner and Rubin

1995). If all patients are perfectly compliant with the prescribed treatment, ITT estimates



the true pharmacologic effect of drug, or ‘method effectiveness’. If patients are less than

perfectly compliant with an effective therapy, the ITT approach yields a downwardly

biased estimate of method effectiveness and can possibly impact the result of a clinical

trial(Kastrissios and Blaschke 1997; Hasford 1999). Statistically speaking, poor

compliance increases ITT's chance of failing to reject the null hypothesis when it should

be rejected. Some consider drugs to be mislabeled if ITT average values for drug

efficacy are offered as the only dosing guidelines(Lasagna and Hutt 1991).

The Food and Drug Administration (FDA) requires an ITT analysis for the

determination of efficacy from confirmatory clinical trials since it lends itself to a causal

interpretation of the outcome(Peck 1999). The ITT estimate is causal as it estimates the

difference in average response caused by the difference in randomly assigned dose (not

ingested dose).

1.3 Approaches That Reduce the Influence of Compliance on Estimated Drug Effect

1.3.1 Alter Clinical Trial Design

Under the ITT paradigm, investigators may try to protect study power by

increasing the number of subjects enrolled(Freedman 1990). They may use poor

compliance as an exclusion criterion or intervene to improve compliance so ITT's

estimate of use effectiveness approaches true method effectiveness. Each of these

solutions has caveats. Obviously, all three approaches tax available resources.

Increasing study size and excluding poor compliers are only options if there is a

large enough patient pool to draw from. Since there are no reliable predictors of

compliance(Lerner, Gulick et al. 1998; Wright 2000), noncompliers must be identified



for exclusion by performing a run-in, or mock, trial before the study commences. The

run-in may use a placebo, however, compliance with placebo does not necessarily predict

an individual’s compliance with an active compound(Sheiner and Rubin 1995). If a run

in is performed using the drug, one runs the risk that subjects may become unblinded or

exhibit crossover effects. The run-in, therefore, threatens the generality of the clinical

trial(Pablos-Mendez, Barr et al. 1998). Furthermore, it is unclear what constitutes an

adequate run-in duration to identify the poor compliers(Kastrissios and Blaschke 1997).

Misclassification of noncompliers as compliers during the run-in decreases the efficiency

of the clinical trial(Brittain and Wittes 1990).

Interventions to improve compliance involve alerting patients to take drug at each

dosing event or counseling behavioral modifications that enable patients to self

medicate(Haynes 2000). Systems for alerting patients range from notification via email

and pagers to having support staff telephone the subject(Urquhart 1997). The most

extreme form of intervention is directly observed therapy (DOT)(Barker and Millard

2000; Volmink and Garner 2001). DOT requires subjects to visit the study site to receive

treatment at every dosing event.

An analysis of 19 randomized controlled trials designed to measure the efficacy of

interventions to improve compliance revealed that 17 were successful. They involved

some combination of more convenient care, dissemination of drug information, patient

counseling, periodic reminders, self-monitoring, clinician reinforcement, family therapy

and additional supervision or attention(Haynes 2000). Some data suggest that these

approaches are only successful in improving adherence while the intervention is

applied(Cummings, Becker et al. 1981). Patients receiving directly observed anti-HIV
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therapy on weekdays and self-administering doses on weekends had significantly reduced

intake on Saturdays and Sundays(Wall, Sorensen et al. 1995). Selecting for a group of

perfect compliers is desirable because it allows one to estimate the physiologic effect of

the dose tested. However, since compliance is variable under conditions of real use, a

trial of flawless compliers may reveal little about how the drug will perform in the clinic.

1.3.2 Alter Data Analysis

An appealing approach—because it requires a minimal amount of resources and

yields information most relevant in practice—is to perform an as-treated analysis of

confirmatory trial data to supplement the ITT approach. More specifically, the proposal

is to measure compliance to determine actual drug exposure, which is then related to

pharmacological response. This has been referred to as treating compliance as causing a

natural experiment in dose ranging(Urquhart and Chevalley 1988).

1.3.2.1 Caveat #1: Confounding

Despite the potential benefits, this approach has rarely been used in developing

dosing guidelines(Peck 1999). An as-treated analysis using compliance data poses two

serious data analytic challenges. The first is an issue of confounding and the second is an

issue of compliance measurement.

The issue of confounding arises because a subject's compliance is unknown at the

outset of a trial, and, therefore, is, technically, an outcome of the treatment. (It cannot be

a variable on which stratification occurs since, as noted earlier, the search for individual

predictors of compliance has been fruitless to date(Kastrissios and Blaschke 1997)).

11



Using compliance information to determine exposure for exposure-response estimation

effectively treats compliance as an independent variable in data analysis. The extent to

which a subject's intake causes his pharmacodynamic response through drug exposure

versus the possibility that both response and compliance are driven by another factor is

unknown. Without additional data or assumptions, the estimated exposure-response

relationship may be biased. Several model-based approaches to determining exposure

response when treatment taken differs from treatment assigned have been reported(Efron

and Feldman 1991; Sheiner and Rubin 1995; Angrist, Imbens et al. 1996; Goetghebeur,

Molenberghs et al. 1998; Robins 1998).

The approaches to finding causal estimates of exposure when there is

confounding have rested on an assumption about the relationship between compliance in

drug and placebo groups(Efron and Feldman 1991; Angrist, Imbens et al. 1996;

Goetghebeur, Molenberghs et al. 1998), rested on an assumption about response in non

compliers(Sheiner and Rubin 1995), or taken advantage of hypothetical patient covariates

to stratify on compliance(Robins 1998).

The relationship between compliance to drug and compliance to placebo must be

specified as the proper control for the subjects who comply with drug is not necessarily

the group of subjects who comply with placebo. It is the subset assigned to placebo that

would have been compliant with drug had they been assigned to that study arm. Note that

having the same distribution of compliance in the drug and placebo groups, theoretically,

does not reduce the need for such an assumption. (For example, patients in a clinical trial

comparing the cardiovascular effects of aspirin had the same mean and variance in
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compliance regardless of being assigned to drug or placebo (Waeber, Leonetti et al.

1999)). Only measuring compliance with drug and placebo in the same individual does.

Efron and Feldman (1991) developed a causalestimator of the effect of exposure

to the lipid-lowering drug, cholestyramine, on coronary heart disease using data collected

during the Lipid Research Clinics Coronary Primary Prevention Trial, or LRCPPT

(Program 1984). The LRCPPT data set received much attention because it suggests there

is confounding between compliance and response; a trend between compliance and

response was observed in both the treatment and placebo groups. Furthermore, subjects

were observed to have lower compliance with drug than placebo, complicating the task of

finding the proper control for subjects assigned to dose in the placebo group.

Efron and Feldman (1991) note that the steep compliance-response relationship

observed in subjects assigned to drug and the shallow compliance-response relationship

observed in subjects assigned to placebo is evidence of a dose-response relationship.

Their strategy is to recover the dose-response relationship from the compliance-response

relationship by estimating the difference in response for those assigned to drug and those

assigned to placebo at matched levels of compliance. The authors assume: (1) there is no

difference in response between 0% compliers to drug and 0% compliers to treatment, and

(2) compliance is an inherent attribute of the patient (“perfect blind assumption”), which

allows them to write a model relating an individual's compliance with drug to his

compliance with placebo. Their results are likely sensitive to these assumptions—it has

been demonstrated that incorrectly assuming that compliers to placebo are the proper

control group for compliers with drug leads to severe bias in estimates of drug

effect(Albert and Demets 1994).
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Sheiner and Rubin's (1995) approach is an example of a generic modeling method

known as instrumental variables. Their analysis rests on two assumptions—first, the

decision to comply or not comply occurs early in the trial, which provides a basis for

believing the second, and key, assumption that outcomes in drug noncompliers are the

same as they would have been had the non-compliers been assigned to the control

treatment. Under this scenario, only the marginal distributions of compliance to placebo

and compliance to drug are required to yield an unbiased estimate of the causal

relationship between exposure and response. However, as the authors point out, this

approach requires more investigation to extend to applications beyond the analysis of

vaccine trial designs. Note that vaccine trial designs were used as an example for which

the key assumptions are valid: (1) no drug is available to those who are not assigned to

receive it, (2) subjects have all-or-none compliance, and (3) the control group receives

the “standard of care”.

Robins (1998) develops methodology for comparing a new therapy to the

standard of care. The concern is that differences in compliance to equivalent drugs can

yield results that make one drug appear more efficacious than another. Robins removes

the problems of confounding by assuming that compliance is non-random and can be

predicted by time-dependent prognostic factors.

Note that oral contraceptives and beta-blockers are the only drug classes with

available information on how to modify dosing behavior after skipping one or more pills.

The relationship between actual drug intake and response to these drugs was determined

via controlled simulations of noncompliance(Morris, Groom et al. 1979; Chowdhury,

Joshi et al. 1980; Wang, Shi et al. 1982; Landgren and Diczfalusy 1984; Landgren and
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Csemiczky 1991; Guillebaud 1993; Johnson and Whelton 1994; Vaur, Dutrey-Dupagne

et al. 1995). That is, the causal effect of noncompliance was determined by randomizing

noncompliance. Certain pills in the cycle were replaced with placebo to simulate skipping

pills. This causal design is one solution to the issue of confounding.

1.3.2.2 Caveat #2: Measurement Error

A second limitation of techniques for determining exposure-response using

compliance data is the accuracy and precision of patient compliance measurement. Since

none of the tools record the time each tablet is swallowed—arguably, the estimand of

patient compliance—intake inferred from the data is prone to error.

All compliance measuring tools are subject to random and nonrandom sources of

error. In self-reporting compliance, subjects may simply forget the number of pills they

do not remember to take (random error), or they may intentionally inflate estimates of

intake to please their care provider (nonrandom error). Pill counts have been criticized for

grossly overestimating compliance(Pullar, Kumar et al. 1989). Investigator miscounting

may be a source of random error in pill counts. “Pill dumping”—the act of discarding

unused pills in order to appear fully compliant—is a well-documented phenomenon that

yields nonrandom error in pill count compliance(Kass, Meltzer et al. 1986; Pullar, Kumar

et al. 1989; Rudd, Byyny et al. 1989; Nides, Tashkin et al. 1993). Assay noise is a source

of random error in biological assays of compliance, while “white coat

compliance”(Feinstein 1990)—the act of improving drug taking behavior several days

prior to a visit with a clinician—is a nonrandom source of error. Forgetting to take pills

removed from an electronically monitored bottle is a random source of error in

15



compliance measured using an electronic cap. Intentionally neglecting to take the

removed pills is a nonrandom source of error. Note that the electronic cap requires more

work on the part of the patient to yield overestimates of compliance compared to all other

tools. Of all available tools, only electronic monitors are suspected to yield downwardly

biased compliance estimates(Burney, Krishnan et al. 1996; Bangsberg, Hecht et al. 2000;

Turner and Hecht 2001).

It is known that random error in an independent variable attenuates the estimated

causal relationship with its dependent variable(Carroll 1995). That is, random error in

compliance measurement yields downwardly biased estimates of the exposure-response

relationship. Ironically, attenuation of the estimated drug effect relationship is the very

problem with ITT that motivates the use of compliance data! Nonrandom error in the

independent variable may bias the estimated drug effect relationship upward or

downward. It is unknown whether attenuation is greater when assuming perfect

compliance or when using a faulty measure of compliance.

The statistical literature has a long history of addressing measurement

error(Carroll 1995). Correction for measurement error can be viewed as a special class of

data analytic approaches within the general missing data framework. Chapter 2 provides

a discussion of this work.

Experimental protocols can be altered to reduce error in compliance

measurement. To decrease nonrandom error in self-reported compliance, investigators

may carefully choose nonjudgmental language in eliciting compliance

information(Kaplan and Simon 1990; Catania, Binson et al. 1996). Electronic diaries that

time stamp entries may diminish both random and nonrandom error by reducing the

16



reliance on patient memory and making it more difficult for patients to intentionally

misrepresent their intake(Hyland, Kenyon et al. 1993). Random error in pill counts is

likely negligible if investigators perform multiple counts. Unannounced pill counts—

having the study investigator unexpectedly visit the subject at his place of residence to

count pills—may reduce nonrandom error in pill counts as it offers the patient less of an

impetus to dump pills(Bangsberg, Hecht et al. 2000). Long half-life markers can be

monitored to ascertain drug intake over a longer period of time than drug concentration

monitoring may allow, thus, reducing the effect of white coat compliance(Hardy, Kumar

et al. 1990). Electronic measures may be corrected using self-reported compliance

information(Bangsberg, Hecht et al. 2000). For example, a subject who consistently

opens his pill bottle only once every day despite assignment to a b.i.d. regimen will have

the electronically monitored compliance value (50%) adjusted to reflect perfect

compliance (100%) if the patient reports removing doses for the entire day at one

opening.

Although electronic diaries, unannounced pill counts, long half-life marker

compounds, and electronically monitored caps with supplemental self-report information

may provide the most accurate measure of drug intake, they are not the most common

methods used in practice. Considerations of cost and convenience strongly influence the

selection of compliance monitoring tools. Since compliance assessment is subject to

considerable error, some recommend the use of two or more instruments(Liu, Golin et al.

2001). To satisfy the need for economy and accuracy in compliance measurement,

calibration study designs—where compliance is assessed with a less accurate tool in all

17



subjects and with a more accurate tool in a random subset—has been used in some AIDS

Clinical Trials Group (ACTG) protocols.

Calibration designs bring up two important issues in addition to the measurement

error problem: (1) How does one determine compliance when it is measured with several

tools and the measurements do not agree, and (2) How does one use partial compliance

data from one instrument in conjunction with full or partial data from another of lesser

accuracy. The first issue has been addressed (with respect to drug level outcomes, not

clinical outcomes)(Jonsson, Wade et al. 1997); the second has not.
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Chapter 2: Statistical Approaches to Correcting for Measurement Error and

Missing Data

2.1 Error in Compliance Versus Error in Response

Scientists who work at a lab bench often consider the independent variable, X, as

something that can be measured accurately, and the dependent variable, Y, as subject to

measurement error. This reflects the nature of controlled experiments. In enzyme kinetic

studies, for example, the experimentalist determines reactant concentration, while the

product of the reaction is subject to biological variability.

In contrast, scientists who study observational data, such as survey data, often

view X as an error-prone variable. Although some covariates, such as gender, can be

determined accurately, many others cannot. A predictor variable such as alcohol

consumption is likely to be measured with great error.

This distinction between error in X and error in Y is important to make because

each has a different impact on the validity of data analysis. To understand this, first, one

must be clear about what is meant by data analysis. Here, it is assumed that the goal is to

develop a predictive model that quantifies the trend in Y as a function of X. For the sake

of discussion, assume that the true relationship between X and Y is linear, such that

Y = o + 3X + e, (2.1)

where of and 3 represent the y-intercept and slope, and e is an error term. A valid data

analysis is one in which the parameter estimates, 3, 6, and é, obtained through some

model fitting procedure, are unbiased for the true values of O., B, and e.
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If equation 2.1 is fit to a data set having negligible error in X but random error in

Y—the type of data commonly analyzed by bench researchers—parameter estimates will

be unbiased. Thus, a standard least squares fitting procedure minimizing the distance

between the model's predicted Y and measured Y (Y understood to be a vector) delivers

valid model parameters when there is random error in Y. However, if equation 2.1 is fit

to a data set with random error in X, parameter estimates will be biased. Noise in X acts

to make the estimated slope approach zero (a phenomenon referred to as attenuation) and

makes the estimated magnitude of £ larger than the true value. More disconcerting is that

bias in X can cause the estimated parameters to be biased upward or downward(Carroll

1995).

Depending on how it is measured, compliance may be a biased and/or noisy

covariate. Thus, a simple regression of response on exposure, where exposure is a

function of compliance, is expected to yield biased parameter estimates. (Note that

compliance and exposure will be referred to interchangeably as X in this discussion.)

Ironically, bias in exposure-response estimation is the very problem with ITT motivating

the use of compliance data!

Fortunately, statistical methods have been developed to obtain unbiased parameter

estimates when X is measured with error. The “measurement error” literature, also known

as “errors-in-variables”, focuses on correcting parameter estimates obtained using

standard methods of analysis for bias and/or noise in X. Measurement error can be

considered a specific class of problems within the more general “missing data”

framework. The approaches of these two fields are highlighted in this chapter. This
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general background is necessary for understanding the methods of analyses compared in

this report.

2.2 Measurement Error Approaches(Carroll 1995)

In the measurement error framework, X is unobservable. The basic strategy, then,

is to measure a covariate, W, that is related to X, and tease out the information it contains

on X. The measurement error literature largely takes what is referred to as a “functional”

modeling approach. In other words, few assumptions are made about the distribution of

X. Typically, additive or multiplicative error models with error modeled as a normally

distributed variable with mean zero are assumed, such as

W = X + ex.

Estimates of var(ex) can be obtained via independent replicate measures of W on

subjects in the clinical trial or from an external source of data. If there exists no covariate

related to X, an instrumental variable, T, can be measured instead. T is a variable that

influences the response variable, Y, only via X. In this way, T is said to be “surrogate”

for X, “conditionally independent of Y given X”, or have “nondifferential” measurement

error. To be considered an instrumental variable, T must be correlated with X,

independent of W-X, and independent of Y given X. Once W or T is known, the method

of “regression calibration” replaces X by the regression of X on W or X on T in the

model for Y. The standard error of estimates must be corrected to account for the filled in

data.

A different approach, which does not involve measuring additional covariates, is

to perform a simulation extrapolation (SIMEX). The idea is simulate the effect of noise
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on X in order to extrapolate back to the hypothetical situation in which X has no error. To

do this, increasing amounts of noise are added to X, and a model is fit to the original Y

data and jittered X data. Estimated parameter values are plotted as a function of the

amount of noise—some multiple of £ is plotted on the x-axis and the corresponding

parameter estimate is plotted on the y-axis. The parameter value corrected for error in the

measurement of X is obtained by extrapolating back to the y-intercept where e=0.

A newer approach in the measurement error literature is referred to as “structural”

modeling. Here, X is a random variable and a parametric model is placed on its

distribution. Likelihood methods are used, meaning that one writes a model for the joint

distribution of X and Y. This approach is more computationally intensive than the

functional approach, although assumptions are often made to simplify the computation.

One benefit is that a likelihood formulation allows computation of confidence intervals

via the likelihood ratio. When nonlinear least squares is used, the confidence intervals

must be determined by bootstrap or by a normal approximation.

This brings up an important point about the purpose of correcting for

measurement error. If a predictor, X, is measured with error and one wants to predict a

response based on some error prone measure of X, then it makes little sense to worry

about the unobservable value of X. After all, Y can be predicted from W using a model in

which Y is regressed on W. However, if one wants to predict responses in another

individual, the relationship between X and W may not be the same in that individual as in

subjects observed in the study. A naive prediction model that ignores measurement error

may not be transportable. Unbiased parameter estimates are required for valid inference.
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This is especially important given the challenges inherent in compliance

measurement. Error in compliance measurement depends on the measurement tool

available and how it is used, so the error is likely to be different during the study in which

the model is created than in clinical applications. If the goal is to create dosing guidelines

that are published in a package insert, the information needs to be as general as possible.

Thus, it is imperative to correct for measurement error in compliance in exposure

response models.

2.3 Measurement Error Approaches are a Special Case of Missing Data Approaches

A study in which compliance is measured via a calibration design fits into the

classical measurement error scheme where W (self-reported compliance) is known in all

subjects and an internal validation study is used to measure X (electronically monitored

compliance) in a subset. Another, perhaps less optimistic, way to view the calibration

design is as a missing data problem. That is, rather than thinking of CM data as available

in a subset, CM is considered missing in a fraction of subjects. This perspective would be

more obvious had the study been designed to collect CM in all, but data were recorded in

error or some subjects didn't return their electronically monitored cap. Regardless, the

data set looks the same—CM entries are incomplete.

On the surface, this distinction appears to be a semantic issue. In the statistical

literature, however, the difference is philosophical. Data analytic approaches to

measurement error problems are quite different from missing data solutions. Likelihood

approaches are the norm in the missing data literature, whereas “structural” modeling

approaches are less common in the field of measurement error.
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Classic data analytic approaches have been developed to analyze full data sets. It

is, perhaps, for this reason that missing data may appear to be a more serious problem

than measurement error. However, measurement error can be considered more insidious

than missing data, in that it doesn't make itself known. When data are missing, one is

forced to choose a data analytic approach wisely.

2.4 Missing Data Approaches(Little and Rubin 1987; Little 1992)

The default method of analysis when data are missing is to discard records from

subjects who do not have the value of interest. Not only can this lead to biased estimates

of treatment effects (although most often biased towards the null), but the need to contain

cost and the desire to fulfill an ethical responsibility to the subjects tested motivates

clinical trialists to use the available data, imperfect as it is, as efficiently as possible to

learn about drug effect. Consequently, much research has focused on developing

statistical methods for handling incomplete data sets.

Similar to errors-in-variables problems, the consequence of analyzing a data set

with missing data “incorrectly” depends on whether X or Y is missing and what one

wants to estimate. Here, the discussion is limited to cases in which X is missing when it

is of interest to estimate the exposure-response model, P(Y|X).

The validity of the analysis of data sets with missing values also depends on why

the data are missing (the so-called missingness mechanism). Assessing why the data are

missing is something for which there is no parallel in the measurement error literature.

With measurement error, it is generally held that mismeasurement reflects a limitation of

the measuring device, and hence, measurement errors are random. Faulty measurement
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devices are only one of several reasons why data may be missing. The data may be

missing by design, as when an internal validation study is performed. In the missing data

literature, this is often referred to as double sampling or probability sampling. The value

may be missing unintentionally, as when there is an error in recording data. Subjects may

forget to answer a question or fill in a response inappropriately. Such examples of

designed missingness and unintentional missingness are classified as examples of

“uninformative missingness”. That is, the missingness of X is independent of the value of

X. In contrast, X has informative missingness if subjects are more likely to refuse to

report X when X has a certain value or when subjects drop out of a study due to their

value of X. Discussion of the mechanism of “missingness” is facilitated by introducing a

binary indicator variable R for the missingness. R is conventionally set equal to 0 if a

subject has no measure of the variable of interest and set equal to 1 if the subject has an

observed value.

To relate this to the problem under consideration, one needs to consider the reason

why CM data are missing. If subjects with poor compliance discard their electronic cap or

break the device to hide the fact that they haven't been taking their medication, this is an

instance of informative missingness. However, if CM is missing by virtue of planning an

economical study design, missingness is uninformative. If R is independent of X (and all

other variables)

P(R|Y,X,W) = P(R),

then X is said to be missing completely at random (MCAR). If the missingness of X

depends on fully observed covariates and/or observed Y, X is said to be missing at

random (MAR). Formally,
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P(R|Y,X,W) = P(R|W),

P(R|Y,X,W) = P(R|Y),

and

P(R|Y,X,W) = P(R|Y,W)

are all instances in which X is MAR. If the missingness of X depends on the missing X

value, however, then X is said to be nonignorably missing. The distinction between

ignorable and nonignorable missingness is important to make because it determines what

approaches will yield valid parameter estimates.

Before the use of computers in statistical research, the missing data literature

focused on developing ways to get ragged data (due to missing values) to resemble a

complete data set so they could be analyzed using standard approaches. Numerous

approaches to filling in missing values—a process known as data imputation—were

developed. Note that many of the imputation methods have the same flavor as

measurement error correction approaches.

One commonly used method of imputation for longitudinal data is “last

observation carried forward”, where one fills in an individual’s missing values with the

last reported value. (The last observation carried forward approach does not apply here

because this is not a longitudinal study—CM is either measured once or not at all.)

Approaches, which do apply here, include ‘mean’ and ‘regression' imputation. In mean

imputation, the mean of the set of recorded values is substituted for the missing values. In

regression imputation for X, the missing values are imputed according to a model

estimated by regressing Y on X in the subjects who have both. Regression imputation is

analogous to regression calibration in the measurement error literature. A variant of
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regression imputation is stochastic regression imputation, where error is added to

predicted values before filling them in. Others have substituted external data for missing

data—analogous to an external validation study in the measurement error literature.

Imputation can be carried out iteratively by obtaining the least square estimates with

complete data, then filling in least squares estimates of all missing values and repeating

the process until the optimization procedure is complete. Analogous to the measurement

error approaches, it is necessary to correct standard errors for the differing status of the

true and imputed data.

More recent developments, which have become the major focus of the field, are

model-based procedures for handling missing data. That is, one develops a full

probability model for all of the data, missing and observed, and uses likelihood or Bayes

procedures. With likelihood methods, the goal is to obtain parameter estimates that make

the observed data most probable given a model for all of the data—observed and

unobserved. Bayesian approaches take the likelihood approach one step further and treat

all parameters as random variables. In the Bayesian framework, the likelihood is

multiplied by a prior distribution on all of the parameters. Multiple imputation is a

method that eases the computational burden (integration) on the likelihood approach by

using multiple stochastic regression imputations based on all of the observed data.

2.5 Comparison of Approaches

Given the vast choice of approaches to analyzing a calibration study, it is

important to consider what is known about method performance before committing to a

strategy.
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The default method of analysis when data are missing—throw out records from

subjects missing data and analyze the remaining data via whatever standard method was

originally planned—is attractive in its ease of use. This complete data (CD) approach

allows one to use standard statistical software for data analysis. More importantly, CD

yields valid inference when X is nonignorably missing(Glynn and Laird 1986; Little

1992). The disadvantage of this method is that it is inefficient.

Single imputation (SI) methods are also appealing because they allow standard - -- ~~~

methods of analysis to be used. However, these fill-in approaches are invalid if the data --

are not MCAR. So, if CM data are more likely to be missing in subjects who have a worse … --> -

prognosis or in subjects who have a particular value of Co, then SI is expected to yield

biased estimates of exposure-response. Furthermore, these approaches require, ---

oftentimes, ad hoc procedures for correcting the standard errors to reflect the differing

status of real data and filled in data. While it is easy to correct residual error and standard ,--

errors that have one degree of freedom, it becomes increasingly difficult as the number of

degrees of freedom increases. This is also an issue for the regression calibration

approaches in the measurement error literature.

Model-based methods have gained favor over early imputation procedures for

many reasons. Under the assumed model, large sample properties (consistency,

efficiency) hold for likelihood methods. The likelihood ratio is asymptotically distributed

chi-square—a favorable property for inference. Maximum likelihood (ML) procedures

yield valid parameter estimates under a less stringent condition of missingness—

parameter estimates are unbiased when the data are MAR. (Recall that the imputation

methods require the data to be MCAR.) Furthermore, likelihood estimates can be made
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valid even if the data are informatively missing by modeling P(R|X), although the

validity cannot be tested on the data at hand.

Under certain conditions, estimates by imputation procedures approach ML

estimates. Single imputation followed by weighted least squares estimation has been

shown to yield parameter estimates that approach ML estimates when the weights are

chosen appropriately. Parameter estimates obtained via multiple imputation converge on

likelihood estimates as the sample size increases and the number of imputations - ~
increases. -

There is one instance in which data imputation followed by weighted least squares

estimation performs better than likelihood methods. Elliptical distributions with a long * * *

tail are better estimated by weighted least squares procedures if data are nonnormally

distributed and ML assumes normality. This highlights the fact that model based methods

may be sensitive to model misspecification. Some perceive the need to write a model for º

all of the data and the resulting requirement to investigate sensitivity to assumptions as

disadvantages of model-based methods.

Both likelihood and least squares approaches are poor for small sample inference.

Bayesian (BY) approaches perform well under small sample designs. Some view it as a

disadvantage that BY requires more modeling assumptions than ML. Additionally, BY is

more computationally taxing.

2.6 How Should Compliance Calibration Studies Be Analyzed?

That the analysis of calibration studies has received much attention in the

literature is reflected in the wide array of terminology used to describe this design. A
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literature search for methodology should include keywords such as "two-phase

nº ºn 17 ºnsampling", "two-level data", "coarse classification", "detailed and crude sampling", and

analysis using "auxiliary data" on an "incomplete", "missing", or "mismeasured"

covariate. One might assume, then, that practical guidelines exist on how to determine the

exposure-response relationship using compliance data measured via a calibration study.

Unfortunately, they do not.

The published explorations have been tailored to individual pockets of research

with study designs, parameters of interest, and performance metrics differing from our

concerns(Weinkam, Rosenbaum et al. 1991; Plummer and Clayton 1993; Bashir and

Duffy 1997; Lu, Ye et al. 1997; Spiegelman, Schneeweiss et al. 1997; Golm 1998). It is

easier to apply results generally between one study and another when linear models are

used. However, clinical trialists are generally interested in nonlinear and even

nonparametric exposure-response models. A model estimating relative risk of some

outcome raises different concerns than an Emax model.

Perhaps, the most important difference is that reports in the literature tend to focus

on large studies, typical of epidemiological research, rather than those on the order of

typical confirmatory clinical trials(Rosner, Willett et al. 1989; Carroll, Freedman et al.

1997; Kaaks and Riboli 1997; Thoresen and Laake 2000). This is an important

distinction, as it is known that model-based methods perform differently under

asymptotic conditions compared with small sample conditions. Of course, the cutoff for

what can be considered a small study with regard to asymptotic behavior is not known,

but, most likely, one AIDS Clinical Trials Group data set that we aim to analyze is a

small sample study—there are 34 subjects in the trial with even fewer having an accurate
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measure of intake(Bangsberg, Hecht et al. 2000). More details on this data set are given

in Chapter 7. One study comparing regression imputation to likelihood methods for the

analysis of categorical data with sample sizes of the magnitude of interest here did not

address the kinds of parameters relevant to these studies(Selen 1986).

