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ABSTRACT OF THE DISSERTATION 

 

Modeling cognitive control: Using cross-classified IRT and structural equation modeling to 

understand brain and behavior predictors of academic achievement 

 

by 

 

Sarah Jo Torgrimson 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2022 

Professor Jennie Katherine Grammer, Chair 

 

Cognitive control skills are foundational to goal-directed action and related to children’s 

academic achievement. These skills are often quantified using observed measures of children’s 

brain (e.g., ERN, CRN, Pe) and behavior (e.g., accuracy, reaction time) on computerized tasks. 

While computerized tasks afford precision in measurement, observed measures of behavior do 

not allow for examination of differences in performance between trials that may result from 

varying task features (e.g., trial difficulty, trial randomization) or children’s interactions with the 

task (e.g., previous trial performance impacting next trial performance). In this investigation, I 

leverage item response theory (IRT) models to identify task features that impact children’s 

behavioral performance as well as accommodate for inter-trial variation in Go/No-Go 

performance among children. Results indicate that task features, such as trial difficulty, impact 

children’s likelihood of making an error and also impact reaction time performance. Further, 
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studies utilizing tasks like the Go/No-Go typically report linear regressions between an academic 

outcome and a single score of behavioral performance. However, relations between individual 

scores and real-world skills, including academics, are relatively weak and inconsistent across 

studies. In this project, I compare three approaches for modeling relations between cognitive 

control and academic skills – a traditional regression approach, an observed measure SEM 

model, and an adjusted (predicted) measure SEM model. Nine behavioral and four ERP 

measures of Go/No-Go task performance are assessed as indicator variables for a cognitive 

control construct. Findings show that SEM models that incorporate multiple measures of 

cognitive control are superior for predicting variance in academic outcome measures as 

compared to regression approaches. Overall, this study emphasizes that multiple measures from 

one computerized assessment of cognitive control can be leveraged to predict moderate variance 

in academic skills for children in early elementary school.
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Modeling cognitive control: Using cross-classified IRT and structural equation modeling to 

understand brain and behavior predictors of academic achievement 

Cognitive control skills of attention, inhibition, and response monitoring help children 

set, plan, and achieve task-related goals and appropriately regulate their behavior to meet 

environmental demands (Friedman & Miyake, 2017). These skills have been linked to important 

outcomes for children and youth, including academic achievement (Bierman et al., 2008; 

Fishbein et al., 2016; Kim et al., 2016) and diagnosis of neurodevelopmental disorders such as 

attention-deficit hyperactivity disorder (ADHD; Huang-Pollock & Karalunas, 2010; Musser & 

Raiker, 2019; Senderecka et al., 2012), autism (ASD; Delorme et al., 2007), and anxiety 

(Wauthia & Rossignol, 2016). 

Computerized cognitive control tasks are widely used to assess children’s cognitive 

functioning, affording researchers tight experimental control and the ability to narrow in on 

specific subprocesses of cognition. From these tasks, researchers can extract behavioral and 

neural measures of performance, perceived as more “objective” indices of cognitive control. 

However, relations between cognitive control and academic or clinical outcomes are mixed in 

the literature, in part due to inconsistencies in measurement. Researchers often estimate 

performance on computerized cognitive control tasks as a single score of children’s cognitive 

functioning, though there is no consensus on which measure(s) of behavior (e.g., accuracy, 

reaction time) are most useful in determining predictors of academic achievement. Additionally, 

there is evidence to suggest that behavioral performance is impacted by task features (e.g., trial 

type) and child demographics (e.g., age), yet few have investigated how these factors impact 

children’s within-task behavior or the observed average performance measures that are 

traditionally used to index cognitive control. Moreover, relations among concurrent brain and 
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behavior measures derived from the same task are not fully understood. Further, there is debate 

over whether neural measures provide novel information, above and beyond the behavioral 

measures, that is helpful for predicting academic and psychological outcomes. Leveraging 

advanced modeling techniques to examine behavioral and neural data from one standardized 

cognitive control task, the goals of this current investigation are to: 1) identify task features that 

impact behavioral performance by investigating child, trial, and child-by-trial factors of accuracy 

and reaction time 2) assess how measures of task behavior relate to children’s reading and math 

skills using structural equation modeling to estimate cognitive control as a latent construct, and 

3) determine the value-added of incorporating neural measures into estimates of cognitive 

control when examining relations with academic skills. 

Literature Review 

Cognitive Control 

Cognitive control includes the ability to inhibit inappropriate responses, hold information 

in working memory, and control attention - allowing children to adjust their behavior to 

environmental conditions, engage with novel information, and shift between different tasks 

(Miyake & Friedman, 2012). There is a large overlap between conceptualizations of cognitive 

control and executive function (EF; (McClelland et al., 2015); and, in practice, the two constructs 

are often assessed simultaneously in studies of children’s cognition using a combination of EF 

measures (e.g., caregiver reports, observations) and computerized tasks tapping cognitive control 

skills. Studies of cognitive control and EF indicate that basic cognitive processes (e.g., attention 

orienting) emerge early in life, followed by the rapid development of higher order functioning 

(e.g., inhibition) that occurs between the ages of 3 and 7 years, alongside maturation in the 

prefrontal and anterior cingulate cortices (Crone & Steinbeis, 2017). Indeed, age-related 
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differences in cognitive ability have been identified in both cross-sectional and longitudinal 

studies (Best et al., 2011; Grammer et al., 2014).  

Cognitive control skills are thought to be particularly important in elementary school, 

when children are acquiring foundational academic skills (de Haan, 2014). By preschool-age (3-

5-years-old), children’s cognitive control capacity is already predictive of children’s later 

academic success and social and emotional well-being (Blair & Raver, 2015; Bull et al., 2008; 

Downes et al., 2017; Espy et al., 2004; St Clair-Thompson & Gathercole, 2006). Accordingly, 

cognitive control skills are considered key in successful classroom adjustment helping children 

focus and sustain their attention, monitor their behavior and understanding, and remember 

directives and instructions from their teachers (Blair & Razza, 2007; McClelland et al., 2007).  

Response inhibition, in particular, appears to be an important skill during this period of 

development and is most associated with children’s academic performance in elementary school 

(Grammer et al., 2014; McClelland et al., 2015; Montroy et al., 2016; Roebers et al., 2011). 

Notably, there is some evidence of gender differences in response inhibition in elementary 

school, such that boys, on average, demonstrate lower response inhibition skills and greater 

variance in performance than girls (Matthews et al., 2009). However, inhibition skills appear to 

be related to academics for both boys and girls at this age.  

Defined as the ability to inhibit a pre-potent response in favor of a desired, but not 

automatic or instructed response, response inhibition involves the coordination of many attention 

and response monitoring processes (Garon et al., 2008; Verbruggen & Logan, 2008). Response 

monitoring serves to allow the brain to piece out which incoming information is relevant to the 

task at hand and which information can be disregarded. These reflective processes are considered 

to be a form of active working memory involved in the encoding and updating of information 
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(Miyake et al., 2000). This skill has been linked to the ability to identify success or failure during 

task performance and is highly valuable during novel task learning as it allows individuals to 

modify their own behavior in order to improve their performance (Friedman & Miyake, 2017). 

While overt processing can be observed in the presence of compliant behavior (e.g., correctly 

responding to a prompt), response monitoring is considered a covert process, and cannot be 

directly observed (e.g., error processing, withholding a response). Therefore, researchers utilize 

methods that allow for non-invasive measurement of neural activity, quantifying event-related 

potentials (ERPs) that reflect covert cognitive processing such as stimulus encoding, inhibition, 

and response monitoring. Assessing both behavioral and neural measures of cognitive control is 

useful for understanding skill capacities in children and is encouraged by the National Institute of 

Mental Health as a best practice in research, as outlined in RDoc framework (P. Anderson, 2002; 

Bekker et al., 2004; Cuthbert & Insel, 2013).  

Computerized Assessments of Cognitive Control 

The study of cognitive control skills in relation to academic achievement dates back as 

early as the 1960s when public funding for educational services increased in response to Lyndon 

B. Johnson’s 1964 “War on Poverty” (Zhai et al., 2011). In early studies, these skills were 

categorized as related to student self-control and often sampled children participating in 

compensatory education programs (Flynn, 1975). Educational studies of children’s cognitive and 

regulatory skills continued throughout the 80s and 90s as motivational theorists incorporated 

contextual factors into the study of children’s attention and regulatory abilities (Grolnick & 

Ryan, 1989; Ryan & Deci, 2000). Computerized assessments of cognitive control became 

popular in the 1990s, or “decade of the brain” due to the ability to concurrently measure 
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behavioral performance indicators of cognitive control and associated neural activity (Blair, 

2002).  

Computerized tasks of cognitive control were designed to tap into the functions of 

separable, but related, componential skills including attention shifting, inhibition, and working 

memory (Friedman & Miyake, 2017; Miyake et al., 2000; Miyake & Friedman, 2012). These 

tasks were initially designed based on adult’s neurological functioning. Although they have 

begun to be used widely with developmental populations, the relation between children’s 

behavioral performance and neural activity during these tasks is yet to be fully understood 

(Hunter & Sparrow, 2012; Miller et al., 2013; Wiebe et al., 2011).  

Tasks can differ on several parameters, such as stimulus complexity (e.g. image, word, 

sound), response required (e.g. left/right, press/don’t press), and number of trials. Each of these 

factors impact performance. In addition, trial type and preceding context have been shown to 

influence task accuracy and reaction time for adult populations (Schulz et al., 2009; Wild-Wall et 

al., 2009). For example, in a Go/No-Go paradigm, participants must regulate their response 

based on trial type, pressing a button on ‘Go’ trials and inhibiting the prepotent response to press 

a button on the ‘No-Go’ trials. In a Go/No-Go task, preceding context of the trial can differ by 

the number of Go trials, increasing the difficulty of demonstrating response inhibition on a No-

Go trial after consecutive Go responses. Greater number of Go trials preceding a No-Go trial has 

been linked to lower accuracy (Schulz et al., 2009). Additionally, the presentation of trials is 

typically randomized. This is done to reduce the likelihood that participants will become 

attenuated to the task and to increase the likelihood of error, in turn, allowing for measurement of 

children’s performance monitoring and behavioral accommodations in response to erring. As a 

result, even though basic task parameters may be the same (e.g., the number of trials, percentage 
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of No-Go trials), the order with which trials are presented varies for each participant. Thus, some 

individuals may receive a string of more difficult trials early in the task, which may affect their 

later performance due to changes in participant arousal or cognitive fatigue (Kato et al., 2009; 

Schulz et al., 2009). However, how task features impact children’s performance remains 

unknown.  

Behavioral Measures of Cognitive Control 

There are several behavioral performance measures that can be extracted from a Go/No-

Go task that are thought to index similar but distinguishable cognitive skills (Wright et al., 2014). 

Typically, accuracy and reaction time measures are quantified as averages in performance across 

task. Most commonly used measures include errors of omission (EOM), errors of commission 

(ECOM), and Go trial reaction time (RTC). Errors of omission is calculated as the percentage of 

incorrect Go-trials (no response) and is considered a measure of sustained attention and attention 

shifting. Errors of commission is considered a measure of response inhibition and calculated as 

percent incorrect No-Go trials (response). Reaction time is reported as an average of response 

times to Go trials. Go trials occur more frequently than No-Go trials in Go/No-Go paradigms. 

Thus, reaction time to correct Go trials is thought to index processing speed and vigilance 

encompassing the time needed for stimulus encoding, decision making of whether to respond or 

not, and execution of a motor response (Dutilh et al., 2019). Previous work indicates that Go/No-

Go accuracy increases, while reaction times decreases across childhood and into early adulthood 

- indicating improved inhibition and attention skills and faster processing speeds (Motes et al., 

2018). Reaction time can also be measured for errors of commission (incorrectly responding to a 

No-Go stimulus; RTI), though less focused on in the literature. A critique of reaction time 

measures is that reaction time may vary between trials, with children responding sometimes 
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faster to Go trials than to No-Go trials and sometimes responding slower to Go trials than to No-

Go trials. This is likely dependent on the context of the previous trial (Ratcliff & Tuerlinckx, 

2002). As such, variable measures such as standard deviation in reaction time (SDRT) can be 

helpful to include in models of cognitive control to accommodate for trial-to-trial variability in 

reaction time that may be masked in traditional mean reaction time measures (Weigard et al., 

2020).  

Notably, in adult populations, a speed-accuracy tradeoff in performance is often present, 

wherein, participants prioritize accuracy on No-Go trials over speed. Speed-accuracy tradeoffs 

can be observed by better No-Go trial accuracy, slower average reaction times, and lower Go 

trial accuracy. Participants may decrease their reaction time across trials to avoid committing an 

error of commission and, consequently, demonstrate lower hit rates for Go trials that require 

quick response (Votruba & Langenecker, 2013). Because of potential speed-accuracy tradeoffs, 

it is suggested that reaction time measures not be used in isolation (Draheim et al., 2019). Yet, 

many studies still use singular reaction time measures to index cognitive control performance. 

Speed-accuracy tradeoffs have also been shown to have a developmental pattern, such that 

younger children (7-8 year-olds) have displayed significantly higher rates of trading slower 

reaction times for better No-Go trial accuracy than young adults (18-25 year-olds; (Motes et al., 

2018). However, it is unclear when during development this transition occurs. In Motes’ (et al., 

2018) cross-sectional study, children ages 10-15 years-old did not demonstrate significant 

difference in speed-accuracy tradeoffs with either younger children or adults. Additionally, 

arguments have been made that speed-accuracy tradeoffs rely on the false assumption that all 

participants are engaging in similar task strategies (Draheim et al., 2019).  
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As an alternative, multiple measures of accuracy and reaction time can be integrated to 

better understand performance and task strategy. For example, a discriminability measure (d-

prime) incorporating accuracy rates on Go and No-Go trials can be calculated in order to account 

for response biases in performance. D-prime is calculated by subtracting a child’s z-score on 

inaccurate No-Go trials from their z-score on accurate Go trials (Tottenham et al., 2011). 

Additionally, post-error adjustments in reaction time and accuracy can be calculated to gain a 

better understanding of participant task strategy. Post-error slowing (PES) and post-error 

accuracy (PEA) are calculated as differences in average performance on Go trials following error 

response (No-Go trials) and average performance on Go trials following correct response (Go 

trials). Post-error slowing is an average decrease in reaction time following error responses as 

opposed to correct responses. There are competing theories on PES suggesting different causes 

for this phenomenon. Participants may actively engage cognitive control skills to slow their 

reaction time and increase accuracy in response to an error (Gehring & Fencsik, 2001; 

MacDonald et al., 2000). Alternatively, participants may orient too much attention to a 

committed error, and thus demonstrate slower response times and an increased likelihood of 

committing another error (Notebaert et al., 2009; Steinborn et al., 2012). It is also speculated that 

an error of commission results in greater engagement of motor inhibition skills, which results in 

slower reaction times (King et al., 2010; Ridderinkhof, 2002). Though less commonly reported, 

post-error changes in accuracy can also be assessed following the commission of an error 

(Danielmeier & Ullsperger, 2011; Jentzsch & Dudschig, 2009; Maier et al., 2011). Post-error 

changes in reaction time are not always accompanied by post-error changes in accuracy, further 

suggesting that individuals may be engaging in different task strategies during performance. 
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Therefore, integrating multiple measures of accuracy and reaction time may help us better 

understand dynamics in Go/No-Go task performance. 

Although parsimonious, observed measures described above do not allow for 

examination of differences in performance between trials that may result from varying task 

features (e.g., trial difficulty, trial randomization) or children’s interactions with the task (e.g., 

previous trial performance impacting next trial performance). Latent models, like item response 

theory (IRT), can be used to accommodate for different sources of inter-trial variation. Yet, little 

research has investigated cognitive control performance using these methods. However, studies 

using factor analyses and structural equation modeling (SEM) have demonstrated that estimating 

latent constructs of cognitive control using multiple measures of performance is important. 

Latent Models of Cognitive Control. As previously outlined, cognitive control tasks are 

often designed to target a specific subskill (e.g., attention shifting, inhibition). However, task 

engagement requires the coordination of several skills such as attention, inhibition, and working 

memory. Indeed, latent modeling of cognitive control has demonstrated that multiple skills 

support task performance. For example, Howard and colleagues (2014) found that latent factors 

of attention and inhibition supported performance across a battery of inhibition tasks in samples 

of children (ages 7-12) and adults (ages 17-51). Nine inhibition tasks were completed – an 

antisaccade task, a Stroop, a stop-signal, the Hayling task, a directed forgetting task, a proactive 

interference task, a flanker task, a negative priming task, and a retrieval-induced forgetting task. 

However, only two tasks loaded onto the inhibition construct in children, compared to seven in 

adults. This may in part be due to how performance was measured. Performance on each task 

was quantified as only one score. While some task measures may seem more related to inhibition 

(e.g., reaction time for inhibiting a response on the stop-signal), others seem more related to 
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working memory (e.g., proportion of total recall from proactive interference task) though task 

performance may involve inhibitory skills. These measures of performance may better capture 

inhibition in adults, whereas other measures of performance may be more strongly related to 

inhibition in children. Investigating multiple measures from one task may better uncover 

variance in inhibition skills among children. Notably, the stop-signal task, most related to a 

Go/No-Go, loaded onto both constructs of attention and inhibition in both the child and adult 

samples.  

SEM methodology has also been used to demonstrate relations between latent factors of 

cognitive control and academic skills in school-age children. In a longitudinal investigation, 

Albert and colleagues (2020) found that latent cognitive control skills mediated the relation 

between socioeconomic status (SES) and academic achievement in a racially and 

socioeconomically diverse sample in the Southeastern United States. Children’s performance on 

a battery of computerized cognitive control and EF tasks at age 10 was related to their 

performance on a state exam assessing reading and math skills at age 13. Children completed 

tasks assessing verbal and spatial working memory, response inhibition (Stroop), and strategic 

planning (Tower of London). Notably, only one factor of cognitive control was used in the 

model and results indicated that it was most related to verbal working memory (46.19% variation 

explained) and least to response inhibition (5.76%). This corroborates earlier work indicating 

that two factors of cognitive control should be modeled when considering performance across a 

battery of cognitive control and EF tasks (De Franchis et al., 2017; Howard et al., 2014).  

De Franchis and colleagues (2017) found a two-factor structure for cognitive control 

representing latent constructs of working memory/attention shifting and inhibition among 5-year-

old Italian children. Cognitive control skills of inhibition (Circles Drawing Task, Tower of 
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London), working memory (Backward Digit Span, Dual Request Selective Task), and attention 

shifting (Semantic Fluency, Dimensional Card Sort) were assessed. The working 

memory/attention-shifting factor predicted reading comprehension, but not spelling skills, in 

grade 3. Inhibition was not uniquely related to academic achievement, though, it was strongly 

correlated with the working memory/attention shifting factor. Further, observed scores were 

constrained to load onto one-factor, though performance on each task may be supported by 

multiple constructs of cognitive control.  

Similarly, Gashaj and colleagues (Gashaj et al., 2019) found a two-factor model of 

cognitive control among Swiss children. Inhibition (flanker task), attention shifting (fish flanker), 

and working memory (backward color span task) were assessed in this study, using one measure 

from each computerized task to represent performance. Working memory and 

inhibition/attention shifting skills at age 5 years were related to math achievement in grade 2. 

Notably, the attention shifting and inhibition tasks were both flanker tasks that used reaction time 

as the sole outcome measure. Whereas, behavioral performance on the working memory task 

was assessed with a task accuracy measure. The two-factor structure of their model may 

therefore, represent measurement differences rather than construct differences.    

While this work highlights the importance of latent modeling during investigations of 

response inhibition, the examples outlined above examined cognitive control as contributing to 

average performance across a battery of tasks. Potential limitations to this analytical strategy 

include inability to 1) examine random effects of nuances in task presentation influencing 

children’s performance (i.e., trial randomization within subject) and 2) investigate how factors of 

trial difficulty within task differ as a function of child latent abilities. Alternatively, multilevel 

latent modeling can be applied to investigate differences in performance related to child, trial, 
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and child-by-trial characteristics. Estimating adjusted performance scores using modeling 

techniques like IRT can help minimize measurement error due to extraneous factors (e.g., 

attention) and account for trial randomization across different participants. Adjusted performance 

scores of Go/No-Go accuracy and reaction time may better capture individual measures of 

cognitive control. Additionally, only one measure from each task in the cognitive control 

batteries was used to represent behavioral performance, when a variety of accuracy and reaction 

time measures could have been extrapolated. Modeling performance using multiple scores from 

the same task would allow for the investigation of relations between behavioral measures for 

trials with varying cognitive demands.  

Behavioral measures have been used more frequently in the literature predicting 

academic skills, with less work linking ERP measures of cognitive control to academics. Neural 

measures capture aspects of covert cognitive processing that are not easily observable with 

behavioral measures (e.g., response monitoring). The ERN, a neural correlate of response 

monitoring has been related to children’s behavioral performance, linking cognitive processing 

in the brain to observed behaviors (Grammer et al., 2014; Torpey et al., 2012; Wiersema et al., 

2007). However, behavioral and neural measures are typically used separately to demonstrate 

differences in various desired outcomes such as academic performance, trait anxiety, ADHD, or 

ASD (Albrecht et al., 2008; Hanna et al., 2020; Kim et al., 2016; Musser & Raiker, 2019; 

Wauthia & Rossignol, 2016; Zhang et al., 2009). Yet, little research has integrated measures of 

both brain and behavior into models predicting academic performance. 

Neural Measures of Cognitive Control 

Neurons, or cells, in our brain communicate through electrochemical signals that produce 

a measurable electrical current. Continuous electroencephalogram (EEG) activity is collected, 
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similar to the way in which the electrical activity of the heart is measured (electrocardiograms; 

EKG) by placing electrodes, or sensors, on the scalp, often through usage of an EEG cap. A 

unique benefit of this methodology is that it is temporally sensitive and can measure immediate 

brain responses to events, on a millisecond time scale. In order to get a neural measure of a 

child’s response monitoring ability, experimenters average neural reactivity following a child’s 

response producing an average neural waveform (e.g., average neural activity following error 

responses) (Pontifex et al., 2010). ERP components of interest are then quantified as an average 

amplitude of neural activity within a specific time window. Time windows are meant to capture 

peaks in the data, seen as negative or positive deflections in the average waveform, and represent 

brain activity in response to an event onset (e.g., correct or error response). This method requires 

that neural signals are phase-locked in order for component “peaks” to be detected, as waveform 

amplitudes reflect the summation of all neural frequencies within a given time window 

(Cavanagh & Frank, 2014; Isbell & Grammer, 2021).  

Referred to as response-locked event-related potential (ERP) components, the error-

related negativity (ERN), correct-related negativity (CRN), and error positivity (Pe) are the most 

commonly reported measures of response monitoring in the literature (for a review see Gehring 

et al., 2011). These neural components have been documented in children as young as 3-years-

of-age (Grammer et al., 2014) and linked to differences in task performance (Torpey et al., 2012; 

Wiersema et al., 2007), academic success (Hillman et al., 2012; Kim et al., 2016), and symptoms 

of depression, anxiety, and ADHD (Albrecht et al., 2008; Hanna et al., 2020; Musser & Raiker, 

2019; Wauthia & Rossignol, 2016; Zhang et al., 2009).  

The ERN. The ERN is a fast-occurring negative deflection, typically maximal at 

frontocentral sites and occurring around 50 milliseconds following an error commission (for a 
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review see Gehring et al., 2011). The ERN is associated with a child’s ability to detect that they 

have made an error (Falkenstein et al., 1991; Nieuwenhuis et al., 2001; Yeung et al., 2004). 

Greater (more negative) ERN amplitudes have consistently been observed when the correct 

answer or response was readily known or when the significance of making an error was 

perceived to be greater (e.g., Di Gregorio et al., 2016; Maier & Steinhauser, 2016). Thus, the 

ERN is thought to reflect a self-corrective mechanism in which the brain identifies a mismatch 

between the error response made and the known correct response (Yeung et al., 2004). Conflict 

monitoring theory (Yeung et al., 2004) states that greater neural response to errors in relation to 

correct responses is an index of better task monitoring skills and therefore a better understanding 

of performance. 

Though few studies have investigated the development of the ERN in children under the 

age of 8 (Lo, 2018), the ERN has been observed in children as young as 3-years-old and 

develops logarithmically from mid-childhood to early adulthood (Grammer et al., 2014; Hogan 

et al., 2005; Santesso & Segalowitz, 2008; van Meel et al., 2012). However, reports of age-

related differences in young children are mixed, with some studies reporting significant 

(Richardson et al., 2011) and others null (Grammer et al., 2014; Torpey et al., 2012) age-related 

differences in the ERN. For example, some studies suggest that ERN amplitude may be related 

more closely to variance in task performance than to chronological age (Downes et al., 2017; 

Hogan et al., 2005; Richardson et al., 2011).  

The CRN. The CRN is a smaller, negative peak often observed within the first 100 ms 

after a correct response has been made, and generally follows a similar time course and 

topography as the ERN (Gruetzmann et al., 2014). The CRN has been identified as a distinct 

component, separate from the ERN, and is thought to reflect an attention cue to sustain 
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engagement and avoid future errors (Luu et al., 2000). Though, the CRN has not historically 

been the main focus of studies investigating indices of response monitoring. Much more research 

has been published on developmental differences in the ERN as well as associations between the 

ERN and outcomes of interest. However, evidence does suggest that the CRN is enhanced (more 

negative) when children are younger and attenuates into adulthood as a function of development 

(Clawson et al., 2017).  

The Pe.  Accompanying the ERN/CRN complex is a more latent and broader positive 

component, the error positivity (Pe). The Pe is often maximal at centroparietal sites and can be 

observed approximately 200 to 500 milliseconds after an error response (for a review see 

(Overbeek et al., 2005). The Pe is thought to reflect conscious error detection, although not 

always observed for every error trial (Wiersema et al., 2007). Evidence indicates that larger 

(more positive) Pe amplitudes are associated with stronger salience of error (Nieuwenhuis et al., 

2001) suggesting that the Pe reflects attention allocation to error commissions. The Pe has an 

earlier developmental maturation than the ERN, with adult-like patterns present in mid-

childhood samples (Davies et al., 2004; Downes et al., 2017; Hogan et al., 2005; Richardson et 

al., 2011). However, in early elementary school, age-related differences in the Pe are still 

measurable (Grammer et al., 2014). 

Associations between Brain and Behavior 

While neural correlates of response monitoring have been under investigation for over 

three decades, their functional significance remains a point of debate. Some even question the 

purpose of assessing brain measures of cognitive control because behavioral performance 

measures have been shown to relate to academic achievement. However, combining neural 

measures with behavioral performance measures allows for investigation of both overt 
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processing, like the commission of a response, and covert processing, like inhibiting a response 

or identifying whether one has made an error. Complicating our understanding, relations between 

ERP measures of error monitoring and task behavior, including reaction time and task accuracy, 

have been inconsistent (Eppinger et al., 2009). This, in part, may be due to differences among 

which neural (e.g., ERN, Pe) and behavioral (e.g., RT, accuracy) measures were chosen for 

analyses, which makes it difficult to identify the functional significance of error-related neural 

components. Additionally, evidence indicates that measurement error may be inflated in 

traditional quantifications of ERP average scores. 

Neural measures of psychological processes assume that measurement is mainly driven 

by differences in trait constructs of interest or stimuli response (depending on the research 

question). This assumption inflates measurement error that may be due to individual state factors 

(e.g., mood, sleepiness), alternative trait characteristics (e.g., attention, maturation level), 

variance caused by filtering and averaging neural data, and other sources of measurement error 

(Gavin & Davies, 2007). There is preliminary evidence that raw averages of neural activity may 

not accurately portray the relation between trait levels of cognitive control, neural activity, and 

behavioral assessments of other outcomes of interest. Taylor and colleagues (Taylor et al., 2018) 

found no relation between brain and behavior in an SEM model relating constructs of neural and 

behavioral performance using indicator variables from a Go/No-Go task – two average E-wave 

(ERP) components and reaction times. Nor were brain and behavior related to a latent trait of 

attention, indicated by measures of attentional control and sustained attention. However, 

considerations such as differences in data collection procedures were left out of the model. It 

may, therefore, be important to adjust for child demographics such as age and data quality to 

help reduce measurement error in neural activity.  
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While some researchers have theorized that individual measures of task performance 

reflect similar but distinct cognitive processes, there is limited empirical evidence to support this 

claim and it remains and area of exploration. Researchers commonly use individual models 

investigating relations between outcomes of interest and either brain functioning or behavioral 

performance. Individual correlations limit our ability to investigate the complexity of cognitive 

engagement, which involves the coordination of inhibition, conflict monitoring, and response 

monitoring processes (Barkley, 1997; Senderecka et al., 2012). Alternatively, it may be 

beneficial to estimate children’s cognitive control ability using multiple measures of brain and 

behavior from one task to capture the coordination of skills required for task performance. 