Additionally, former investigations into calibration methodology occurred in

fields that use observational data. Therefore, the focus is on picking a best method among

missing data or measurement error approaches. In the realm of confirmatory clinical trial

analysis, the standard of comparison is the intention-to-treat procedure. An important

question that needs to be explored is whether parameters in an exposure-response model

suffer greater bias from using compliance data incorrectly or from discarding it

altogether.
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Chapter 3: Scope of the Investigation

The goal of this investigation is to determine the operating characteristics of

various methods for estimating “exposure-response” given a clinical trial designed such

that exposure (compliance) is measured via a calibration study. To be explicit about the

calibration design—compliance is measured with a biased tool in all subjects, but with an

accurate tool in a random subset. Under the calibration study design there are several

contending methods for determining drug exposure. For example, one may opt to only ---

use data from subjects with an accurate measure of compliance. Alternatively, one could . . . -

use all subjects’ data and pick the best compliance data available in each individual to

determine exposure. The purpose of this investigation is to recommend one or another …

analysis method for future use by others. -------

In this thesis, the performance of an analysis method that calibrates the imprecise º " …

measure of compliance to an accurate measure in the determination of exposure is º
*

compared to analysis methods used in practice. Methods in practice include using one, or : º
-
º

both, or neither (neither = Intention to Treat assumes C=100% in all) of electronically

monitored and self-reported compliance data as measured (not calibrated). A maximum

likelihood (ML) procedure is selected as the calibration approach because it uses

methodology that is acceptable in both the missing data and measurement error literature

and various estimators converge on ML estimates. The missing data literature suggests

that ML has difficulty under nonasymptotic conditions and that a Bayesian approach is

better suited to small studies. Here, this handicap on ML performance is viewed as a way

to allow the contending methods to compete with the model-based approach.
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Analysis method performance is evaluated through simulation—a three-part

procedure. First, data are simulated from known models of dose assignment, compliance,

and exposure-response. Next, simulated data are analyzed to yield an estimate of drug

effect by all methods under consideration. Finally, the precision of each drug effect

estimate is computed. The Appendix outlines the simulation study design, data simulation

models, and performance evaluation. Chapter 4 presents the theoretical development of

data analytic methods. Chapters 5, 6, and 7 present results. Refer to the

ABBREVIATIONS AND SYMBOLS section for an explanation of the notation used

throughout this report and to the Appendix for a description about how to interpret the

graphical displays of results.

Chapter 5 presents the investigation of analysis method performance under a best

case scenario. That is, when all assumptions of the ML method are satisfied in data

simulation. Chapter 5 specifically answers:

• In general, across widely varying clinical trial designs, which method possesses

the greatest estimation precision?

• Across widely varying clinical trial designs, what benefit (if any) is reaped

when compliance data are rich (here, "rich" means that self-reported compliance

is accurate or many subjects have CM data)?

• Across widely varying clinical trial designs, what cost (if any) is incurred when

compliance data are poor (here, "poor" means that self-reported compliance has

no correlation with true intake or few subjects have CM data)?

• To what extent does method performance depend on the size of the drug effect?

• What is the influence of the distribution of true compliance on performance?

---
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• Which method has the most power to detect a drug effect? Does this agree with

performance with respect to estimation precision?

Chapter 5 also determines the influence of arbitrary simulation study design choices on

method performance. Specifically addressed—how does the prior value on P(CCO) and

the placebo-controlled design influence method performance? Chapter 4 explains the use

of the prior in estimation. The clinical trial design is outlined in the Appendix.

Chapter 6 presents a sensitivity analysis, or an investigation of method

performance under conditions in which data simulation violates assumptions of the ML

method. Refer to the “Simulation Study Design” section of the Appendix for a discussion

of the assumptions of data simulation and refer to Chapter 4 for a discussion of the

assumptions of the ML method of analysis. Chapter 6 specifically answers questions

pertaining to compliance measurement:

• Across widely varying clinical trial designs, what is the influence of the

assumption that the electronic monitor measures true compliance (A3) on method

performance?

• Across widely varying clinical trial designs, what is the influence of the

assumption of random assignment to electronic monitoring (A2) on method

performance?

• Across widely varying clinical trial designs, what is the simultaneous influence

of A2 and A3 on method performance?

• How sensitive is method performance to the source of parameter values for

P(CoC) and P(Y|D)? This is investigated by asking how method performance

evaluated using real data as the source for P(Y|D) and P(CoIC) in simulation
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compares to performance determined using arbitrary P(Y|D) and P(CoC)

distributions?

Chapter 7 presents an analysis of a clinical data set using the methods

investigated. Chapter 8 critically evaluates the methodology used and summarizes what

has been learned in this investigation. Chapter 9 explains the impact of this work and

poses future directions for this project.

-- ****
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SECTION II

INVESTIGATION OF DATA ANALYSIS METHODS

THAT ACCOUNT FOR COMPLIANCE IN

DETERMINING DRUG EXPOSURE-RESPONSE

50



Chapter 4: Theoretical Development of Analysis Methods

4.1 Assumptions

A1 Assignment to Dn is random

A2 Assignment to M is random

A3 The electronic monitor measures true compliance

C = CM, or P(C,CM) = {1 if C=CM

{ 0 otherwise

A4 True compliance, electronically monitored compliance, and self-reported

compliance do not confound P(Y|D), formally:
*

P(Y|D,C) = P(Y|D); Y and C are conditionally independent given D

P(Y|D,CM) = P(Y|D); Y and CM are conditionally independent given D :

P(Y|D,Co.) = P(Y|D); Y and Co are conditionally independent given D

A5 C is a baseline covariate .

4.2 Theory

In this thesis, a likelihood method for calibrating Co to CM in estimating

exposure-response is compared to approaches that use compliance data as measured.

Likelihood methods require writing a model for all of the data, thus, we begin by writing

a model for the joint distribution of all variables.

Since the individual-specific covariates, Coi, Dni, and Mi, are known in all

subjects, and their distributions are of no intrinsic interest, we may consider only models
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conditional upon them. With this conditioning, individuals are considered independent.

The likelihood for all the data can therefore be written

L(Yi,Y2,...YN,C,C2,...,CN Co,Co.,...,CON,D.I.D.,2,..., D.N.M.,M2,...,MN) = TI-in lo

where

l, = P(Yi,C}|Coi,Dni,M).

We now consider l = P(Yi,C}|Coi,D.I.M.) further, omitting the individual

subscript for convenience. A2 allows one to drop the conditioning on M, and standard

probability factorization allows:

P(Y,CCo.D.) = P(Y|C,Co.D.) P(C|Co.D.).

A4 allows one to rewrite the conditioning of Y on C, Co, and D, as an effect of D,

and A1 and A5 allow one to drop the conditioning of C on Dn:

P(Y,CCo.D.) = P(Y|D) P(CCO) (4.1)

Our goal is to estimate the pharmacodynamic model parameters, 61. If 61 and 02

were distinct and C was known, then one might choose to model only Y|D. In this case,

the second factor in the complete (individual) data likelihood (4.1) could be ignored, as it

contains no information on 61. If, however, C is missing, as it is by design in subjects

with M=0, these data may contribute to the estimation of 61 by integrating (4.1) over the

missing C data. That is,

P(Y|Co.D.)=JP(Y|D) P(CCS)dC.

The individual likelihood, allowing for the possibility of missing C data, is then:

l, = M - P(Y,CCo.D.) + (1-M) • P(Y|Co.D.),

which, by A3, is equivalent to:

l, = M - P(Y|D(CM.D.)P(CMCO)4 (1-M) •JP(Y|D(CM.D.)P(CMCS)dCM (4.2)
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and is now a function only of the observed data. The variables Y, Dn, C, CM Co, and D

assume only a finite set of fixed values. Therefore, the likelihood (4.2) involves only

summation, not integration:

l, = M = P(Y|D(CM.D.))P(CMCO) + (1-M) • : P(Y|D(CM.D.))P(CMCO) (4.3)M

A consequence of the saturated parameterization is that there is an element of 0.

for every unique combination of values of Y and D, and an element of 62 for every unique

combination of values of C and Co. The element of 61 corresponding to a given D value

is unidentifiable if no individual in a trial has that D value. For all elements of 62 to be

identifiable, at least one subject with each possible value of Co must be observed in the

M=1 group. Chance violation of these restrictions is likely in studies with small N.

Rather than limiting this investigation to large studies, identifiability is assured (and,

consequently, the task of comparing method performance is simplified) by incorporating

into the likelihood a quadratic penalty for deviations of 6 from a fixed prior value.

Equation 4.4 formalizes this contribution.

L(0) = T(0)II-In l, (4.4)

where l is given by (4.3), and T(0) = TI(61)T2(62) is the penalty factor, defined as follows

it (0) = \,(t(0) - tºrno))”, and

tº(0) = A2(t(0) - tºrne))”.

Note that t is a transformation from the unit (probability) interval to the real line,

0|prior = prior mean value of 61,02prior = prior mean value of 62, and M and A2 are the

weights attached to the penalties (chosen arbitrarily). This corresponds to a normal prior

on t|01), t{02). Inclusion of the penalty terms enables all analysis methods to return

**
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estimates for all parameters regardless of available data. The fewer data available to

speak to a parameter, the closer its estimate will be to its prior mean.

4.3 Analysis Methods

A natural estimator of 6 is the ML ("Maximum (penalized) Likelihood")

estimator 6"; where 6* = argmaxeL(6). As noted previously, the summation in (4.3)

could be avoided, as could estimation of 62, if C were known. This is the basis of a

number of simpler pseudo-likelihood methods of estimation, which are compared to the

ML estimator.

The first of these, denoted the BSR ("Believe Self Report") estimator, assumes

C = Co, and estimates 61 as 9, BSR = argmax9DBsR(0), where

LBSR(0) = TI(61)TI-In P(Y|D(Coi,Dn)).

A more sophisticated variant of BSR is to substitute P(Y|D(CM,Dmi)) for

P(Y|D(Coi,Dmi)) when M = 1. This is denoted the BA ("Best Available") estimator,

yielding 0°, maximizing

LBA(6) = TI(61)[I■ tmi-1} P(Y|D(CM.Dmi)) II; Mi-o, P(Y|D(Coi,Dn)).

On the other hand, when M=l data are plentiful, rather than use the possibly

biased Co at all, one might choose to use the CD ("Complete Data") estimator, yielding

6, P. maximizing

LCD(0)=Ti(91)II; Mi-1} P(Y|D(CM.Dn)).

Of course, not only Co, but, all compliance information can be discarded (an

attractive idea if compliance is suspected to be a confounder or is measured with great
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error), leaving one with the usual ITT ("Intention To Treat") estimator which regards

all C = highest possible value, and yields 91", maximizing

LITT (0)=■ t (61)TI-In P(Y|D=Dm).

The theoretically most precise estimator, computed as a fiducial point for the

others, is the ALL ("All subjects have a measure of CM") estimator. 9" maximizes

LALL(0) = TI(91)II, in P(Y|D(CM.D.)).

Of course, the ALL estimator is not a real option for any study with fM*1.
*
º
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Chapter 5: Investigation of Method Performance Under Ideal Conditions

Abstract

The results of chapter 5 show that ML yields the most precise estimates of

exposure-response over widely varying clinical trial designs, extremes in quality of

compliance information, and a range of drug effect sizes when data are simulated under a

model in which the electronic monitor measures true compliance (formally: CM-C) and

the relationship between self-reported compliance and true compliance is not influenced --

by the presence of an electronic monitor (formally: P(CoIC,M)=P(CoC)). ML is most º

advantageous for analyzing data sets with sparse compliance information. That is, when - " - -
---

less than half of the subjects in a trial have CM data and when there is no correlation
--

between Co and C. Under simulation conditions selected to favor the power of one naïve

analysis method over all others, ML is consistently the second most powerful method of

analysis. "...

5.1 Purpose

The aim of this set of investigations is to explore method behavior under ideal

conditions. That is, when data arise from a model in which assumptions of the ML

method are satisfied (refer to Chapter 4). These results are expected to show ML in the

best light. If there is no advantage of ML in this case, there is certain to be none when its

assumptions are violated.

Performance of ML, BSR, BA, CD and ITT (and ALL) is investigated as a

function of clinical trial size, fraction of subjects electronically monitored, accuracy of
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self-reported compliance, and drug effect size by analyzing data simulated from a range

of N, fy, a, b, and p values. Different regions of parameter space are explored to probe

different aspects of method behavior. The bound on each parameter's range varies

between studies, depending on the question of interest.

Refer to the Appendix for general information on the simulation study design,

performance evaluation, and a key to interpretation of all graphical displays of results.

5.2 Parameters Common to All Ideal Condition Studies

Unless otherwise noted, the following parameter values (see Table 5.1) are

common to all studies investigating method performance under ideal conditions.

Table 5.1. Fixed Parameter Values Common to All Investigations of Performance

Under ideal Conditions.

Parameter Fixed Value

Nihs 100 ×5

P(C) P(C=O)=P(C=5)=P(C=1) = 1/3

M .5/3

A2 .5/6

9iprior P(Y|D=0)=P(Y|D=5D)=P(Y|D=D) = .5

92prior P(C=k|Co-j)=1/3 for j,k {0,.5,1}

P(CMC) CM,M-c (see Figure A.5)
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5.3 Investigation of Performance Over a Wide Range of Parameter Space—Study 1

First, it is desirable to investigate method performance across a wide range of

parameter values. Table 5.2 summarizes the parameter values explored.

Table 5.2. Distribution of Random Parameter Values in Study 1.

Parameter Distribution -----

N U(50,400)
a

fM U(0,1)

a, b U(0,1), U(0,2)

p U(logit(.1),logit(.5)); i.e. P(Y|D=0) ranges from .1-.5 ---
y -

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 5.3. Note that cor(Co,C) is computed on simulated Co,C data.

The range of cor(Co,C) values is not uniformly distributed, however, as only the

microconstants comprising P(CoIC) (a,b) are drawn from uniform distributions. (Refer to

Figure 8.1 for the histogram of cor(Co,C).)

The results of this study indicate that ML yields the greatest estimation precision

across a wide range of conditions. Figure 5.1, a boxplot of the study error, AR, (defined in

the Performance Evaluation section of the Appendix) for study 1 shows that ML yields

the most precise estimates of P(Y|D). (AR for ML is closest to 1, hence, closest to ALL).
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Table 5.3. Observed Range of Parameter Values in Study 1.

Parameter Range

N 50–400

fM .00273—,997

cor(Co,C) .0546—.801

P(Y|D=0) ..100—.500

P(Y|D=D) .500—.900 -----

P(C) P(C=0): 2–5, P(C=.5): .1875–441, P(C=1): .154—,471
-- --

Error relative to ALL ---------

C
co H= --

- I- -* -* ---

O - ---

cN B

ºf a L__Ti__Ti__________ = -
v

C
O

BA CD ITT BSR ML

Analysis Methods

Figure 5.1. Boxplot of AR for Study 1. Relative to ALL (dotted line), ML returns the

most precise estimates of drug effect in a study consisting of 500 simulated clinical trials

with parameters N, fM, cor(Co,C), and P(Y|D) ranging as in Table 5.3.
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Conversely, ITT has the least precise and most biased estimates of P(Y|D). BSR, BA,

and CD drug effect estimates distribute between these two extremes.

Practically speaking, this result lends support to the use of either ML or CD. That

is, ML may yield more precise estimates of drug effect than CD, but CD is less

computationally “expensive” than ML. Since the definition of computationally expensive

differs among data analysts, methods will only be compared, here, in terms of estimation

precision. The determination of merit with respect to more fluid measures of performance

is considered in Chapter 8: General Findings and Recommendations. Hence, given no

other information about the study design, except that the parameters fall within the wide

ranges explored in study 1, Figure 5.1 suggests that it is best to use the ML method.

Since the AR statistic distills method performance down to one number, it is

conceivable that other analysis methods may outperform ML in specific regions of

parameter space. Plots of error in estimates of P(Y|D=Dn), (6D-Dn is defined in the

“Performance Evaluation” section of the Appendix) as a function of simulation parameter

values reject this possibility. Figures 5.2-5.4 show that ML outperforms all other

methods in every region of parameter space explored. (Note that plots of 6D-0 as a

function of parameter values are not shown because the result is trivial—there is high

precision in P(Y|D=0) estimates for all analysis methods. Since half of all subjects are

assigned to Dr. O, and, consequently, have D=0, all methods have an abundance of valid

data with which to estimate P(Y|D=0).)

Figure 5.2, a plot of ŠD-Dn as a function of cor(Co,C), shows that ML estimates

P(Y|D=Dn) with greater precision than any other method for all values of cor(Co,C).

Interestingly, like CD and ITT–methods that do not use Co data—the precision of
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Figure 5.2. Plot of Sp-on as a Function of cor(Co,C) for Study 1. ML is the only

method of those using Co data that is insensitive to cor(Co,C)—the precision of its

P(YID=Dn) estimates is equivalent for trials with cor(Co,C) ranging from .1 to .7.

ML’s drug effect estimates are equivalent for all values of cor(Co,C). In contrast, all

other methods that use Co data—BA and BSR—yield worse estimates of drug effect as

cor(Co,C) decreases. ML’s insensitivity to cor(Co,C) is a beneficial property as the

relationship between self-reported compliance and true compliance is unknown and may

vary widely depending on the method used to elicit a patient's Co.

Figure 5.3, a plot of 8D-Dn as a function of fM, shows that ML yields the most

precise estimates of drug effect for all values of fM. The precision of all estimators of

P(Y|D=D.) that use CM data eventually converges on ML, CD's precision approaches

that of ML at fM2.8 and BA does so at fM >.9. ML yields the most benefit when fM is less

than .5. In summary, there is no cost of performing the ML analysis for f4 greater than

.5, yet there is a potential for gain when CM data are available in fewer than half of the

subjects in the trial. This is beneficial, as an investigator may not know exactly how
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Figure 5.3. Plot of Sp-on as a Function of fM for Study 1. ML yields better estimates of

P(Y|D=Dn) than any other method (excluding ALL) when fM <.8, at which point CD is as

precise as ML.

much CM data will be missing at the end of a trial when committing to a data analytic

approach at the outset given that some subjects may not return electronic caps. Choosing

a data analytic approach after looking at the data is often frowned upon.

Figure 5.4, a plot of SD-Dn as a function of p, elucidates another important

property of ML. It is insensitive to drug effect size. In contrast, the precision of BA,

BSR, and, especially, ITT estimates of drug effect vary with p. The relationship between

ôD-Dn and p indicates the extent to which a method misclassifies patient drug exposure.

The larger the true difference in effect between patients receiving D=0 and D=Dn, the

larger impact misclassifying exposure will have on estimation of P(Y|D). Taken to the

limit, when there is no drug effect, or p=0, misclassification of exposure has no influence

on estimates of exposure-response since response is independent of exposure.

Dependency on p is particularly problematic as drug effect size is not an investigator
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Figure 5.4. Plot of Sp-on as a Function of p for Study 1. ML estimates of P(YID=Dn) as

a function of p are the most precise of all methods. This is a desirable property, since

drug effect size is not under the investigator's control.

controlled study variable.

5.4 Investigations of Performance at Specific Locations in Parameter Space *

Much is revealed about a method's performance by focusing on its behavior in

extreme regions of parameter space. Of specific interest is performance when self

reported compliance is entirely accurate or, at the opposite end of the spectrum, when Co

has no correlation with C. Additionally, it is of interest to determine method performance

when electronically monitored compliance data are rich or sparse. In this discussion,

“rich" is used to describe an abundance of CM data or Co data that has a high correlation

with C. “Poor” is used to describe sparse CM data or Co data that are poorly correlated

with C.
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Note that some information about method performance is available at the limits in

the plots of ÖD-Dn vs cor(Co,C) and 6D-Dn vs fM for study 1 (i.e. observe method

performance at the lowest and highest values on the x-axis of Figure 5.2 and Figure 5.3).

However, conclusions drawn in this way are unreliable since the smoothing procedure

may distort performance at the edge of the plots. This is particularly problematic for

Figure 5.2. Since cor(Co,C) is not selected by Latin Hypercube Sampling, points are not

evenly distributed across the figure's x-axis. There are fewer samples at the extreme

values of cor(Co,C) than for interior points since the P(CoIC) model can only yield

cor(Co,C)=0 or cor(Co,C)=1 if WTolc=1 or WTo-c-1, respectively. Thus, a more
-

º

focused investigation is warranted. -

5.4.1 Investigation of Extremes in the Quality of Self-Reported Compliance -

This study design investigates the performance of methods given two extremes in

the accuracy of self-reported compliance. First, the performance when all patients report º

compliance correctly, or cor(Co,C)=1, is considered (rich Co data). In the second

simulation study, there is little correlation between a patient's self-reported compliance

and his true intake (poor Co data). For the sake of comparison, in these studies, all

parameters but those determining P(CoC) range as in study 1. Refer to Table 5.4 for a

summary of parameter values used in simulation. Boldface type is used to indicate

parameter values drawn from ranges differing from study 1 (compare Table 5.4 to Table

5.2).

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 5.5.

64



Table 5.4. Distribution of Random Parameter Values in Study 2 and Study 3.

Parameter

N

fM

Distribution (or Fixed Value)

U(50,400)

U(0,1)

Rather than varying a and b, P(CoC) is constructed by

directly setting WTo-c, WTolc, and WTo-c.

Study 2: WTo-c-1, WTolc=0, and WToec=0

Study 3: WTo-c-0, WTolc=1, and WToec=0

U(logit(.1),1ogit(.5))

Table 5.5. Observed Range of Parameter Values in Study 2 and Study 3.

Parameter

N

fM

cor(Co,C)

P(Y|D=0)

P(Y|D=D)

P(C)

Range

51—400

0–1

Study 2:1

Study 3: -.165—.307

..100–499

.501–1900

P(C=O): .173–472, P(C=5): 208–558, P(C=1): .182—435
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5.4.1.1 Rich Co Data: Self-Reported Compliance is Accurate—Study 2

Figure 5.5, a boxplot of AR for study 2, shows that BA and BSR yield the most

precise estimates of exposure-response. Since Co-C, they are equivalent to ALL. ML

performs nearly as well as BA and BSR, and is more precise than in study 1 (compare

Figure 5.5 to Figure 5.1). The precision of CD and ITT is unchanged compared to study

1 since neither uses Co data.

Error relative to ALL
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Figure 5.5. Boxplot of AR for Study 2. When patients accurately self-report their intake,

BA and BSR return the same drug effect estimates as ALL. ML, which does not assume

that Co-C, performs nearly as well as BA and BSR.

66



Figure 5.6, the plot of ÖD-Dn as a function of fM, reveals that the advantage of BA

and BSR over ML exists only for fyrº.4. Öp-pn for ML converges on BA and BSR (and

ALL) values at fM-4. Note that BA’s performance does not depend on fM in study 2

ALL
BA
CD
ITT
BSR
ML

since Co-C.
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Figure 5.6. Plot of SD-Dn as a Function of fM for Study 2. ML estimates of P(Y|D=Dn)

converge on BA and BSR (and ALL) when fMº.4.

5.4.1.2 Poor Co Data: Self-Reported Compliance Has No Information About True

Compliance—Study 3

Figure 5.7, a boxplot of AR for study 3, shows that ML yields the most precise

estimates of drug effect of all methods when Co is uncorrelated with C. In contrast, the

other two methods that use Co data are hurt by the lack of information in patient self

reported compliance. BSR yields the least precise estimates of P(Y|D)—worse, even,

than ITT. (ITT uses a poor estimate of compliance, as it assumes perfect intake for all

subjects.) BA yields less precise estimates of drug effect compared to study 1 (compare

Figure 5.7 to Figure 5.1). Again, the precision of CD and ITT is unchanged relative to

* -- ~~~~
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study 1. Naturally, the rank order of performance of CD and ITT is influenced by the

accuracy of self-reported compliance since changes in the precision of other methods

affect this ordering. Despite returning the same estimates of P(Y|D), CD is the second

best method in studies 1 and 3, and next to worst in study 2.

A comparison of the plot of 8p–Dn as a function of fM for study 3 (Figure 5.8) to

the analogous study 1 plot (Figure 5.3) offers another perspective on the influence of the

self-report quality. In Figure 5.8, BSR overlaps with ITT–an extreme change compared

to Figure 5.3 in which the entire 95% confidence region around BSR is distinct from

ITT. BA has much greater error at fM-0 when cor(Co,C)=0 (Figure 5.8) than when there

is some information in self-reported intake (Figure 5.3). In contrast, ML changes little,

revealing that ML gains as much information from the Y,Co data in subjects with M-0

when integrating over a flat P(C|Co) distribution as it does when there is perfect

agreement between Co and C. Note that the equivalence of P(Y|D=D.) estimates for BSR

and ITT reveals that differences between AR in Figure 5.7 are due to differences in

P(Y|D=0) estimates.

Studies 1, 2, and 3 illustrate the importance of the quality of information in Co to

each analysis method. As expected, BSR's performance is the most sensitive to

cor(Co,C). In study 2, where Co-C, BSR is the best method of analysis. In study 1,

where Co-C, BSR is only better than ITT. In study 3, where Colc, BSR performs the

poorest of all methods. Since it uses some compliance data that are accurate, BA’s

precision is less sensitive to cor(Co,C) than BSR. Although BSR is the best method of

analysis when Co-C (study 2), it is only third best (or third poorest) when CoPC and

Co LC (studies 1 and 3). In contrast, ML’s ability to estimate drug effect varies little. Of
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Figure 5.7. Boxplot of AR for Study 3. When a patient's self reported compliance has

no correlation with true intake, ML (which uses Co data) estimates drug effect better

than all other methods—nearly as well as ALL. In contrast, BSR performs worse than

ITT.
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Figure 5.8. Plot of 60-pn as a Function of fM for Study 3. ML yields the best estimates

of drug effect when cor(Co,C)=0, regardless of the fraction of subjects with CM data.
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course, this in itself does not imply that ML is a desirable method of analysis. After all,

AR for methods that do not use Co data—CD and ITT–are completely insensitive to

cor(Co,C). However, ML is the best method of analysis according to studies 1, 2, and 3

because it yields the best estimates of P(Y|D) when Co2C and Col C and the second best

estimates when Co-C.

5.4.2 Investigation of Extremes in the Quantity of Electronically Monitored

Compliance Data

This study design explores method performance under two extreme conditions of

available CM data. First, when all patients have M=1, and, second, when no patient has

CM data. For the sake of comparison, the range of all parameters, except fo■ , are the same

as in study 1. Refer to Table 5.6 for a summary of parameter values used in these

simulations. Boldface type is used to indicate parameters drawn from different ranges

than in study 1 (compare Table 5.6 to Table 5.2).

Table 5.6. Distribution of Random Parameter Values in Study 4 and Study 5.

Parameter Distribution (or Fixed Value)

N U(50,400)

fM Study 4: fM-1

Study 5: f■ =0

a, b U(0,1), U(0,2)

p U(logit(.1),logit(.5))

- -, -º-º-º:
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Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 5.7.

5.4.2.1 Rich CM Data: All Subjects Have CM Data—Study 4

Figure 5.9, the boxplot of AR for study 4, shows that three methods yield the most

precise estimates of drug effect. ML, CD, and BA are equivalent to ALL because fo■ -1.

ITT and BSR estimates of exposure-response are unchanged compared to study 1

(compare Figure 5.9 to Figure 5.1) since neither method uses CM data.

It is not surprising that BA and CD benefit from having complete CM data.

However, ML is not expected to converge on ALL. After all, ML uses all of the data—

including biased Co data. Recall that ML does not estimate P(Y|D) as well as ALL when

Co data are rich (see Figure 5.5).

Table 5.7. Observed Range of Parameter Values in Study 4 and Study 5.

Parameter Range

N 50–400

fM Study 4: fo■ -1

Study 5: fM=0

cor(Co,C) .0593–791

P(Y|D=0) .101—.500

P(Y|D=D) .500—,899

P(C) P(C=O): .127—456, P(C=5): 228—545, P(C=1): .207–.454
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5.4.2.2 Poor CM Data: No Subject Has CM Data—Study 5

In the extreme case that all subjects are missing CM data, the two methods that

rely on this information—ML and CD–are expected to suffer greatly. While studies

with no calibration group are irrelevant to this investigation, the results are presented to

illustrate assumptions of the analysis methods that are not revealed through other designs.
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Figure 5.9. Boxplot of AR for Study 4. When all subjects have CM data, ML estimates

P(Y|D) as well as BA and CD (and ALL).

Figure 5.10, a boxplot of AR for study 5, shows that no method yields estimates of

drug effect that approach ALL when fM-0. BA and BSR yield the best estimates of

- -- - - - -
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P(Y|D) and ITT yields the least precise estimates of drug effect. Of course, BSR and ITT

estimates of drug effect are identical to study 1 (compare Figure 5.10 to Figure 5.1) since

neither uses CM data. The precision of methods that use CM data is degraded to that of

BSR and ITT–BA is equivalent to BSR, CD converges on ITT, and ML lies

somewhere in between. The behavior of BA is understandable. Only CD and ML require

further explanation.

Error relative to ALL

-- - - - - -

3
BA CD ITT BSR ML

Analysis Methods

Figure 5.10. Boxplot of AR for Study 5. When all CM data are missing, no method has

precision similar to ALL. Relatively speaking, BA and BSR yield the best estimates of

drug effect. ML maintains its advantage over ITT.
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To yield similar values of AR, CD's estimates of both P(Y|D=0) and P(Y|D=Dn)

must approach ITT's estimates. Their P(Y|D=0) estimates are, in fact, equivalent and

their P(Y|D=D.) estimates are similar. However, the P(Y|D=0) estimates are equivalent

for a different reason than the P(Y|D=Dn) estimates are similar. First, the equivalence of

P(Y|D=0) estimates is explained.

Recall that all analysis methods classify subjects with Dºº-0 as having D=0

(formally, D(C,D,-0) = 0, as described in the Appendix). Since ITT assumes C=1 for all

subjects, it determines P(Y|D=0) using data exclusively from subjects with Dm+0. Each

pseudolikelihood method (ALL, BA, CD, and BSR (and ITT)) yields an estimate of

P(Y|D=0) identical to ITT's estimate when there are no compliance data (specifically, no

zero percent compliance data) apportioning subjects with Dm+1 to the D=0 group. Hence,

CD’s estimates of P(Y|D=0) are expected to match those of ITT when no subject

assigned to M=1 with Dm+1 has CM-0. Under the study 5 design, no subject has M=1,

therefore, there are no measures of CM-0, so CD has the same estimates of P(Y|D=0) as

ITT. (Since ML uses all of the data to estimate all parameters, it does not simply return

the ITT estimate. Its estimates may be pulled toward it, but, ultimately, ML finds the

best compromise between the available data, 61prior and 62prior, by integrating across the

missing data.)