Indeed, a recent publication demonstrated that adult behavioral performance on a Go/No-Go task 

was related to activity in regions of the brain associated with response monitoring and the ERN, 

such as the anterior cingulate gyrus and inferior frontal gyrus (Weigard et al., 2020). Further, a 

meta-analysis of functional magnetic resonance imaging (fMRI) studies indicated that fMRI 

activity to No-Go trials was driven by the engagement of trait skills in both working memory and 

attention supporting that multiple cognitive subprocesses may be involved in the processing of 

Go/No-Go stimuli (Criaud & Boulinguez, 2013). 

In addition to the complexities introduced by varying conventions of measurement, there 

are developmental considerations that further complicate our understanding of the associations 

between brain and behavior. Changes in children’s cognitive skills occur in tandem with rapid 

development in associated brain regions throughout childhood and into adolescence. Indeed, 

there is some evidence that relations between brain and behavior may be dependent upon 

developmental maturity. Studies sampling 4 to 6 (Grammer et al., 2018), 5 to 7 (Torpey et al., 

2012), and 7 to 8-year-old children (Wiersema et al., 2007), found null associations with 
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behavioral performance for the ERN, CRN, and Pe. Yet, Grammer and colleagues (2018) found 

that larger ERN amplitudes were associated with slower reaction times in a six month follow up 

assessment with young children. Similarly, among 7 to 9-year-old children, Richardson et al. 

(2011) found that larger ERN amplitudes were related to more consistency in reaction time, but 

not task accuracy. However, Thurm and colleagues (Thurm et al., 2020) found that greater ERN 

amplitudes were associated with higher task accuracy in a slightly older sample of 9 to 11-year-

old children. The CRN has been less reported in literature sampling children, however there is 

some evidence that greater (more negative) CRN amplitudes are associated with slower reaction 

times, though perhaps not when accounting for participant age (Torpey et al., 2012). Greater Pe 

amplitudes following error responses have been found to relate to increased age, better accuracy, 

and faster reaction times in Go/No-Go tasks (Thurm et al., 2020; Torpey et al., 2012). 

Additionally, larger Pe amplitudes have shown bivariate correlations with greater post-error 

slowing (Torpey et al., 2012) and post-error accuracy (Schroder et al., 2017), suggesting that 

children ages 5 to 8 already show a brain-behavior relation in the ability to consciously detect an 

error and adjust behavioral performance in response.  

Combined, these findings suggest that there may be age-related differences in how error-

related brain mechanisms are associated with behavior. Moreover, it remains a point of debate 

whether changes in the brain precede changes in children’s behavior. Therefore, there may also 

be developmental differences in relations between academic skills and cognitive control 

measures of brain and behavior. Further study into relations between brain and behavior in 

elementary school is needed, with particular attention given to whether measures of neural 

processing help us predict academic outcomes above and beyond behavioral performance 

measures. By combining behavioral performance measures (e.g., reaction time, accuracy) with 
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the collection of “real-time” neural data (i.e., ERPs) we can construct a comprehensive view of 

children’s cognitive functioning by extrapolating measures of underlying cognitive processes 

(e.g., performance monitoring, inhibition) that support successful task engagement (e.g., 

responses). Additionally, SEM modeling will allow us to better understand the dynamics 

between children’s brain and behavior and how functioning at each of these levels relates to 

outcomes of interest, such as academic performance. To my knowledge, little research has 

explored the cumulative variance that multiple ERP and behavioral measures may account for in 

academic outcomes.  

The Current Study 

Aims and Hypotheses 

The current study aims to improve our understanding of how brain and behavior 

measures from a computerized cognitive control task relate to latent construct(s) of cognitive 

control and academic achievement in a sample of early elementary-school children. Applying 

advanced modeling to examine behavioral and EEG data from a child-friendly Go/No-Go task 

conducted with children aged 4-8, the study has three main aims: 

Aim 1: Characterize Cognitive Performance 

The first aim is to characterize children’s behavioral performance on a computerized 

Go/No-Go task tapping sustained attention and inhibition skills, using cross-classified IRT 

models. Task features that impact children’s performance are identified by investigating child, 

trial, and child-by-trial factors of accuracy and reaction time. Four independent models are used 

to estimate Go and No-Go accuracy and reaction time, adjusting for trial-by-trial variability in 

performance and other sources of measurement error.  
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It is hypothesized that child factors of age and gender, as well as trial difficulty will 

significantly impact a child’s speed and likelihood of responding correctly to trial stimuli. 

Specifically, children that are older are expected to be more accurate and have faster reaction 

times. Boys are expected to demonstrate more trial-by-trial variability in performance. I also 

hypothesize that lower numbers of preceding Go trials will be related to greater accuracy on No-

Go trials. Greater number of preceding Go trials are expected to be associated with faster 

reaction times for both Go and No-Go trials. No relation is expected between preceding context 

and Go trial accuracy. 

Aim 2: Assess relations among behavioral performance measures and academics 

The second aim is to leverage the various behavioral measures that can be extracted from 

the Go/No-Go to assess the cumulative variance that behavioral performance measures explain in 

children’s reading and math skills. SEM models are used to assess relations between latent 

factors of academic skills (math, reading) and cognitive control. Academic factors of math and 

reading are estimated using indicator variables from standardized assessments of math and 

reading. Cognitive control is estimated as a latent construct(s), indexed by manifest or indicator 

variables from children’s Go/No-Go task performance. Go/No-Go measures of accuracy (errors 

of omission, errors of commission, d-prime), reaction time (RTC, RTI, SDRTC, SDRTI), and 

post-error adjustment (PES, PEA) are used. It is hypothesized that a two-construct model of 

cognitive control – accommodating for differences in attention and inhibition - will fit the data 

best, based on previous literature modeling latent factors of cognitive control in school-age 

children (V. Anderson, 2002; De Franchis et al., 2017; Downing, 2016; Miyake & Friedman, 

2012) and performance on Go/No-Go tasks (Winter & Sheridan, 2014; Wöstmann et al., 2013). 
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I also aim to assess the utility of estimating adjusted performance measures on the 

Go/No-Go, that accommodate for child, trial, and child-by-trial factors. Therefore, I compare 

two SEM models in predictions of academic skills - an Observed Model and an Adjusted Score 

Model. The Observed Model, utilizes observed measures (e.g., errors of omission) in Go/No-Go 

task performance as indicator variables for the latent cognitive control factor. The second model 

utilizes adjusted performance measures estimated in Aim 1 as indicator variables for the latent 

cognitive control factor (Adjusted Score Model).   

I hypothesize that the Adjusted Score SEM model using indicator variables that account 

for differences in child demographics, task features, and task randomization in estimating the 

latent factor(s) of cognitive control will best predict differences in reading and math skills, as 

indicated by smaller standard errors in effect sizes. This hypothesis is supported by work 

indicating that Go/No-Go performance is related to trial difficulty in adult populations and to 

differences in age among children, adolescents, and adults.  Findings from Aim 2 will help 

clarify best practices for quantifying behavioral measures of Go/No-Go performance as related to 

academic achievement. 

Aim 3: Evaluate contributions of neural measures for understanding academic outcomes 

The third and final aim is to determine the contribution of neural measures of cognitive 

control (i.e., the ERN, CRN, and Pe) in predicting unique variance in academic skills that are not 

able to be observed by behavior alone. It is predicted that incorporating neural measures of 

response monitoring as additional indicator variables for the latent construct(s) of cognitive 

control will increase the variance accounted for in both reading and math. These neural measures 

are thought to index unique covert cognitive processes that are similar but distinguishable from 

overt processes indexed by behavioral measures (Luu et al., 2000; Schroder et al., 2017; Torpey 
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et al., 2012; Yeung et al., 2004). Further, I explore if reducing measurement error in neural 

activity is beneficial in constructing measures of cognitive control. Similar to Aim 2, I compare 

two models – an Observed Measures Model and an Adjusted Measures Model. Observed ERP 

measures are added as indicator variables for the cognitive control factor(s) in the Observed 

Measures Model. In the Adjusted Measures Model, adjusted measures of neural activity 

accommodating for child age and data quality will be used as indicator variables for the 

cognitive control factor(s). It is hypothesized that the Adjusted Measure SEM will better fit the 

data, as academic measures are normed for child ability and trial difficulty.    

Methods 

Data Source and Sample 

The current project utilizes data from a larger longitudinal study that aimed to investigate 

the effects of schooling on cognitive functioning, as indexed using EEG and behavioral 

measures, in elementary school children.  A total of 367 children were recruited from seven 

public elementary schools (26 classrooms) in the Midwestern United States. The seven schools 

in the study included populations of students from diverse SES and racial/ethnic backgrounds, 

with 60% of children attending a school where at least half of the students qualified for free or 

reduced-priced lunch. Forty-two percent of children attending the sampled schools were White, 

33 % were Black, 17 % Asian, 2 % native American/Alaskan native, and 6 % more than one 

race. Percentage of students eligible for free or reduced-price lunch at the school level were 2%, 

33%, 39%, 42%, 61%, 69% and 72%. Children's age at testing ranged from 4 to 8-years-old. 

Because of the longitudinal nature of the study, most children completed their first assessment in 

kindergarten and continued with annual follow up assessments through second grade. Some 

participants were added as new cohort participants in subsequent years. For this current project, I 
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use data from children’s first assessment, regardless of cohort year or grade of entry to the study. 

Two-hundred and ninety-seven children had behavioral data available from their first completion 

of the Go/No-Go task. However, five children were excluded due to low accuracy on Go trials 

(<25%) and thus, the final sample for Aim 1 was 292 children (Mage=6.15 years, NMale=148). 

Descriptive information for the sample can be found in Table 1. 

Table 1 

Sample Descriptives 

   School 

  N 1 2 3 4 5 6 7 

 Full Sample 292 76 59 54 54 16 18 14 

Grade K 202 62 51 32 32 8 7 9 

 1st 60 10 7 14 14 5 7 3 

 2nd 30 4 1 8 8 3 4 2 

%FRPL Min 2.00 2.00 63.00 69.00 71.00 33.00 42.00 40.00 

 Mean 47.23 2.67 67.32 70.70 72.37 33.00 42.00 40.00 

 Max 83.00 5.00 71.00 76.00 83.00 33.00 42.00 40.00 

 SD 29.03 1.26 3.28 2.21 2.64 0.00 0.00 0.00 

Age Min 4.96 4.96 5.08 5.03 5.16 5.25 5.24 5.09 

 Mean 6.15 5.80 5.90 6.30 6.54 6.45 6.41 6.29 

 Max 8.59 7.85 7.94 8.04 8.59 8.36 7.88 8.05 

 SD 0.79 0.62 0.54 0.82 0.89 0.90 0.80 0.79 

 

Measures 

Children participating in the study completed individual assessments of cognitive control, 

EF, and academics as well as group EF assessments (see Ahmed et al. 2021). Additionally, 

children completed an EEG assessment. Study procedures were approved by the University of 

Michigan Institutional Review Board (Ahmed et al., 2021; Isbell & Grammer, 2021). The current 

project utilizes both behavioral and ERP measures of cognitive control as assessed during a 

child-friendly Go/No-Go task (Grammer et al., 2014) to estimate latent construct(s) of cognitive 

control. Latent measures of reading and mathematics will be estimated using observed scores on 
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the letter word identification, reading comprehension, and applied problems subscales of the 

Woodcock Johnson III Tests of Achievement (WJIII; Mather, 2001) as indicator variables.    

The Go/No-Go Task 

Children in the study completed a child-friendly Go/No-Go task called the “Zoo Game” 

(Grammer et al., 2014). At the start of the task, children were given directions to the task 

embedded in a storyline. Children were told that they were playing a game in which their goal 

was to help a zookeeper put animals back in their cages. They were then informed that three of 

the animals (orangutans) were helping the zookeeper. Children were asked to press a button as 

quickly as they could every time they saw a picture of an animal (Go trials) but to inhibit their 

response each time they saw a helper (No-Go trials). 

The task began with a brief practice block consisting of 12 trials (9 with Go images and 3 

with No-Go images). Children then completed eight blocks of the task, each with 40 trials (each 

including 10 images of the helpers and 30 novel pictures), for a total of 320 trials. Each trial 

started with the presentation of a fixation cross displayed for a randomized interval ranging from 

200-300 ms. Then, an image of an animal (the stimulus) was presented for 750 ms, followed by a 

blank black screen for 500 ms. Responses were registered during stimulus presentation as well as 

during the blank screen (response window=1250ms). All images were of the same size and were 

selected carefully so that the stimuli were easily identifiable from the background but were not 

particularly salient for other reasons. This was done to prevent children from being drawn to a 

particular stimulus because of the image background or other peripheral features. Children made 

responses on a standard game controller (Logitech Dual Action Gamepad USB; Logitech, 

Newark, CA, USA). Both speed and accuracy were emphasized; children were instructed to 

press the button as fast as possible, with regular reminders given not to press the button for No-
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Go trials. No-Go trials are described as more difficult than Go trials because they require 

response inhibition skills and appear less frequently in this paradigm. To sustain enthusiasm and 

task engagement, children were provided with short breaks, as necessary. 

Behavioral Outcome Measures. Reaction time (RT) was recorded as time (ms) from 

stimuli presentation to onset of response. Accuracy was also recorded within the response 

window (1250 ms). A correct response was indicated as a button-press for Go trials and the 

omission of a response for No-Go trials. RT was recorded for both correct Go-trials and incorrect 

No-Go trials. Trial performance (accuracy, reaction time) was extracted from E-prime data files 

whenever possible. Due to equipment error, trial performance for a subset of participants had to 

be calculated from marker files in the electrophysiological recording data (N=26). As such, data 

source was added a covariate in predictors of trial performance outcomes for IRT analyses 

(N=6494 trials). 

For replication of traditional observed average scores, accuracy was analyzed as percent 

errors of omission (Go trials in which participants did not respond) and percent errors of 

commission (No-Go trials in which participants responded). Additionally, a d-prime score 

incorporating accuracy on both Go and No-Go trials was calculated (Z(Correct/Hit) – 

Z(Incorrect/False Alarm). An average RT for correct Go trials (RTC) and incorrect No-Go trials 

(RTI) was used. Additionally, a standard deviation of RT was used to assess variance in reaction 

times for Go (SDRT-C) and No-Go (SDRT-I) trials. Post-error slowing and post-error accuracy 

measures were calculated (average performance following error responses - average performance 

following correct).  