The explanation for the similarity between CD and ITT estimates of P(Y|D=D)

is less straightforward. Recall that P(C) assigns each of the three values of true

compliance to a subject with equal probability. Because of this, the group of subjects

randomly assigned to Dº-1 should be equally comprised of subjects with C=0, C=.5, and

C=1. Recall also that ITT estimates P(Y|D=Dn), essentially, by averaging the responses
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of all subjects with Dr. 1 (since ITT assumes perfect compliance with the assigned

regimen). By virtue of the arbitrary symmetry of P(Y|D=0) and P(Y|D=Dn) around .5

(refer to Figure A.6 to see that: logit{P(Y|D=0)}= -logit{P(Y|D=D)}), the mean of

responses for patients assigned to Dn-1 is .5. That is, the mean of responses in a group of

subjects equally comprised of individuals with D=0, D=.5Dn, and D=Dn is .5. Of course,

ITT's estimate of P(Y|D=Dn) may not be exactly equal to this value for all trials due to

random variation in simulation.

The prior value of P(Y|D) (61prio) is equivalent to no drug effect, or formally,

0|prior: P(Y|D=0)=P(Y|D=5D.)=P(Y|D=D). Arbitrarily, the null drug effect was fixed to

a 50 percent chance of success. When no data speak to a particular level of exposure for a

given pseudolikelihood method, this prior value of P(Y|D) is returned. In study 5, where

M=0 in all N subjects, CD has no CM data from subjects with D=Da. The lack of D=D,

data causes CD to simply return the prior value on P(Y|D=D.), or report P(Y|D=D)=.5.

Coincidentally, this is the expected value for the ITT estimate. ITT's estimates are not

exactly the same as CD's estimates because ITT actually analyzes simulated data while

CD simply returns the number .5. In summary, the similarity between CD and ITT's

estimates of drug effect when fM-0 is a consequence of two arbitrary choices made in

study design.

Figure 5.11, a plot of 8p pn as a function of cor(Co,C), reveals that Figure 5.10

provides a misleading comparison of ML with BSR and ITT. BSR does not yield more

precise estimates of P(Y|D=D.) than ML for all values of cor(Co,C). ML is the most

precise of all methods when cor(Co,C)<.2. ML does not yield more precise estimates of

drug effect than ITT for all values of cor(Co,C). ML converges on ITT at cor(Co,C)→.6.

--, -º-º-º:
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Figure 5.11. Plot of Šo-pn as a Function of cor(Co,C) for Study 5. This plot illustrates

the influence of the prior P(ClCo) on ML performance in a situation where it is expected

to noticeably impact the method—there are no CM data. Here, 92prior assumes zero

correlation between Co and C. When there is, in fact, no information on C in Co

(cor(Co,C)<.2), ML yields the best estimates of P(YID=Dn). However, as cor(Co,C)

increases (has less agreement with the prior) ML's performance approaches that of ITT.

ML’s error increases dramatically as the accuracy of Co improves—a

counterintuitive result. One might expect ML to perform better as cor(Co,C) increases.

But because ML has no calibration data, it has no anchor for estimating P(C|Co).

Consequently, ML relies heavily on the prior P(C|Co) in this case. Recall that 92prior states

that there is no relationship between Co and C. When the correlation between Co and C

is, in fact, near zero, the ML approach is most appropriate since the underlying

assumption of the prior—no correlation between Co and C–is borne out by the data.

However, for high cor(Co,C), the prior advises ML to ignore the (valid) information in

the Co data and ML’s precision becomes equivalent to ITT.
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5.5 Determination of the Influence of Trial Design on Method Performance—Non

Placebo Controlled Studies

This study is carried out to determine if simulating placebo-controlled trials

confers an unfair advantage on ML relative to other analysis methods. To understand

why ML is suspect, one must remember that estimation of P(Y|D=0) is accurate for all

analysis methods under the placebo controlled design because at least half of all subjects

contribute to the estimate—half are assigned to Dm+0 and D(C,Dn-0)=0. Of all analysis

methods, however, ML is the only one that estimates all parameters simultaneously.

Perhaps ML's ability to estimate one parameter very well serves as a helpful constraint in

estimation?

To explore this question, studies 1-5 are carried out with only the unit dose group

(Dn: (1))—none of the N subjects in each trial are assigned placebo. These studies are

named with the superscript “"“” indicating that only a unit dose is assigned.

5.5.1 Investigation of Performance Over a Wide Range of Parameter Space—

Study 1"

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 5.8.

Figure 5.12, the boxplot of AR in study 1", shows results analogous to study 1

(compare to Figure 5.1). ML has the greatest estimation precision and the rank order of

method performance remains unchanged. However, it also shows that ITT, BSR, and BA

have much less precision (greater error) than in study 1. The reason for this change in
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performance is apparent in Figure 5.13—the plots of 8p–0 and ÖD-Dnestimates versus

cor(Co,C) for this study. In study 1, all methods yield estimates of P(Y|D=0) with

Table 5.8. Observed Range of Parameter Values in Study 1".

Parameter Range

N 50—400

fM .00273–.997

cor(Co,C) .0546—.801

P(Y|D=0) ..100—.500

P(Y|D=D) .500–900

P(C) P(C=O): 2-.5, P(C=.5): .188-441, P(C=1): .154-471

precision equivalent to ALL, hence this result is not presented. Figure 5.13 shows that in

the absence of a placebo group, ITT, BSR, and BA yield low precision P(Y|D=0)

estimates with error equivalent in magnitude to that of P(Y|D=Dn) estimates. The placebo

group has a particularly beneficial effect on ITT, BSR, and BA estimates for the

following reason.

In study 1, at least 50% of the data contribute to P(Y|D=0) estimation—data from

subjects with D-0. In study 1" there is no such advantage for P(Y|D=0) estimation.

ITT returns the prior value on P(Y|D=0) as an estimate of drug effect since ITT

determines P(Y|D=0) from DM-0 subjects only and there is no placebo group. BSR

78



estimates P(Y|D=0) using data from subjects with Dº-1 and Co-0 only. The lack of Dº-0

data reduces the precision of this estimate. BA’s estimates of P(Y|D=0) are hurt by the

same factors acting on BSR's estimates. However, since BA has some CM data, its

precision is less sensitive to this study design.
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Figure 5.12. Boxplot of As for Study 1". The methods exhibit the same relative

performance under a non-placebo-controlled trial design as for placebo-controlled trials

(compare to Figure 5.1). The magnitude of error in estimates of P(Y|D) is much higher,

however, for ITT and BSR when trials lack a placebo group.

There is a slight difference between BSR's estimates of P(Y|D=0) and P(Y|D=D)

in study 1" that warrants mention. At cor(Co,C)→7, BSR's P(Y|D=0) estimates are

nearly equivalent to ALL but BSR yields poorer estimates of P(Y|D=D) than ALL. This
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Figure 5.13. Plots of 60-0 and 60-on as a Function of cor(Co,C) for Study 1". Error

in estimates of P(YID=0) and P(Y|D=Dn) is similar for each method when there is no

placebo group assuring that at least half of the data contribute to P(Y|D=0) estimation.

Note that the difference in BSR's ability to estimate P(YID=0) and P(Y|D=Dn) at

cor(Co,C)>.7 reflects the difference in accuracy of a self-reported perfect compliance

versus a self-reported zero compliance.

simply reflects a discrepancy in the accuracy of Co-0 versus the accuracy of Co-1 as a

measure of C.
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Recall that Co is simulated from a model, P(CoC), that is constructed by

weighting three distributions: Colo-c, Colo-c, and Coolc (see Table A.1). The Colo-c

model states that a subject who self reports zero compliance, in fact, has zero compliance,

while a subject who self-reports one hundred percent compliance has some probability of

having zero, fifty, and one hundred percent compliance. Thus, in Coo-c, Co-0 is a more

valid measure of compliance than Co-1(Caron 1985). Coo-c and Coolc are equally valid

for all values of Co, as Co is either entirely accurate or entirely uncorrelated with C in

these models. Consequently, as long as WTo-c is greater than 0, this discrepancy in

P(Y|D=0) and P(Y|D=D.) estimation by BSR will be observed. Note that the correlation

between Co and C is computed on data simulated for each trial, thus it is only an indirect

indicator of P(CoC).

5.5.2 Investigations of Performance at Specific Locations in Parameter Space

Studies 2-5 evaluate method performance given extremes in the quality and

quantity of compliance data under a placebo-controlled design. One can imagine that

there may be an interaction between the quality and quantity of compliance data and

study design. For example, favorable properties conferred on methods by virtue of

estimating P(Y|D=0) well (because placebo is assigned to half of all subjects) may mask

unfavorable properties due to having little compliance data. To determine the magnitude

of this effect, studies 2-5 are repeated with all subjects assigned to the unit dose only.

Comparison of these results to the results of the analogous placebo-controlled study

elucidates the interaction between study design and compliance information.

5.5.2.1 Investigation of Extremes in the Quality of Self-Reported Compliance Data

--, -º-º-º:
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This study design explores the performance of methods given two extremes in

self-reported compliance accuracy. First, the performance when all patients report

compliance accurately, or cor(Co,C)=1, is considered (rich Co data). The second

simulation study addresses the situation in which there is little correlation between a

patient's self-reported compliance and his true intake (poor Co data). For the sake of

comparison, in these studies, N, fM, and p range as in study 2 and study 3. The only

difference is that half of the subjects in study 2 and study 3 are assigned drug (DM-1)

2" and study 3", all N subjects are assigned drug.whereas in study

5.5.2.1.1 Rich Co Data: Self-Reported Compliance is Accurate—Study 2”

The purpose of this study is to investigate the interaction between the quality of

self-reported compliance data and study design. This study is identical to study 2 except

that it is not placebo-controlled. Therefore, the only way for subjects to have zero

exposure to drug is to have zero compliance.

Observed values of certain parameters in the data actually simulated in study

2" are given in Table 5.9.

Figure 5.14, the boxplot of AR in study 2", shows results consistent with the

analogous placebo-controlled study (study 2)—BA and BSR have estimation error

equivalent to ALL and the rank order of method performance is maintained (compare to

Figure 5.5). The most striking discrepancy is the decrease in ITT's estimation precision.

This decrease is of no concern, however, because it is the worst performing method of

analysis in both study 2 and study 2".
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Table 5.9. Observed Range of Parameter Values in Study 2".

Parameter

N

fM

cor(Co,C)

P(Y|D=0)

P(Y|D=D)

P(C)

9. :
O

Range

51—400

0—1

1

..100—,499

.501—,900

P(C=O): .173-472, P(C=5): .208-.558, P(C=1): .182-435

Error relative to ALL

E

BA CD ITT BSR ML

Analysis Methods
Figure 5.14. Boxplot of AR for Study 2°". Comparison with results of the analogous

placebo-controlled study (Figure 5.5) reveals that ML's performance is unaffected by the

single dose design when self-reported compliance is accurate.
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5.5.2.1.2 Poor Co Data: Self-Reported Compliance Has No Information About True

Compliance—Study 3”"

This study is identical to study 3, except that it is not placebo-controlled.

Observed values of certain parameters in the data actually simulated in study 3”" are

given in Table 5.10.

Figure 5.15, the plot of AR in study 3”", shows the same rank order of

performance as in the analogous placebo-controlled study (compare to Figure 5.7).

However, ITT's estimation precision is disproportionately poorer—it more closely

approximates BSR's estimation precision. ITT is more sensitive to the dosing design

than BSR because the design reduces the amount of data it has to estimate P(Y|D=0). ML

also performs poorer relative to study 3. This reflects the slight benefit gained by being

able to estimate P(Y|D=0) well in a simultaneous estimation of all parameters.

Table 5.10. Observed Range of Parameter Values in Study 3°".

Parameter Range

N 51–400

fM 0–1

cor(Co,C) -. 165—.307

P(Y|D=0) ..100—,499

P(Y|D=D) .501–.900

P(C) P(C=O): .173-472, P(C=5): 208-558, P(C=1): .182-435

-, -º-º:
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Error relative to ALL
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Figure 5.15. Boxplot of Aa for Study 3°". Comparison with results of the analogous

placebo-controlled study (Figure 5.7) reveals that ML's performance is slightly affected

by the single dose design when Co is uncorrelated with C. However, it is still the best

method of analysis. ITT's performance changes drastically—it is nearly as bad as

BSR—indicating that this method is most sensitive to the dosing design.

5.5.2.2 Investigation of Extremes in the Quantity of Electronically Monitored

Compliance Data

5.5.2.2.1 Rich CM Data: All Subjects Have CM Data—Study 4”

As one may expect from the results of the previous single dose studies, BA, CD,

and ML yield the most precise estimates of AR and ITT and BSR suffer large estimation

errors under this design. These results are trivial, and are not further elaborated on.

-, *-*

** * *
- -
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5.5.2.2.2 Poor CM Data: No Subject Has CM Data—Study 5”

This study is identical to study 5 except that it is not placebo controlled.

Observed values of certain parameters in the data actually simulated in study

5*" are given in Table 5.11.

Table 5.11. Observed Range of Parameter Values in Study 5°". … ---

Parameter Range

N 50—400

fM 0 º
cor(Co,C) .0593–791 * -

º º
P(Y|D=0) .101—.500 -

P(Y|D=D) .500—,899
-

P(C) P(C=O): .127-456, P(C=.5): 228-.545, P(C=1): .207-.454

*** *

A comparison of Figure 5.16, the boxplot of AR in study 5", to Figure 5.10, the

boxplot of AR in the analogous placebo-controlled design, reveals that the placebo

controlled design does not influence the rank order of method performance.

5.5.3 Summary

In summary, the relative performance of methods is equivalent for placebo

controlled and single dose designs. Therefore, there is no significant interaction between
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study design and the quality and quantity of compliance information for the range of

parameters explored.

Error relative to ALL
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Figure 5.16. Boxplot of AR for Study 5°". Comparison with results of the analogous

placebo-controlled study (Figure 5.10) reveals that ML's performance is unaffected by

the single dose design when there is no CM data.

5.6 Determination of the Influence of the Prior P(C|Co) on Method Performance

A weak and uninformative prior value of P(C|Co) is assumed in studies 1-5. It is

of interest to determine the relationship, if any, between method performance and this

prior information.
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To investigate this question, the prior P(C|Co) is fixed to perfect correlation

between C and Co-an extreme change from the prior of Col C used previously. For the

sake of comparison, the study designs are identical to those already discussed, except, of

..92prior:CQ=C., ;course, for the value of 62prior. The superscript is appended to the study name

to indicate that this is the only altered study parameter.

192priorco-cThe results of two studies are reported. Study is reported because it

592priorco-c isdemonstrates 62prior's influence over general parameter space. Study

reported because study 5 raises concern about 62prior. The rest of the results show no

appreciable influence of 62prior on method performance and are not discussed.

Table 5.12 lists the parameter values common to these two studies. Note that

boldface type is used to indicate the fixed values differing between all previous studies

and the “” studies (compare Table 5.12 to Table 5.1).

Table 5.12. List of Fixed Parameter Values Common to All Studies Investigating

Sensitivity to the Prior P(CICo) (Study 1* and study 5*).

Parameter Fixed Value

Nihs 100 ×5

P(C) P(C=O)=P(C=5)=P(C=1)=1/3

M .5/3

A2 .5/6

9iprior P(Y|D=0)=P(Y|D=5D.)=P(Y|D=D)=.5

9-prior P(C=k|Co-j)=1 for j=k, P(C=k|Co-j)=0 for jºk

P(CMC) CM,M-c (refer to Figure A.5)
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5.6.1 Investigation of Performance Over a Wide Range of Parameter Space—

Study 197prior co-c

Refer to Table 5.13 for a summary of parameter values used in these simulations.

Observed values of certain parameters in the data actually simulated are given in Table

5.14.

Table 5.13. Distribution of Random Parameter Values in Study 1°"*.

Parameter

N

fM

a, b

Range

U(50,400)

U(0,1)

U(0,1), U(0,2)

U(logit(.1),logit(.5))

Table 5.14. Observed Range of Parameter Values in Study 1°"*.

Parameter

N

fM

cor(Co,C)

P(Y|D=0)

P(Y|D=D)

P(C)

Range

50—400

.00273—,997

.0546—.801

..100—.500

.500–900

P(C=O): 2–5, P(C=5): .1875–441, P(C=1): .154—,471

s
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The boxplot of AR, and the plots of SD-Dn as a function of cor(Co,C), fº, and p for

study 1” “ look similar to the corresponding plots made for study 1. (Compare

Figure 5.17 to Figure 5.1 to see the AR result. The rest are not shown because the result is

trivial.). This suggests that the prior value of P(CCO) has little effect on ML's

performance across the wide range of parameter values explored.

Error relative to ALL

C
co H=
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ºf

-
= F

O hºmºm * E
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O

BA CD ITT BSR ML

Analysis Method

Figure 5.17. Boxplot of As for Study 1”. ML's performance is unaffected by a

drastic change in the prior P(ClCo). AR for this study—in which 62pno, is of perfect

correlation between C and Co-is similar to AR of a study in which 62bnor is of no

correlation between C and Co (compare Figure 5.17 to Figure 5.1.)

-, -º-º:
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5.6.2 Investigation of Performance at A Specific Location in Parameter Space

5.6.2.1 No Subject Has CM data—Study 5*

The interaction between the prior P(CCO) and quantity of CM data is now

explored. Refer to Table 5.15 for a summary of parameter values used in these

simulations.

Table 5.15. Distribution of Random Parameter Values in Study 5*.

Parameter Distribution (or Fixed Value)

N U(50,400)

fM 0

a, b U(0,1), U(0,2)

p U(logit(.1),logit(.5))

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 5.16.

A comparison of Figure 5.18, the boxplot of AR for study 5***, to Figure

5.10, the boxplot of AR for study 5, illustrates that ML yields better drug effect estimates

when 62prior assumes perfect correlation between Co and C than when it assumes no

correlation between Co and C. Figure 5.19, the plot of 6D-Dn as a function of cor(Co,C)

592priorco-cfor study , shows that ML's drug effect estimates improve as cor(Co,C)

increases. This supports a finding of study 5 (compare to Figure 5.11). Although the
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Table 5.16. Observed Range of Parameter Values in Study 5*.

Parameter Range

N 50–400

fM 0

cor(Co,C) .0593–,791

P(Y|D=0) .101–.500

P(Y|D=D) .500—,899

P(C) P(C=O): .127—456, P(C=.5): 228—545, P(C=1): .207—.454

results appear very different, they both reflect 02prior's influence on ML when there is no

CM data. Here, ML’s drug effect estimates improve as cor(Co,C) increases, in contrast to

Figure 5.11, where they become poorer as cor(Co,C) increases.

5.6.3 Summary

In summary, the prior on P(CCo) only influences ML when there are no CM data.

Study 5*** suggests that a prior P(CICO) of no correlation between C and Co is a

good choice for these simulation studies. Since it penalizes ML more than 62prior of

perfect agreement between C and Co, it is a conservative direction in which to err.

Futhermore, since it gives rise to an unusual result, it signals to the data analyst that

something is amiss.
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Figure 5.18. Boxplot of As for Study 5*. ML's drug effect estimates are more

precise when 62prior assumes perfect agreement between Co and C relative to the

analogous study in which 62prior assumes no correlation between Co and C. (Compare

Figure 5.18 to Figure 5.10.) Thus, the prior P(ClCo) used is conservative in that it

penalizes ML relative to other methods.

5.7 Determination of the Influence of P(C) on Method Performance

The assumption of the investigations presented is that patient exposure to drug is

an experimental treatment, assigned via stratified sampling through P(C). It is known that

the precision of estimators computed on stratified samples is influenced by the number of

experimental units apportioned to each strata. Therefore, it is of interest to determine the

extent to which the choice of P(C) influences method precision. To investigate this

, -s-tº
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question, simulation studies are carried out varying the distribution of P(C) between

trials.

lo
ºr

— ALL
C sº = − = "T-----~~…~ T ~ * ~ * - || || --------- BA

c + –––. CD
7 — — - ITT

w8 to — — BSRc —-- ML

o
O T

Figure 5.19. Plot of Sp-on as a Function of cor(Co,C) for Study 5*. This plot

illustrates the influence of the prior P(ClCo) on ML in a situation where it noticeably

impacts the method—when there are no CM data. Here, 92pno, assumes perfect

correlation between Co and C. ML's estimates of P(Y|D=D) improve as cor(Co,C) better

agrees with the prior P(ClCo) (as cor(Co,C) increases). Compare to Figure 5.11 which

shows ML's performance worsening as cor(Co,C) increases when the prior P(ClCo)

assumes no correlation between C and Co.

In studies 1-5, P(C) assigns each patient to one of the three categories of true

compliance with equal probability. Here, two extreme models for P(C) are considered—

one in which compliance is skewed toward nominal intake and one in which compliance

is skewed toward zero intake. These distributions are denoted by “Co-5-1” and “Coss>1”,

.º
-
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respectively. The exact probabilities of assigning C=0, C=.5, and C=1 by Co-5-1 and

Coss>1 are given in Table 5.17. Note that the distribution of P(C) used in studies 1-5 is

indicated in this chart for comparative purposes and denoted Co-.5–1.

Table 5.17. Probability that Patients are Assigned C=0, C-.5, and C=1 for the

Distributions Co-s-1, Co-s-1, and Co-5-1.

P(C=O) P(C=.5) P(C=1)

Co-s-1 1/3 1/3 1/3

Co-s-1 1/10 1/5 7/10

Co-s-1 7/10 1/5 1/10

Attention is focused on the influence of P(C) by fixing all parameter values in

each study rather than performing Latin Hypercube Sampling. Because of this, the

number of replications performed is smaller than in previous studies—one hundred data

sets are simulated given each chosen set of parameters.

It is of interest to determine if there is any interaction between P(C) and fM at an

extreme values of fM since ML is the method under scrutiny and study 5 shows that its

performance is most strongly affected by a lack of CM data. A poor tool for measuring Co

is used to highlight the influence of P(C) and fM on BA, as well. (A good self-report tool

would mask this interaction.) BSR performance will not be judged in these studies

because it is unfair to evaluate BSR when there is so little information in Co. It is only

included to serve as benchmark for comparison.

** -
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In this investigation, two studies are carried out—Co-.521 and Coss>1 are each run

with fM-2. Table 5.18 lists the values of fixed parameters common to these simulations.

Table 5.19 indicates which P(C) distribution is used in each study. The studies are not

placebo controlled.

Table 5.18. Fixed Parameter Values Common to Variable P(C)Studies.

Parameter Value

M .5/3

A2 .5/6

9 prior P(Y|D=0)=P(Y|D=5D)=P(Y|D=D)=.5

92prior P(C=k|CO=j)=1/3 for j,k {0,5,1}

N 100

P(CoC) Coolc (See Table A.1)

P(CMC) CMM-C (See Figure A.5)

p logit(.2)

Table 5.19. Fixed Parameter Values Varying Between Variable P(C) Studies.

Study A Study B

Parameter Value Parameter Value

P(C) Co-s-■ P(C) Coss
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Observed values of certain parameters in the data actually simulated are given in

Table 5.20. Note that although P(CoIC) is fixed to Coolc, by luck of the draw, cor(Co,C)

is not always equal to 0. Likewise, the distribution of observed C varies around the

simulation probabilities in Co-3-1 and Coss>1.

Table 5.20. Parameter Values Observed in Simulated Data for Variable P(C)

Studies.

Study A Study B

Parameter Range (or Value) Range (or Value)

cor(Co,C) -.290–240 -.203—.219

P(C=O) .04—.18 .56—.82

P(C=5) .12—.34 .11—.30

P(C=1) .57—.80 .03—.17

N 100 100

fM .2 .2

cor(CM,C) 1 1

P(Y|D=0) .200 .200

P(Y|D=D) .800 .800

The results of studies A and B are presented in Figures 5.20 and 5.21. The study

error for each method over the 100 simulations performed is plotted.

Figure 5.20 shows that ML yields the best drug effect estimates when compliance

is good (here, 57 to 80 percent of subjects are perfect compliers). ML is more precise

than CD because it uses response data from all subjects. Although the assumption of

º
-
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ITT–all patients comply with their assigned regimen—is more true than in studies in

which P(C) is uniform (studies 1-5), ITT still yields poor estimates of drug effect.

Error relative to ALL
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Figure 5.20. Boxplot of AR for Study A. When P(C) is skewed toward good

compliance, ML yields the best estimates of P(Y|D). Although ITT's assumption of

perfect compliance is closer to the truth in this study than in studies with uniform P(C),

ITT still yields noticeably biased estimates of exposure-response.

Figure 5.21 shows that when compliance is poor (here, 56 to 82 percent of

subjects take none of the prescribed drug), all methods but ITT perform the same as in

.*.*
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studies with P(C) skewed toward good intake. ITT suffers because it assumes perfect

compliance—an assumption that is not robust to variability in P(C).

Error relative to ALL

BA CD ITT BSR ML

Analysis Method

Figure 5.21. Boxplot of AR for Study B. When P(C) is skewed toward poor compliance,

all methods but ITT perform the same as in studies with P(C) skewed toward good

intake. This highlights the danger of ITT's assumption of perfect compliance.

In summary, since relative method performance is unchanged in these studies, the

distribution of P(C) arbitrarily selected for studies 1-5 is a reasonable choice. ML gains

no advantage over other methods of analysis by virtue of using a uniform P(C). If

anything, uniform P(C) offers a conservative estimate of BA performance.

º
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These studies highlight that, short of having all subjects comply perfectly with the

assigned regimen, ITT is helped little by an improvement in compliance. However, ITT

is noticeably hurt by poor compliance.

5.8 Summary of Performance With Respect to Estimation Precision

One may interpret the results of studies 1-5 as supporting two different

approaches to data analysis. One tactic is to develop guidelines based on study

parameters. Depending on the parameters of a particular data set, the method that is

expected to yield the best exposure-response estimates is selected. The second approach

is to find one best analysis method across all possible designs and apply it generically.

Both are outlined here.

Based on the plot of ŠD-Dn as a function of cor(Co,C) for study 1 (Figure 5.2), ML

should be used if cor(Co,C)<.8. Based on the AR boxplot for study 2 (Figure 5.5), BSR

should be used if there is perfect correlation between Co and C. Study 2 also shows that

it is inefficient to measure compliance using an electronic monitor if cor(Co,C)=1. Based

on the plot of SD-Dn as a function of fM for study 1 (Figure 5.3), ML should be used if

fewer than 80 percent of subjects have a measure of CM but CD should be used if fMP.8.

Based on the results of study 5 (Figure 5.10), BSR should be used if there are no CM data

at all. The recommendations seem disjointed since these guidelines are based on

examining plots of error in P(Y|D=Dn) estimates as a function of, at most, one simulation

variable at a time.

It is important to consider how simulation parameters simultaneously influence

exposure-response estimates. For example, the optimal fú for methods that use both self

--~~~
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reported and electronically monitored compliance data may differ depending on

cor(Co,C). Contour plots representing the three-dimensional surface of ÖD-Dn as a

function of two simulation parameters are used to illustrate the interaction between two

simulation variables. To normalize precision to ALL, ALL's 6D-Dn for a given trial is

subtracted from each method's 6D-Da and referred to as 6D-Da' (6D-Da' = 8b-Dº" -

ôD-D,”). Therefore, the plots are referred to as relative contour plots.

The clinical trial parameters of interest are plotted on the x- and y-axes and the --~~

corresponding 6D-Dn’ value (in the z-axis) is indicated by points in the x,y plane. The

magnitude of ÖD-Dn' is represented by contour lines connecting points of equivalent - **

estimation precision. The points of equivalent precision are determined by a smooth, or a ... -----

local average, through the 6D-Dn’ data. (The lowess function in Splus was used to smooth

through the data.) The lines are drawn at equivalent precision intervals, so the spacing of --

the lines indicates the dependency of estimation precision on the variables. The closer the

lines are, the stronger is the relationship between ÖD-Dn’ and the variable of interest.

Figure 5.22 represents the three dimensional surface of SD-Dn’ as a function of

cor(Co,C) and fM in study 1. Judged simply in terms of the magnitude of ÖD-Dn', ITT is

the poorest method of analysis over all regions of parameter space. In contrast, ML is the

only method of analysis that yields the same value of ÖD-Dn’ as ALL at some region in

parameter space (öD-Dn’ equals zero in the lower right hand corner of the figure).

Note that in study 1, N and p are varied in simulation in addition to f■ and

cor(Co,C). Adjacent points in the cor(Co,C) and fM plane may be far apart in the five

dimensional space that includes values of N and p. When there are many points in a

region of the (fM, cor(Co,C)) plane, the general trend between (fM, cor(Co,C)) and ŠD-Dn’
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is observable, as differences due to variation in N and p average out. Figure 5.22 reveals

that points are not evenly distributed across the cor(Co,C) axis—they are sparse at

extreme values. Recall that a and b, the microparameters of P(CoIC), are Latin

Hypercube Sampled from uniform distributions but cor(Co,C) is not uniformly

distributed. This, most likely, explains any illogical waviness in the contour lines.

For example, CD does not use Co data to estimate P(Y|D=D.), but its contour

lines curl in to suggest that its precision decreases as cor(Co,C) increases. Additionally,

BSR's value of ŠD-Dn dips to a minimum when cor(Co,C) equals .6, but increases again

for cor(Co,C) equal to .8. For this reason, general trends in the data are the focus. Taking

a cue from CD and BSR, Figure 5.22 will only be trusted for cor(Co,C) ranging from .2

to .6.

Excluding edge effects, the contour lines for BSR run parallel to the fM axis. This

reflects BSR's insensitivity to f■ . Likewise, CD's contour lines run parallel to the

cor(Co,C) axis. ML’s contour lines run parallel to the cor(Co,C) axis from cor(Co,C)=.2-

.6—suggesting that its estimates are insensitive to cor(Co,C) in this range. At higher

values of cor(Co,C), the lines run parallel to f■ , suggesting that there is no benefit

incurred by adding CM data when the amount of information in Co is high. However, the

converse is not observed—the lines do not run parallel to f■ at low values of cor(Co,C).