Individual performance at the trial-level was utilized for estimating adjusted performance 

measures in Aim 1. Specifically, cross-classified multilevel IRT models were used to account for 
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the unique presentation of stimuli that each child experienced and to estimate percent likelihood 

of responding correctly to Go and No-Go stimuli and average RTs. Accuracy probabilities were 

inverse coded to match traditional presentation of measures in terms of likelihood of erring. 

Separate models for Go and No-Go stimuli were used. Single values for accuracy (EOM, 

ECOM) and reaction time (RTC, RTI) were extracted for later SEM analyses (Adjusted Measure 

Model). Following model results, standard deviation in adjusted RT (SDRTC, SDRTI) and an 

adjusted d-prime score were also calculated for each participant. Additionally, in order to 

calculate PES and PES, an indicator variable of prior trial accuracy was utilized to allow for 

extraction of predicted performance following correct and erroneous responses. 

ERP Outcome Measures. Electroencephalogram (EEG) recordings were made from 32 

Ag/AgCl electrodes using a Biosemi Active 2 system and processed offline using customized 

EEGLAB and ERPLAB scripts (for more information see Isbell & Grammer, under review). The 

ERN and CRN were measured at site FCz, as an average voltage (uV) between -50 and 50 ms of 

response onset for error and correct trials, respectively. Pe was measured as the average voltage 

between 200 to 500 ms at site Pz, consistent with previous research. The morphology and 

amplitude of the correct Go and incorrect No-Go trials were different between frequently 

occurring early (0-750 ms) and infrequently occurring late (750-1250 ms) responses. Previous 

research indicates that there may be different cognitive processes underlying quick versus slow 

responses (Gehring et al., 2011).  As such, late responses were excluded from analyses, meaning 

that all response-locked data comes from trials in which participants responded within the first 

750 ms of stimulus onset (see Isbell & Grammer, 2021). 

Due to differences in the quality of EEG data, the amount of “clean” data can vary 

substantially between participants. Particularly, movement and electrical noise create artifacts 
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within EEG data that is difficult to extract. As such, average activity (uV) across trials at 

predefined time windows was utilized for investigation of response-locked components. 

Specifically, in the traditional comparison analyses, the ERN, CRN, and Pe components were 

utilized as raw averages (uV) to assess neural correlates of response monitoring. In the Adjusted 

Measures Model, ERP measures were estimated using multiple regression models that 

minimized age, data quality and other sources of measurement error in ERP values as suggested 

by Taylor et al. (2018).  

Woodcock Johnson Tests of Achievement III 

Math and reading skills were measured using subtests of the Woodcock Johnson III Tests 

of Achievement which is age and grade-normed for use in populations of 2-90+ years-of-age 

(Mather, 2001). Specifically, children completed the letter word identification, passage 

comprehension, and applied problems subtests (for a complete review of materials see Bradley-

Johnson et al., 2004).  

The Letter-Word Identification subtest includes 76 items and assesses children’s early 

reading ability. The first 14 items assess the ability to name letters. Subsequent items include 

phonetically regular and irregular words, where phonetically irregular words cannot be decoded 

using phonics. Passage comprehension is a 47-item subtest in which most items ask participants 

to supply missing words in a passage, to assess children’s understanding of what they read. The 

Applied Problems subtest assesses early math skill using word problems, pictures, and numbers 

and consists of 63 items. Participants were asked to listen to the item, determine the procedure to 

solve the problem, and successfully complete the computations. Participants are given a pencil 

and paper to help solve the items after they reach a certain level of difficulty in the task. For all 

subtests, items grow increasingly difficult as participants progress. 
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Due to lack of item-level data, internal consistencies of these measures were not 

calculated (see Ahmed et al., 2021). However, external validation efforts have demonstrated 

excellent reliability (Cronbach’s α = .93) for the academic achievement battery among 

elementary students and very high test-retest reliability (r = .95; Mather, 2001). The current 

project uses W scores of subtest performance, which accommodate for differences in item 

difficulty in estimations of child ability (Jaffe, 2009). 

Missingness and Inclusion Criteria 

Children with missing data for behavioral, ERP, or academic measures were deleted list-

wise, given a lack of literature on which to base predefined expected associations amongst these 

variables. To be included in the sample, children were required to have completed at least half of 

the Go/No-Go task, with higher than 25% of accuracy on Go trials. It is suspected that children 

who do not reach this criterion do not fully participate in the task (see Isbell & Grammer, 2021). 

Additionally, children needed to have at least 6 epochs of usable ERP data for both correct Go 

and incorrect No-Go responses, in compliance with standards for ERP analyses in children 

(Pontifex et al., 2010).  

In Aim 1, cross-classified IRT models were based on 240 Go trials and 80 No-Go trials. 

However, due to task design and inclusion criterion, children had variable number of trials for 

reaction time and accuracy variables. Additionally, trials in which children responded in under 

50 ms of Go/No-Go stimuli were excluded from behavioral analyses, consistent with methods 

used in the original and subsequent implementations of the task (Torgrimson et al., 2021).  

Statistical Approach 
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The analytic approach for the project was hierarchical, such that main analyses for each 

aim was dependent on the results from the preceding aim. Specifically, analyses for Aim 1 

produced adjusted performance measures of behavioral performance on the Go/No-Go task that 

were used to estimate latent construct(s) of cognitive control in Aim 2. Aim 3 then built off of 

the final model from Aim 2 in order to examine how neural measures load onto behavioral 

models of cognitive control.    

Aim 1: Characterize Cognitive Performance 

Cross-classified multilevel IRT modeling was used to estimate accuracy and reaction 

time measures of Go/No-Go performance. A cross-classified multilevel IRT model is best suited 

to minimize measurement error and estimate adjusted performance scores that account for 

randomization of trials across participants. These adjusted performance scores theoretically 

reveal “true” measures of trait constructs (e.g., inhibition), that are not conflated by extraneous 

factors or measurement error. IRT models theoretically separate measurement of the participant 

from performance on the item, or in this case, trial. Using a probabilistic approach, logistic IRT 

models produce probability scores for accuracy on an item (trial), given the child’s ability and 

the item’s difficulty (Kamata, 2001). A cross-classified multilevel structure further allows for 

separation of factor effects on responses that can be classified across an item (e.g., trial 1 of task) 

and individual participant. In this project, I refer to this as a child-by-trial factor (Murphy & 

Beretvas, 2015).  

Stimuli in the Zoo Game were randomly presented within each block of the task. 

Therefore, participants completed a similar task in terms of overall percent of Go/No-Go stimuli, 

but at the level of individual stimulus presentation, each child completed a unique set of trials. 

For example, trial 1 could have been presented as either a Go or No-Go stimulus for each child. 
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Additionally, the preceding context of each trial was also unique across participants. Thus, child 

A might have been presented with a No-Go stimulus as the 8th trial, preceded by 3 Go stimuli. 

Whereas, child B may also have been presented with a No-Go stimulus at the 8th trial but 

preceded by a No-Go stimulus. Differences in preceding trial stimuli may alter the likelihood of 

responding appropriately and the reaction time of response for each trial. Because trials were 

randomized within each participant, preceding context was considered a child-by-trial factor. 

Figure 1 depicts the cross-classified structure of factors that attribute to behavioral 

performance (i.e., response). As shown, response performance (Level 1) can be attributed to 

Level 2 factors that are related to trial (i) variance (e.g., trial stimuli), child (j) variance (e.g., age, 

gender), and child-by-trial (ij) variance (e.g., the randomization of trials across children). 

Figure 1  

IRT Model of Behavioral Performance Modelled from Van den Noortgate, De Boeck, and  

 

Meulders (2003). 

 

Logistic models were used for estimating accuracy variables (EOM, ECOM) and linear 

models were used to estimate reaction time for correct Go (RTC) and incorrect No-Go (RTI) 

trials. Scores do not need to be continuous or on an interval scale to meet IRT model 

assumptions. Therefore, a child’s accuracy estimate is based on the likelihood of responding 

correctly given the child’s ability, trial difficulty, and unique order of trials that the child 

Trial 1 Trial I Child 1 Child J 

(Children and 

trials) 
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received. Similarly, a reaction time estimate accounts for child ability, trial difficulty, and 

randomization of trials. Model equations for logistic and continuous models read as follows: 

 

Logistic: 𝐿𝑜𝑔𝑖𝑡(𝑌𝑖𝑗) = 𝛽0 + 𝛽1𝐶1𝑗 + 𝛽2𝐶2𝑗 + 𝛽3𝐶3𝑗 + 𝛽4𝑇1𝑖𝑗 +  𝑢1𝑗 + 𝑢2𝑖 

Continuous: 𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝐶1𝑗 + 𝛽2𝐶2𝑗 + 𝛽3𝐶3𝑗 + 𝛽4𝑇1𝑖𝑗 + 𝑢1𝑗 + 𝑢2𝑖 

𝑢𝑖𝑗~𝑁(0, 𝜎𝑢1
2 ) 

𝑢2𝑖~𝑁(0, 𝜎𝑢2
2 ) 

 

The logistic models demonstrate the likelihood that child j will accurately respond to trial 

i. The continuous models predict the average response time to trial i for child j. Child level 

covariates are denoted with C and child-by-trial covariates are denoted with T. There are three 

child covariates of age (𝐶1𝑗; continuous), data source (𝐶2𝑗; dichotomous), and gender (𝐶3𝑗; 

dichotomous). The effect of these covariates on task performance are denoted by 𝛽1, 𝛽2, and 𝛽3 

respectively. There is one child-by-trial covariate, trial difficulty, operationalized as the number 

of preceding Go trials (𝑇1𝑖𝑗; continuous). The effect of trial difficulty on response is denoted as 

𝛽4. Random effects for child and trial are denoted by 𝑢1𝑗 and 𝑢2𝑖, respectively. Variance 

parameters for child and trial effects are represented as 𝜎𝑢1
2  and 𝜎𝑢2

2 , respectively. 

A series of models using restricted and unrestricted parameters were assessed to find best 

model fit using the R software (R Core Team, 2017) package lme4 (Bates et al., 2015). Full 

information maximum likelihood (FIML) was used to calculate information criteria for model 

comparisons. In line with previous literature, a sample-corrected Bayesian information criterion 

(BIC; Schwarz, 1978) and finite Akaike’s information criterion (AIC; Hurvich & Tsai, 1989) 
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were used as information criteria (Beretvas & Murphy, 2013). A lower information criteria value 

(>2) indicated better fit.  

Adjusted accuracy and reaction time measures calculated in Aim 1 were used for 

modeling cognitive control skills in aim 2. Specifically, adjusted RTC and RTI were estimated as 

a child’s average of predicted values for trial reaction time to Go and No-Go stimuli, 

respectively. Adjusted measures of EOM and ECOM were calculated as an average in a child’s 

probability for error response on Go and No-Go trials, respectively. Other adjusted measures of 

accuracy (d-prime), reaction time (SDRT-C, SDRT-I), and post-error adjustments (PES, PEA) 

were calculated post hoc.  

Aim 2: Assess relations among behavioral performance measures and academics  

The second aim of my dissertation was to assess relations among behavioral performance 

measures and children’s reading and math skills. I also sought to evaluate the utility of 

estimating adjusted scores that accommodate for child-by-trial variance in behavioral measures 

of Go/No-Go task performance. A series of SEM models were used to compare the amount of 

variance accounted for in academic skill by cognitive control when estimated using the Observed 

indicator model or the Adjusted Score indicator model. The R software (R Core Team, 2017) 

package lavaan (Rosseel, 2012) was used to estimate models. SEM creates weighted aggregates 

of latent factors and estimates both factor and error variance in the model. This is superior to 

composite scores that average performance across variables because it allows for indicator 

variables to account for varying degrees of variance in the factor of interest. Similarly, traditional 

regression analyses assume variables are measured without error, so modeling error variance 

adjusts provides a more accurate estimation of between factor relations (Weston & Gore, 2006). 
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The recommended two-step approach was used to estimate the SEM models (Kline, 

2015). In step 1, confirmatory factor analyses (CFA) models were used to estimate factors of 

cognitive control and academic skills. For academic skills, a one-factor CFA was used entering 

subtests of the Woodcock Johnson as indicator, or manifest, variables. Measures were allowed to 

covary. For cognitive control, both a one-factor and two-factor model was tested using 

behavioral measures from the Go/No-Go task. This was done in two iterations, 1) using observed 

scores from the Go/No-Go (Observed Model) and 2) using adjusted performance estimates 

calculated in aim 1 (Adjusted Score Model). Measures were allowed to covary and load onto 

both measures of attention and inhibition.  

In step 2, I compared full SEM models testing hypothesized interrelations between 

factors. Both 1-level and 2-level SEM models with children’s performance nested within schools 

were assessed. Final CFA models of cognitive control estimated from Observed and Adjusted 

Measure indicator variables were used as predictors of academic skills. Strength of relations 

between cognitive control and academic skills were used to assess whether Observed or Adjusted 

Measure models of cognitive control were better at predicting variability in academic skills. For 

all models, FIML was used to calculate the chi-square difference test, to assess the difference in 

model deviance statistics, which is assumed to be chi-square distributed (Hox, 2002; Raudenbush 

& Bryk, 2002). Chi-square difference tests are appropriate when data is in a nested structure, 

versus the cross-classified structure in Aim 1 methods (Beretvas & Murphy, 2013).  

Aim 3 Evaluate contributions of neural correlates of cognitive control 

My third and final aim was to examine how neural measures of response monitoring load 

onto behavioral factors of cognitive control and whether these additional indicators change the 

strength of predictions between cognitive control and academic skills. I first used multiple 
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regression models to estimate Adjusted ERP measures that minimized confounds associated with 

age, data quality (Z-score of artifact-free ERP epochs), and other sources of measurement error. 

Equation for regression models was as follows:  

 

𝛾𝑖 =  𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 +   𝜀𝑖 

𝜀𝑖~𝑁(0, 𝜎2) 

The continuous models estimated average ERP (CRN, ERN, or Pe) amplitudes for child i. 

There are two child covariates of age (𝑋1𝑖; continuous) and data quality (𝑋2𝑖; continuous). 

Developmental differences in ERP measurement were indexed by 𝛽1, the fixed effect parameter 

of age. Data quality was calculated as a Z-score of artifact-free ERP epochs. Larger numbers of 

artifact-free ERP epochs indicate more usable brain data. By calculating a standardized score, I 

was able to examine the effect of having above or below average data quality on estimates of 

ERP measures, as represented by the fixed effect parameter 𝛽2. Therefore, in this model, 𝛽0 

represents the average expected ERP amplitude for children aged 0 years with an average 

number of artifact-free epochs. Measurement error was estimated by the random effect parameter 

𝜀𝑖, with variance 𝜎2. 

Using the best-fit model from Aim 2, I then tested two additional SEM models, 

incorporating either 1) Observed Raw Average ERP measures (Observed Measures Model) or 2) 

Adjusted Measures of ERPs (Adjusted Measure Model). Model fit for the CFA step in each 

model was determined using FIML and chi-square difference tests. SEM models in step 2 were 

compared using the strength of relation between academic factors and cognitive control.   

Power Analysis 
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To my knowledge, there is no calculator or standard for power analysis with a cross-

classified multilevel IRT. However, when considering power for these types of models, total 

sample size is determined as the product of Level-1 and Level-2 sample sizes. Thus, trial count 

and sample size are both important factors for power consideration in the proposed project. The 

classification structure of the proposed models puts the level-2 sample size as the number of 

children (n=292) and the number of trials (n>40). Level-1 sample size (number of responses) is 

also equivalent to number of trials (n>40). Therefore, my minimum total sample size is 11,680 

(40*292). Bevertas and Murphy (2013) compared sample sizes in a 2-level cross-classified 

model where minimum sample size across was 625, representing 25, level-1 students cross-

classified across 25, level-2 middle and high schools. Results indicated that the sample size of 

level-1 was most related to model convergence. As their study used level-1 sample sizes of 25 

and 50, a minimum of 40 in the current study should be sufficient. Additionally, they found that 

more balanced distributions of and higher degrees of cross-classification also improved 

convergence rates. Because every child completed at least 40 trials, I will also have a high degree 

of cross-classification and more balanced distributions in my proposed models.  

For the SEM models outlined in Aims 2 and 3, power analyses were conducted to 

determine the minimum sample size needed to detect medium and large effect sizes with an 

alpha of = 0.05 and power = 0.95 using Soper’s online calculator (2021). For an SEM with four 

latent variables and 14 indicator variables, the results indicated a recommended sample size of 

207 participants. Specifically, 207 participants to detect an effect and 138 for the model 

structure. Notably, the recommended minimum sample size decreased when adjusting for more 

conservative probability levels (.025, .0125). The sample size required to detect an effect also 

significantly decreased when using a three-factor model (if one factor of cognitive control is 
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determined to be the best fit for behavioral data). For Aim 2, the available sample size was 287 

children (NMale=144, Mage=6.14) with usable behavioral and academic data, indicating sufficient 

power. Similarly, in Aim 3, 246 children (NMale=122, Mage=6.16) had complete behavioral, 

neural, and academic data. One child did not have information about which school they attended, 

and so they were removed from the 2-level SEM analyses. 

Results 

For clarity, results are organized by aim and analytic approach. Traditional observed 

behavioral measures include average (correct RT, incorrect RT, errors of omission, errors of 

commission, PES, PEA), variance (SDRT correct, SDRT incorrect), and standardized measures 

(d-prime). Alternative analytic approaches include IRT models of behavioral performance and 

regression models of neural measures. Adjusted performance scores are operationalized as 

predicted performance scores as estimated from the IRT and regression models.  

Aim 1: Quantifying Behavioral Performance 

Traditional Observed Behavioral Measures 

Summary statistics for behavioral measures are presented in Table 2. On average, 

children performed well on the Go/No-Go task with an average of 8.93% errors of omission 

(EOM) on Go trials and 39.35% errors of commission (ECOM) on No-Go trials. However, there 

was a range of performance with EOM ranging from 0.00% to 61.92% (sd=10.00%) and ECOM 

ranging from 5.00% to 96.92% (sd=18.63%). A variance ratio test indicated that boys had greater 

variance in RT Correct than girls (F(147)=1.40, p=0.43). Additionally, boys had greater variance 

between trial reaction times on correct Go trials (F(30922)=1.07, p<.001) but less variance than 
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girls in reaction time for incorrect No-Go trials (F(4863)=0.88, p<0.001). No gender differences 

in variance were found for accuracy measures.  

Table 2 

Behavioral Data: Descriptive Statistics 

Variable Min Mean Max SD 

EOM 0.00 8.93 61.92 10.00 

ECOM 5.00 39.35 96.92 18.63 

RT Correct (ms) 362.35 555.99 769.76 71.35 

RT Error (ms) 309.67 470.01 667.54 71.57 

SDRTC (ms) 58.76 158.83 295.01 42.89 

SDRTI (ms) 29.77 153.75 352.87 61.64 

PEA -70.72 -9.57 7.58 13.31 

PES (ms) -131.29 17.45 178.91 51.51 

d-prime -0.42 1.86 3.74 0.83 

 

On average children responded faster to No-Go trials, t(291)=27.05, p<.001 and had 

more variability in trial reaction times for Go (as indexed by SDRTC) than No-Go trials 

(SDRTI), t(291)=2.14, p=0.033. Variability within subjects on reaction time measures (SDRTC, 

SDRTI) was also descriptively larger than variability between subjects (sample standard 

deviation of RT Correct and RT Error; see Table 2). On average, children showed post-error 

slowing (mean=17.45 ms) but not post-error improvements in accuracy (mean=-9.57%), as mean 

values were negative. Yet, there was a subset of children that demonstrated post-error 

improvements in accuracy (N=71, 24.32%). More than half of the children demonstrated post-

error slowing (N=183, 62.67%). Three children had negative d-prime values, indicating that their 

false alarm (ECOM) rates were higher than their accuracy on Go trials. There were outliers 

present in all behavioral variables. As such, all measures were winsorized at a 10% level, or to 2 

standard deviations of the mean, allowing for maximal sample retention (Dixon, 1960).  
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Table 3 

Correlations between Behavioral Measures  

 EOM ECOM RTC RTI SDRTC SDRTI d-prime PEA PES Age 

EOM  0.052 0.208*** 0.265*** 0.456*** 0.441*** -0.693*** -0.752*** 0.149* -0.302*** 

ECOM 0.378  -0.457*** -0.111+ 0.425*** 0.307*** -0.704*** 0.127* 0.054 -0.009 

RTC <.001 <.001  0.727*** 0.320*** 0.364*** 0.112+ -0.239*** 0.096 -0.267*** 

RTI <.001 0.057 <.001  0.302*** 0.504*** -0.139* -0.241*** 0.113+ -0.268*** 

SDRTC <.001 <.001 <.001 <.001  0.766*** -0.633*** -0.273*** 0.190** -0.230*** 

SDRTI <.001 <.001 <.001 <.001 <.001  -0.540*** -0.290*** 0.172** -0.233*** 

d- prime <.001 <.001 0.057 0.018 <.001 <.001  0.425*** -0.155** 0.261*** 

PEA <.001 0.031 <.001 <.001 <.001 <.001 <.001  -0.181** 0.219*** 

PES 0.011 0.359 0.101 0.055 0.001 0.003 0.008 0.002  0.066 

Age <.001 0.881 <.001 <.001 <.001 <.001 <.001 <.001 0.263  
 

Note: N=292 for all variables. Above the diagonal line are r-values and below the diagonal, are associated p-values.  

 

***p<.001,**p<.01,*p<.05,+p<.01 
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A correlation table, indicating relations between winsorized behavioral variables and age 

is presented in Table 3. Trial accuracy variables were not correlated (r(292)=0.05, p=.378), 

providing one piece of evidence that accuracy on Go and No-Go trials may reflect different 

cognitive processes. All trial reaction time measures were positively correlated, indicating 

similar average (r(292)=0.73, p<.001) and standard deviation (r(292)=0.77, p<.001) values 

between Go and No-Go trials. Additionally, RTC was correlated with both EOM and ECOM, 

such that more EOM were related to slower reaction times (r(292)=0.21, p<.001), whereas more 

ECOM were related to faster reaction times on the frequent Go trials (r(292)=0.21, p<.001). The  

d-prime measure was negatively correlated with trial accuracy and standard deviation in trial 

reaction times. This finding demonstrates that higher d-prime values, indicating better ratio of 

correct “hit” Go trials to incorrect “false alarm” No-Go trials, was related to lower errors of 

omission (r(292)=-0.69, p<.001) and commission (r(292)=-0.70, p<.001) and less variable 

reaction times for Go (r(292)=-0.63, p<.001) and No-Go (r(292)=-0.54, p<.001) trials. Post-error 

accuracy and was most correlated with EOM (r(292)=-0.75, p<.001), such that fewer EOM was 

related to more positive values of PEA, indicative of post-error adjustments in behavior. Age was 

correlated with better cognitive performance on all behavioral variables except ECOM and PES, 

such that older children were more likely to have fewer EOM, faster and less variable reaction 

times, and more positive scores on d-prime and PEA variables. 

Next, gender was assessed as a between-subjects factor for winsorized behavioral 

measures. Table 4 shows the results of corresponding t-tests. Performance differed as a function 

of gender across three behavioral measures. On average, females had fewer percent ECOM 

(t(290)=3.65, p<.001), longer reaction times to correct Go trials (t(290)=-2.70, p<.001), and  
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Table 4 

Gender Differences in Behavioral Data 

Variables Mean Male Mean Female t p 

Age 6.17 6.12 0.52 .601 

%EOM 8.67 8.05 0.65 .516 

%ECOM 42.47 35.18 3.65*** <.001 

RT Correct 545.33 566.82 -2.70** .007 

RT Error 462.32 475.76 -1.69 .093 

SDRTC 159.02 157.73 0.27 .790 

SDRTI 150.09 154.74 -0.68 .497 

%PEA -8.37 -9.35 0.75 .453 

PES 13.74 21.04 1.29 0.199 

d-prime 1.73 2.00 -2.87** .004 

 

better (more positive) d-prime scores (t(290)=-2.87, p=.004). Overall, results indicated that 

female participants showed better response inhibition skills and had higher percentages of 

successful “hit” rates on Go trials as compared to incorrect “false alarm” rates on No-Go trials.  

IRT Models of Behavioral Performance 

  Tables 5 and 6 demonstrate the between and within subject trial-level descriptive 

statistics, including the range of each variable included in IRT analyses. For each behavioral 

outcome variable (EOM, ECOM, RT Correct, RT Error), the same six models were assessed. 

Model 1 included predictions of the fixed intercept and the random effect of level-2 factors of 

trial and child ID. Model 2 built off of Model 1, adding the predictor variable of trial difficulty 

(number of preceding Go trials). Covariates were then incrementally added in each model 

iteration, such that data source, gender, and age were added as one additional covariate in 

Models 3, 4, and 5, respectively. Last, a dichotomous indicator variable identifying whether the 

trial was following a correct or erroneous response was added to Model 6.  
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Table 5  

Between Subject Trial-Level Descriptive Information 

Trial Type  N Trial Difficulty Post-Correct Post-Error 

All Min 160 0 121 10 

 Mean 309.23 6.82 252.29 49.13 

 Max 320 22 301 146 

 SD 25.92 4.48 36.93 25.53 

Go Trials Min 120 0 88 4 

 Mean 231.76 6.37 188.87 37.13 

 Max 240 21 228 109 

 SD 19.45 4.23 27.89 19.42 

No-Go Trials Min 40 0 25 1 

 Mean 77.45 5.70 63.42 12.00 

 Max 80 22 78 39 

 SD 6.59 4.04 9.67 6.83 

 

 

Table 6  

Within Subject Trial-Level Descriptive Information 

Trial Type  Trial Difficulty 

All Min 0-0 

 Mean 2.02-3.21 

 Max 8-22 

 SD 1.99-3.71 

Go Trials Min 0-0 

 Mean 1.85-3.27 

 Max 7-21 

 SD 1.79-3.76 

No-Go Trials Min 0-0 

 Mean 2.43-3.00 

 Max 8-22 

 SD 2.23-3.76 

 

Note: Values indicate a range between participants. For example, some participants had a 

maximum of 8 preceding Go trials, while some had a maximum of 22 preceding Go trials. 
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Model 6 was the best fit model for all outcome measures. Table 7 shows the factor 

estimates for Model 6 for each of the four main outcome variables. Differences in performance 

between trials accounted for approximately 2.53% of the variance in RT Correct compared to 

differences between children accounting for approximately 12.23% of the variance in 

performance. For RT Error, differences between trials accounted for approximately 1.39% of 

variance and differences between children accounted for approximately 10.10%. Trial variance 

was expectedly smaller for logistic regression models, as well, compared to variance between 

children. Trial variance was approximately 0.08(sd=0.29) compared to 1.07(sd=1.03) for child 

variance in EOM. Similarly, trial variance was 0.02(sd=0.13) compared to 0.71(sd=0.84) for 

child variance in ECOM. 

Table 7     

 

Parameter Estimates for Predicted Value Models 

 

 RT Correct RT Error EOM ECOM 

Fixed Effect (SE) 

(Intercept) 729.71(2907)*** 621.63(32.14)*** 0.03(0.52) -0.24(0.42) 

Trial 

Difficulty -4.64(0.26)*** -1.48(0.69)* 0.01(0.01)* 0.02(0.01)*** 

Data Source -111.54(12.79)*** -50.25(14.27)*** 0.42(0.22) 0.29(0.18) 

Female 16.54(7.23)* 11.61(7.98) -0.06(0.13) -0.38(0.10)*** 

Age -26.54(7.23) -25.03(5.09)*** -0.53(0.08)*** -0.02(0.07) 

Post-Error 10.84(1.99)*** 22.01(5.35)*** 1.19(0.03)*** -0.10(0.04)* 

Random Effect (SD) 

Trial  758.1(27.53) 465.8(21.58) 0.08(0.29) 0.02(0.13) 

Child 3666.2(60.55) 3383.2(58.17) 1.07(1.03) 0.71(0.84) 

Residual 25564.5(159.89) 29661.1(172.22)   

Fit Statistics    

AIC 784257.2 113648.5 31943.1 27139.2 

BIC 784338.3 113712.0 32015.9 27203.2 

Log 

Likelihood -392119.6 -56815.2 -15963.6 -13561.6 

Deviance 784239.2 113630.5 31927.1 27123.2 

Residual (df) 6056 8602 65984 22017 

 

Note: ***p<.001, **p<.01, *p<.05, +p<.01 



43 

 

Notably, trial difficulty was a significant predictor in all finalized models. Trial difficulty 

was negatively related to reaction time for both No-Go (β=-1.48, p=.027) and Go (β=-4.64, 

p<.001) trials, such that larger numbers of preceding Go trials were related to faster reaction 

times. Specifically, for every additional preceding Go trial, reaction time is expected to decrease 

(get faster) by 4.64 ms for Go trials and by 1.48 ms for No-Go trials, while holding all other 

predictors constant. Greater number of preceding Go trials was also related to increased 

probability of error on No-Go trials (β=0.02, p<.001) and Go trials (β=0.01, p=.048). In other 

words, it was harder for participants to inhibit a response to No-Go trials or sustain vigilance to 

Go trials if the context of the previous trials included a greater number of Go trials. For ECOM, 

each additional preceding No-Go trial is thought to relate to a 0.42%-0.50% increase in 

probability of error, given that all other variables remain constant. Similarly, for EOM, each 

additional preceding Go trial is thought to relate to a 0.03%-0.14% increase in probability of 

error for children of average age, given that all other variables remain constant.  