This indicates that ML is quite sensitive to f■ when there is little information in self

reported compliance. The contour lines fall in several directions on the plot for ITT,

indicating that this method is insensitive to either parameter.
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a 45 degree angle.BA's contour lines cross the plotting region at, approximately,

This suggests that BA’s precision is improved to the same extent by equivalent fractional

103



increases in cor(Co,C) and fM. Therefore, when designing a trial that is to be analyzed

using BA, one has the flexibility of improving estimates of exposure-response by altering

whichever design feature is more feasible to change. In reality, fM is likely the more

adjustable parameter. The contour lines are most tightly spaced at low values of

cor(Co,C) and fM, revealing that the most improvement in estimation is to be gained

when adding information in Co or adding CM data when there is little to start with. ML’s

lines are spaced further apart in the low fM, low cor(Co,C) region than BA, indicating that

it is much less sensitive to either parameter than BA.

Figure 5.22 can guide the selection of an analysis method based on values of fM

and cor(Co,C) in a data set. For example, consider a real data set taken from published

studies(Burney, Krishnan et al. 1996; Straka, Fish et al. 1997) in which both self-reported

compliance and electronically monitored compliance are measured in the same individual

and data are reported in the body of the manuscript. The data from these two reports are

pooled to yield a new data set with 85 joint values of CM and Co. The measures of

compliance, reported on a 0%-100% scale, require categorization to allow for

interpretation with respect to contour plots. Reported percent compliance values are

transformed into one of three categories by the following algorithm to yield a distribution

such that P(CM-0)=P(CM =.5)=P(CM=1)=1/3.

% Compliance Compliance Category

<50 0

>50-90 .5

>90 1
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Measured Co is not equivalent to CM, so applying these cutoffs does not yield a uniform

distribution of Co values.

This procedure for categorizing compliance data does not diminish the

relationship between CM and Co. The correlation between the two compliance measures

for the pooled raw data set is .55, while correlation in the pooled categorized data set is

.527. According to Figure 5.22, when cor(Co,C)=.527, ML yields estimates of drug

effect with the least error for all values of fM.

Figure 5.23, a relative contour plot representing the three-dimensional surface of

öD-Dn' as a function of (p,qor(Co,C)) in study 1, is a guideline for selecting an analysis

method with respect to drug effect size and cor(Co,C) simultaneously. Of all analysis

methods, ITT's contour lines are the most parallel to the cor(Co,C) axis and the most

closely spaced. This indicates that ITT is more strongly influenced by drug effect size

than any other method. Interestingly, BSR is more strongly influenced by drug effect size

than cor(Co,C). Likewise, p wields a greater influence on BA than cor(Co,C). However,

BA's relative contour lines are farther apart and smaller in magnitude than BSR's

öD-Dn’—indicating that it is less sensitive to either parameter overall. Excluding edge

effects, both CD and ML have widely spaced relative contour lines—indicating

negligible dependency on either cor(Co,C) or p.

Study 5–an exploration of method performance in the extreme case where there

are no CM data—reveals interesting features of method behavior that are not apparent in

study 1 results. Therefore, a relative contour plot representing the three dimensional

surface of ÖD-Dn’ as a function of cor(Co,C) and p in study 5 is provided (see Figure

5.24). Note that aside from sampling variability, the plots of BSR and ITT are identical
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to the corresponding study 1 plot (Figure 5.23) as neither method is influenced by a

change in fM. A comparison between BSR's and ITT's contour lines in Figure 5.24 to

i
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their respective lines in Figure 5.23 reveals that sampling variability “changes” method

performance at the edge of the plots where cor(Co,C) data is sparse. In Figure 5.23, both

BSR's and ITT's lines curl toward the cor(Co,C) axis at low values of cor(Co,C). In

Figure 5.24, both BSR's and ITT's lines curl away from the cor(Co,C) axis in this

region. These edge effects are to be ignored.

ML yields the least error in P(Y|D=D.) estimates of all analysis methods. Its

largest value of ÖD-Dn’ is 1.2, while BA and BSR yield values as high as 1.8 in Figure

5.24. Interestingly, as cor(Co,C) increases, ML’s contour lines bow away from the

cor(Co,C) axis—indicating that for a given drug effect size, error in ML increases as

cor(Co,C) increases. To some extent, this may be an artefact of edge effects in

smoothing. However, by setting fM-0, there is less variability in this data set than in

Figure 5.22 and Figure 5.23, so this may reflect the influence of the prior P(C|Co) on

ML. Recall that 62prior has no correlation between Co and C and ML’s estimates of drug

effect worsen slightly as the data diverge from 62prior. Yet Figure 5.24 shows that the

effect of the prior is moderate—ML’s performance is more greatly influenced by drug

effect size.

This set of guidelines, albeit consistent with the results of simulation study, is

difficult to apply in practice since it requires referring to charts or remembering arbitrary

cutoff values. Futhermore, when planning a data analytic approach, some parameters,

such as fM and cor(Co,C), may be unknown to the investigator. A deeper flaw of this

approach is that the exact values of these cutoffs are expected to be influenced by the trial

design and data format. As such, this first approach can only be recommended for

analysis of data of the same type investigated here. Because of its simplicity and because

-
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it is more likely generalizable between data types, it is more attractive to find one method

of analysis that yields the best exposure-response estimates across all study designs. If all
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of the results of studies 1-5 are taken as the evidence for this judgement, a procedure for

deciding which method is best is needed.

One simple way to compare method performance across studies 1-5 is to tally up

each method's successes with respect to rank order of AR estimates. For example, the

number of times each method has the smallest AR reveals that both ML and BA are the

best methods of analysis in three of the five studies, BSR is the best method of analysis in

two of the five studies, and CD is the best method of analysis in one of the five studies.

ITT is never the best method of analysis. ML outperforms BA in two of the five studies.

Likewise, BA outperforms ML in two of the five studies. ML outperforms BSR in three

of the five studies and outperforms CD in four of the five studies. BA outperforms BSR

in three of the five studies, but only outperforms CD in two of the five studies.

By tallying rank ordered performance, ML is the best method of analysis, with a

slight advantage over BA. Since both use Co and CM data, the performance of ML

relative to BA quantifies the gain in efficiency incurred by calibrating Co. By this

estimation, it seems that the data analyst profits little from ML.

Tallying up performance in this way is misleading, however, for two reasons.

First, rank ordering discards information about the magnitude of a method's advantage.

Second, since studies 2-5 are carried out under a subset of conditions within study 1, it is

unfair, perhaps, to weight studies 2-5 as heavily as study 1. Since no summary statistic

adequately evaluates the advantage of any one method, the results of studies 1-5 are

considered with respect to several statistics.

Taken together, the results suggest that the ML method is the best choice for

analyzing calibration studies. ML is the most dependable. Its performance is the least

------
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sensitive to study design and uncontrollable factors such as drug effect size and the

accuracy of Co. ML offers the most potential gain when there are missing CM data, with

no cost incurred when all subjects have a measure of CM. ML performs remarkably well

when there is little information in Co., with a small cost incurred if self-reported

compliance is accurate.

Given the small advantage of BSR over ML in the extreme case that Co-C (refer

to Figure 5.5) or fif-0 (refer to Figure 5.10), relative to the cost of BSR if cor(Co,C)<1 --~~

and fMP0 (refer to Figures 5.1, 5.7, and 5.9), ML is preferred to BSR. Furthermore, since --

one has no way of knowing if Co-C, diagnostic information for recommending BSR is

unavailable. ML delivers its greatest payoff when fewer than 50% of subjects have CM

data—as evidenced by the distance between ALL and ML relative to the distance

between ALL and all other methods in study 1 (Figure 5.3). In nearly all cases

investigated, any method that uses compliance data is beneficial relative to the standard

intention-to-treat procedure.

Although clinical trials run with fM-0 aren't calibration designs, trials without CM

data allow one to determine how the ML method behaves in the generic situation in

which it has nothing but prior information on P(CCO). This has a number of practical

applications. It allows one to evaluate method performance given the situation that no

subject in a clinical trial has CM data, but one wants to use prior information on P(C|Co)

from the literature. A less obvious example is when one only has compliance information

on one drug in a combination regimen (CM') and the data analyst is not willing to assume

that patients are equally compliant with other unmonitored drugs (CM, CM', etc.).

Instead, one may use CM' and Co data as prior information on the relationship between
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CM’ and Co. The investigation reveals that this approach is reasonable as long as the prior

P(C|Co) is informative. ML is equivalent to ITT when there are no CM data (see Figure

5.11) aside from the region in which the prior has good agreement with the true value of

P(C|Co). Thus, it is no worse than the standard method of analysis.

The results of studies run without a placebo group, studies run with the prior

P(C|Co) assuming cor(Co,C)=1, and studies with nonuniform P(C) suggest that the

benefit of ML is not an artifact of the assumption that D(C,D,-0)=0, of the chosen value

of 9-prior, or of P(C).

5.9 Power Under Conditions Favoring Particular Analysis Methods

5.9.1 Why Estimate Power?

Because the units of AR lack intuitive meaning, power, or the probability of

rejecting the null hypothesis of no drug effect when it should be rejected, is used to

evaluate methods, in addition to estimation precision. Section A.3.2 of the Appendix

gives a detailed description of how power is determined.

The power of each method is computed at several points in parameter space.

Unlike in studies 1-5, parameter values are not chosen at random by Latin Hypercube

Sampling from a range of values. In fact, the conditions of each study are chosen to favor

one of the pseudo likelihood methods over all others. This serves to highlight how other

methods measure up under extreme conditions. Knowledge gained in studies 1-5 guides

the selection of the parameter values used.

Table 5.21 shows the fixed parameter values that are common among all power

studies. Boldface type is used to indicate which fixed parameter values differ from study
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1. P(Y|D=0) is fixed to 3 when data are simulated under the alternative hypothesis (H,),

and P(Y|D=0) is fixed to .5 when data are simulated under the null hypothesis (H,).

5.9.2 ITT Favored Design—Study 6

A study in which a high percentage of patients actually comply with the

prescribed regimen is expected to yield good performance by ITT because the ITT

method assumes perfect compliance. For this reason, in Study 6, P(C) is selected to

assign patients to C=1 with 50% probability and to each of C=0 and C=5 with 25%

probability. To assure that ITT performs better than the other methods, Study 6 is

designed with few CM data and poor information in Co-fº is fixed to .15 and the weight

of Coolc in constructing P(CoIC) is 1. Table 5.22 summarizes these values.

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 5.23.

Figure 5.25, the boxplot of power computed using a X critical value under the

conditions investigated in study 6, shows that, as expected, ITT has the greatest power of

all methods with power = .74. Surprisingly, ML is a close competitor of ITT with

power-.63. BA has 40% less power than ITT with power–45. BSR and CD trail behind

with power equal to .36 and .19, respectively.

Figure 5.26, the boxplot of AR under the conditions investigated in study 6, shows

that the rank order of power is consistent with the rank order of AR for all methods but

ITT. By AR, ML is the best method of analysis, BA is second best, and ITT is third best.
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If ITT yielded the most precise estimate of P(Y|D), the rank order of method

performance would be consistent between Figures 5.25 and 5.26. This discrepancy in

ITT's performance is understandable given a more in depth consideration of power.

Table 5.21. List of Fixed Parameter Values Common to All Power Studies.

Parameter Fixed Value

M .5/3

A2 .5/6

9iprior P(Y|D=0)=P(Y|D=5D)=P(Y|D=D) = .5

92prior CoQ10

P(CMC) CMM-c

N 100

p under H, logit(.3)

p under Ho logit(.5)

Table 5.22. Distribution of Random Parameter Values in Study 6.

Parameter Fixed Value

fM .15

WTo-c 0

WTo-c 0

WTolc 1

P(C) P(C=O)=25, P(C=5)=25, P(C=1)=.5
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Table 5.23. Observed Range of Parameter Values in Study 6.

Parameter Range

fM .15

cor(Co,C) - 197—.224

P(C) P(C=O): .16-36, P(C=.5): .18-35, P(C=1): 37-.63

Power and AR reflect different aspects of method performance. Power, or the

ability of methods to discriminate between estimates of P(Y|D=0) and P(Y|D=D.), is

sensitive to variance. It should be high for methods that yield precise estimates of

P(Y|D=0) and P(Y|D=D.). As a measure of error, AR reflects a more equitable sensitivity

to both bias and variability.

The discrepancy between ITT's performance with respect to AR relative to power

suggests one limitation of ITT. It can answer a yes/no question (Is the mean response in

the D=0 and D=D, groups significantly different?) adequately, however, it cannot be

trusted to deliver an estimate of that difference. The preferred metric depends on what is

of interest to the investigator.

A comparison of Figure 5.27, the boxplot of power computed using a simulated

critical value, to Figure 5.25 shows that CD is the only method influenced by the source

of the critical value. All methods but CD have the same power regardless of whether the

critical value is taken from a Y” table or simulated under H. (Refer to the Appendix for

more detail) CD performs better using a simulated critical value than using the x value.

Closer inspection reveals that CD's simulated critical value is similar to the x value
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Figure 5.25. Boxplot of Power for Study 6 (x” Critical Value). Good compliance, few

CM data, and poor agreement between Co and C favor the ITT method with respect to

power. ML is the next most powerful method.

given 1 degree of freedom rather than 2. This makes sense considering the high

probability that there is no data available for CD to estimate P(Y|D=.5) or P(Y|D=1)

under this study design. That is, of the 15 subjects with CM data (fM-.15 * N=100), half

have Dº-1. Of these 7.5 subjects, there is a .25 probability of having C=.5 and a .5

probability of having C=1. Thus, on average, in any given trial, only 1.875 and 3.75

subjects have D=.5 and D=1, respectively. Given the luck of the draw, no subject may

have D=.5 or D=1. In that case, CD fills in the prior on P(Y|D=.5) or P(Y|D=1). Thus,

analogous to the explanation of why ITT uses a X critical value with only one degree of
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freedom (refer to the Appendix), CD should be evaluated under such conditions using a

x critical value with only one degree of freedom.
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Figure 5.26. Boxplot of AR for Study 6. Contrary to performance as measured by

power, in study 6, ML yields estimates of drug effect with the lowest error. ITT yields the

third most precise estimates of P(Y|D).

Regardless, relative method performance is not changed by this improvement in

CD. CD, along with BSR, has the lowest power and yields the poorest estimates of

P(Y|D) under this design. However, this result supports the use of the X critical value as

long as the degrees of freedom are chosen correctly.
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Figure 5.27. Boxplot of Power for Study 6 (Critical Value Determined by Simulating

Under H.). Compared to Figure 5.25 in which power is determined using the x* critical

value, all methods but CD have the same performance. The discrepancy in CD's

performance reflects the influence of study design on the number of degrees of freedom

for CD. The similarity between Figure 5.25 and Figure 5.27 suggests that the x* critical

value is appropriate for computing power, provided that the appropriate degrees of

freedom are chosen for CD.

5.9.3 CD Favored Design—Study 7

A study in which a high percentage of patients have CM data, there is poor

correlation between Co and C, and the distribution of P(C) is skewed toward low intake is

expected to show CD in its best light. For this reason, in Study 7, fu is set to .6, the
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weight of Coolc is fixed to 1, and P(C) assigns 50 percent of patients to C=0 and 25

percent of patients to each of C=.5 and C=1. Table 5.24 summarizes these values.

Table 5.24. Distribution of Random Parameter Values in Study 7.

Parameter Fixed Value

fM .6

WTo-c 0

WTo»c 0

WTolc 1

P(C) P(C=O)=.5, P(C=.5)=25, P(C=1)=25

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 5.25.

Table 5.25. Observed Range of Parameter Values in Study 7.

Parameter Range

fM .6

cor(Co,C) -.207—.211

P(C) P(C=O): 37–63, P(C=.5): .16-33, P(C=1): .14- 39

Figure 5.28, the boxplot of power for each method in study 7 computed using a Y”

critical value, shows that, as expected, CD performs well. However, ML has as much

a-ºº:
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power as CD. A comparison of Figure 5.29, the boxplot of power computed using a

simulated critical value, to Figure 5.28 shows that CD is influenced by the source of the

critical value. Analogous to the result presented in Figure 5.27, the influence of study

design on CD's degrees of freedom is at fault. CD has the most power of all methods.
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Figure 5.28. Boxplot of Power for Study 7(x* Critical Value). Poor compliance, rich

CM data, and poor agreement between Co and C favors CD and ML with respect to

power.

Under the conditions investigated in study 7, the rank order of method

performance with respect to power is different than performance with respect to AR

(compare Figure 5.30 to Figure 5.29). To be specific, BA, CD, and ML yield equivalent
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Figure 5.29. Boxplot of Power for Study 7 (Critical Value Determined by Simulating

Under H.). Compared to Figure 5.28 in which power is determined using the x* critical

value, all methods but CD have the same performance. The discrepancy in CD's

performance reflects the influence of study design on CD's degrees of freedom.

estimates of AR, but only CD and ML yield equivalent estimates of power. ITT and BSR

yield equivalent estimates of AR, but ITT has more power than BSR.

As in study 6, the dramatic shift between ITT's performance with respect to

power versus ITT's performance with respect to AR is consistent with ITT being a

method that yields precise, but biased, estimates of P(Y|D). Conversely, the discrepancy

between BA’s low power and BA's high estimation precision reflects a high variability

(apparent in the wide distribution of AR for BA), but low bias (indicated by its mean AR
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close to 1) in 61 estimation. BA’s AR represents a tradeoff between the error incurred by

using biased Co data relative to the increased precision gained by increasing the amount

of data available.
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Figure 5.30. Boxplot of AR for Study 7. Performance with respect to error in P(Y|D)

estimates yields a different rank ordering of methods than performance as measured by

power. ITT has more power than BSR, but yields P(Y|D) estimates that are as imprecise

as BSR. BA has less power than CD and ML despite having P(Y|D) estimates that are

as precise as CD and ML.

5.9.4 BSR Favored Design—Study 8
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To favor BSR, a study with good correlation between Co and C but few CM data

is carried out. Table 5.26 summarizes the parameter values explored. Observed values of

certain parameters in the data actually simulated in a typical study are given in Table

5.27.

Table 5.26. Distribution of Random Parameter Values in Study 8.

Parameter Fixed Value

fM .1

WTo-c .2

WTo-c .6

WTolc .2

P(C) P(C=O)=P(C=5)=P(C=1)=1/3

Table 5.27. Observed Range of Parameter Values in Study 8.

Parameter Range

fM .1

cor(Co,C) .285—,678

P(C) P(C=O): 23-49, P(C=5): 25-46, P(C=1): 23-47

Figure 5.31, a boxplot of power using the X critical value under the conditions

investigated in study 8, shows that parameters favoring the power of BSR also favor
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many other methods. BA, ITT, BSR, and ML yield equivalent estimates of power. Only

CD has less power than BSR. BA has more power than BSR due to the small amount of

CM data available.
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Figure 5.31. Boxplot of Power for Study 8 (x Critical Value). High correlation

between Co and C and few CM data favors the BSR method with respect to power. BA,

ITT, and ML have as much power as BSR under these conditions.

Figure 5.32 shows that CD's power changes slightly when the critical value is

simulated relative to when it is computed using the x critical value. Contrary to the
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power shift observed in studies 6 and 7, this change is less dramatic. The result reflects

the influence of the P(C) used in simulation. That is, by assigning an equivalent number

of subjects to C=0, C=.5, and C=1, it is less likely that CD doesn't have sufficient data to

estimate a component of P(Y|D). Relative method performance is unaffected by the

source of the critical value so this result is not considered futher.
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Figure 5.32. Boxplot of Power for Study 8 (Critical Value Determined by Simulating

Under H.). Compared to Figure 5.31 in which power is determined using the x* critical

value, all methods but CD have the same performance. The discrepancy in CD's

performance reflects the influence of study design on CD's degrees of freedom.
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Figure 5.33, a boxplot of AR for study 8, shows that the rank order of methods

with respect to power is consistent with AR for all but ITT. As in study 6 and study 7, AR

for ITT is due mostly to bias. But ITT has high power because there is little variability in

its estimates. In contrast, CD has very low power because there is high variability in its

estimates—a consequence of having few CM data available to estimate P(Y|D).
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Figure 5.33. Boxplot of AR for Study 8. With the exception of ITT, performance with

respect to error in P(Y|D) estimates is consistent with performance as measured by

power.

5.9.5 Summary of Performance with Respect to Power
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Power often guides clinical trial (and experimental) design. Of the factors that

affect power—number of subjects investigated (N), effect size, variability in effect, and

level of desired statistical significance—N is the only one commonly perceived as under

the investigator's control. Another, often overlooked, factor that contributes to power and

is under the control of the experimentalist is the method of data analysis. This work

illustrates that power can be improved by paying more attention to data analysis—an

option that may be more economical than increasing trial enrollment and the only

decision that remains flexible after a trial's completion.

The results of the power studies offer further support in favor of using the ML

method. Although there are methods preferred to ML in special circumstances, it is

consistently among the top performers. In studies 6, 7, and 8, ML’s power falls within a

tight range—from .51 to .63. In contrast, BA’s power ranges from .37 to .62, CD's power

ranges from .17 to .66 (power as determined using a simulated critical value), ITT's

power ranges from .32 to .74, and BSR's power ranges from .16 to .58. The results of

these studies are all the more compelling considering that none of them were designed to

favor ML.

5.10 Discussion: Method Performance Under Ideal Conditions

In this chapter, method performance is evaluated over widely varying clinical trial

designs, patient compliance distributions, and drug effect sizes. Studies 1-5 suggest that

ML is overall the best method of analysis across the parameter space explored, while

ITT yields the poorest estimates of P(Y|D). Studies 6-8 demonstrate that ML is

consistently among the most powerful methods of analysis, but surprisingly reveal that
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ITT has more power than one might expect based on its performance with respect to AR.

This raises an important question. Do studies 1-5 unfairly represent ITT's performance?

After all, the distribution of true compliance (of interest because ITT is most

sensitive to P(C)) in study 8—where ITT is among the most powerful methods of

analysis—is the same as in studies 1-5. The fixed values of N and p in study 8 fall in the

middle of the range of randomly chosen values in studies 1-5. Therefore, study 8 can be

thought of as providing an estimate of the average power of ITT across studies 1-5.

Whether the recommendations based on studies 1-5 should be amended depends

on what is of interest to the data analyst. If one's goal is to reject the hypothesis that drug

has no effect—as when satisfying the requirements of a regulatory agency—then as long

as P(C) isn't skewed toward poor compliance (as in study 7), ITT may perform as well as

the contending analysis methods. If it is important to estimate the actual exposure

response relationship, then ITT is not the method of choice. But given that P(C) is

unmeasurable, ITT is ill advised. Since BA’s power is sensitive to cor(Co,C)—an

unmeasurable parameter—this method should be used cautiously, as well.

Regardless of whether neither goal, power or unbiased estimation, is clearly

dominant, it is important to understand a limitation of power. Power reflects a method's

ability to yield distinct estimates—it rewards low variability in estimation more than bias.

It is troubling since there are ways to decrease variability in drug effect estimates, and,

consequently, increase power, that do not affect a difference in a drug's efficacy.

These results reflect method performance when there is no confounding between

compliance and response. Confounding is not addressed in this report as it is a deep issue

that has been explored elsewhere(Efron and Feldman 1991; Sheiner and Rubin 1995;
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Angrist, Imbens et al. 1996; Goetghebeur, Molenberghs et al. 1998; Robins 1998).

Furthermore, confounding would only need to be addressed here if there were some

reason to believe that the confounding of drug response disproportionately affects data

analysis methods. We have no reason to believe that one method for determining

compliance might be more liable to co-vary with a confounder than another.

Note that studies 1-8 reflect method performance when A1-A5 are satisfied. Thus,

this chapter has presented ML in its best light. ML’s performance encourages the pursuit

of a sensitivity analysis.
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Chapter 6: Sensitivity Analysis

Abstract

In this chapter, sensitivity to assumptions regarding the accuracy of compliance

measuring tools is explored. The results of this chapter show that ML is robust to

violation of A3—ML yields the best estimates of exposure-response when both CM and

Co have less than perfect correlation with C. ML is sensitive to A2, but under the most

realistic conditions tested, ML is equivalent to the best performing methods. When A2

and A3 are violated simultaneously, BSR yields the best exposure-response estimates,

while ML and BA have the next best performance. In reality, A3 is of great concern

while A2—the assumption that the accuracy of self-reported compliance is independent

of the presence of an electronic monitor—is reasonable. Since good estimates of

exposure-response are obtained using ML even if an electronic monitor does not measure

true intake, the results suggest that there will be an improvement in ML’s performance if

the likelihood is altered to allow for violation of A3.

6.1 Purpose

The simulation studies carried out thus far reflect method performance under

several assumptions (refer to Chapter 4 for an explanation of A1-A5). Assumptions 2-5

are untestable and may not hold for real data sets. Therefore, a sensitivity analysis is

performed to determine the extent to which the reported results depend on assumptions

related to compliance measurement. Specifically, sensitivity to A2 (random assignment to

M such that P(C|Co) is not influenced by an electronic monitor) and A3 (the electronic

**

º
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monitor measures C) is determined. Robustness to A4 and A5 is not explored, as

confounding is a complex issue, beyond the scope of this study focused on missing data

problems. For further references to the confounding problem refer to the following

references (Efron and Feldman 1991; Sheiner and Rubin 1995; Angrist, Imbens et al.

1996; Goetghebeur, Molenberghs et al. 1998; Robins 1998).

Since ML is the most assumption-laden method of analysis, its performance is

predicted to be most affected in these studies.

6.2 Methods

Data are simulated using parameter distributions violating the assumption(s) of

interest, then analyzed by all contending methods. The extent to which method

performance changes relative to studies in which data are simulated in agreement with

that assumption reveals its sensitivity to the assumption in question. To allow for direct

comparison with the results of studies 1-5 (reported in chapter 5), Latin Hypercube

Sampling of identical parameter values is performed (except for changes to the values in

question). The following parameter values are common to all sensitivity studies. Note

that Table 6.1 is identical to Table 5.1, except that it does not specify a fixed value for

P(CMC).

6.3 Investigation of Sensitivity to A3 (CM=C)

For all studies presented in chapter 5, CM is simulated equivalent to C. In reality,

electronically monitored compliance may not be an accurate measure of true intake.

Some patients report removing doses for later ingestion along with the dose taken
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Table 6.1. List of Fixed Parameter Values Common to All Sensitivity Studies.

Parameter Fixed Value

Nihs 100, x5

P(C) P(C=O)=P(C=5)=P(C=1) = 1/3

M .5/3

A2 .5/6

9iprior P(Y|D=0)=P(Y|D=5D)=P(Y|D=D) = .5

92prior P(C=k|CO=j)=1/3 for j,k {0,.5,1}

immediately when it is more convenient to medicate in this way(Bangsberg, Hecht et al.

2000; Turner and Hecht 2001). If those doses are later taken without opening the

electronically monitored bottle at the time of ingestion, the dosing event goes unrecorded

and compliance is underestimated by CM. To investigate sensitivity to error in CM, the

relationship between simulated CM and C is changed from CM-C to CMs.C.

6.3.1 Investigation of Performance Over a Wide Range of Parameter Space:

CM Underestimates C—Study 1°

To determine robustness to A3 over a wide range of parameter values, study 1 is

repeated with one exception—CM is not fixed equal to C. Table 6.2 shows the conditional

distribution, P(CMC), used to generate CM data. Note that the similarity between P(CMC)

and P(CoIC) as defined by Co,02c (see Table A.1) indicates that CM underestimates C by

as much as Co overestimates it in Co,0-c. For example, a patient with C+.5 has a fifty
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Table 6.2. P(CMIC) of Simulation for Sensitivity Studies Violating A3.

CM,Msc C

0 .5 1

CM 0 1 1/2 1/3

.5 0 1/2 1/3

1 0 0 1/3

percent chance of having CM-.5 and a fifty percent chance of underestimating

compliance with CM-0. The same patient has a fifty percent chance of self-reporting

compliance accurately (Co-.5) and an equal chance of overestimating it with Co-1. In

contrast to P(CoIC) of simulation, P(CMC) is not created by forming a linear combination

of three prototypical distributions for the relationship between measured and true

compliance. Only CMMsc is used to simulate CM data.

Table 6.3 specifies the range of parameters sampled for this study. Boldface type

is used to indicate values differing from study 1 (compare Table 6.3 to Table 5.2).

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 6.4. (The range of cor(CM,C) is given in boldface type to

highlight the difference from Table 5.3.)

A comparison of the AR boxplot for study 1° (Figure 6.1) to the AR plot for

study 1 (Figure 5.1) shows that CD is least robust to a violation of A3. By this metric, all

methods but CD maintain the same rank order of performance. CD yields poorer

estimates of P(Y|D) when CM-C because, in addition to the imprecision caused by
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Table 6.3. Distribution of Random Parameter Values in Study

Parameter

N

fM

a, b

p

P(CMC)

Table 6.4. Observed Range of Parameter Values in Study 1

Parameter

N

fM

cor(Co,C)

cor(CM,C)

P(Y|D=0)

P(Y|D=D)

P(C)

discarding data, its ability to estimate exposure-response is hurt by bias in CM.

Underestimating compliance has the same effect on estimation error as overestimating

intake.

Distribution

U(50,400)

U(0,1)

U(0,1), U(0,2)

U(logit(.1),logit(.5))

CMMsc

CMsC

Range

50–400

.00273—,997

.0546—.801

.393—,711

..100—.500

.500—,900

P(C=O): 2–5, P(C=.5): .188—441, P(C=1): .154—,471

1CMsc.
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Figure 6.1. Boxplot of AR for Study 1". When electronically monitored compliance

underestimates true compliance, ML estimates exposure-response as well as ALL and

better than the contending methods of analysis. The apparent improvement in BSR and

ITT relative to study 1 (Figure 5.1) reflects a worsening of ALL's P(Y|D) estimates.

Recall that ALL uses CM, not C, data.Therefore, its exposure-response estimates

suffer when CM-C. Since AR summarizes error in exposure-response estimates relative to

ALL, a worsening of ALL's performance is manifest as an improvement in AR for ITT

and BSR. Naturally, ITT and BSR are not influenced by a violation of A3 since neither

uses CM data.

1CMscFigure 6.1 suggests that ML is robust to A3. In study , it performs better

than all contending analysis methods. Interestingly, ML yields P(Y|D) estimates with

135



nearly as much precision as ALL when A3 is violated. This has an important implication

for clinical trial design—it may be inefficient to measure compliance with an electronic

monitor in all subjects when CMs.C.