The post-error indicator was also statistically significant of performance on accuracy and 

reaction time measures for both Go and No-Go trials. Specifically, average children are expected 

to demonstrate post-error slowing for both Go (β=10.84, p<.001) and No-Go trials (β=22.01, 

p<.001) as well as an increased likelihood of making an EOM (β=1.19, p<.001) following error, 

but a decreased negatively likelihood of an ECOM (β=-0.10, p=.022) following error. This 

finding suggests that in the current sample, children may have oriented too much to an error and 

slowed their reaction time, leading to less task engagement or greater motor inhibition (greater 

chance of EOM and less chance of ECOM). For children of average age, probability of making 

an error is expected to increase by 7.32-10.85% for Go trials and decrease by 2.14%-2.49% for 

No-Go trials for post-error versus post-correct trials if the trial was preceded by a No-Go trial (0 
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preceding Go) and other predictors are held constant. That means for a male child of average age 

with data from E-prime, if the current trial has is preceded by 0 goal trials and a correct response, 

their probability of making an error of omission is expected to be 3.8%, whereas their probability 

of making an error of commission is expected to be 41.02%. If that child had a trial with 22 

preceding Go trials (the maximum observed in the current sample), we would expect the 

probability of EOM to be 4.7%, and the probability of ECOM to be 51.92%. Likewise, the same 

child’s probability of exhibiting an EOM would be 11.5% and their probability of demonstrating 

an ECOM would be 38.63% if the trial was preceded by an erroneous response but 0 Go trials. 

Whereas for a trial following an error and 22 preceding Go trials, the likelihood of error would 

be 13.95% for EOM and 49.43% for ECOM. 

Following model specification, predicted scores were calculated utilizing parameter 

estimates identified in Model 6, which include analytic adjustments for trial randomization, trial 

difficulty, age, gender, and data source as well as random effects of trial and child variance. 

Because parameter estimates of trial difficulty did not differ practically between models 2-5 (see 

Tables A1-A4 in Appendix A), all covariates regardless of statistical significance were retained 

as control factors for estimating predicted values, as gender, age, and data source were 

significant in at least one of the models. Of note, estimated scores were not calculated for the 

first trial in each block, as it was not directly preceded by a trial (max=8 per participant). 

Predicted performance measures of accuracy (EOM, ECOM, d-prime), reaction time (RTI, RTC, 

SDRTI, SDRTC), and post-error adjustments (PEA, PES) were then calculated for each child to 

index an “adjusted” performance measure. These predicted measures allowed for a comparison 

of factor loadings in observed versus adjusted indicators of cognitive control. 
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Adjusted (predicted) versus observed performance measures are presented in Table A5 

(see Appendix A). Mean scores between predicted and observed measures were comparable. 

However, predicted values had smaller standard deviations in performance between children. 

Descriptive statistics for residual scores are presented in Table 8. Predicted scores were closest to 

the fitted model for EOM and d-prime scores. Reaction time variables of SDRTC, SDRTI, and 

PES had the largest residual variances. Notably, all SDRTC and SDRTI values were positive, 

indicating that observed standard reaction times were more variable than predicted standard 

deviations in reaction time. Negative residual values indicate better observed performance for 

EOM and ECOM measures (less errors) and slower reaction times (RTC, RTI) for observed than 

predicted measures. In contrast, negative values indicate less post-error adjustments in accuracy 

(PEA) and slowing (PES) as well as smaller ratios between hit and false alarm rates (lower d-

prime performance) for observed than predicted measures.  

 

Table 8 

Residual Values: Descriptive Statistics 

Variable Min Mean Max SD 

%EOM -0.79 0.15 2.70 0.53 

%ECOM -3.76 -0.07 5.92 1.67 

RT Correct (ms) -6.81 1.34 15.94 2.76 

RT Error (ms) -108.12 2.38 72.90 18.74 

SDRTC (ms) 30.80 130.98 265.15 42.55 

SDRTI (ms) 14.28 138.36 337.72 60.98 

%PEA -55.99 0.72 23.99 9.10 

PES (ms) -146.87 -1.07 143.12 50.91 

d-prime -0.46 0.02 0.48 0.11 
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Table 9 

Correlations between Predicted Behavioral Measures  

 

 EOM ECOM RTC RTI SDRTC SDRTI d-prime PEA_W PES_W age 

EOM 
 

0.049 0.197*** 0.269*** 0.113+ 0.199** -0.714*** -0.974*** -0.132* -0.309*** 

ECOM 0.405 
 

-0.460*** -0.117* 0.105+ 0.195** -0.694*** -0.020 0.196** -0.015 

RTC 0.001 0.000 
 

0.757*** 0.150* 0.040 0.118* -0.269*** -0.271*** -0.271*** 

RTI 0.000 0.046 0.000 
 

0.183** 0.171** -0.144* -0.320*** -0.115* -0.343*** 

SDRTC 0.054 0.073 0.010 0.002 
 

0.111+ -0.152** -0.103+ 0.321*** -0.080 

SDRTI 0.001 0.001 0.498 0.003 0.059 
 

-0.255*** -0.188** 0.017 -0.110+ 

d-prime 0.000 0.000 0.045 0.014 0.009 0.000 
 

0.710*** -0.031 0.280*** 

PEA_W 0.000 0.736 0.000 0.000 0.078 0.001 0.000 
 

0.167** 0.352*** 

PES_W 0.024 0.001 0.000 0.049 0.000 0.778 0.596 0.004 
 

0.099+ 

Age 0.000 0.797 0.000 0.000 0.174 0.060 0.000 0.000 0.090 
 

 

Note: N=292 for all variables. Above the diagonal line are r-values and below the diagonal, are associated p-values.  

 

***p<.001, **p<.01, *p<.05, +p<.01 

           

 

Correlations between predicted measures are presented in Table 9. Results reflect many of the same patterns of relations 

between observed variables outlined in Table 3. Main differences include the standard deviation of predicted values of RT (SDRTI, 

SDRTC), such that almost all correlations with SDRT measures decreased, perhaps due to the smaller range in these variables for  
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adjusted versus observed measures. Notably, some correlations with post-error adjustment 

variables increased. PEA was highly correlated with EOM (r(292)=-0.97, p<.001) and d-prime 

(r(292)=0.710, p<.001) for predicted values, indicating greater improvements in accuracy 

following error were related to fewer EOM and better d-prime scores. For predicted values, 

greater PES was related to increased average ECOM (r(292)=0.20, p=.001) and faster overall 

reaction times for Go (r(292)=-0.27, p<.001) and No-Go trials (r(292)=-0.12, p<.001), as well as 

more trial variability in reaction time for Go trials (r(292)=0.321, p<.001). Factor loadings of 

predicted versus observed measures of task behavior onto a latent construct of cognitive control 

are described below in the Estimating Cognitive Control Construct section. 

Aim 2: Relations between Cognition and Academics 

Sample descriptives for academic subscales of the Woodcock-Johnson are presented in 

Table 10. Note, values are children’s W scores on the individual subscales. W scores are centered 

at a value of 500, representing the expected performance for a child aged 10 years or at the 

beginning of Grade 5 (Jaffe, 2009). As indicated in Table 9, there is quite a large range in W 

scores represented in the sample, with some children in early elementary school demonstrating 

the expected ability of a 5th grader and others performing at or below grade level. The largest 

range in performance was captured in the Letter Word subscale and the smallest range found for 

the Applied Problems subscale. W scores are on an equal-interval scale, such that a difference of 

value x in scores, is the same along the continuum in each subscale. In other words, the 

difference in skills between children with W scores of 300 and 304 is the same as the difference 

in skills between children with W scores of 480 and 484. To retain outliers in the sample, adjust 

for skewness in the sample distributions, and align the scaling of observed variances among 
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measures, all variables were winsorized at a 10% level (Dixon, 1960), or to 2 standard deviations 

of the mean, and then standardized to a Z-score, prior to CFA analyses.  

Table 10 

Sample Descriptives for Academic Measures 

Variable Min Mean Max SD 

Applied Problems 372 439.63 506 18.86 

Passage Comprehension 377 430.86 497 27.86 

Letter Word ID 283 402.28 525 40.77 

 

Table 11 

Bivariate Correlations between Observed Behavior Measures and Academic Skills 

 Letter Word ID  Passage Comprehension  Applied Problems  

EOM -0.261*** -0.213*** -0.262*** 

ECOM -0.135* -0.140* -0.185** 

RTC -0.159** -0.139* -0.130* 

RTI -0.153* -0.162** -0.131* 

SDRTC -0.303*** -0.278*** -0.288*** 

SDRTI -0.243*** -0.244*** -0.236*** 

d-prime 0.308*** 0.285*** 0.324*** 

PEA 0.191** 0.191** 0.180** 

PES -0.013 0.006 0.046 

Age 0.519*** 0.450*** 0.443*** 

Letter Word ID  0.829*** 0.693*** 

Passage Comprehension 0.829***  0.588*** 

Applied Problems 0.693*** 0.588***  
 

Note: N=287 for all variables.  

 

***p<.001, **p<.01, *p<.05 

 

Correlations between winsorized and standardized scores for observed behavioral 

measures and academic skills are presented in Table 11. Overall, bivariate correlations between 

behavior and academic outcomes were small, but in expected directions. Better academic skills 

were related to fewer EOM and ECOM, faster reaction times for Go and No-Go trials, less 
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variance in reaction times between trials (SDRTC, SDRTI), better d-prime scores, and greater 

post-error adjustments in accuracy. The d-prime measure had the highest correlation with 

academic measures (0.285>r<0.324). Post-error slowing was not related to any of the subscales 

of the Woodcock-Johnson. All academic subscales were also positively related with one another, 

and to age such that older children demonstrated higher math and literacy skills. 

Correlations between observed behavioral measures and academic skills were similar in 

direction and magnitude to those between academics and predicted behavioral measures (see 

Tables 11,12). Some correlations increased slightly in strength, most notably between PEA and 

academic subscales. Conversely, correlations between standard deviation in reaction time 

measures (SDRTC, SDRTI) decreased or even lost statistical significance. 

 

Table 12 

Bivariate Correlations between Predicted Behavior Measures and Academic Skills 

 Letter Word ID  Passage Comprehension  Applied Problems  

EOM -0.261*** -0.213*** -0.265*** 

ECOM -0.139* -0.143* -0.187** 

RTC -0.160** -0.139* -0.133* 

RTI -0.192** -0.193** -0.171* 

SDRTC -0.112+ -0.134* -0.103+ 

SDRTI -0.048 -0.043 -0.034 

d-prime 0.314*** 0.287*** 0.337*** 

PEA 0.295*** 0.246*** 0.286*** 

PES 0.083 0.033 0.065 

Age 0.519*** 0.450*** 0.443*** 

Letter Word ID  0.829*** 0.693*** 

Passage Comprehension 0.829***  0.588*** 

Applied Problems 0.693*** 0.588***  

 

Note: N=287 for all variables.  

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Estimating Cognitive Control Construct 

A series of models were run to estimate one-factor and two-factor CFAs of cognitive 

control. Model fit criterion included chi-square (p>.05), comparative fit index (CFI, >0.900), 

root mean square approximation (RMSEA, <.05), and standardized room mean square residual 

(SRMR, <.05). One and two-factor models were compared using AIC criterion. For all models, 

variables and co-variances were removed/added one-at-a-time to increase goodness of fit. 

Variables were removed if they demonstrated large negative residual variances and lambda 

factor loadings -1> λ>1 or fell below +/- 0.100 for lambda factor loadings (p>.05). Covariances 

were then added in incrementally, using the modindices function in lavaan, while also 

accounting for theoretically relevant residual shared variances (e.g., reaction time variables likely 

had shared variance relating to motor skills that would not be explained by cognitive control 

construct) in order to obtain a well-fitting model. Covariances were removed if they were not 

statistically significant (p>.05) unless retention of covariance in the model increased goodness-

of-fit.  

Observed Behavioral Measures of Cognitive Control. For the one-factor CFA, Model 

1 included all nine behavioral variables. Details of the one-factor and two-factor model building 

can be found in the Appendix B. The final one-factor model is presented below in Table 13 and 

Figure 2. The final model (χ2=2.11, df=3, CFI=1, AIC=3483.04, RMSEA=.000, SRMR=.009) 

included 5 indicator variables (EOM, RTC, SDRTC, SDRTI, PEA) and two covariances 

(EOM~~PEA and RTC~~PEA). The standard deviation variables (SDRTC, SDRTI) best fit the 

cognitive control latent construct (λSDRTC=0.870, λSDRTI=0.874). The latent construct explained 

the variance in EOM (λ=0.508) moderately well and explained the least variance in RTC 

(λ=0.390) and PEA measures (λ=-0.310).  
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Table 13  

 

   

One-factor CFA for Observed Behavioral Indicator Variables 

 

   

 Latent 

Estimate 

Std. 

Error 

Z-Value Variance 

Estimate 

Std. 

Error 

Z-Value λ 

EOM 1.000   0.740 0.096 7.71*** 0.508 

RTC 0.768 0.130 5.91*** 0.845 0.066 12.84*** 0.390 

SDRTC 1.713 0.197 8.71*** 0.243 0.051 4.73*** 0.870 

SDRTI 1.720 0.203 8.45*** 0.236 0.059 4.01*** 0.874 

PEA -0.611 0.093 -

6.58*** 

0.899 0.092 9.80** -0.310 

Cognitive 

Control 

   0.257 0.057 4.53***  

 

Covariances 

       

EOM~~PEA    -0.588 0.081 -7.26***  

RTC~~PEA    -0.109 0.041 -2.64***  

 

***p<.001, **p<.01, *p<.05, +p<.10 

 

Figure 2 

Cognitive Control CFA: One-factor Solution for Observed Indicator Variables 

  

Note: The anchor variable, EOM is indicated with a dotted line. Green lines are associated with 

positive factor loadings or covariances and red lines are associated with negative factor loadings 

or covariances.  
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For the two-factor CFA, variables were assigned to “attention” and “inhibition” 

constructs, given that the Go/No-Go task is thought to tap these cognitive control skills. 

Attention was anchored on EOM and inhibition was anchored on ECOM, as these represent 

performance on Go and No-Go trials which theoretically signal continued attention versus 

response inhibition skills.  

Figure 3 

Cognitive Control CFA: Two-factor Solution for Observed Indicator Variables 

 

Note: Anchor variables for each construct are indicated with dotted lines. Green lines are 

associated with positive factor loadings or covariances and red lines are associated with negative 

factor loadings or covariances.  

 

The final two-factor model is presented in Table 14 and Figure 3. The final model 

(χ2=21.28, df=14, CFI=0.996, AIC=5396.45, RMSEA=.043, SRMR=.028) included all nine 

behavioral indicator variables such that attention significantly explained variance in eight 

variables (ECOM was not added as an indicator to this construct) and inhibition explained
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Table 14  

 

       

Cognitive Control CFA: Two-factor Solution for Observed Behavioral Indicators 

 

 Latent Estimate 

Attention (SE) 

Latent Estimate 

Inhibition (SE) 

Variance 

Estimate 

Std. 

Error 

Z-Value Attention 

λ 

Inhibition 

λ 

EOM 1.000 - 0.123 0.037 3.32*** 0.936  

ECOM - 1.000 0.000    1.000 

RTI 0.330(0.08) -0.134(0.06) 0.888 0.077 11.57*** 0.309 -0.134 

SDRTI 0.487(0.06) 0.280(0.06) 0.696 0.053 13.24*** 0.456 0.280 

RTC 0.311(0.07) -0.474(0.05) 0.704 0.061 11.48*** 0.291 0.474 

SDRTC 0.502(0.06) 0.398(0.06) 0.597 0.057 10.51*** 0.470 0.398 

d-prime -0.750(0.04) -0.665(0.02) 0.012 0.018 0.63 -0.702 -0.665 

PEA -0.779(0.04) 0.172(0.04) 0.451 0.047 9.56*** -0.729 0.172 

PES 0.167(0.06) - 0.972 0.073 8.64*** 0.156  

Attention   0.873 0.101 8.64***   

Inhibition   0.997 0.071 14.068**   

 

Covariances 

       

Attention~~Inhibition   0.053 0.057 0.93   

SDRTC~~SDRTI   0.415 0.049 8.51***   

RTC~~SDRTC   0.374 0.050 7.50***   

RTC~~SDRTI   0.366 0.050 7.37***   

RTI~~RTC   0.586 0.058 10.09***   

RTI~~SDRTC   0.207 0.048 4.32***   

RTI~~SDRTI   0.401 0.053 7.55***   

EOM~~PEA   -0.075 0.032 -2.34***   

 

***p<.001, **p<.01, *p<.05, +p<.10 
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variance in seven variables (PES did not load onto this construct). The two-factors were not 

correlated (standardizedr=0.057, p=0.352) and explained low to high variance in indicator variables.  

Overall, the model best explained EOM and d-prime indicators and least explained RTC, 

RTI, and PES indicators, which had standardized error variances of 0.123, 0.012, 0.891, 0.706, 

0.976 respectively. The attention construct best explained EOM (λ=0.936), d-prime (λ=-0.702), 

and PEA (λ=-0.729). Whereas, inhibition best explained variance in ECOM (λ=1.000) and d-

prime (λ=-0.665) indicators. The model moderately explained SDRTC, SDRTI, and PEA; 

standardized error variances of 0.599, 0.699, and 0.453 respectively. Notably, in both the one- 

and two-factor CFAs, constructs should be interpreted as lower cognitive skills, given the 

directionality of the factor loadings. 

A post-hoc exploratory EFA analysis was run using the factanal function in r to 

determine how many factors might best explain all nine behavioral variables (R Core Team, 

2017). Results indicated that even five factors were not sufficient to explain variance in the 

behavioral measures (χ2=3.89, p=.049). No indicator variable loaded onto all factors. Factor 1 

best described variance in EOM (λ=0.935), PEA (λ=-0.755), and d-prime (λ=-0.543). Factor 2 

best accounted for variance in SDRTC (λ=0.891) and SDRTI (λ=0.741). Factor 3 accounted for 

the most variance in ECOM (λ=0.944) and Factor 4 accounted for the most variance in RTI 

(λ=0.957) and RTC (λ=0.635). Factor 5 best described variance in RTC (λ=0.551). No factor 

explained variance in PES very well, such that PES demonstrated the most unexplained variance 

(λ=0.958). Results are presented in Table 15. 
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Table 15       

 

Exploratory EFA Model Results: Observed Behavioral Indicators 

  

 Uniqueness Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

EOM 0.031 0.935 0.274 0.104   

ECOM 0.005 -0.112 0.262 0.944 -0.122  

RTC 0.005 0.102 0.312 -0.425 0.635 0.551 

RTI 0.005 0.130 0.244  0.957  

SDRTC 0.086 0.181 0.891 0.248  0.143 

SDRTI 0.272 0.199 0.741 0.181 0.325  

PES 0.958  0.171    

PEA 0.391 -0.755 -0.149  -0.104  

d-prime 0.052 -0.543 -0.412 -0.701  -0.149 

 

SS loadings 

  

1.860 

 

1.857 

 

1.677 

 

1.466 

 

0.336 

Proportion 

of Variance 

 0.207 0.206 0.186 0.163 0.037 

Cumulative 

Variance 

 0.207 0.413 0.599 0.762 0.799 

 

Adjusted Measures of Behavioral Performance. The final one-factor model is 

presented below in Table 16 and Figure 4. The final model (χ2=4.03, df=4, CFI=1, AIC=4223.16, 

RMSEA=.005, SRMR=.020) included seven indicator variables (EOM, RTC, RTI, SDRTI, PEA, 

d-prime, and PES) and 11 covariances. Details about model testing can be found in Appendix B. 

Accuracy measures included best fit the cognitive control latent construct (λEOM=0.974, 

λPEA=1.00, λd-prime=-0.709). The latent construct explained relatively small amounts of variance 

in reaction time measures (λRTC=0.272, λRTi=0.321, λSDRTI=0.191, λPES=-0.181).  

The final two-factor model is presented in Table 17 and Figure 5. The final model 

(χ2=19.92, df=14, CFI=0.997, AIC=5011.78, RMSEA=.043, SRMR=.028) included all nine 

behavioral indicator variables such that attention significantly explained variance in seven 

variables (SDRTC did not load onto this construct; ECOM was not examined as an indicator 

variable of attention) and inhibition explained variance in eight variables (EOM was not 
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examined as an indicator variable of inhibition). The two-factors were not correlated 

(standardizedr=0.049, p=0.386) and explained low to high variance in indicator variables.  

 

Table 16  

 

   

One-factor CFA for Predicted Behavioral Indicator Variables 

 

   

 Latent 

Estimate 

Std. 

Error 

Z-Value Variance 

Estimate 

Std.  

Error 

Z-Value λ 

EOM 1.000   0.052 0.005 10.49*** 0.974 

RTC 0.277 0.064 4.33*** 0.907 0.066 13.04*** 0.272 

RTI 0.330 0.065 5.09*** 0.895 0.051 13.11*** 0.321 

SDRTI 0.196 0.068 2.90*** 0.960 0.059 12.97*** 0.191 

PEA -1.027 0.021 -49.89*** 0.000   -1.00 

d-prime -0.727 0.042 -17.15*** 0.493  10.73*** -0.709 

PES -0.186 0.059 -3.15*** 0.964  13.93*** -0.181 

Cognitive Control    0.945 0.057 9.59***  

 

Covariances 

       

RTC~~RTI    0.662 0.060 10.98***  

RTC~~d-prime    0.298 0.042 7.15***  

EOM~~RTC    -0.064 0.014 -4.49***  

EOM~~RTI    -0.042 0.014 -2.92**  

RTC~~PES    -0.175 0.038 -4.64***  

d-prime~~PES    -0.140 0.043 -3.24**  

RTI~~SDRTI    0.111 0.038 2.90**  

SDRTI~~d-prime    -0.108 0.038 -2.88**  

RTI~~d-prime    0.078 0.041 1.93+  

EOM~~d-prime    -0.021 0.010 2.24*  

EOM~~PES    0.025 0.012 2.06*  

 

***p<.001, **p<.01, *p<.05, +p<.10 

 

Overall, the model best explained EOM, PEA, and d-prime indicators and least explained 

SDRTC, PES, SDRTI, and RTI indicators, which had standardized error variances of 0.047, 

0.004, 0.031, 0.983, 0.924, 0.924, and 0.876 respectively. The attention construct best explained 

EOM (λ=0.976), d-prime (λ=-0.697), and PEA (λ=-0.999). Whereas, inhibition best explained 

variance in ECOM (λ=1.000) and d-prime (λ=-0.660) indicators.    
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Figure 4 

Cognitive Control CFA: One-factor Solution for Predicted Indicator Variables 

 

Note: The anchor variable, EOM, is indicated with by dotted lines. Green lines are associated 

with positive factor loadings or covariances and red lines are associated with negative factor 

loadings or covariances.  
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Figure 5 

Cognitive Control CFA: Two-factor Solution for Predicted Indicator Variables 

 

 

Note: The anchor variables are indicated with by dotted lines. Green lines are associated with 

positive factor loadings or covariances and red lines are associated with negative factor loadings 

or covariances.  
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Table 17  

 

       

Cognitive Control CFA: Two-factor Solution for Predicted Behavioral Indicators 

 

 Latent Estimate 

Attention (SE) 

Latent Estimate 

Inhibition (SE) 

Variance 

Estimate 

Std. 

Error 

Z-Value Attention 

λ 

Inhibition 

λ 

EOM 1.000 - 0.047 0.004 10.68*** 0.976  

ECOM - 1.000 0.000    1.000 

RTI 0.313(0.07) -0.139(0.06) 0.876 0.068 12.81*** 0.308 -0.140 

SDRTI 0.193(0.07) 0.184(0.06) 0.924 0.071 13.04*** 0.188 0.184 

RTC 0.267(0.06) -0.474(0.05) 0.700 0.055 12.63*** 0.263 0.478 

d-prime -0.715(0.02) -0.660(0.01) 0.031 0.005 6.45*** -0.697 -0.660 

PEA -1.024(0.02) 0.033(0.01) 0.004 0.066 0.800 0.999 0.033 

PES -0.220(0.06) 0.213(0.06) 0.924 0.066 14.04*** -0.214 0.212 

SDRTC  0.127(0.06) 0.983 0.077 12.71***  0.126 

Attention   0.949 0.099 9.58***   

Inhibition   0.997 0.070 14.25***   

 

Covariances 

       

Attention~~Inhibition   0.049 0.057 0.867   

RTI~~RTC   0.607 0.055 11.13***   

PES~~SDRTC   0.320 0.057 5.64***   

RTC~~PES   -0.097 0.032 -3.00**   

EOM~~RTC   -0.050 0.012 -4.05***   

EOM~~RTI   -0.038 0.014 -2.69**   

RTC~~SDRTC   0.182 0.053 3.46**   

RTI~~SDRTC   0.187 0.059 3.17**   

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Estimating Academic Construct 

Results of the academic CFA are presented in Table 18 and Figure 6. Because there were 

only three indicator variables for academic skills, the model was saturated at step 1.  

 

Table 18  

 

   

WJ CFA: One-factor Solution 

 

   

 Latent 

Estimate 

Std. 

Error 

Z-Value Variance 

Estimate 

Std. 

Error 

Z-Value λ 

Applied 

Problems 

1.000   0.507 0.047 10.84*** 0.701 

Passage 

Comprehension 

1.196 0.086 13.88*** 0.295 0.038 7.85*** 0.839 

Letter Word ID 1.409 0.102 13.81*** 0.024 0.039 0.61 0.988 

 

Academic 

Skills 

    

0.490 

 

0.074 

 

6.59*** 

 

 

***p<.001, **p<.01, *p<.05, +p<.10 

        

 

Performance on the letter word ID subscale was most highly correlated with the academic 

skills latent factor (λ=0.988). Both passage comprehension (λ=0.839) and applied problems 

(λ=0.701) were moderate to highly correlated. Standardized residual variances, indicate that the 

latent factor explained 51.2% of the variance in applied problems, 70.4% of the variance in 

passage compression, and 97.6% of the variance in letter word ID. All subscales had positive 

factor loadings, indicating positive relations between the academic latent factor and both literacy 

and math observed subscales. A covariance between letter word ID and passage comprehension 

was tested in the full SEM model, as covariances were not able to be estimated in this saturated 

model. This was decided due to an expected shared residual variance among literacy subscales, 

separate from the math subscale.  
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Figure 6 

Academic Skills CFA 

 

Note: The anchor variable, applied problems, is indicated with a dotted line. Green lines are 

associated with positive factor loadings.   

Estimating Relations between Cognition and Academics 

For both the observed and predicted CFA models of cognitive control, the one-factor 

solution had a better model fit than the two-factor model as indicated by a lower AIC value. 

Therefore, the one-factor construct of cognitive control was regressed onto the one-factor 

construct of academic skills in SEM analyses. A traditional multiple regression model using 

observed behavioral measures as predictors of each academic construct was first run to compare 

SEM results with regression analyses more frequently reported in the literature. Linear 

regressions weight each predictor variable the same, as opposed to SEM models which allow for 

behavioral indicator variables to have different weights onto the cognitive control factor that is 
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then used to predict variance in the academic factor. The academic factor in the SEM models 

below then adjusts the weight of variance explained in each academic indicator variable, 

considering the variance predicted by the cognitive control construct. Results are outlined below 

by analytic technique. 