Although BA is expected to approach BSR as cor(CM,C) decreases to cor(Co,C),

BA's AR does not lie between CD and BSR. The plot of SD-Dn as a function of fM in

Figure 6.2 shows why—the relative performance of BA, CD, and BSR depends on fM.

BA is actually only better than CD when fewer than 40 percent of subjects have gº

CM data. As shown by cor(CM,C) and cor(Co,C) in Table 6.4, CM is a better measure of --

intake than Co. Although CM is a better measure of C than Co., bias in CM becomes a • "

serious problem for CD at low values of fM-BSR estimates exposure-response better
-

than CD when fM is less than .25. There is a point (here; f■ =.4) at which error in the

estimate of P(Y|D) incurred by using biased, but abundant, Co data is greater than the

error due to using a smaller data set with biased CM data. Both cor(CM,C) and cor(Co,C)

are expected to drive the cutoff at which BA, CD, and BSR are favored relative to one

another.

The plot of 8p–0 as a function of fM in Figure 6.2 illustrates how underestimating

compliance has the same effect on the estimate of P(Y|D) as overestimating intake. Here,

ALL yields the least precise estimates of P(Y|D=0) for all values of fM. Methods that do
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Figure 6.2. Plots of 60-0 and 60-on as a Function of fu for Study 1". When CM is not

an accurate measure of compliance, the relative performance of BA, CD, and BSR

depends on the fraction of subjects with CM data.
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not use CM data perform well. ITT performs the best because it only relies on responses

in subjects assigned to Dr O to estimate P(Y|D=0). BSR performs well for the same

reason as ITT, plus, Co-0 is a valid measure of compliance.

Since CM-0 is a less accurate measure of compliance than CM-1, (under CMMsc,

it is equally probably that a fully compliant subject has CM-0, CM-.5, or CM-1 but a

noncompliant subject only has CM-0), the outcome of one third of subjects with D=Dn

contributes to ALL’s estimate of P(Y|D=0). Thus, the average response of subjects

assigned to placebo appears better than the true average outcome at zero dose—

contributing to error in estimated drug effect.

6.3.2 Investigation of Performance at Specific Locations in Parameter Space:

Self-Reported Compliance is Accurate—Study 2°

Given that questionnaires, electronic caps, and pill counts measure different

aspects of drug intake, it is possible that their conditions of use determine which tool

yields a more accurate measure of compliance. The purpose of this experiment is to

investigate performance under a worst-case scenario for methods that assume Co is a less

accurate measure of compliance than CM. Here, an extreme case is considered: there is

perfect agreement between Co and C, but CMunderestimates C. This study is identical to

study 2, except that P(CMC)=CMM&c.

Table 6.5 indicates the range of parameters sampled for this study. Note that the

boldface value is the only setting differing from study 2 (compare to Table 5.4).

--
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Table 6.5. Distribution of Random Parameter Values in Study 2”.

Parameter Distribution

N U(50,400)

fM U(0,1)

a, b Rather than varying a and b, P(CoC) is constructed by

directly setting WTo-c, WTolc, and WTosc.

WTo-c-1 5 WTo lc=0, and WTosc-0

p U(logit(.1),logit(.5))

WTM&c 1

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 6.6.

Figure 6.3, the boxplot of AR for study 2*, shows how important it is to choose

the gold standard correctly. Here, BA and BSR yield better estimates of exposure

response than a method depending on a more costly experimental design—ALL. ML has

access to the same data as BSR, but yields P(Y|D) estimates that are poorer, even, than

ALL. By considering Co as a fallible measure of CM, ML, in a sense, suffers from model

misspecification.

2* to the plot ofComparison of the plot of SD-Dn as a function of fM in study

öD-Dn as a function of fM in study 2 shows that BSR's performance when CM-C (Figure

6.4) is equivalent to ALL’s performance when CM-C (Figure 5.6). The plots also

highlight a dramatic change in ML’s performance. In Figure 5.6, ML’s estimates of
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Table 6.6. Observed Range of Parameter Values in Study 2*.

Parameter

N

fM

cor(Co,C)

cor(CM,C)

P(Y|D=0)

P(Y|D=D)

P(C)

Range

51—400

0—1

1

.424—,759

.101—,499 *

.501—,899
-

P(C=O): .173—453, P(C=.5): 227—,558, P(C=1): .182—446 º

P(Y|D=Dn) are nearly equivalent to those of ALL. In Figure 6.4, ML’s estimates of

P(Y|D=Dn) do not approach those of ALL until fº.9. And ALL is not the best method

of analysis.

Study 2* represents a best-case scenario for BSR. However, study 1CMsc may

be a more realistic design since it allows for error in both self-reported and electronically

monitored compliance. In this case, ML performs best. It is interesting to note that ITT, a

method favored in practice because it is believed to be robust to assumptions, fails to

demonstrate any advantage here.
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Figure 6.3. Boxplot of AR for Study 2*. When Co is an accurate measure of

compliance but CM is biased, BSR is the best method of analysis. Although ML has just

as much Co data as BSR, it performs poorer than ALL because it uses CM as the gold

standard.

6.4 Investigation of Sensitivity to A2 (Random Assignment to M)

An implication of A2, the assumption of random assignment to M, is that self

reported compliance is independent of the availability of CM data. Formally stated, A2

implies

P(CoC,M) = P(CoC).
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Figure 6.4. Plots of 60-0 and 6p-on for Study 2*. When Co is an accurate measure of

compliance but CM is biased, ML's estimates of P(Y|D=Dn) converge on ALL for fM-.9.

This is a dramatic change relative to the case in which both Co and CM are accurate—

study 2 (Figure 5.6) shows that ML is equivalent to ALL for nearly all values of fM.

One may argue that patients who knowingly have compliance monitored by an electronic

cap will report their intake more accurately on a questionnaire than patients who do not

have a secondary source of information validating their self report. Experimental data are

unavailable to determine if this assumption is true. Therefore, sensitivity to A2 is

investigated. To determine robustness to A2, Co data are simulated from two different

models for P(CoIC)—the model selected depends on the assigned value of M.
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6.4.1 An Extreme Discrepancy in Self-Report Quality for Subjects with M=0 Versus

Subjects with M=1; Co is Accurate for C in Subjects with M=1, but Co has

No Information About C in Subjects with M=0—Study 2*********

First, an extreme case is considered—self-reported compliance is accurate in

subjects who have compliance electronically monitored, but Co has no correlation with C

in subjects who do not have CM data. To be more specific, Co is simulated from Coo-c

for patients with M=1 and Co is simulated from Coolc for patients with M=0 (Refer to

Table A.1 for the exact probabilities defining Colo-c and Coolc).
--

For the purpose of comparison, parameter values other than those affected by A2

are identical to those in study 2 and study 3. Recall that in study 2, Co is perfectly
***

correlated with C in all subjects, not just those with M=1. In study 3, Co is has zero -- *

correlation with C in all subjects, not just those with M=0. To indicate the relationship

with study 2 parameters, this study is referred to as Study 2******* . The ranges

on Study 2******* parameter values are listed in Table 6.7. Boldface type is

used to indicate which values differ from study 2 (compare to Table 5.4).

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 6.8.

Figure 6.5, a boxplot of AR for study 2****** , suggests that ML is

robust to A2. Although CD yields the most precise exposure-response estimates, ML has

the next lowest AR. A comparison of this plot to the analogous study 2 plot (Figure 5.5)

shows that BA and BSR suffer more from the change to P(CoIC) than ML. Neither BA

nor BSR calibrates Co data; their performance simply reflects the resultant decrease in

cor(Co,C). Note that BSR is equivalent to BA because the two methods only differ with
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respect to the data used to determine exposure in subjects with M=1. Here, Co is

equivalent to CM in subjects with M=1.

Table 6.7. Distribution of Random Parameter Values in Study 2","***.

Parameter Distribution

N U(50,400)

fM U(0,1)

a, b Rather than varying a and b, P(CoIC) is constructed by

directly setting WTo-c, WTolc, and WTo-c for M=0 and M=1

M=0: WTo-c=0, WTolc=1, and WToec=0

M=1: WTo-c-1, WTolc=0, and WToec=0

p U(logit(.1),hogit(.5))

Interestingly, a comparison of Figure 6.5 to Figure 5.7 shows that ML yields

more precise P(Y|D) estimates in study 3—where there is no information in Co for any

subject—than in study 2*******—where Co is accurate in subjects with M=1.

This demonstrates that ML is hurt more by an incorrect calibration between Co and CM,

even if there is good information in Co and CM than by a trustworthy calibration that

reveals there is no relationship between Co and CM. Although ML demonstrates

sensitivity to A2, ML’s performance is least variable among methods that use Co data

2M-0 colcM-1 co-cbetween the conditions of study 2, study , and study 3.
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Table 6.8. Observed Range of Parameter Values in Study 2","***.

Parameter Range

N 51—400

fM 0–1

cor(Co,CIM=0) -.866—,875

cor(Co,CM=1) 1

cor(CM,C) 1

P(Y|D=0) ..100—,499

P(Y|D=D) .501—.900

P(C) P(C=O): .173–472, P(C=.5): 208—558, P(C=1): .182—435

6.4.2 A Moderate Discrepancy in Self-Report Quality for Subjects with M=0

and M=1; Co is Accurate for C in Subjects with M=1, but Co Overestimates

C in Subjects with M=0–Study 2*********

A less extreme, and, perhaps, more realistic example of a situation in which the validity

of Co differs between patients with M=0 and M=1 is considered. As in the previous

study, Co for patients with CM data is perfectly correlated with C. However, in this

example, Co is drawn from a distribution in which Co is equal to or overestimates C

(Coosc in Table A.1) for subjects with M=0. Hence, there is some information on C in

Co for subjects without CM data. Aside from the model for P(CoC) in subjects with M=0,

all study parameters are as in study 2. The ranges of parameters in this study (Study
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2******) are listed in Table 6.9. Boldface type is used to indicate which ranges

are different than in study 2 (compare to Table 5.4).

Error relative to ALL

C
co -

-
E

O
-

& == ==
-Jºr

- lmml hºmºml ==DE lmiml

O *-■ -

• -- - - – – — — — — — — — — — — — — — — — — — — —
ºr

C
O

BA CD ITT BSR ML

Analysis Methods

Figure 6.5. Boxplot of As for Study 2". ML is robust to a violation of A2.

When self-reported compliance is inaccurate in subjects who do not have CM data, but is

accurate in subjects that do, ML yields the second best estimates of P(Y|D).

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 6.10.

*
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Table 6.9. Distribution of Random Parameter Values in Study 2"ºº".

Parameter Distribution

N U(50,400)

fM U(0,1)

a, b Rather than varying a and b, P(CoIC) is constructed by

directly setting WTo-c, WTolc, and WTosc for M=0 and M=1

M=0: WTo-c-0, WTolc=0, and WToec=1

M=1: WTo-c-1, WTolc=0, and WTo-c-0
-

p U(logit(.1),logit(.5))

Figure 6.6, the AR plot for study 2******, shows that BA, CD, BSR, . .

and ML have similar estimation precision in this study. A comparison of Figure 6.6 to

the analogous study 2 plot (Figure 5.5) shows that BA and BSR pay a heavier price than

ML for the inaccuracy of Co in M=0 subjects. A comparison of Figure 6.6 to Figure 6.5

shows that CD loses its competitive advantage as the correlation between Co and C

increases in the M=0 subjects.

6.5 Investigation of Sensitivity to A2 and A3 Simultaneously

1°* ****** considers a situation in which both A2 and A3 are violatedStudy

simultaneously. That is, the electronic monitor underestimates true intake and self

reported compliance is influenced by the presence of the electronic monitor. The

ranges on simulation parameter values are the same as in study 1 except for parameters
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Table 6.10. Observed Range of Parameter Values in Study 2"ºº".

Parameter

N

fM

cor(Co,C|M=0)

cor(Co,C|M=1)

cor(CM,C)

P(Y|D=0)

P(Y|D=D)

P(C)

Range

51–399

.00291—1

0–.919

1

1

. 101–.500

.500–.899

P(C=O): .173—472, P(C=.5): 208—558, P(C=1): .182—435

relating to P(CoC) and P(CMC). Table 6.11 lists the ranges of parameters used (compare

to Table 5.2). The values differing from study 1 are indicated by boldface type.

Observed values of certain parameters in the data actually simulated in a typical

study are given in Table 6.12.
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Figure 6.6: Boxplot of As for Study 2","*. When Co overestimates

compliance in subjects with M=0, but accurately measures compliance in subjects that

have CM data, BA, CD, BSR, and ML yield equivalent estimates of exposure-response.

Figure 6.7, a boxplot of AR for study 1", *****, reveals that when

A2 and A3 are simultaneously violated, BSR yields the best estimates of exposure

response. A comparison of cor(Co,C) and cor(CM,C) in Table 6.12 reveals why BSR

performs better than CD–on average, CM is more biased than Co. Interestingly, ML and

BA have similar performance. When the correlation between self-reported compliance

and true compliance depends on M, ML behaves like a method that does not interpret Co
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data more “intelligently” via calibration. Due to the bias in CM, the most costly

experimental design—ALL–is only as good as BA and ML.

Table 6.11. Distribution of Random Parameter Values in

Study 1CMsc. M=0:CQ2C, M-1 co-c.

Parameter Distribution

N U(50,400)

fM U(0,1)

a, b M=0: WTo-c-0, WTolc=0, and WToec=1

M=1: WTo-c-1, WTolc=0, and WToec=0

p U(logit(.1),logit(.5))

WTMXC 1

6.6 Sensitivity to Distributional Assumptions—Simulation Studies Drawing from

Real Distributions of P(CoC)

Up until this point, P(CoC) is selected at random from a wide range of

“reasonable” values. Here, sensitivity to the source of P(CoIC) is explored. The

conditional distribution for Co given C is created from a real data set. With C assumed

equal to CM, the model for P(CoIC) is constructed by computing the conditional

probability matrix given joint observations of Co,CM measured in individuals. Details

about the data source are given in Chapter 7.

:

-
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6.6.1 Source of Data

The exact probabilities of this “real” P(CoIC) distribution—referred to as

P(CoIC)*—is indicated in Table 6.13.

To focus on the influence of the source of P(CoIC), all other parameters are

generated as in study 1. Table 6.14 lists the parameter values fixed in study 1"“”.

Table 6.15 lists the range of parameter values explored in study 1"“”.

The range of parameter values observed in actual data simulated are listed in Table 6.16.

A comparison of Figure 6.8, the plot of AR for study 1", to Figure 5.1, the

plot of AR for study 1, shows that the methods yield the same rank order in performance

regardless of the source of Co and CM data. ML has the greatest precision. CD performs

nearly as well as ML.

Table 6.12. Observed Range of Parameter Values in Study 1", "“”***.

Parameter Range

N 51—400

fM 0–1

cor(Co,C) .486–1

cor(Co,CIM=0) 0–.919

cor(Co,CM=1) 1

cor(CM,C) .424—,733

P(Y|D=0) ..100—,499

P(Y|D=D) .501–.900

P(C) P(C=O): .173–472, P(C=.5): .208—558, P(C=1): .182—435
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Figure 6.7: Boxplot of As for study 1".9°."”**. When A2 and A3 are

simultaneously violated, BSR yields the most precise estimates of exposure-response.

BA and ML yield estimates of P(Y|D) that are equivalent to ALL. ITT demonstrates no

relative benefit.

Table 6.13. P(CoIC) Computed on Real Data.

C

1 2 3

Co 1 .385 .04 0

2 .346 .68 .167

3 .269 .28 .833
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Table 6.14. Fixed Parameter Values in Study 1

Parameter

Nihs

P(C)

Al

A2

01 prior

92prior

P(CMC)

Picoches.

Fixed Value

100 ×5

P(C=O)=P(C=5)=P(C=1) = 1/3

.5/3

.5/6

P(Y|D=0)=P(Y|D=5D)=P(Y|D=D) = .5

P(C=k|Co-j)=1/3 for j,k {0,.5,1}

CM,M-c (see Figure A.5)

Table 6.15. Distribution of Parameter Values in Study 1”.

Parameter

N

6.7 Discussion

Range

U(50,400)

U(0,1)

NA—Co is simulated from P(CoC)*

U(logit(.1), logit(.5))

In this chapter, assumptions about compliance measurement are challenged to

determine their influence on method performance. Here, simulated data either violate an

assumption unique to ML (P(COIC,M)=P(CoIC)), an assumption of all methods that use
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Table 6.16. Observed Range of Parameter Values in Study 1

Parameter Range

N 50–399

fM 0–1

cor(Co,C) .243—.791

P(Y|D=0) ..100—.500

P(Y|D=D) .500–900

P(C) P(C=O)= .22—,547, P(C=.5)=.19—.5, P(C=1)=.169—444

CM data (CM-C), or both simultaneously. The assumptions are violated to differing

degrees. Extreme violations are used to illustrate worst-case scenarios. More moderate

violations suggest more realistic behavior. The two approaches give us a glimpse of the

overall variability in method performance.

Study 1°* shows that when both CM and Co measure C with error, ML yields

estimates of exposure-response that are equivalent to those obtained through a more

costly trial design (ALL). However, study 2° warns that if CM measures C with error

but Co is a perfect measure of compliance, BSR and BA are the best methods of analysis.

Rather than putting all of the results reported so far in question, study 2* illustrates

how important it is to choose the gold standard correctly. Since BSR treats self-reported

compliance as a perfect measure of compliance, when Co-C, it becomes analogous to

ALL in studies with CM-C. ML’s performance suffers when the gold standard is chosen
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Error relative to ALL

C
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CN C+1

J
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C
O

BA CD ITT BSR ML

Analysis Methods

Figure 6.8. Sensitivity to the Source of P(CoIC): Study 1”. When Co and CM

are simulated from a model based on published data, relative method performance is the

same as when P(CoIC) is chosen from a wide range of values (compare to Figure 5.1).

incorrectly, but this does not indicate a weakness in the likelihood it optimizes. Clearly, it

is up to the data analyst not to be prejudiced by the terms “self-report” and “electronic

monitoring”. Expert opinion about which is more accurate should be gathered before

commencing data analysis. This is especially important when using pill count data—the

difference in accuracy between unannounced pill counts and assessments during a visit to

the care provider may be large.
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In contrast, A2 presents a challenge to ML. Study 2****** reveals that

when cor(Co,C)=0 in subjects who have no CM data, but cor(Co,C)=1 in subjects who

have CM data, ML trails CD as the best method of analysis. However, this is an extreme

example of a disagreement between the accuracy of Co in subjects with M=0 and M=1.

In study 2******, where cor(Co,C)<1 in subjects who have no CM data but

cor(Co,C)=1 in subjects who have CM data, ML is among the best methods of analysis. In

*******, where there is a simultaneous violation of A2 and A3,study 1"

ML trails BSR as the best method of analysis.

Although BSR and CD are each the best method of analysis under different

violations of A2 and A3, ML is the next best method of analysis in both cases. Since the

extent to which A2 and A3 are incorrect is unknown, ML seems to be the safest bet.

It is unknown whether A2 is of genuine concern. The validity of A2 likely

depends on the cause of inaccuracy in Co. If error in self-reported compliance is

primarily due to patient lying, then Co is something patients can manipulate. That is, the

presence of an electronic monitor can influence Co. However, if Co is an inexact measure

of C because patients forget how many pills they do not remember to take (as many

believe(Chesney 2000)), an electronic recording device hidden in the cap of a pill bottle

is not likely to change this. After all, if it had an important impact on memory, the

manufacturers of the device would have a much more valuable commodity in their

possession! Of course, the presence of the device may lead patients to meticulously keep

a diary of their intake. However, this is likely to be exceptional, not normal, behavior.

In contrast, A3 is likely untrue. The likelihood (i.e. model for the data) can,

however, be adjusted to allow for error in CM. Since ML performs quite well without
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such a change, its performance can only improve as the model better reflects the realities

of the relationship between C and CM.

Study 1" shows that ML performs well when self-reported compliance

data are drawn from a more realistic source of P(CoIC). However, the most realistic

evaluation may be to compare method performance when Co.,CM, and Y are drawn from a

real data set.
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Chapter 7: Analysis of Clinical Data

Abstract

In this chapter, the data analysis methods are applied to a real data set. The data

were collected during a clinical trial investigating compliance with and response to

protease inhibitors in 34 subjects. The percent of prescribed doses taken was quantified

using three compliance-measuring tools in all subjects—a questionnaire, an electronically

monitored cap, and an unnanounced pill count. The results of this chapter show that

method performance determined using real data is consistent with performance using

simulated data.

7.1 Purpose

Thus far, method performance has been evaluated using artificial data. In chapters

5 and 6, BA, CD, ITT, BSR, and ML are compared with respect to their ability to

analyze data generated from P(C), P(CMC), P(CoIC), and P(Y|D) distributions deemed

“reasonable”. Simulation studies may illuminate the salient features of method

performance, but, nonetheless, are suspect. After all, real data sets may have complex

interactions among parameters. These interactions may be intentionally left out of data

simulation in order to focus on the factors of interest or their influence may be unknown

to the investigator. Another necessary investigation of a proposed analysis method, then,

is to determine how well it handles real data. The goal of the investigation presented in

this chapter is to determine if the relative method performance evaluated on simulated

data extends to a clinical analysis.

159



7.2 Data Source

Individuals infected with the Human Immunodeficiency Virus (HIV) take

approximately two dozen tablets per day(Chesney, Morin et al. 2000). The deadly virus

must be treated with a combination of therapies, many of which have short half lives.

Further complicating the picture, patients may also take drugs to treat opportunistic

infections and conditions unrelated to HIV infection. Since patient compliance is known

to decrease with increasing regimen complexity, compliance is important to monitor in

the clinical management of patients infected with HIV.

Bangsberg and colleagues measured the percent of prescribed protease inhibitor

doses taken in 34 HIV infected homeless people(Bangsberg, Hecht et al. 2000).

Compliance was assessed via questionnaire, electronically monitored pill caps, and

unannounced pill counts. Subjects were observed for a median of 66 days and were

scheduled to have three compliance assessments—with all three tools each time—across

the study’s duration.

The questionnaire required subjects to self-report how many of the prescribed

doses were missed over the previous three days. Bangsberg and coworkers (2000)

transformed the self-reported compliance data into a fractional compliance by dividing

the number of tablets that should have been ingested during the previous three days less

the number that were reported to have been missed by the number of pills that should

have been ingested. Electronically monitored compliance data were transformed into a

fractional compliance by dividing the actual number of pill bottle openings by the

nominal number of openings. The statistic is referred to as the AEMD, or the Adjusted

Electronically Monitored Dosing, since Bangsberg and coworkers use self-reported
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compliance to correct electronically monitored values to reflect proper intake if subjects

admit taking doses from a source other than the electronically monitored container. For

instance, if a patient reports removing all doses for the entire day at one opening, rather

than dispensing from the monitored bottle each time, then the electronic record is

adjusted to reflect good compliance. Pill count compliance was computed by dividing the

number of doses that disappeared from the subject's possession between two assessments

by the number of doses that should have disappeared if the subject had been perfectly

compliant with the prescribed regimen.

Bangsberg and coworkers’ percent compliance data, as measured by self-report,

electronic monitor, and pill count, are used here to evaluate method performance. To be

consistent with the notation in chapters 5 and 6, “Co” and “CM” symbolize self-reported

and electronically monitored compliance, respectively. Pill-count compliance is

represented by “CPC”. Here, patient values of CPC are treated as the response (Y) to be

predicted using CM and Co data.

As required by the analysis methods, the data are transformed from the reported

0-100% scale to a categorical value. Electronically monitored compliance is categorized

by creating a discrete distribution with equal probability of having each CM value. The

cutoff values for CM in the data that yield such a distribution are as follows.

Compliance category (CM) Percent of prescribed drug taken

1 (,50]

2 (50–90]

3 (90,)
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The use of parentheses indicates an open interval, while the bracket indicates a closed

interval. The same cutoffs are applied in categorizing Co values. If Co is equivalent to

CM, P(CQ) will assign subjects to each possible discrete value of Co with a 1/3

probability, as well. However, P(Co) does not have the same distribution as P(CM)—on

average, it overestimates CM. CPC is transformed into a binary variable—comply

("success") or not comply ("failure")—such that P(CPC) is a uniform distribution. The

cutoff value of 80%, indicated below, yields a data set in which half of the subjects have

Y=0 and half have Y=1.

Response (Y) CPC

0 (,80]

1 (80,)

Note that the correlation between Co and CM in the continuous data is .60 and the

correlation between Co and CM in the categorically transformed compliance data is .54.

7.3 Methods

Here, as in chapters 5 and 6, the goal is to estimate P(Y|D). Except, now, CM, Co,

and Y are not simulated. They are taken from a data set of joint (CM,Co,CPC) values.

An empirical distribution for P(CM,Co.,CPC) is assembled from Bangsberg and coworkers’

data. Of 102 possible records—based on 34 subjects observed three times—75 records

consisting of complete CM,Co,CPC data are culled from the data set. Note that a given

individual in the study may contribute zero, one, two, or three (CM,Co,CPC) records to

P(CM,Co,CPC). For the purposes of the present investigation, each compliance monitoring

event is treated as if it arises from a different individual.
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First, the 75 data records in P(CM,Co,CPC) are sampled with replacement to yield a

new data set with N=75. Next, NM subjects of the N subjects are randomly selected to

have CM observed. This data set is now exactly like data sets analyzed in chapters 5 and 6

and is analyzed by all methods of analysis.

This procedure is repeated one hundred times for each setting of NM at 15, 25, 50,

and 60.

7.4 Results

Since the data are real, the true P(Y|D) is unknown and its estimation error cannot

be calculated. Therefore, a histogram of each method's estimates of P(Y|D=Dn) is

presented. Since electronic monitors assess compliance more objectively than self-report,

CM is treated as a better estimate of C. Therefore, ALL is considered the gold standard

for comparing method performance. Vertical bars demarcating the 5" and 95" percentile

of ALL’s estimates are shown and the fraction of each method's estimates falling outside

of this region is reported. Four sets of histograms are presented—one for each value of

NM investigated.

Figure 7.1 shows that ML is essentially equivalent to ALL when only twenty

percent of subjects have CM data. That is, .11 of ML’s exposure-response estimates fall in

the region where ten percent of ALL's estimates lie. The next best method of analysis—

CD–has thirteen percent more P(Y|D) estimates exceeding ALL’s “90"percentile

confidence” region. BA, BSR, and ITT have little to no overlap with ALL. The cost of

ALL is only justifiable if methods other than ML are to be used.
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Figure 7.1. Histograms of P(YID=Dn) estimates when NM=15 (fM=.2). The high cost of

measuring CM in all subjects is not justified if ML is used. ML only fails to estimate

exposure-response within ALL's 90"percentile confidence region for 1 clinical trial out of

100. By throwing away data in subjects with M=0, CD fails to estimate P(Y|D) within

ALL's 90" percentile confidence region 13 percent of the time. ITT never yields

estimates of exposure-response within ALL's 90" percentile confidence region.

7.5 Discussion

Figures 7.2, 7.3, and 7.4 show that method behavior is consistent with the studies

on simulated data. BA and CD improve as fM increases. BSR and ITT yield considerably

different estimates of exposure-response than ALL. ML is the best method of analysis. If
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the next best method, CD, is to be used, one needs fo■ -2/3 to yield estimates of P(Y|D)

that are as good as those returned by ML with only fM-.2.

Most surprisingly, ML performs better in these studies relative to all other

methods than in studies using simulated data. Here, there is little distinction between

exposure-response estimates by ML and ALL, but there is a great distinction between

P(Y|D) estimates for ML versus BA, CD, ITT, and BSR. While this result should not be

interpreted as evidence that ML is equivalent to ALL, it does suggest that the simulation

studies may have been more conservative for ML than the studies with real data. Thus,

ML has not been given too much of an unfair advantage. The lack of a difference in

ML’s performance using real compliance data makes one more confident in the

assumption that error in Co and CM is uncorrelated (among other assumptions).
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Figure 7.2. Histograms of P(YID=D.) estimates when NM=25 (fM=1/3). By throwing

away data in the subjects with M=0, CM fails to estimate P(Y|D) within ALL's 90"

percentile confidence region 8 percent of the time. ML is equivalent to ALL.
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Figure 7.3. Histograms of P(YID=Dn) estimates when NM=50 (fM=2/3). Despite

throwing away data in 1/3 of subjects, CD is equivalent to ALL.
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Figure 7.4. Histograms of P(YID=Dn) estimates when NM=60 (fM=.8). Even with CM

data available in 80% of subjects, BA fails to yield estimates of exposure-response

within ALL's 90" percentile confidence region for 16 percent of clinical trials.
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SECTION III

CONCLUSIONS AND PERSPECTIVES
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Chapter 8: General Findings and Recommendations

Abstract

The methods and results presented in this thesis are critically evaluated in this

chapter. The goal is to determine whether the results accurately represent method

performance within the parameter space explored and, if they do, ascertain the generality

of conclusions reached. Here it is argued that even for data types not investigated in this

report, the efficiency gained by calibrating biased compliance information to accurate

compliance data (under a double sampling scheme) outweighs the consequent risk of

obtaining poorer estimates of exposure-response at extreme regions of the parameter

space. With the exception of trivial cases (e.g. fM assumes the value of 0 or 1), however,

the results are not diagnostic of the exact conditions under which one method of analysis

outperforms another if the data differ in format from those considered here.

8.1 Introduction

As with most scientific experiments, it is necessary to be reductionist when

designing computer simulation studies. After all, one has a finite amount of time to spend

performing computations. This is not necessarily a limitation. Uncomplicated systems

may promote valuable conceptual understanding. The key is to preserve the interesting

aspects of a problem while paring down the universe of possible models to satisfy

practical constraints.

The goal of this project, as stated in Chapter 3, is to determine the operating

characteristics of various methods for estimating exposure-response given a clinical trial
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in which exposure (compliance) is measured using a biased tool in all subjects and an

accurate tool in a random subset. Thus, the format of compliance data is the priority.

Saturated models for patient responses are used to generate data under a simple clinical

trial design having accurate compliance information missing in a subset. This system is

presented in Chapter 4 and in the Appendix.

Specific investigations of the system, presented in Chapters 5 and 6, reveal that

among all methods compared, on average, ML yields estimates of exposure-response

with the least error, has the most favorable power to reject the null hypothesis, and is

robust to violations of assumptions about compliance. Chapter 7 shows that ML analysis

of a real data set is consistent with the results based on simulated data. The work suggests

that if one is handed a data set like those analyzed in Chapters 5-7, ML is the most

efficient method to use.

But exposure and response data in clinical trials are often continuous variables

likely to arise from a more complex system than represented by the saturated models used

in this investigation. Therefore, an important question about method performance remains

to be answered—what is the impact of this work on the analysis of clinical trials with

designs differing from those investigated in this report?

8.2 Critique of the Simulation Study Design

In simulation studies, the parameter space explored and the presentation of results

can bias method performance. Therefore, it is important to consider whether any of these

choices unfairly favor ML.
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8.2.1 Parameter Space Explored

Random sampling of parameter space takes some control over simulations away

from the investigator, thus, reducing bias. A method of stratified sampling, Latin

Hypercube Sampling (LHS) yields unbiased estimates of the mean more efficiently than

simple random sampling (SRS), so LHS is used in this investigation(McKay, Beckman et

al. 1979). By guaranteeing that points are spread out in multidimensional simulation

space, LHS reduces the possibility that parameter values cluster in a region that benefits

one method over another.

Estimation precision is influenced by the number of simulations performed—the

ability to discriminate between methods improves as the number of sets of parameter

values explored increases. One may choose the number of parameter sets to obtain

estimates with a particular level of precision. Here, the number of iterations is dictated by

the amount of time it takes to run each clinical trial simulation and data analysis. In this

investigation, 500 sets of parameter values are chosen by LHS. If anything, the number of

simulations carried out hurts ML's performance. In Figure 5.3 and Figure 5.6 ML and

CD yield similar estimates of P(Y|D=D).

LHS guarantees that points are spread out in multidimensional parameter space,

but it does not assure that clinically relevant parameter space is searched, or if it is, that

appropriate “weight” is given to its sub-regions. These characteristics are under the

control of the investigator. Therefore, it is important to evaluate the influence of the

region explored on method performance.

It is difficult to find a typical value of fM used in practice because there are no

available guidelines for computing it. A survey of AIDS Clinical Trials Group (ACTG)
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designs reveals wide variation in this parameter. In this investigation, fM spans the range

of all possible values (0 to 1), so there is no concern that the range is chosen to favor one

method over another.

The study size ranges from 50-400—a span chosen to reflect N in ACTG studies

and smaller phase 3 studies. The values of fM and, perhaps, N represent nonasymptotic

conditions. It is known that ML performs poorly under nonasymptotic conditions(Little

and Rubin 1987). Therefore, the choice of N and fM likely hurts ML (and CD).

An infinite selection of possible models for P(CoIC) necessitates focusing the

investigation on those that are clinically relevant. Since true compliance is unmeasurable,

some assumptions are made about what constitutes clinically relevant. Since a low Co

value is likely more valid than a high Co value, a model for P(CoIC) in which self

reported intake is equivalent to or an overestimate of compliance is reasonable for

simulating Co given C. Rather than confining the investigation to just a few such models,

a wide range of possible models are created by averaging together two extreme

possibilities for P(CoIC) (Co-C and Colc) with a model for P(CoC) in which Co-C.

This approach seems reasonable given the value of P(CoIC) computed on real data

presented in Table 6.13.

Figure 8.1 shows the distribution of cor(Co,C) values computed on study 1 data.

(Note that Figure 8.1 is representative of cor(Co,C) in all studies for which P(CoC) is a

free parameter.) The vertical bar on the plot at cor(Co,C)=.55 indicates the cor(Co,CM)

observed in pooled literature data sets(Burney, Krishnan et al. 1996; Straka, Fish et al.

1997). This value is similar to cor(Co,CM) computed on the data analyzed in Chapter 7.

Assuming that cor(Co,CM) is an overestimate of cor(Co,C), it is reasonable that the bulk
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of the distribution of cor(Co,C) values fall below this line. Since ML's performance

improves as cor(Co,C) increases, ML is not helped by such midrange, albeit, clinically

relevant, values of cor(Co,C).

&

º

0.8 1.0

:
cor(CC),C)

Figure 8.1. Histogram of cor(Co,C) in Study 1 Data. The correlation between self

reported compliance and true intake is not uniformly distributed between 0 and .8 in

study 1. Half of all simulations have cor(Co,C) ranging from .3-.5. The vertical bar at

cor(Co,C)=.55 represents the correlation between self-reported compliance in data from

the literature. This value of cor(Co,CM) is similar to that observed in the data in Chapter 7

and is considered an overestimate of cor(Co,C).

As with P(CoIC), the model for P(CMC) is restricted to clinically relevant values

during sensitivity analysis. CM is thought to underestimate compliance, but have a greater

correlation with C than cor(Co,C)(Burney, Krishnan et al. 1996; Bangsberg, Hecht et al.

2000; Turner and Hecht 2001). Subjects with perfect compliance are simulated with all

possible CM values, but subjects with zero intake can only have CM-0. One can be

perfectly compliant and simply neglect to use the electronically monitored bottle to
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dispense tablets, but it is assumed that subjects who don't take drug don't open and close

the medication container at all.

Figure 8.2 shows the distribution of cor(CM,C) values in study 2° data. The

mode of the distribution is skewed slightly higher than the correlation between Co and

CM in ACTG data. This is a clinically reasonable assumption. BA, CD, and ML are

sensitive to cor(CM,C), thus ML is not favored by the choice of P(CMC).

:
3

0.0 0.2 0.4 0.6 0.8 1.0

cor(CM,C)

Figure 8.2. Histogram of cor(CM,C) in Study 2* Data. The correlation between

c

electronically monitored compliance and true compliance is not uniformly distributed

between 4 and .7 in the investigation of sensitivity to CM-C. The mode of the distribution

is skewed slightly higher than cor(CM,C)=.55—the cor(CM,Co.) in the data sets taken from

the literature and a value thought to underestimate cor(CM,C).

Note that in contrast to the method for generating P(CoIC) at random, only one

model for P(CMC) is used. This explains why the variance in cor(CM,C) is less than the

variance in cor(Co,C). The difference in variance is reasonable given that Co is measured

using less standardized tools than CM. The quality of information in questionnaires and
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diaries is expected to vary depending on the clinical trial design and the relationship

between the subject and the investigator collecting the information(Kaplan and Simon

1990; Catania, Binson et al. 1996; Ickovic and Meisler 1997).

As explained in the Appendix, the model for P(Y|D) is log linear and

P(Y|D=.5Dn) is fixed to .5. Randomly drawn values of log(P(Y=1|D=0)) specify the

relationship between Y and D. Since ML performs best relative to other methods when

drug effect is high, ML can be made to perform better by having a great number of

studies with P(Y=1|D=0) skewed toward. 1. Figure 8.3, a histogram of P(Y=1|D=0) of

simulation in study 1, shows that the values are nearly uniformly distributed. The slight

skewness towards a large drug effect is not unreasonable as we are generally interested in

evaluating methods with respect to their ability to discover a real drug effect. (After all,

all methods are equivalent in their ability to discover a null drug effect.) Therefore, ML

is not unfairly favored by the selection of P(Y|D).

&

i
0.1 0.2 0.3 0.4 0.5

P(Y=1|D=O)

Figure 8.3. Histogram of P(Y=1|D=0) in Study 1 Data.
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The study design models, P(D) and P(M), are not conditional on any outcome

variables. All subjects are equally distributed among placebo and nominal dose groups

and subjects with CM data are equally divided between the D=0 and D=Dn groups. This

decision reflects a reasonable clinical trial design. Note that the choice of P(Dr.) favors

ITT by guaranteeing that it has the same number of subjects contributing to the P(Y|D=0)

and P(Y|D=D.) estimates. ITT is the only method which enjoys this benefit.

The most questionable parameter value is the arbitrarily chosen P(C). Figure 8.4

shows a histogram of P(C) values observed in study 1 data. In simulation, it is equally

probable that a subject has C=0, C=.5, or C=1. Clinically, about one-sixth of patients are

poor compliers, another one-sixth are perfect compliers, while the behavior of a full two

thirds falls somewhere in between these extremes(Urquhart 1997). This is determined

with respect to the number of drug holidays taken per month as measured via an

electronic monitor. Note that since P(C=0) and P(C=1) equivalently overestimate

P(CM-0) and P(CM-1), the effect on P(C) likely balances out.

Because CM is believed to underestimate C, P(C) may actually be skewed such

that P(C=O).<1/6 and P(C=1)-1/6. Thus, the simulation value P(C=1) = 1/3 may be

reasonable, but that of P(C=0) may not. This discrepancy is of concern since ITT is the

most sensitive to the distribution of true intake.

In study 6, where P(C) is heavily skewed towards high compliance (P(C=0)=.25,

P(C=.5)=25, and P(C=1)=.5), ITT has higher power than ML. Even in this instance,

which likely illustrates a more favorable P(C) than is clinically relevant, ML yields the

best estimates of P(Y|D). If anything, the values chosen for P(C) favor the performance

of methods that believe compliance as measured.
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Figure 8.4. Histogram of P(C) in Study 1 Data. It is equally likely that a subject has

C=0, C=.5, or C=1.

The prior distributions on P(Y|D) and P(CICO) are used simply as an aid in

comparing method performance. They allow all methods of analysis to return an estimate

of exposure-response when data are sparse, and, consequently, simplify the task of

evaluating relative method performance. After all, it is difficult to compare the

performance of a method that only estimates exposure-response when it has rich data to a

method that always returns an estimate of P(Y|D), regardless of data quality.
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Here, the prior on P(Y|D) assumes no drug effect. The prior is always correct for

P(Y|D=.5), but this is of little concern since this exposure-response estimate is not

included in the evaluation of method performance. The prior P(C|Co) assumes no

correlation between Co and C–an assumption that is incorrect for all but a few

simulations in which cor(Co,C) is low. The ML method can be criticized for using this

second source of prior information that no other method incorporates. However, the prior

only aids analysis if it adds correct information. Otherwise, it does nothing or even hurts

the analysis. Thus, ML is likely penalized by the incorrect prior on P(C|Co).

In practice, it is not necessary to use a prior with any method of analysis presented

here. Of course, there may be instances in which one wants to use an informative prior.

Sources of informative priors on P(CCO) might be published data or information about a

subject's compliance with another drug while sources of prior information on P(Y|D)

include the drug effect measured in another clinical trial or the effect of a drug within the

same therapeutic class.

8.2.2 Presentation of Results

One indirect consequence of the limited number of simulations performed is

revealed in Figures 5.22, 5.23, and 5.24. The lines on the contour plots of (cor(Co,C), fa,

ôD-Dn) and (cor(Co,C), p, Sp-pi) in study 1" and study 5" are wavy. This likely

represents edge effects in smoothing—something influenced by a lack of data in extreme

regions of parameter space.

Note that LHS only guarantees that points are spread out evenly in the parameter

space it samples. The lack of points in certain regions of plotting space occurs because
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neither cor(Co,C) nor p are sampled by LHS. They are plotted because one has a more

intuitive understanding of their values than of the LHS sampled parameter values which

indirectly give rise to P(CoIC) and P(Y|D). Refer to the Appendix for an explanation of

how P(CoIC) and P(Y|D) are simulated. The edge effects are expected to be less

influential if more simulations are performed. The lack of data primarily makes it

difficult to draw conclusions about parameter interactions. Because of this, few

recommendations are made in this regard.

Estimation of P(Y|D) is performed on the logit scale because the logit of any

probability has the desirable property of existing in unconstrained parameter space. All

exposure-response probabilities, p, (on the 0-1 scale) are transformed to logits (ranging

from -oo to +co) via equation 8.1.

x = ln(p/(1-p)) (8.1)

The logit is simply the log of the odds ratio.

Method performance is compared on the logit scale, as well. The Appendix

explains how to compute various error metrics (8D-0, 6D-Dn, AR), but there is a need for a

more intuitive understanding of their magnitude. Transforming the logit of a probability

back to a probability aids in the understanding of this value. The antilogit is computed

using

p = e^/(1+e”). (8.2)

Given the optimal case in which there is zero logit error in the estimation of P(Y|D), the

antilogit of that error is .5. That is, p = e/(1+e")=%. Table 8.1 lists the mean absolute

logit error, or the absolute error in the log odds ratio, in study 1. The corresponding

antilogits for these values are listed in table 8.2.
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Table 8.1. Mean Absolute Logit Error in Study 1.

Mean Absolute Logit Error (Error in the log odds ratio)

ALL .2654732

BA .3778.191

CD .3604457

ITT 6608587

BSR .5188329

ML .3190349

Table 8.2. Transformation of the Mean Absolute Logit Error in Study 1 to the

Probability Scale.

logit'(Mean Absolute Logit Error)

ALL .5659812

BA .593347

CD .589.1483

ITT 6594533

BSR 6268748

ML .579089

Since the lowest value the antilogit of an absolute error can assume is .5, the results in

Table 8.2 may be interpreted as showing how close each method would come to
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estimating a true value of p=.5. ALL estimates the probability best with p=.566, while

ITT is the least accurate yielding p-.659. Because three probabilities are estimated

(P(Y|D=0), P(Y|D=.5Dn), P(Y|D=D)), it seems confusing to represent the error as a

value relative to p-.5. To provide a sense of scale, it makes more sense to compare each

method's estimation precision to ALL's estimation precision. AR achieves this. Table 8.3

lists the mean AR reported in study 1. They are computed by dividing the values in Table

8.1 by ALL’s value in Table 8.1. (See Figure 5.1 for the entire AR distribution.) This

transformation delivers the absolute error in the log odds ratio for each method relative to

the absolute error in the log odds ratio for ALL.

Table 8.3. Mean Absolute Logit Error Relative to ALL in Study 1.

Mean Absolute Logit Error Relative to ALL

ALL 1

BA 1.423.191

CD 1.357748

ITT 2.489361

BSR 1.95437

ML 1.201759

For the sake of continuing the discussion of the intuitive interpretation of AR,

Table 8.4 lists the mean AR reported in Table 8.3 in terms of its corresponding probability

on the antilogit scale.
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Table 8.4. Transformation of Mean Absolute Logit Error Relative to ALL in

Study 1 to the Probability Scale.

logit'(Mean Absolute Logit Error Relative to ALL)

ALL 7310586

BA .8058382

CD .7953934

ITT .9233926

BSR .8759224

ML .7688376

When the errors are computed relative to ALL, the value of the relative mean

absolute logit error of comparison is 1, and the corresponding p is p=logit"(1), or 731.

Again, this probability does not have a literal interpretation. Comparing performance to

ALL is a good idea, but one must be careful to interpret the plots of AR as an illustration

of relative method performance, not extract quantitative information on method

performance from them. The results are presented in Chapters 5-7 in a manner that

reflects this limitation.

The confidence regions around 6D-Dn is determined by bootstrap. The procedure

for computing it is explained in the Appendix. As with all bootstrapped confidence

intervals, these “confidence regions” underestimate variance(Efron 1993; Mooney and

Duval 1993). There is no reason to suspect that ML gains any advantage over other
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methods of analysis with respect to the bootstrap computation of confidence regions.

However, one must be wary about interpreting the variance quantitatively.

Power is determined in a region of low power for all methods of analysis. This is

done to reduce the number of computations required to compute power. Although there is

no reason to believe that relative method performance will change with more simulations,

these plots should only be interpreted qualitatively.

8.2.3 Are the Interesting Aspects of the Measurement Problem Preserved?

The critique of the parameter space explored and the representation of method

performance suggests that the qualitative results presented in Chapters 5-7 are

trustworthy. One can reasonably conclude that ML is the best method of analysis to use

given data of the type analyzed in those studies. In this section, the entire simulation

study design is scrutinized in order to determine the extent to which the results generalize

to different types of data. The influence of model structure and assumptions on generality

is discussed.

8.2.3.1 Model Structure

A simple clinical trial design is assumed in us investigation. Subjects are either

assigned to drug or placebo. Drug exposure is a categorical variable that has a log linear

causal relationship with one's success or failure. Compliance is measured, at most, once

with each tool. Accurate compliance data are missing completely at random. The pattern

of missingness is monotone (only CM data are missing). True compliance, electronically
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monitored compliance, and self-reported compliance are unconfounded with response.

There is no inter- or intra- individual variability in parameters.

Many of these simplifying design features are clinically relevant while others

have little bearing on the problem at hand. It makes no difference, technically speaking,

whether the one value of compliance used to determine exposure reflects a single

observation or the mean of several compliance measurements. Likewise, the

categorization of fractional compliance is general enough to extend to other metrics of

intake. Although C is presented as the amount of drug taken, it could very well represent

the timing of dose taking (subjects can either take doses perfectly on schedule,

moderately on schedule, or at random time intervals), the frequency of drug holidays, or

something else.

The assumptions that Co and CM are unconfounded with response are justifiable.

With the exception of drugs that impair an individual’s ability to self-report compliance

or use an electronic monitor, it is difficult to imagine a mechanism by which Co and CM

supply information about drug response independent of what they indicate about

exposure. For example, a drug that affects a patient's memory may yield Co values that

are causally related to Y. Likewise, an anti-arthritic drug which affects a patient’s ability

to use an electronically monitored medication bottle appropriately can give rise to CM

values that are causally related to Y.

One should be mindful of these exceptional cases when deciding whether the

assumptions P(Y|Dn,C,Co.)=P(Y|Dn,C) and P(Y|Da,C,CM)=P(Y|Dn,C) are reasonable. If

such confounding exists, any method that uses compliance to determine exposure will

yield biased estimates of the exposure-response relationship. If one tool is confounded
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with response, then the choice of analysis methods may be limited to those that do not

use the confounded instrument. Note that in the measurement error framework, it is

generally acceptable to assume nondifferential error when W (here: Co or CM) is merely

a mismeasured version of X (here: C)(Carroll 1995).

The model for drug exposure neglects to account for clearance and bioavailability.

The clinical relevance of this simplification depends on the relative contribution of

compliance and CL/F to exposure. The formulation is reasonable for drugs with little

variability in CL and F. It may also be relevant for drugs with moderate variability in CL

and F since compliance may range from 0-100%(Kass, Meltzer et al. 1986). In reality,

one would include CL/F in a model for exposure (if the parameter was known) during the

model selection process. If it has a greater impact on exposure than compliance,

compliance adds little to an analysis, and the use of any compliance information,

regardless of how it is measured, is inconsequential. Most importantly, however, since

CL/F is just a scale term (in the sense that its impact on the estimation of exposure is not

influenced by the method of determining compliance), this simplification has no bearing

on the problem considered here. That is, variability in CL/F is not expected to affect the

performance of one method of analysis more than another.

In the interest of minimizing computational time, this investigation focuses on

categorical data. If one's performance metric is estimation time, then switching to

continuous models may hurt ML. However, computation time is less of an issue when

fitting a model to a single data set than in simulation studies where a large number of

trials must be run. Note that one benefit of switching over to continuous models is that

they may have fewer parameters than categorical models, and, consequently, handle
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sparse data better than the categorical formulation presented here. In that case, continuous

models reduce the influence of prior information on estimation. Recall that the prior

penalizes ML more than other methods of analysis, thus, the categorical formulation may

present ML in its worst light.

Here, a monotone missing data structure is assumed. That is, Co and response

data are complete and only CM data are missing. In reality, more complicated missing

data patterns arise. Both self-reported compliance and electronically monitored

compliance data are missing in the data source for Chapter 7. However, the Co data are

more abundant than CM data—100 of Bangsberg and coworkers' 102 self-report

assessments during the clinical trial are complete, while only 77 of 102 electronically

monitored assessments are complete(Bangsberg, Hecht et al. 2000). The ML method as

presented is unable to handle this pattern of missingness. To apply the method to such a

data set, one may have to throw away records from subjects missing Co data. (This

assumes one integrates over P(C|Co). One might choose to parameterize the model such

that P(C) or P(CO) is estimated. Doing so allows one to integrate over P(C) or P(CO) in

subjects missing both C and Co.) In the case of the Bangsberg and coworkers’ data set, it

is likely that ML maintains its superior performance when the two records with

incomplete Co data are dropped. Note that a lack of Co data is expected to negatively

impact BSR and BA. Thus, the decision to analyze a monotone data set does not reflect a

bias in favor of ML.

8.2.3.2 Assumptions
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Although the majority of the design decisions are not expected to influence

conclusions about method performance, two data analytic assumptions pose great

challenges to the generality of ML.

The first troublesome assumption is that CM is missing completely at random

(MCAR). Under the design presented, the missingness of CM is an investigator

determined parameter. In reality, CM may be missing for other reasons. ML is expected to

yield biased estimates of exposure-response if CM’s missingness depends on the value of

CM. However, even in this case, ML may yield less biased exposure-response estimates

than other methods of analysis. One may predict whether ML yields reasonable estimates

of exposure-response by determining the extent to which CM is missing at random

(MAR). Recall from the discussion in Chapter 2 that CM data only have to be MAR, not

MCAR, in order for ML to yield unbiased estimates of exposure-response.

One may determine whether the MAR assumption is reasonable by comparing the

distribution parameters in subjects who have CM data to those who do not (i.e.

P(Co,Y|M=0) vs. P(Co,Y|M=1)). If data are not MAR, one may bootstrap the data sets to

determine if just a few subjects have data that is not MAR. Procedurally, one randomly

samples the data with substitution to generate a new data set that is the same length as the

original data set. Then one computes and compares some statistic on P(Co,Y|M=0) and

P(Co,Y|M=1). This procedure is repeated many times. The overlap between the statistic

for subjects with M=0 and M=1 should give some indication of whether data are MAR

for many or just a few subjects.

The assumption that C is unconfounded with Y is of great concern, as well. It is

not an assumption that can be supported using available data. There are instances in
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which the data suggest that confounding exists. For example, the clinical trial of

cholestyramine revealed that good compliers to placebo have a better outcome than poor

compliers with placebo(Efron and Feldman 1991). It is a drug taken chronically, thus,

some have suggested that compliance is a surrogate for lifestyle factors that impact the

subject's outcome. Regardless of whether one can imagine a mechanism by which

compliance relates to response independent of exposure, critics of as-treated analyses can

rightfully argue that confounding always may be present.

If true compliance is confounded with response, ML, as well as all other methods

that use compliance information to determine exposure, yield biased estimates of

exposure-response. However, the degree of bias may be less than that incurred by

ignoring compliance information altogether and using ITT to estimate exposure

response. Since the method of determining exposure is not likely to have an interaction

with confounding, there is no reason to suspect that confounding causes ML to lose its

relative advantage over other methods that use compliance data as measured.

One weakness of this investigation is that it neglects to explore sensitivity to the

assumptions of MCAR and nonconfounding of true compliance. Furthermore, the ML

method may be helped by estimating an exact likelihood. The real world is more

complicated than it has been presented here. Model selection should be less

straightforward, particularly for this model-based method.

Clearly, this work leaves unanswered questions. However, it presents enough

evidence to suggest that the ML method should be used to analyze calibration studies.

The benefits outweigh potential risks.
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8.2.4 Impact of this Work on Pharmaceutical Science

This is not the first proposal to use compliance data to determine exposure and

estimate exposure-response from “natural dosing experiments”(Urquhart and Chevalley

1988). The idea that several tools can be used together to obtain a better estimate of

compliance is not new, either(Jonsson, Wade et al. 1997; Liu, Golin et al. 2001).

However, no one has approached compliance determination as a missing data problem or

used a maximum likelihood model-based approach to determine intake. Others have

investigated a technique for choosing the best measure of compliance among

contenders(Jonsson, Wade et al. 1997) or evaluated single imputation approaches(Liu,

Golin et al. 2001).

The model-based calibration of compliance information is the most general

approach among those presented. It can easily be expanded to incorporate more complex

clinical trial designs. And it can be extended to eliminate the need for assumptions such

as CM-C, ignorable missingness of CM, and nonconfounding of compliance under certain

assumptions.

This investigation is the most thorough comparison of various methods for using

compliance data as measured. This task is helped by the method used to explore

parameter space. Latin Hypercube Sampling is one that has not previously been used in

PK/PD simulation studies. The results show that given self-reported compliance with

some correlation between Co and C, it is better to use BSR than ITT to determine

exposure-response. However, the benefit does not extend to power. If there are some CM

data available, and cor(Co,C) is greater than 0, it is better to use the best available

measure of compliance to determine exposure than to throw away self-reported
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compliance. Most surprisingly, even when there is no correlation between Co and CM,

ML yields the best estimates of exposure-response.

In this study, self-reported compliance is labeled the more feasible and less

accurate compliance monitoring tool. This nomenclature is based on information in the

literature reporting on the challenges of measuring compliance using self-report tools.

However, it does not escape our attention that self-reported intake can be more accurate

than electronically monitored compliance in certain instances. Regardless, the analyses

presented here are not contingent on self-reported compliance specifically being a poorer

measure of compliance than electronic monitors. Co should be generically interpreted as

a tool that measures compliance with more error than CM. The important point is that the

ML method as presented is recommended, provided that the data analyst correctly

identifies which tool is superior.

8.3 References

Bangsberg, D. R., F. M. Hecht, E. D. Charlebois, A. R. Zolopa, M. Holodniy, L.

B. Sheiner, J. D. Bamberger, M. A. Chesney and A. Moss (2000). “Adherence to

Protease Inhibitors, HIV-1 Viral Load, and Development of Drug Resistance in an

Indigent Population.” AIDS 14(4): 357-366.

Burney, K. D., K. Krishnan, M. T. Ruffin, D. Zhang and D. E. Brenner (1996).

“Adherence to Single Daily Dose of Aspirin in a Chemoprevention Trial. An Evaluation

of Self-Report and Microelectronic Monitoring.” Archives of Family Medicine 5(5): 297

300.

191



Carroll, R. J., Ruppert, D., and Stefanski, L.A. (1995). Measurement Error in

Nonlinear Models. Great Britian, St. Edmundsbury Press.

Catania, J. A., D. Binson, J. Canchola and L. M. Pollack (1996). Effects of

Interviewer Gender, Interviewer Choice, and Item Wording on Responses to Questions

Concerning Sexual Behavior. Public Opinion Quarterly, University of Chicago Press. 60:

345-375.
-

Efron, B. (1993). An Introduction to the Bootstrap. New York, Chapman & Hall.

Efron, B. and D. Feldman (1991). “Compliance as an Explanatory Variable in

Clinical Trials.” Journal of the American Statistical Association 86: 9–22.

Ickovic, J. R. and A. W. Meisler (1997). “Adherence in AIDS Clinical Trials: A

Framework for Clinical Research and Clinical Care.” Journal of Clinical Epidemiology

50(4): 385-391.

Jonsson, E. N., J. R. Wade, G. Almkvist and M. O. Karlson (1997).

“Discrimination between Rival Dosing Histories.” Pharmaceutical Research 14: 984–991.

Kaplan, R. M. and H. J. Simon (1990). “Compliance in Medical Care:

Reconsideration of Self-Predictions.” Annals of Baron Medicine, Society of

Behavioral Medicine 12(2): 66-71.

Kass, M. A., D. Meltzer, M. Gordon, D. Cooper and J. Goldberg (1986).

“Compliance with Topical Pilocarpine Treatment.” American Journal of Ophthalmology

101: 515–523.

Little, R. J. A. and D. B. Rubin (1987). Statistical Analysis with Missing Data.

New York, John Wiley & Sons.

192



Liu, H., C. E. Golin, L. G. Miller, R. D. Hays, K. Beck, S. Sanandaji, J. Christian,

T. Maldonado, D. Duran, A. H. Kaplan and N. S. Wenger (2001). “A Comparison Study

of Multiple Measures of Adherence to HIV Protease Inhibitors.” Annals of Internal

Medicine 134: 968–977.

McKay, M. D., R. J. Beckman and W. J. Conover (1979). “A Comparison of

Three Methods for Selecting Values of Input Variables in the Analysis of Output from a

Computer Code.” Technometrics 21(2): 239-245.

Mooney, C. Z. and R. D. Duval (1993). Bootstrapping: A Nonparametric

Approach to Statistical Inference. Newbury Park, Sage Publications.

Straka, R. J., J. T. Fish, S. R. Benson and J. T. Suh (1997). “Patient Self

Reporting of Compliance Does Not Correspond with Electronic Monitoring: An

Evaluation Using Isosorbide Dinitrate as a Model Drug.” Pharmacotherapy 17(1): 126

132.

Turner, B. J. and F. M. Hecht (2001). “Improving on a Coin Toss to Predict

Patient Adherence to Medications.” Annals of Internal Medicine 134(10): 1004-1006.

Urquhart, J. (1997). “The Electronic Medication Event Monitor. Lessons for

Pharmacotherapy.” Clinical Pharmacokinetics 32(5): 345-356.

Urquhart, J. and C. Chevalley (1988). “Impact of Unrecognized Dosing Errors on

the Cost and Effectiveness of Pharmaceuticals.” Drug Information Journal 22:363-378.

193



Chapter 9: Future Directions

Abstract

Chapter 8 highlights the limitations of the methods and results presented in this

report. Strategies for addressing these issues of generality and future elaborations of the

methodology are presented in this section.

9.1 Introduction

Dosing guidelines are often developed via an iterative process that only begins

during clinical trials. Of all drugs granted FDA approval between 1980 and 1999, 22%

underwent significant post-marketing dose adjustment(s). Most often, the dose originally

recommended in product labeling was too high(Cross, Lee et al. 2001).

Reducing dose over time can have dire consequences on a drug's pricing

structure. More importantly, it jeopardizes patient safety. Incorrect dosing is estimated to

be the 4"-6"leading cause of death in the United States. Each year, over 100,000 persons

in the United States are killed by drugs taken as directed. This statistic excludes adverse

drug reactions caused by errors in drug administration, noncompliance, overdose, drug

abuse, and therapeutic failure(Lazarou, Pomeranz et al. 1998). While some consider this

value an overestimate(Fremont-Smith, Kravitz et al. 1998), other research suggests that it

may be an underestimate. Approximately 125,000 deaths per year have been attributed to

noncompliance with cardiovascular drugs alone(Bond and Hussar 1991).

To some extent, learning to dose must be a trial-and-error process. Only a small

sample of the population can, realistically, be studied during clinical trials. By chance,

subjects with unusual kinetic parameters may not be administered the drug until it is
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marketed. The pharmaceutical industry, regulatory officials, and patient groups are

interested in making drug development a more efficient process. Increasing the size and

duration of clinical trials to get the dose right runs counter to this goal.

Yet, the contribution of two likely causes for misdosing can be reduced without

increasing the number of subjects enrolled in a clinical trial. One method is to select the

dose(s) admitted into confirmatory clinical trials using a scientific, rather than an empiric,

approach by performing data analyses that maximize the information gained from early

phase clinical trials. The second way to improve dosing guidelines is to analyze

confirmatory clinical trial data via an as-treated analysis to determine the exposure

response relationship. Clinical trialists can identify an optimum dose, based on the

experience of a large number of patients, not just recommend the dose that causes one to

reject the null hypothesis of no drug effect.

Noncompliance during clinical trials may be used to the drug developer's

advantage, then, if it is treated as something that gives rise to natural dosing

experiments(Urquhart 1992; Urquhart 1993). The many challenges to this data analytic

approach have been presented in this thesis. In the process of answering methodological

questions regarding the use of compliance information in computing exposure, these

simulation studies raise further questions. Approaches to answering them are presented in

this chapter.

The length of this “to do” list illustrates the tremendous amount of work required

before compliance data will be widely used in the development of dosing guidelines. But

the need to develop safe and effective therapeutics more efficiently than via empirical

approaches is too great to allow the amount of work to be an acceptable deterrent.
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9.2 Further Simulation Study

9.2.1 Extensions of the Simulation Studies Presented

An alternative approach to carrying out simulations is to evaluate method

performance using the closed form solution for each analysis method's estimation

precision. Unfortunately, the prior distributions on P(Y|D) and P(CCo) hinder one's

ability to mathematically describe estimation precision in the studies presented. Analytic

solutions are likely to be unattainable given more realistic models for compliance

behavior, clinical trial design, clinical trial conduct, and patient pharmacokinetic

parameters, as well.

A more thorough investigation of the influence of P(CMC), P(C), and P(Y|D) on

method performance will increase confidence in the results presented. It may be useful to

choose P(CMC) in a manner similar to that used to select P(CoIC). (Refer to the

Appendix for a description of how P(CoIC) is selected at random). That is, CMMsc can be

averaged with CMM-C and CMM Lc with randomly varying weights. Of course, for

P(CMC), it makes sense to average in CMM Lc to a lesser extent than Coolc contributes to

P(CoIC). Furthermore, since changes in technology may improve the accuracy of

electronic monitoring tools, weighting of CMM-C, CMM Lc, and CMMsc should be such that

the mean of the distribution of cor(CM,C) is shifted upward compared to the distribution

already investigated in sensitivity studies.

It was pointed out that the model for P(C) used may overestimate the fraction of

subjects who are fully compliant and noncompliant but underestimate the probability of

subjects who are moderately compliant. To address this issue, the clinically observed

distribution of CM values, P(CM =0)=1/6, P(CM-.5)=2/3, and P(CM-1)=1/6, should be
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used as P(C) in simulation studies. Additionally, one may take the distribution of

compliance as determined via unannounced pill counts as a possible P(C).

The model for P(Y|D) should be altered such that it doesn’t pivot around a fixed

probability of success at D= .5Dn. A clinically relevant approach is to select several

models for exposure-response from the literature. One may want to choose a drug causing

a small difference in response, as is typical of long term outcomes such as the change in

mortality conditional on exposure to cholesterol lowering drugs. This is of interest since

compliance tends to decrease as a function of time and poor compliance is an issue with

drugs taken for a long period of time(Cramer, Scheyer et al. 1990; Waeber, Leonetti et al

1999).

Among all of the criticisms presented in Chapter 8, the issues raised about power

are the most computationally expensive to address. Estimation of power requires

hundreds of simulations under each set of parameter values. It is more costly to make

statements about power that are as general as the statements made about estimation

precision. The discrepancy between power and estimation precision for ITT and BA,

however, suggests that there is a need to explore power further. Power should be

computed in many regions of parameter space, as when parameter values are sampled by

LHS, rather than in a few places chosen to favor one method over another. The sensitivity

of power to all assumptions of data simulation should be determined, as well.

To allow a fair comparison between all methods of analysis, the prior on P(C|Co)

was uninformative. Although this conservative choice did not draw criticism, it would be

interesting to repeat study 1, compute power, and perform sensitivity analyses using ML
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with a more informative prior on P(C|Co). For example, 62prior can be based on data in the

literature.

Further investigation into the influence of assumptions on method performance is

needed. One may want to explore sensitivity to the assumption that CM is missing

completely at random. To determine the effect of nonignorable missingness, M must be

simulated from a model in which assignment of the electronic monitor depends on a

subject's CM. For example, if subjects with low compliance are more likely to lose their

electronic cap, P(M=1|CM) might be distributed such that P(M=1|CM=0)-

P(M=1|CM=.5)- P(M=1|CM=1). Because this parameter is one for which clinically

relevant values can only be speculated, it should be varied widely using LHS.

Note that although ML is sensitive to the MCAR assumption, reasonable

violations of the assumption are not expected to impact ML’s relative performance. CD

is expected to suffer the most when P(MCM) # P(M) since it already yields highly

variable estimates of exposure-response due to having the fewest data. Since BA’s

performance depends on CM data, its P(Y|D) estimates are expected to worsen, as well.

Given that ITT and BSR yield extremely biased estimates of P(Y|D), ML is likely to

maintain its competitive advantage over these methods.

To explore the consequence of having an electronically monitored value of

compliance depend on the subject's response (CM is MAR), M must be simulated

conditional on Y. For example, if subjects who respond poorly to anti-arthritic drugs are

less likely to use the medication cap appropriately, the availability of CM data might be

distributed such that P(M=1|Y=0) < P(M=1|Y=1). This parameter is one for which there

is no information in the literature, so it should also be varied widely using LHS. To
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explore sensitivity to the assumption that the missingness of CM data depends on both Y

and CM, M should be simulated from the model P(MCM,Y). Given the number of

possible models for P(MCM,Y), one may just want to focus on a few extreme cases.

When developing simulation models to investigate sensitivity to the assumption that CM

is MCAR, one should be sure to maintain a random component in P(MCM), P(MY), and

P(MCM,Y) if the underlying study design is a double sampling scheme in which some

patients neglect to return the electronically monitored cap conditional on their CM and/or

Y.

By simulating Co and CM conditional only on C, one implicitly assumes that error

in Co is independent of error in CM and vice versa. Depending on which compliance

measuring tools are represented by Co and CM, it is more or less difficult to imagine a

mechanism by which this assumption is true. One can easily envision how error in pill

counted compliance and error in self-reported compliance may be correlated. A subject

who dumps pills may be more likely to lie about his intake. It is more difficult to imagine

a relationship between the error in electronically monitored compliance and self-reported

compliance. There seems to be no reason why a subject who removes all of his doses for

the day at one time (i.e. has compliance underestimated by CM) is more likely to

overestimate his compliance when asked about drug intake. Depending on the application

of the methodology, one may want to investigate method sensitivity to this assumption.

The exposure model presented does not consider the influence of clearance and

bioavailability in the calculation of D. Although this is a gross simplification, it may be a

necessary simplification in data analysis as CL/F may be unknown in subjects enrolled in

a confirmatory clinical trial. To explore the relative impact of variability in compliance
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and variability in pharmacokinetic parameters on exposure, one may simulate exposure

from a model including the effect of both factors, but compute exposure as in the studies

presented. Several clinically relevant values of CL/F should be selected. Variability in

CL/F is not expected to hurt relative method performance, however, as all methods that

compute exposure will be affected by CL/F equivalently, and ITT is already very biased.

Given the level of concern in the statistical literature over the potential

confounding of compliance with response, sensitivity to the assumption of

nonconfounding may be addressed in concert with the measurement issue. To do this,

simulation of Y should be carried out via a model in which C influences Y in two ways.

For example, P(Y|D,C) may be formulated using a combination of an Emax model and a

linear function of C, as in equation 9.1.

Y = {[Emax+D(C,Dn)]/[D50 + D(C,D)]} + O.C (9.1)

This model requires specifying a value for O. Since it is unknown clinically, O. should be

varied widely. One may speculate on the value of 0 by reviewing the results of clinical

trials of drugs treating long-term outcomes, which may be influenced by lifestyle factors.

For example, one may want to take the average difference in response for placebo

compliers and placebo noncompliers in the clinical trial of cholestyramine(Program

1984) as an estimate of O.

Some consider the potential for confounding to be an unequivocal argument

against using an as-treated analysis(Lee, Ellenberg et al. 1991). They argue that ITT's

bias is acceptable because it is conservative. This may be true in hypothesis testing mode,

however, it is likely anticonservative if it is used to develop dosing guidelines. A
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compliance average response may cause those who take the full amount of drug and

develop toxicity to appear to be outliers, rather than the norm at the given dose.

Consequently, doses recommended on the basis of an ITT analysis may be higher than

necessary.

Before rejecting an as-treated analysis as a method for estimating the exposure

response relationship in the face of possible confounding, one should evaluate the

possible resulting magnitude of bias in exposure-response estimates. Under the

conditions explored, it is likely that ML maintains its superior performance even if

confounding is present since all as-treated analysis methods are affected by confounding

and ITT is very biased.

Note also that if only one dose is tested in a clinical trial, the ITT analysis is

unable to deliver an estimate of exposure-response.

9.2.2 Explore More Relevant Models

To promote an intuitive understanding of the analysis methods, some clinical

realism was forfeited in this investigation. With this foundation in place, the next step is

to consider complexities beyond saturated models for categorical variables. Here,

parametric models of continuous variables are explored. Since continuous models involve

integration, one should expect an increase in computation time. However, the analysis of

continuous data may allow for one simplification of the methods used in analyzing

categorical data. The prior distributions on P(Y|D) and P(C|Co) may no longer be

necessary if the model for continuous data is identifiable with fewer data.
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The first level of complexity one should add is a more clinically relevant model

for exposure-response. The Emax model can easily replace the logistic model explored.

The model for drug exposure can be made more clinically relevant by using both

compliance and pharmacokinetic data.

One may adopt a population pharmacokinetic approach to estimating the

exposure-response model by treating compliance as something measured via a sparse

sampling design. As with the simple scheme presented in this report, neglecting to

consider the contribution of patient compliance to variability in exposure is a source of

error in estimating the exposure-response model. The question posed is whether the error

in compliance measurement causes more bias in exposure-response estimates than

ignoring it altogether. If it helps, which particular method of analysis performs best? How

does performance relate to CL/F and study design?

Of course, dose, compliance, and response data from just about any trial design

can be analyzed in the scheme presented by transforming the data into discrete values.

But categorizing data from a longitudinal study may waste information (signal). To

preserve the richness of time varying responses, one may choose to model compliance

and response dynamically. If one is willing to investigate the compliance measurement

problem using dynamic models, a number of interesting questions can be explored.

A Markov Chain (MC) model has been used to parameterize the entire time series

of compliance data as measured via an electronic monitor(Girard, Blaschke et al. 1998).

The model has not been fit to the time series of self-reported compliance data in patient

diaries. It would be interesting to compare the parameter estimates computed on both

self-reported and electronically monitored compliance data to calibrate Co to CM. In
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contrast to the model for compliance used in this report, the MC model offers a

multivariate description of intake behavior. Despite the increase in the number of model

parameters, the MC model may reveal similarities between certain characteristics of Co

and CM data that makes it easier to calibrate than via the nonparametric approach

presented. Girard and coworkers demonstrate that truncating electronic records of dosing

to several previous half lives can reduce the amount of computational time required for

the MC model(Girard, Sheiner et al. 1996). Of course, this simplification depends upon

whether the system is linear.

One may focus on capturing one particular aspect of the time varying nature of

compliance—the observation that compliance decreases with time. Since compliance

tends to plateau, an inhibitory Emax type model may describe its value. This is important

to consider in the calibration framework since this formulation may impact the ability to

calibrate one tool to another. Different tools may vary in sensitivity to detect the change

in compliance over time.

Dynamic models allow one to investigate the impact of nonlinearity in

pharmacokinetics on the determination of exposure. The relative importance of clearance

and bioavailability versus compliance in determining exposure may vary with time if a

drug exhibits nonlinear kinetics. This is important to address in the compliance

measurement error framework since inaccurate compliance measurement may mask the

contribution of compliance to exposure. Given that few drugs are admitted into clinical

trials with nonlinear kinetics, however, this may not the most important issue to explore.

In contrast, it is clinically relevant to explore dynamic models for response since

they allow one to describe rebound and withdrawal. Poor compliance has been implicated
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in rebound hypertension due to a drop in 3-blocker concentration(Urquhart 1997).

Noncompliance with Paxil” is thought to elicit withdrawal effects(Kehoe 2001). The

measurement of compliance is important to consider with respect to these problems as

inaccuracy in compliance may make it more difficult to discover rebound and withdrawal

effects.

Dynamic models become prohibitively challenging to estimate and lose their

intuitive quality as more parameter interactions are incorporated. When exploring

dynamic models, one should not lose sight of the measurement question. Additionally,

one should focus on the most clinically relevant relationships. Refer to Figure 9.1 for an

aid in deciding which interactions may be important to investigate. It illustrates various

mechanisms by which compliance, CL/F, exposure, and a subject's outcome may cause

or be subject to feedback.

A hypothetical mechanism for the process illustrated by Arrow #1—showing that

Y influences CL/F—is a case in which a lack of immunosuppressive efficacy causes

rejection of the organ for eliminating the immunosuppressive. One can imagine several

examples of the process illustrated by Arrow #2—exposure changes CL/F. Saturation of

gut or liver metabolic enzymes can cause changes in a drug's bioavailability and/or

clearance. A drug, which increases urination, will have increased clearance as a function

of drug exposure if it is primarily renally eliminated (assuming significant tubular

reabsorption does not occur). Arrow #3 signifies instances in which a subject's outcome

influences compliance. Response to an anti-arthritic drug may affect how well a patient

can administer doses via an electronically monitored pill dispenser. Additionally,

compliance with drugs treating psychiatric disorders may, hypothetically speaking, be
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Figure 9.1. Schematic Representation of the Feedback of Response on CL/F,

Exposure on CL/F, and Response on Compliance.
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influenced by a patient's mental outcome. Drugs treating Alzheimer's disease can affect

how well one remembers to take one's medication.

Note that only the outcome of interest is considered in this discussion of Figure

9.1. The impact of other responses on compliance, such as toxicity, are not mentioned

here as this would require a model for multiple outcomes. Consider the example of how a

favorable response to antibiotics causes reduced compliance in some patients. One may

model this interaction as having the pharmacodynamic response influence some

psychological factor which influences compliance.

In summary, Figure 9.1 illustrates that it is surprisingly difficult to imagine

clinically relevant scenarios by which interactions between AUC, CL, and Y occur. Thus,

it was reasonable to exclude consideration of them in the simple formulation presented in

this report. Given the level of complexity possible in investigating compliance

measurement, it is important to start with a conceptual understanding, as in the simple

model presented, of how the methods of analysis perform. Of course, the simplification is

only useful if it generalizes, qualitatively, to the complex case.

9.2.3 Explore Other Data Analysis Methods

The goal of this project is to compare a new data analytic approach with those

used in practice. Therefore, only one model-based method of analysis (ML) is compared

to various methods for using the data as measured. In addition to examining the

performance of ML and other existing approaches in more complicated situations, if such

investigation reveals additional problems, the next step would be to improve the methods
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so they can handle more complicated situations. Additionally, one may evaluate other

model-based approaches.

In Chapter 6, it was shown that ML is sensitive to the assumption that CM-C

(A3). It is sensitive to A3 because the likelihood model assumes CM is a perfect measure

of C. ML and all methods that use CM data could be changed to allow the estimation of

the error term in CM. Likewise, error in Co can be modeled in the methods that use self

reported compliance data. Of course, this requires more than one measure of CM and Co

to be taken or for information on error in compliance measurement to be available from

another source of data.

One may, theoretically, change ML by proposing a missing data mechanism,

P(MY,CM), in order to allow for unbiased estimation of exposure-response when CM is

not MCAR. Of course, this approach requires further assumptions that are untestable on

the data set at hand. The problem of informative missingness is difficult to get around!

Since ML is sensitive to the assumption that P(CoIC,M)=P(CoIC), one may

change ML to estimate a different P(C|Co) in subjects that are electronically monitored

and subjects that are not. To be identifiable, one would have to state a model for the

relationship between P(C|Co,M=0) and P(C|Co,M=1). This, too, requires more untestable

assumptions.

If dynamic models are used, one may incorporate terms in ML allowing for

estimation of the feedback of response on compliance and rebound effects due to a lapse

in drug intake.

In addition, to investigate the challenges of compliance measurement using more

clinically relevant models for patient variables, more realistic models for trial conduct
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can be entertained. Monotonic patterns of missingness are more the exception than the

rule in conducting clinical trials. ML may be changed to handle nonmonotonicity in

compliance measured using two or more tools by modeling the relationship between

several tools. Once three tools are used, one no longer must assume that one method

measures compliance accurately for the problem to be identifiable. Under the “latent

variables analysis” framework, identifiability is still possible when two of three methods

are biased and the other is an unbiased but noisy measure of the predictor

variable(Dearcangelis 1993; Kaaks 1994; Heckman and Vytlacil 1999). ML becomes

more computationally difficult as the number of missing variables integrated over

increases. However, the methods that use compliance as measured will also be

“penalized” by this design since they now do not have the advantage of having a

complete data set. Of course, losing data is likely a more significant concern than

computational difficulty.

Horton introduces other forms of the maximum likelihood method that can be

explored(Horton and Laird 2001). Additionally, a Bayesian approach, where all

parameters have prior distributions on their values and the entire posterior density is

estimated, may be investigated. An estimate of the posterior density may be necessary if

loss functions are used in the computation of performance. The instrumental variables

(IV) approach is an interesting, yet simple, approach for simultaneously addressing

confounding and noncompliance.

The idea of IV is that one can tease out the causal relationship between an

unknown covariate, X, and the response, Y, by quantifying the relationship between a

parameter (an instrument, T) that affects X, but not Y. In the instrumental variables
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framework, we assume X is the unknown exposure (AUC), W is the faulty measure of

exposure (compliance), and T is a patient’s pharmacokinetic parameters (CL/F).

Conceptually, CL/F is something that can cause patients with different levels of

compliance to have the same exposure to drug irrespective of response. To be considered

an instrument, T must satisfy three conditions; it must be (1) correlated with X, (2)

independent of W given X, and (3) independent of Y given X. In terms of the notation

used here, CL/F must be (1) correlated with AUC, (2) independent of C given AUC, and

(3) independent of Y given AUC.

Knowledge of pharmacokinetics tells us that conditions (1) and (2) are true. For

condition (3) to be true, CL/F must only drive response via exposure. One can imagine

mechanisms by which (3) is violated. For instance, if low clearance is indicative of organ

failure, then CL/F may indicate something about response in addition to what it tells

about drug exposure. One should keep this limitation in mind when applying the

approach to a particular problem.

When choosing other analysis methods to investigate, the multiple imputation

approach should be given serious consideration. This method of analysis is not

investigated in this report because multiple imputation parameter estimates approach

ML. However, as the models for P(Y|D), clinical trial conduct, and compliance increase

in complexity, ML will become more computationally time consuming and multiple

imputation may become a more appealing option. Regression calibration, however, is not

used in this report and is not advocated for use in estimating probabilities because it can

yield impossible values—probabilities greater than 1(Selen 1986).
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9.2.4 Compare Performance With Respect to Other Metrics

In this thesis, method performance is quantified in terms of error in exposure

response estimates and power. One may want to define efficiency in terms of more

intuitive and/or practical metrics. To aid in the design of clinical trials, one may want to

determine whether it is more cost effective to add a patient with self-reported compliance

data only or to add someone with Co and CM. As model-based methods become more

complex, it will be increasingly important to compute performance with respect to

computational time.

The methods could have different relative performance with respect to these

performance metrics. Although it is not presented as a contending method of analysis,

ALL’s performance is investigated in this report. In all but the investigation of sensitivity

to the assumption that CM-C, ALL is the best method of analysis. It is not presented as a

contender because it is assumed that ALL is an impossible design. Realistically, the

decision about whether ALL is doable depends on how much it “costs” to collect CM

data, how good Co data are, the size of the study, etc.

9.3 Methodologic Development Helped by Learning More About Compliance

Model building is an iterative process. Models improve as more experimental data

become available. Models, in turn, can be used to inform the experimentalist about what

data should be collected. Here, recommendations are offered regarding what data can

improve the data analytic methodology.

One should determine experimentally, to the extent possible, if the assumptions of

data analysis are reasonable. For example, to investigate the assumption that the accuracy
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of self-reported compliance is not influenced by the presence of an electronic monitor,

one might compare P(CoICM) for subjects that are knowingly monitored to those who are

not informed that an electronic chip records when the pill bottle is opened. It would be

interesting to determine if compliance is a baseline covariate as is often assumed; see

(Efron and Feldman 1991; Sheiner and Rubin 1995)or an outcome. Via the analysis of a

crossover study in which compliance is measured, one can determine whether individuals

have the same compliance behavior regardless of the treatment assigned.

The challenge of confounding can be reduced by knowing a patient's compliance

at the outset of a clinical trial (assuming, of course, that it is a baseline covariate). Ideally,

the search for predictors of compliance will yield measurable covariates enabling

investigators to stratify on (baseline) compliance before running a trial. Perhaps as more

sophisticated models for drug intake patterns are developed—such as the Markov model

which is parameterized in terms of the probability of taking a particular number of doses

during the current dosing event given the number of doses taken during the previous

dosing event—a metric of compliance having individual predictors will emerge.

To evaluate the magnitude of confounding effects, one can validate exposure

response estimates computed using an as-treated analysis by running studies in which

“noncompliance” is randomly assigned(Chowdhury, Joshi et al. 1980; Wang, Shi et al.

1982; Landgren and Diczfalusy 1984; Landgren and Csemiczky 1991; Vaur, Dutrey

Dupagne et al. 1995).
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9.4 Closing remarks

Patient compliance has been referred to as the ultimate barrier to drug

delivery(Urquhart 1989) because it sets the upper limit on drug exposure. Wide inter- and

intra- individual variability in compliance indicates that it is a significant barrier to drug

delivery, as well(Cramer, Mattson et al. 1989; Cramer, Scheyer et al. 1990). Despite its

important role in therapeutics, the U.S. Food and Drug Administration does not require

that the relationship between compliance and response be provided in all drug

labeling(Peck 1999).

The intention-to-treat causal estimator is necessary for regulatory purposes.

Neglecting compliance information in the analysis of clinical trials is viewed by many as

a necessary, albeit, conservative approach since compliance is, at least at present,

impossible to predict and difficult to measure. One must be mindful, however, that the

fact of efficacy, as determined via an intention-to-treat analysis may be causal, but the

degree of efficacy, may not be generalizable. By ignoring compliance information, the

ITT estimator yields an estimate of the treatment effect for some average intake in the

group studied in the clinical trial.

If the average intake in the study sample is representative of compliance in the

population, the ITT estimate is a valid estimator of treatment effect for that population.

But the nature of compliance poses a serious threat to the use of the ITT estimate for

dosing purposes. Compliance may be adjusted at any time. Changing a formulation to an

implant or dosing the drug in a hospital setting, for example, ensures that all subjects get

full exposure to drug. Compliance may change with the prescribed regimen, as well. As

most drug developers aim to make drug products employing once-a-day regimens,

212



compliance for an initially multiple times per day drug is likely to improve over the

drug’s lifetime. Furthermore, a given individual’s compliance may decrease with time on

treatment, so a change in prescription duration may affect patient compliance. An ITT

and as-treated analysis should be performed(Feinstein 1991).

Compliance should be thought of as providing a necessary estimate of precision in

dosing guidelines. Rather than using the results of an intention-to-treat analysis as the

ultimate guide to dosing, ITT's estimates of exposure-response should be interpreted as

equivalent to or less than method effectiveness. Likewise, an as-treated analysis can be

considered as providing an estimate of exposure-response that is equivalent to or greater

than method effectiveness. Thus, dosing guidelines based on ITT are likely an upper

limit and dosing guidelines based on an as-treated analysis represent a lower limit.

The results presented do not render models that use compliance as measured

obsolete. While ML is more useful for determining exposure-response from clinical

trials, it fails in one clinical application. If a clinician wants to compute a patient's

expected response given compliance of any value, a plug in type model needs to be

provided in the drug's package insert. The investigation presented in this report helps in

deciding which model or models to report in labeling. Given the practicalities of

compliance measurement in medical practice, models for all possible types of compliance

measures that may be available clinically should be supplied. Depending on the

availability of compliance information, the clinician will use the one that is most

pertinent. The investigation presented here allows one to recommend one model over

another in the instance that multiple measures are clinically available.
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In theory, data analyses using compliance information can impact how efficiently

one learns to dose drugs. Rather than running clinical trials where poor compliance

muddles efficacy, one could diagnose dosing and compliance issues before giving up on a

drug■ kastrissios and Blaschke 1997). However, it is difficult to find an example of how

noncompliance with investigational drug regimens cause an effective drug to fail to

demonstrate efficacy. Kastrissios and Blaschke (1997) argue that a survey of nine New

Drug Applications (NDA) approved by the Food and Drug administration between 1994

and 1995 suggests the impact of noncompliance on the results of clinical trials. For each

NDA, 1486–13026 subjects participated in 16–49 studies. An average of 25% of the

studies failed to demonstrate efficacy (range: 9%-65%). FDA approval was based on 3

14 studies.

Thinking of compliance measurement as existing between the missing data and

measurement error frameworks raises an important general issue about confirmatory

clinical trial data analysis. Missing data is often viewed as a more difficult problem to

solve than measurement error. Investigators throw away records from subjects with

missing responses. Yet one rarely discards all of a patient's record because some variable

cannot be measured precisely.

Fortunately, modeling missing data is not unprecedented in the analysis of clinical

trials. Modeling of responses has been used to handle drop out during data

analysis(Sambol and Sheiner 1991; Sheiner, Beal et al. 1997). Additionally, simple

changes to study design can be performed to circumvent data analytic challenges caused

by drop out(Sheiner and Rubin 1995). Investigation of methods for handling responses

that fall below the quantification limit is an area of active research(Beal 2001).
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Consideration of these analyses should be the rule, rather than the exception. After all, it

is the ethical responsibility of the clinical trialist to extract as much information as

possible about drug effect from available data.

Although imperfect compliance may allow one to tease out the exposure-response

relationship from confirmatory clinical trials, this thesis should not be interpreted as

advocating for poor compliance when testing drugs. This study design is dangerous for

trials comparing a treatment to an active control since drugs with equivalent efficacy

could be made to perform differently through differences in the distribution of

compliance(Urquhart 2001). Given a choice, one should aim to have perfect compliance

in clinical trials. Clinically, one would never raise dose to compensate for poor

compliance, one would raise compliance.

Patient compliance is often blamed for the lack of drug efficacy. However,

compliance is not likely to be taken seriously by patients until it receives the attention it

deserves in package inserts. The recent Paxil lawsuit and a letter to the editor illustrates

that patients want to be given specific warnings about side effects if they don’t take

drug■ Kehoe 2001). Patients need to be encouraged to take the drug on schedule to get the

desired response.

Patient compliance is an unusual covariate. It is not correlated with gender, age,

socioeconomic status, race, education, or any other baseline covariate(Lerner, Gulicket

al. 1998; Chesney 2000; Wright 2000). Yet it varies widely between and within patients.

Therefore, it would benefit a wide range of people if it were investigated more seriously

during drug development.
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APPENDIX

A.1 Simulation Design

The contending analysis methods are evaluated through simulation. Data are

generated from known models of dose assignment, compliance, and exposure-response

and then the simulated data are analyzed by all methods under consideration. With

simulated data, the investigator knows the true drug effect causing patient response—

enabling computation of estimation error. To focus on the compliance measurement

issue, compliance data are treated as if they are unconfounded with response.

A.1.1 Simulation Design For Each Study

For generality, performance of the data analysis methods is determined over a

wide range of investigator determined design parameters (N, fM) and uncontrollable

(p(CoIC), P(Y|D)) parameter values. To do this efficiently, a multidimensional stratified

sampling technique known as Latin Hypercube Sampling (LHS) is used(McKay,

Beckman et al. 1979; Iman and Helton 1988; McKay, Beckman et al. 2000). In LHS

sampling, each range of the Xk parameters in sample space, S, is divided into Nihs strata of

equal marginal probability 1/Nihs. For each simulation of Nihs total simulations, parameter

values are drawn from Xy, where j=1,...,Nihs, and k=1,...,K, rather than from S. The Nihs

intervals on the range of each component of X combine to form Nº cells that cover the

sample space of X. The components of X, are matched at random.

Figure A.1 outlines the LHS algorithm. First, one chooses the K parameters to be

varied in simulation then specifies the marginal distribution of each. Let S equal this set
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Choose K parameters
in Sto be varied
e.g. A, B, C

■ Specify distributions of
the K parameters in S
e.g.

A N

Determine number of
replications desired
e.g. Nihs = 1000

A B C

Generate K permutations
of the integers 1:Nihs
e.g. Nihs x K matrix M:

For the jth simulation, draw the
values of K at random from

1 2 3 e.g. j=2

$
-

3. #. A drawn
2 5 4 from 3
4 4 5 Nhs 3

indexed values of A, B, and C

Bin each distribution into
Nihs equiprobable bins
e.g. Nihs = 5

12345 12345
| | | |

| | |
|

12345

M(2): 3 12

B drawn C drawn
from 1 from 2

1 2

H–

Figure A.1. Latin Hypercube Sampling Algorithm. Latin Hypercube Sampling involves

randomly picking parameter values for each clinical trial from a subsection of each

parameter's marginal distribution rather than from the entire multivariate distribution at

On Ce.

of K distributions (A, B and C in Figure A.1). Then, one specifies the number of sets of

parameter values (Nihs) desired. Next, each of the K marginal distributions in S are

divided into Nihs equiprobable ranges with each range indexed consecutively by the

numbers 1:Nihs. Then, Kpermutations of the integers 1:Nihs are entered into a matrix (M)

of dimension Nihs × K. These indices correspond uniquely to each X* in S. M(j,.) (of
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length K) is used to determine the jº set of parameter values. The value of M(j, k) points

to the bin from which parameter k is to be drawn at random.

Simulation from randomly selected strata of the distributions in S, rather than

from the entire range of the distributions in S, serves to efficiently spread points out in

parameter space. For computing expectations, LHS is more efficient than Simple

Random Sampling (SRS). Figure A.2 is a two-dimensional illustration of the advantage

of LHS over SRS–LHS does not permit clustering of values in parameter space.

Simple Random Sampling Latin Hypercube Sampling
500

500 X X X
X 400

400 X

N 300 N 300 X X

200 200

100 100 X
O .25 .5 .75 1 O .25 .5 .75 1

fM fM

Figure A.2. A Two Dimensional Illustration of the Advantage of Latin Hypercube

Sampling Relative to Simple Random Sampling. Because Latin Hypercube Sampling

restricts sampling of parameter space to occur only once per subsection of each

parameter's marginal distribution, sampled parameter values cannot cluster in parameter

space. Parameter values chosen via Simple Random Sampling are not protected in this

Way.
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If parameters are meant to be distributed independently, it is beneficial to reduce

chance correlation among the columns of M before using its indices to sample from S.

Correlation between two columns, c1 and c2, of M, however small, may make it appear

that a statistic that depends on cl depends also on c3, when in fact, it may not. A modified

Graham Schmidt Orthogonalization (GSO) procedure can reduce these unintended

correlations(Owen 1994). The GSO algorithm is as follows (using Splus like pseudo

code). The actual Splus subroutine is included at the end of this chapter.

Loop over w=1: (K-1)

Regress M ( , (w-1) : K.) on M (, w)

Compute residuals

Rank residuals

Replace M ( , (w-1) : K.) with ranks

Loop over x = (K-1): 1

Regress M (, x: 1) on M (, (x+1))

Compute residuals

Rank residuals

Replace M (, x: 1) with ranks

One repeats both loops several times in succession until correlation between the columns

of M fails to decrease. Graham Schmidt Orthogonalization is used for all simulations.

To further enhance parameter space coverage in this investigation, only one data

set is simulated and analyzed under each parameter setting chosen. This approach spends

resources covering more parameter space, rather than obtaining more precise estimates of

performance at fewer points in hyperdimensional space.

Note the distinction between the use of the terms ‘study’ and ‘trial' in this report.

A ‘study’ is defined as an investigation of method performance over a range of parameter

224



values. A “trial' refers to one data set randomly simulated using a particular set of

parameters from the ranges chosen in a ‘study’. Thus, there are Nihs “trials’ carried out in

every ‘study’.

Unless otherwise noted, for each study, parameter value selection, data

simulation, and data analysis is replicated five hundred times by choosing Nihs=100 five

times (starting with different random seeds).

A.1.2 Simulation Design For Each Clinical Trial

Given 61, P(CoIC), P(CMC), and P(C), simulation of data for each trial proceeds

according to the following algorithm. For i=1:N, Dni is simulated by alternately assigning

subjects to each possible dose. Hence, each assigned dose group is of equal size. Then,

M=1 is assigned to the first NM patients and the rest are assigned M=0. Next, C is drawn

from P(C), Co is drawn from P(CoIC), and CM (for all subjects) is drawn from P(CMC).

After simulation of all compliance measures, D is computed using D(C,Dn) and Y is

drawn from P(Y|D). Figure A.3 illustrates the causal model for compliance and response

data simulation.

Compliance is an ordinal, categorical variable with the three levels 0, .5, and 1,

corresponding to zero, fifty, and one hundred percent of prescribed pills taken,

respectively. When Dn consists of a placebo and a unit dose of drug, Dn:(0,1), it is

referred to as the ‘placebo-controlled design’. When D, consists only of a unit dose of

drug, Dn:(1), it is referred to as the ‘unit dose design’. Unless otherwise noted, all

reported results correspond to a placebo-controlled design.
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True Compliance (C)

O P(C) . 8 5 o D(Dn,C), Exposure (D)

A \,\W 0 .5Dn Dn

subject i Fraction of doses taken:
Dni, Mi O .5 1 P(Y|D,02)

P(CMIC) P(CoIC)
Response (Y)
Succeed, fail

Electronically Self-Reported
Monitored Compliance (COI)

Compliance (CM) Fraction of doses taken:
Fraction of required bottle "zero", "half", "all"

openings performed: (0 .5 1)
0 .5 1

Figure A.3. Causal Model for Data Simulation. Electronically monitored compliance

and self-reported compliance are each simulated conditional only on true compliance.

Drug response is simulated conditional only on drug exposure.

The relationship between C, D, and D is as follows. A patient assigned to placebo

(Dr. O) has zero exposure to drug (D=0) regardless of his compliance. A patient assigned

to the unit dose (DM-1), has exposure equal to his compliance (D=C). Therefore, a subject

with D=Dn and C=0 falls into the same category of exposure (D=0) as a subject assigned

to placebo (formally, D(C=0,Dn)=D(C,D,-0)=0). This is a commonly made assumption

of analyses using compliance data(Efron and Feldman 1991). Given this set up, there are
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three possible categories of exposure, 0, .5Dn, and Dn, corresponding to zero, fifty, and

one hundred percent of nominal drug exposure, respectively.

A.2 Simulation Parameters

Unless otherwise noted, P(C) assigns subjects to the three levels of C with equal

probability (P(C=0)=P(C=.5)=P(C=1)=1/3). Hence, P(C) is not chosen via Latin

Hypercube Sampling.

P(CoC) is varied in simulation studies. Figure A4 illustrates the procedure for

constructing P(CoIC). It is formed by the linear combination of three distributions

denoted Coo-c (self-reported compliance is identical to true compliance), Coo-c (self

reported compliance overestimates true compliance), and Coolc (self-reported

compliance is independent of true compliance). The three distributions are weighted by

the factors: WTo-c, WTo»c, and WTolc. These weights must sum to 1. This constraint is

satisfied by the transformation illustrated in Figure A.4 for a, b20, where a and b are

drawn at random from uniform distributions. The value of the conditional distributions

CoQ-c, Co.92c, and Coolc, are given in Table A.1. According to Colo-c, for example, a

subject with C=.5 has a fifty percent chance of accurately self-reporting intake, or,

formally p(Co-.5|C=.5)=.5. But the same individual has a fifty percent chance of saying

that all of the prescribed pills were ingested p(Co-1|C=.5)=.5.

Unless otherwise noted, P(CMC) assigns CM as stated in A3 under Section 4.1 of

Chapter 4; CM-C. Thus, P(CMC) is not chosen via Latin Hypercube Sampling. To be

consistent with the notation representing the components of P(CoIC), P(CMC) is formed

by assigning a weight of 1 to the distribution CMM-c (see Figure A.5).
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Colo-c Coolc

º:
Co Co º:• *, ". 3.

C C

Identity Overestimate Independent

Figure A4. Algorithm for Constructing P(CoIC) of Simulation. The model used to

simulate Co, P(CoIO), varies between clinical trials. Selection of P(CoIO) is automated by

averaging three prototypical models (Colo-c, Co,02c, and Coolc) for the relationship

between Co and C with randomly varying weights (WTo-c, WTosc, and WTolc). WTouc,

WTo-c, and WTo»c are created using the following transformation of random variables a

and b.

WTolc = a■■ a+b+1), WTo-c = b/(a+b+1), WTo-c = 1/(a+b+1)

Note that a and b are drawn by Latin Hypercube Sampling from U(min(a),max(a)) and

U(min(b), max(b)) such that a,b > 0.

Drug effect is a dichotomous random variable with the logit of the probability of

success modeled for simulation as a linear function of exposure (D). The probability of

success is arbitrarily centered on logit(.5) for the fifty percent exposure group (D=.5Dn).

As Figure A.6 shows, specification of the drug effect model requires only one

parameter—the logit of the probability of success (p) for another exposure group.

Arbitrarily, the D=0 group was chosen to define p.
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Table A.1. Parameter Values for the Components of P(CoIC) of Simulation: Colo-c,

Co,02c, and Coolc. Colo-c, Co,02c, and Coolc are prototypical conditional distributions

for Co given C. As an aid to interpretation of these models, under Colosc, a patient who º
º

has C=0 has an equal probability of self-reporting zero, fifty percent, and perfect ~

compliance. In contrast, under Coo-c, a patient with C=0 has a one hundred percent º

º
chance of accurately reporting zero intake. *~

Colo-c C

0 .5 1
*..

Co 0 1 0 0 º

is
5 0 1 0 *—

º

1 0 0 1 *

s

|

Colo-c C º

0 .5 1 1

Co 0 1/3 0 0 2.
.5 1/3 1/2 0 º

1 1/3 1/2 1 sº

º,
Coolc C

-

0 .5 1

{
Co 0 1/3 1/3 1/3

Y.
.5 1/3 1/3 1/3

sº
1 1/3 1/3 1/3

-

|

*
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CM,M-c

C

0 .5 1

CM 0 1 0 0

.5 0 1 O

1 0 0 1

Figure A5. The Model for P(CMIC) of Simulation. Unlike P(CoIC), P(CMC) is fixed in

simulation. CM is generated from a model in which CM is perfectly correlated with C. This

model, referred to as CMM-c, is analogous to the Colo-c component of P(CoIO).

A.3 Performance Evaluation

Method performance is compared with respect to estimation precision—error in

estimated drug effect for each trial (6) and error in estimated drug effect for each study

(A). Method performance is also computed in terms of power. The procedure for

computing these metrics is explained below. For the most part, estimation precision and

power are represented graphically. Interpretation of performance plots is explained in this

section, as well.

A.3.1 Estimation Precision

Two errors are reported—8 and A. 6 is referred to as “trial error” and A is referred

to as “study error”.

ö is computed as the absolute error on the logit scale for each method's exposure

response estimates. That is,
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6=|logit(6)–logit(6)

The logit is simply the log odds ratio. Thus, this metric is the absolute error in the log

odds ratio. Since there are three levels of exposure, there are three values of 6 (ŠD, D=0,

D=.5Dn, D=Dn) associated with each analysis method for each of the 500 trials in a study.

A is the average of the 500 sets of 6 for each method. A is reported relative to the study

error for ALL. It is computed as the ratio of the average of 6p–0 and ŠD-Dn for each

method relative to ALL, or formally,

AR = A*/A*, where A=average(65-6,6D-D).

Note that 6p–5pm is not included in the calculation of AR because the true value of 61 for

D=.5Dn, by coincidence, matches the prior penalty on 61 (P(Y|D=.5) = 0 prior = .5). Thus,

P(Y|D=.5Dn) estimation partially benefits from the prior used to stabilize estimation.

Since the models are saturated, its removal is inconsequential to performance evaluation.

ô values are reported graphically as function of parameter values used in

simulation. A nonparametric descriptor of the relationship between 6 and the parameter—

a smooth through 6p–0 and ŠD-Dn as a function of a parameter value, generically, x—is

shown. To give an estimate of the precision of this estimate, a “95" percentile”

confidence region is plotted around the smooth. This region is determined using the

following bootstrap procedure. Pairs of error with the corresponding parameter value

(öD-0,öD-Dn,x) are sampled with replacement to yield a data set of the same length as the

original. A smooth is fit to these bootstrap samples. After repeating this procedure 500

times, the 2.5" and 97.5" percentile of the smooths (determined pointwise along x)

defines the (shaded) “95"percentile” region. Note that this region does not reflect
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variability in the methods of analysis, but rather, the precision of the estimate of method

precision as a function of the number of simulations performed.

To estimate the variability in study error (AR), 8 is bootstrapped 500 times for this

logit{P(Y=1)} = p + x*D

Maximum Drug Effect Minimum Drug Effect
p = logit(.1) p=logit(.5)

3
-

3 |Odit■ .5§ logit■ .5) § ogit■ .5)
Cl Cl

É logit■ .1} É
-

O .5Dn Dn O .5Dn Dn

Exposure (D) Exposure (D)

Figure A.6. Algorithm for Constructing P(YID) of Simulation. The model used to

simulate Y, P(Y|D), varies between clinical trials. Selection of P(Y|D) is automated by

assuming a log linear model for the exposure-response relationship and fixing one point

in the D,Y plane around which to randomly pivot the slope of drug effect. Arbitrarily,

D=.5Dn, Y=logit(.5), is the fixed point. The model is defined by choosing p—the value of

logit(P(Y=1)} at D=0—at random by Latin Hypercube Sampling. Hence, the minimum

drug effect (no drug effect) occurs when p-logit(.5). In the studies performed, the

smallest p picked is .1, thus, the largest drug effect explored is P(Y|D=0)=.1 and

P(YID=D)=.9.
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computation. AR is reported as a boxplot where the white line represents the median, the

box limits represent the interquartile range, the whiskers show the most extreme values

within 2.5 times the interquartile range, and outliers are indicated using horizontal lines.

A.3.2 Power

Power, or the probability of discovering that assignment to an experimental

intervention causes a “significant” effect when the effect truly is “significant”, commonly

guides the selection of clinical trial size. Likewise, it is used as a performance metric in

this investigation. Power is defined here, for each method, as the probability that a data

analytic method detects a drug effect when 61 of simulation indicates that the drug is

efficacious. Since standard power charts do not allow one to account for mismeasurement

of exposure (compliance), power is determined, here, by simulation.

Formally, power is the proportion of estimates of a test statistic exceeding the

critical value (öc) of that test statistic. To determine power through simulation, many data

sets are simulated under the alternative hypothesis (HA), analyzed under Ha and the null

hypothesis (H,), and the fraction of simulations yielding estimates of the test statistic

greater than 8c is reported. Here, the null hypothesis (H,) is

P(Y|D=0) = P(Y|D=5D) = P(Y|D=D),

and the alternative hypothesis (H,) is

P(Y|D=0) + P(Y|D=5D) # P(Y|D=D).

For simulation, of course, some actual values for the probabilities satisfying these

constraints are chosen.
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All of the data analysis methods maximize a likelihood, therefore, the likelihood

ratio is an appropriate test statistic. The log likelihood ratio (LLR) test statistic is

computed as

LLR = Oo - Oa

Where

Oo = Minimum Objective Function (-2 log likelihood) under Ho

O, = Minimum Objective Function (-2 log likelihood) under Ha.

If LLR is “big”, the data are incompatible with Ho and Ho is rejected. LLR is

asymptotically distributed chi-squared (LLR - x^) and the critical value (öc) may be

determined using a chi-squared table with

Xiao (q).

where

q = difference in number of free parameters in the Ho vs. Ha model, and

O = desired level of statistical significance.

For ALL, BA, CD, and BSR, there are three free parameters when analyzing

under H, (P(Y|D=0), P(Y|D=.5), and P(Y|D=1) are estimated) but only one free

parameter when analyzing under Ho (P(Y|D=0)=P(Y|D=.5)=P(Y|D=1) is estimated).

Thus, the difference, q, is 2. The result is similar for ML, although ML estimates 6 extra

parameters under both Ho and Ha, representing the number of parameters required to

specify P(CCO). In contrast, ITT has only two free parameters under H, as it only

estimates P(Y|D=0) and P(Y|D=1) and the prior P(Y|D=.5) is returned. The difference, q,

for ITT is 1. Thus, the x value with two degrees of freedom is used as the critical value
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for ALL, BA, CD, BSR, and ML, while the x value with one degree of freedom is used

as the critical value for ITT.

Although the LLR is an appropriate test statistic, various characteristics of the

data analyzed here may render the use of 8c in published power charts inappropriate.

Thus, simulation is performed to obtain customized values of 8c, and power computed

using this simulated cutoff is compared with power determined using the x critical value.

The customized 6c for each method is determined by simulating under Ho, analyzing

under Ho and Ha, and computing the LLR. After repeating this procedure many times, the

95"percentile value of LLR is held as 6c. Figure A.7 shows the algorithm used to

determine power and Öc by simulation. Öc values are tail probabilities and require many

simulations to determine accurately. The simulated value here should be considered an

estimate of the true value.

The estimates of power are reported graphically as a boxplot—the white line

represents the median, the box limits represent the interquartile range, the whiskers show

the most extreme values within 2.5 times the interquartile range, and outliers are

indicated by horizontal lines.

To determine the relationship between method power and study error (AR), both

power and AR are computed for a set of simulations. Method performance by these two

metrics is rank ordered separately and then compared.
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| Select simulation parameters
Note: Simulation parameters are identical for simulation under

Ho and simulation under Ha, EXCEPT:
Ha: P(YID=0)=.3, P(YID=5Dn)=.5, P(YID=Dn)=.7
Ho: P(YID=0) = P(YID=5Dn) = P(YID=Dn) = .5

_w
H

— — — — —- Simulate 1 data set under Ho
— -

/ \
Repeat l

200 | Analyze under Ho Analyze under Ha

times
-

|S.T.
r— —

---7 ––– - Compute test statistic
■ l- –

A

Distribution of 200 test statistic estimates: "Null" Distribution
- - -

Use to determine the critical value for data simulated !--
- Simulate 1 data set under Ha Kºº - - - - - -

–under these parameters . - - -

- - - - - -

| Analyze under Ho Analyze under Ha
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w
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.

–
-Power = (# Times Ho Rejected)/100

Figure A.7. Algorithm for Determining Power and the Critical Value by Simulation.

Power is determined by computing the fraction of test statistics exceeding the critical

value of that test statistic. The appropriateness of the x* critical value is determined by

comparing power determined using the x critical value to power computed using a

critical value simulated under the null hypothesis. Note that:

Analysis Ha: P(YID=0) + P(YID=.5Dn) # P(YID=D)

Analysis Ho: P(YID=0) = P(Y|D=.5Dn) = P(YID=Dn).

A.4 Splus Program for implementing Latin Hypercube Sampling with

Orthogonalization to reduce correlation among parameters

The code used to generate a Latin Hypercube Sample of parameter values is given

here. To generate a matrix of parameter values, simply run the function LHSwCSO in

236



Splus specifying the required arguments as explained in the body of the function. The

GSO code is given in section A.4.2 and other necessary functions are given in section

A.4.3. All of the Splus code listed in this appendix must be input into Splus for the

LHSwCSO function to work.

A.4.1 LHS code

LHSwSSO function (Nlhs, breakpoints, outfile, noGSO) {

### This function is used to generate an Nlhs x k matrix of

### parameter values where

### k = Number of parameters to be sampled

### Nlhs = Number of times to sample parameters

### The seed for generating random numbers must be set external to

### the function.

###

### The parameter values are sampled by Latin Hypercube Sampling:

### a pseudo-random multidimensional stratified sampling approach.

### For more information refer to:

### Iman, et. al. Risk Analysis, 1988, 8 (1) : 71–90.

### Loh, W. L. Annals of Statistics, Oct, 1996, 24 (5) : 2058–2080.

### McKay, et. al. Technometrics, Feb 2000, 42 (1) : 55–61.

### McKay, et. al. Technometrics, May 1979, 21 (2) : 239–245.

###

### An Orthogonalization procedure is used to reduce correlation

### among Latin Hypercube sampled parameters.

### For more information refer to:

### Owen, A. B. Journal of the American Statistical Association
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Dec 1994, 89 (428): 1517–1522.

Arguments of the function:

Nlhs

= Number of times to sample parameters

NOteS :

1. Nlhs must be greater than the number of

parameters to be sampled

2. If Nlhs & 10, Graham Schmidt Orthogonalization

is not used

breakpoints

= List of parameters and their corresponding breakpoints to be

used in stratified sampling

Breakpoints are determined by dividing each parameter's

distribution into N1hs equiprobable ranges.

Length of each parameter's breakpoints = Nlhs 4-1.

Note:

1. Must write parameter breakpoints in ascending order

2. Breakpoints for a given parameter must be unique.

3. The length of each vector of breakpoints must be

identical for all parameters.

4. The name of the parameter is taken as the name given

to each element of the list.

e.g. breakpoints = list (CL=c(.2, .. 4, . 6, .8),

V=C (100, 200, 300, 400) )

In this example,
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# There are 2 parameters: CL, V

# 3 sampled values are desired (Nlhs=3)

#

# *** There is one default sampling distribution:

# uniform sampling

# If it is desired to have parameter values sampled

# uniformly between some minimum and maximum value,

# specify the minimum and maximum value, and set Nlhs

# to the desired number of samples.

# e.g. Since the above distributions are uniform, could

# also have specified:

# Nlhs=3,

# breakpoints = list (CL=c(.2, .. 8), V=c (100, 400))

# This approach only works if all parameters are to be

# sampled from a uniform distribution.

#

# outfile

# = Name of output file

# e.g. outfile=c ("filename")

# noGSO

# = Logical variable: should GSO be omitted?

# If noGSO=T, LHS is performed without orthogonalization

# Initialization

kpars length (breakpoints)

parammat matrix (NA, nrow-N1hs, ncol=kpars)

# Checking arguments of the function:

# Test 1:
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lenbp rep (NA, kpars)

lenuniqbp — rep (NA, kpars)

for ( i in 1: kpars) {

lenbp [i] _ length (breakpoints [[i] ])

# A) Are all breakpoint vectors the same length?

uniqlenbp — unique (lenbp)

if (length (uniqlenbp) = 1) {

write ("Specified breakpoint vectors are of unequal length",

file="LHSerror")

stop ("Specified breakpoint vectors are of unequal length")

}

# B) Are there 2 or more numbers in breakpoints 2

if (uniqlenbp < 2) {

write ("May not have fewer than 2 breakpoints", file="LHSerror")

stop ("May not have fewer than 2 breakpoints")

# C) Does the length of breakpoints appropriately correspond with

# Nlhs?

if (uniqlenbp > 2) {

if (uniqlenbp ! = Nlhs 4-1) {

write ("Number of breakpoints specified must be Nlhs 4-1",

file="LHSerror")

stop ("Number of breakpoints specified must be Nlhs +1")
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# Test 2: Are all breakpoints unique?

for ( i in 1: kpars) {

lenuniqbp [i] _ length (unique (breakpoints [[i] ]))

}

uniqlenuniqbp — unique (lenuniqbp)

if (length (uniqlenuniqbp) = 1) {

write ("At least one specified breakpoint vector has a nonunique

value",

file="LHSerror")

stop ("At least one specified breakpoint vector has a nonunique

value")

}

# Test 3: Are breakpoints listed in ascending order?

for (i in 1: kpars) {

orderbp order (breakpoints [[i] ])

if (uniqlenbp-2) {

testorder orderbp ! = 1 : (Nlhs 4-1)

uniqtestorder unique (testorder)

if ( length (uniqtestorder) l = 1) {

write ("Breakpoints not listed in ascending order",

file="LHSerror")

stop ("Breakpoints not listed in ascending order")
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# Test 4: Was Nlhs specified > number of parameters to be sampled?

if (Nlhs •= kpars) {

write ("Nlhs must be > number of parameters specified",

file="LHSerror")

stop ("Nlhs must be > number of parameters specified")

# Action

# Create a look up table for each parameter

lutlist vector ("list", kpars)

names (lutlist) names (breakpoints)

if (uniqlenbp==2) {

for ( i in 1: kpars) {

lutlist [[i]] makelut (breakpoints [[i] ] [1],

breakpoints [[i] ] [2] , Nlhs)

}

else {

for (i in 1: kpars) {

minbp min (breakpoints [[i] ])

maxbp max (breakpoints [[i] ])

bp. t■ mpl breakpoints [[i] ] [-1]

bp. timp2 _ breakpoints [[i] ] [-uniqlenbp)

bp. t■ mp intersect (bp. timpl; bp. trip2)

bp. trip — matrix (c (bp. timp, bp. timp), ncol=2)

bp. timp — matrix (c (minbp, bp. trip, maxbp), by row-T, nrow-2)

---
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lutlist [[i] ] _ bp. trip

# Create an Nlhsixk matrix of random permutations

# If Nlhs > 10, they are adjusted by Graham Schmidt

# Orthogonalization

matNlhszk _ matrix (NA, nrow-N1hs, ncol=kpars)

test1 ind Nlhs > 10

test2 ind noGSO == F

test12 ind test1ind” test2 ind

if (test12 ind == 1) {

matN1hszk _ decrLHScor (N1hs, kpars, .0000000001, 12)

}

else {

for (i in 1: kpars) {

matNlhszk■ , i] _ randindz (Nlhs)

}

}

# Simulate random numbers between limits of parameters

for (i in 1: Nlhs) {

for (j in 1: kpars) {

binindex matNlhsixk [i,j]

if (lutlist [[j] ] [1, binindex.] < lutlist [[j] ] [2, binindex]) {
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---

parammat [i,j] runif (1, lutlist [[j] ] [1, binindex.] ,

lutlist [[j] ] [2, binindex.] )

}

else {

parammat [i,j] _ runif (1, lutlist [[j] ] [2, binindex.],

lutlist [[j] ] [1, binindex])

}

}

}

# Output

par

}

A.4

dec

###

###

###

###

###

###

# Write parammat to file

write (names (lutlist), file=outfile, noolumns=kpars)

write (t (parammat), file=outfile, ncolumns=kpars, append=T)

# Return Splus matrix

ammat

.2 GSO code

rLHScor function (N1hs, numparams, minRMS, maxcountpass) {

This function carries out an Orthogonalization procedure

(Owen, A. B., JASA (1994) 89 : 1517–1522) to reduce correlations

between columns of permutations created for Latin Hypercube

Sampling.

Graham Schmidt Orthogonalization

Given:
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###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

###

p = # parameters (p = numparams)

P - p

n = # studies to run (n = Nlhs)

a) Make an n x P matrix of n” P draws from a uniform

distribution

b) for (i in 2: P) {

Regress nxPmatrix [, i] on nxPmatrix [, 1: i-1]

*** Since residuals are uncorrelated with x, turn

the residuals into an entry in the matrix.

Rank the correlations.

Replace nxPmatrix [, i] with ranks

}

for (i in (P-1) : 1) {

Regress nxPmatrix (, i] on nxPmatrix [, P: i)

*** Since the residuals are uncorrelated with x, turn

the residuals into an entry in the matrix.

Rank the correlations.

Replace nxPmatrix [, i] with ranks

c) Check root mean squared correl.

d) Repeat until a specified number of iterations are

completed (maxcountpass) or the RMS stops

decreasing a specified amount (RMSdelmin).

# Argu

# Nlhs

#

#

ments of the function:

= Number of times to sample by LHS

Note: Nlhs must be > numparams
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numparams

Number of parameters to be sampled

minPMS

Minimum change in RMS to be considered nonconverged

maxcountpass

= Maximum number of passes for orthogonalization

# Test Input :

if (Nlhs •= numparams) {

write ("Nlhs must be > numparams", file="LHSerror", append=T)

stop ("Nlhs must be > numparams")

# Initialization:

# Create a matrix of Nlhs.” Pnumparams draws from a uniform

# distribution. (Empirical evidence shows that orthogonalization

# carried out on ncol= Pnumparams where Pnumparams > numparams

# yields less correlation than orthogonalization carried out on

# ncol=numparams. After orthogonalization, a matrix with

# ncol=numparams is returned by randomly selecting numparams

# columns from nool= Pnumparams. )

Pnumparams round (numparams”. 1.5)

matnxP matrix (runif (Nlhs.” Pnumparams), nrow-Nlhs)

# Initialize counter for number of passes and evaluating RMS
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RMS 100

countpass 1

# Action:

# Loop back and forth over columns of matnxP regressing,

# residuals, computing residuals, reassigning ranks

while (RMS > minPMS && countpass <= maxcountpass) {

countpass countpass + 1

# Calculate RMS

RMSdenom (Pnumparams-1)*Pnumparams/2

SQcor matrix (0, nrow-Pnumparams, ncol=Pnumparams)

for (ij in 2: Pnumparams) {

for (kl in 1: (ij–1)) {

SQcor [ij, kl] (cor (matnxP [, ij], matnxP [, kl] ))^2

}

}

RMS (sum (SQcor) /RMSdenom) * .. 5

print (paste ("RMS = ", RMS))

for (w:x in 2: Pnumparams) {

for (yz in 1: (w:x-1)) {

matnxP [, yz ) rank (1sfit (matnxP [, wx],

matnxP (, yz J) $residuals)

taking
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for (w:x in (Pnumparams–1): 1) {

for (yz in Priumparams: (w:x-1)) {

matnxP [, yz ) rank (1sfit (matnxP[, wx],

matnxP [, yz ) ) $residuals)

# Calculate RMS

RMSdenom (Pnumparams-1)*Pnumparams/2

SQcor matrix (0, nrow- Pnumparams, ncol= Pnumparams)

for (ij in 2: Pnumparams) {

for (kl in 1: (ij–1)) {

SQcor [ij, kl] _ (cor (matnxP [, ij] , matnxP [, kl] ))^2

RMS (sum (SQcor) /RMSdenom) ( .. 5

print (paste ("RMS = ", RMS))

# Randomly select p columns

pickcols order (runif (Pnumparams) )

pickcols — pickcols [1: numparams )

matnxp matnxP [, pickcols ]
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if (numparams== 1) {

matnxp matrix (matnxp, ncol=1)

matnxp

A.4.3 Other Necessary Functions

makelut function (mindist, maxdist, Nlhs) {

### Tis function creates a look up table for values of a uniform

### distribution corresponding to an Nlhs index

# mindist Minimum value of uniform distribution to stratify

# maxdist Maximum value of uniform distribution to stratify

# Nlhs Number of Latin Hypercube strata

lut matrix (NA, nrow-2, ncol=N1hs)

boundaries rep (NA, N1hs +1)

increments (maxdist – mindist) /N1hs

for (i in 0: Nlhs) {

boundaries [i+1] _ mindist- (increments *i)

for ( i in 1: N1hs) {

lut [., i] _ c (boundaries [i], boundaries [i+1])

lut
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randindz function (Nlhs) {

### This function generates indices for LHS sampling in random order

# Argument of the function:

# Nlhs Number of strata for LHS sampling

tmp runif (Nlhs)

perm match (tmp, sort (tmp) )

# The following just safeguards against having an index

# repeated twice

while (length (unique (perm)) =N1hs) {

tmp runif (Nlhs)

perm match (tmp, sort (tmp) )

perm

A.5 Technical Details

All data simulation, analyses, and graphic displays are produced using Splus

version 5.1 Release 1 distributed by MathSoft, Inc.. The computations are performed on a

Sun system, Solaris 1. The search algorithm used is the nimin() function in Splus.

P(CICO) is parameterized in terms of x*(1+x^) and P(Y|D) is estimated on the logit scale.

º
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