Traditional Multiple Regression Approach. Linear regression models predicting one of 

the three academic subscales was run to estimate relations between observed behavioral 

measures and academic skills. School was included as a covariate predictor. Results are 

presented in Table 19. Only one behavioral measure from the Go/No-Go was significantly 

related to each academic outcome. Academic outcomes were either related to more positive d-

prime, indicating better performance, or shorter average Go trial reaction times. The cognitive 

model predicted approximately 1.90% of variance in the applied problems subscale, such that a 1 

SD increase in RTC (longer reaction times) was related to a 0.130 standard deviation decrease in 

math skills. The d-prime measure helped predict 10.20% and 8.10% of variance in the letter 

word ID and passage comprehension subsets, respectively. For every 1 SD increase in d-prime, 

we would expect to see a 0.316 standard deviation increase in letter word ID and a 0.290 

standard deviation increase in passage comprehension.  
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Table 19 

Multiple Regression Models Predicting Academic Skills 

 Applied Problems Letter Word ID Passage 

Comprehension 

(Intercept) -6.224e^-03 -7.351 e^-03 -4.887 e^-01 

RTC -1.298e^-01   

d-prime  3.155 e^-01 2.898 e^-01*** 

School 1.647e^-04 1.945 e^-04 1.293 e^-04 

Model Statistic 3.827* 17.23*** 13.55*** 

R2 0.026 0.108 0.087 

Adjusted R2 0.019 0.102 0.081 

 

***p<.001, **p<.01, *p<.05, +p<.10 

 

SEM model with Observed Indicators. Using the one-factor solutions for the cognitive 

control and academic skills constructs above, both one-level and two-level SEM models were 

assessed for goodness of fit. For the 2-level model, academic and cognitive variables were added 

as indicators for a between school factor of variance. However, no 2-level models reached 

convergence. Therefore, school was added as a covariate predictor for the cognitive control and 

academic latent factors. However, school was not a significant predictor for either the cognitive 

control (β=0.002, p=.938) or academic (β=0.021, p=.594) factors and were thus removed from 

the model estimation.  

Results (χ2=16.01, df=16, CFI=1.00, AIC=5385.84, RMSEA=.002, SRMR=.039) are 

outlined in Table 20 and Figure 7. Results indicate a moderate negative relation between 

cognitive control and academics (β=-0.612, p<.001). However, given the factor loadings, the 

cognitive control construct reflects poor cognitive control skills – such that higher factor 

loadings are associated with greater percentage of errors and longer and more variable reaction 
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times. Therefore, better cognitive control skills (negative Z-scores), would be associated with 

higher academic skills (positive Z-scores).  

Figure 7 

Observed Behavioral Measures Predict Academic Skills 

 

Note: Anchor variables for each construct are indicated with dotted lines. Green lines are 

associated with positive factor loadings or covariances and red lines are associated with negative 

factor loadings or covariances.  
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Table 20 

  

Behavioral Indicators SEM: Solution for Observed Indicators 

 

 Latent 

Estimate 

Std.Error Z-Score Variance 

Estimate 

Std. 

Error 

Z-Value Cognitive 

λ 

Academic 

λ 

EOM 1.00   0.732 0.065 11.35*** 0.515  

RTC 0.753 0.138 5.44*** 0.847 0.073 11.67*** 0.388  

SDRTC 1.717 0.198 8.66*** 0.217 0.049 4.44*** 0.884  

SDRTI 1.663 0.192 8.68*** 0.266 0.048 5.52*** 0.856  

PEA -0.611 0.083 -7.33*** 0.897 0.075 11.91*** -0.315  

Applied Problems 1.00   0.339 0.100 3.40***  0.812 

Passage Comprehension 0.897 0.145 6.18*** 0.467 0.092 5.10***  0.729 

Letter Word ID 1.049 0.161 6.52*** 0.273 0.108 2.53*  0.852 

Cognitive Control    0.264 0.060 4.40***   

Academic Skills    0.559 0.105 5.32***   

 

Regressions 

        

Academic ~ Cognitive -0.612 0.133 -4.69***      

 

Covariances 

    

Estimate 

Std. 

Error 

 

Z-Value 

  

EOM~~PEA    -0.584 0.061 -9.63***   

RTC~~PEA    -0.110 0.037 -2.99**   

Passage 

Comprehension~~ 

Letter Word ID 

   0.207 0.095 2.19*   

 

***p<.001, **p<.01, *p<.05, +p<.10 

 

  



66 

 

Table 21 

  

Behavioral Indicators SEM: Solution for Adjusted Indicators 

 

 Latent Estimate Std.Error Z-Score Variance Estimate Std. Error Z-Value Cognitive 
λ 

Academic 
λ 

EOM 1.00   0.046 0.004 11.09*** 0.974  

RTC 0.255 0.066 3.87*** 0.895 0.079 11.33*** 0.244  

RTI 0.379 0.064 5.97*** 0.830 0.075 11.11*** 0.361  
SDRTI 0.257 0.066 3.87*** 0.936 0.084 11.09*** 0.240  

PEA -1.037 0.015 -67.81*** 0.000   -1.00  
d-prime -0.757 0.048 -15.76*** 0.488 0.044 11.16*** -0.710  

PES -0.214 0.066 -3.24** 0.919 0.083 11.09*** -0.204  

Applied Problems 1.00   0.307 0.121 2.55***  0.836 
Letter Word ID 0.963 0.166 5.82*** 0.270 0.112 2.42****  0.843 

Passage Comprehension 0.815 0.149 5.48*** 0.499 0.095 5.24**  0.699 

Cognitive Control    0.867 0.082 10.54***   
Academic Skills    0.634 0.131 4.85***   

 
Regressions 

        

Academic ~ Cognitive -0.308 0.067 -4.62***      

 
Covariances 

        

RTC~~RTI    0.651 0.068 9.58***   
RTC~~d-prime    0.301 0.045 6.65***   

EOM~~RTC    -0.061 0.013 -4.51***   

EOM~~RTI    -0.030 0.013 -2.41*   
RTC~~PES    -0.172 0.039 -4.37***   

d-prime~~PES    -0.133 0.043 -3.13**   

RTI~~SDRTI    0.046 0.036 1.27   
SDRTI~~d-prime    -0.103 0.039 -2.66**   

RTI~~d-prime    0.085 0.040 2.13*   
EOM~~d-prime    -0.015 0.010 -1.62   

Covariances (cont.)    Variance Estimate Std. Error Z-Value   

EOM~~PES    0.024 0.013 1.86+   

Passage Comprehension~~ 
Letter Word ID 

   0.213 0.098 2.18*   

 

***p<.001, **p<.01, *p<.05, +p<.10 
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SEM model with Adjusted Indicators. Similar to the observed model, both one-level 

and two-level SEM models using one-factor solutions for cognitive control and academic factors 

were assessed for goodness of fit. For the 2-level model, academic and cognitive variables were 

added as indicators for a between school factor of variance. However, no 2-level models reached 

convergence. Therefore, school was added as a covariate predictor for the cognitive control and 

academic latent factors. Yet, again, school was not a significant predictor for either the cognitive 

control (β=-0.050, p=.166) or academic (β=0.004, p=.897) factors and was removed from the 

model estimation. Results (χ2=29.53, df=23, CFI=0.996, AIC=5150.51, RMSEA=.034, 

SRMR=.037) are outlined in Figure 8 and Table 21. Results indicate a similar but weaker 

negative relation between cognitive control and academics (β=-0.308, p<.001) than presented in 

the observed model.  

Figure 8 

Adjusted Behavioral Measures Predict Academic Skills 

 

Note: Anchor variables for each construct are indicated with dotted lines. Green lines are 

associated with positive factor loadings or covariances and red lines are associated with negative 

factor loadings or covariances.  
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Aim 3: Examining the Contribution of Neural Measures 

It is theorized that neural components reflect covert cognitive processes not fully 

captured by observations of behavior, such as inhibitory and self-monitoring processes that occur 

in the absence of behavior. In order to examine the contribution of neural measures to our ability 

to predict variance in academic achievement, ERP components were added to models 

investigated in Aim 2. Specifically, observed measures of the ERN, CRN, Pe Correct, and Pe 

Error were examined as additional predictors in the final traditional multiple regression models 

and additional indicators in the Observed CFA and SEM models identified in Aim 2. This 

allowed for investigation both of how neural measures load onto a factor of behavioral cognitive 

control and whether the addition of neural indicators changes the estimated relation between 

cognitive control and academic skills. Next, adjusted scores for neural measures accounting for 

potential measurement bias from differences in child age and data quality were estimated using 

linear regression models. Predicted scores of ERP components were then calculated from these 

regression models. These predicted ERP measures were added as indicators in the Adjusted 

Measures CFA and SEM Models identified in Aim 2. Results are organized by analytic 

technique.  

Descriptive statistics for observed neural measures are presented in Table 22. Value for 

ERP measures varied among participants, more than expected. CRN and ERN components are 

defined as negative deflections in EEG activity. However, some children had positive values of 

the ERN and CRN. A paired t-test indicated that children did demonstrate the expected relation 

between CRN and ERN measures, such that the ERN was more negative than the CRN (t(245)=-

20.42, p<.001). Similarly, the Pe component is defined as a positive deflection in EEG activity, 

yet some children showed negative values for the Pe. Children did demonstrate expected 
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relations between the Pe for error and correct trials, such that the Pe was more positive following 

error than correct trials (t(245)=20.13, p<.001). Discrepancies in expected values for ERP 

components may have been a result of the time windows used to average ERP components or 

other sources of variation, unable to be observed in this secondary analysis. All data met the 6-

epoch inclusion criterion.  

 

Table 22 

Descriptive Statistics for Observed ERP Components 

Variable Min Mean Max SD 

CRN -14.64 5.056016 28.54 7.044793 

ERN -32.6 -6.33785 35.15 8.123426 

Pe Correct -38.09 3.665976 37.76 9.517027 

Pe Error -31.28 19.72069 80.86 14.18503 

Correct Epochs 35 165.50 235 45.14 

Error Epochs 6 23.95 69 12.54 

 

Note: ERP measures are reported in μV. Correct and Error Epochs are measures of data 

quality. Specifically, they are the count of usable segments of EEG data for Correct Go and 

Error No-Go trials. 

To retain outliers in the sample and adjust for skewness in the sample distributions ERP 

measures were winsorized at a 10% level and then standardized to a Z-score. Correlations 

between winsorized and standardized scores for observed neural, behavioral, and academic 

measures are presented in Table 23. Neural components were positively related to one another, 

though not strongly. The CRN was most related to ECOM (r(246)=-0.53, p<.001), d-prime 

(r(246)=0.47, p<.001) measures. Similarly, Pe Error had the strongest correlations with d-prime 

(r(246)=0.43, p<.001), ECOM (r(246)=-0.36, p<.001), and SDRTI (r(246)=-0.37, p<.001) 

measures. Neither the ERN or Pe Correct were related to any behavioral or academic measure 
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above 0.200. The CRN was weakly related to performance on the applied problems subscale 

(r(246)=0.20, p=.002). Likewise, the Pe Error was only weakly associated with literacy subscales 

of the letter word ID (r(246)=0.18, p=.005) and passage comprehension (r(246)=0.15, p=.018). 

 

Table 23  

Correlations among Observed Neural, Behavioral, and Academic Measures 

 CRN ERN Pe Correct Pe Error 

Age -0.071 0.046 -0.074 0.094 

EOM -0.156* 0.019 0.022 -0.243*** 

ECOM -0.534*** 0.124+ -0.066 -0.360*** 

RTC 0.352*** 0.095 0.156* 0.055 

RTI 0.198** 0.134* 0.092 -0.127* 

SDRTC -0.387*** 0.032 0.043 -0.324*** 

SDRTI -0.275*** -0.021 0.019 -0.365*** 

d-prime 0.474*** -0.110+ 0.026 0.432*** 

PEA -0.007 -0.084 -0.118* -0.009 

PES -0.065 0.016 0.036 -0.077 

Applied Problems 0.197** 0.033 0.026 0.119+ 

Letter Word ID 0.150* 0.118+ -0.015 0.177** 

Passage Comprehension 0.109+ 0.052 -0.038 0.151* 

CRN  0.326*** 0.219** 0.382*** 

ERN 0.326***  0.104 0.221*** 

Pe Correct 0.219** 0.104  0.451*** 

Pe Error 0.382*** 0.221*** 0.451***  
 

***p<.001, **p<.01, *p<.05, +p<.10 

 

Traditional Multiple Regression Approach 

Observed measures of the ERN, CRN, Pe Correct, and Pe Error were examined as 

additional predictors of academic skills in the traditional multiple regression models identified in 

Aim 2 (see Table 19). Table 24 describes findings from these analyses. No neural components 

were significantly related to passage comprehension. With the addition of the CRN predictor, 
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cognitive control measures (RTC, CRN) explained 6.3% of the variance in applied problems 

which was an increase from the regression model with only behavioral predictors (1.9% 

explained variance). For every 1 SD increase (less negative) in CRN amplitude, applied 

problems is expected to increase by 0.026 standard deviations. Similarly, the ERN increased the 

variance explained in the letter word ID subscale from 10.2% (behavioral predictors only) to 

12.2%. A 1 SD increase (less negative) ERN amplitude is expected to result in a 0.158 standard 

deviation increase in letter word ID skills.  

Table 24 

Multiple Regression Models Predicting Academic Skills 

 Applied Problems Letter Word ID 

(Intercept) -2.393e^-02 -4.724 e^-02 

RTC -1.704e^-01  

d-prime  3.181 e^-01 

CRN 2.63e^-01  

ERN  1.577 e^-01 

School 1.83e^-04 2.136 e^-04 

Model Statistic 6.53*** 12.30*** 

R2 0.075 0.132 

Adjusted R2 0.063 0.122 

 

***p<.001, **p<.01, *p<.05, +p<.10 

 

Observed Measures SEM Model 

Estimating Broader One-Factor CFA. Observed ERP measures were added as 

additional indicators to the finalized one-factor CFA model identified in Aim 2 (see Table 13). 

The ERN and Pe Correct did not load well onto the factor, and so they were removed from the 

model. Next, covariances were examined incrementally to try and reach a better model fit. 

Details of the one-factor CFA model testing can be found in the Appendix B. The final one-

factor model is presented below in Figure 9 and Table 25.  
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The final model (χ2=8.60, df=7, CFI=0.998, AIC=4126.19 RMSEA=.031, SRMR=.025) 

included an additional two indicator variables (CRN, Pe Error) and five covariances from the 

behavioral only CFA. Table 26 details the differences between the behavior-only and the one-

factor CFA that includes neural indicators. Results indicate that there was little difference in 

factor or residual variance between models. Similarly, there were only small changes in factor 

loadings.  However, standard error variances decreased largely from the behavior only model to 

the model with neural indicator variables added.  

 

Figure 9 

ERP and Behavioral Indicators of Cognitive Control: CFA One-factor Solution

  

Note: The anchor variable, EOM is indicated with a dotted line. Green lines are associated with 

positive factor loadings or covariances and red lines are associated with negative factor loadings 

or covariances. 
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Table 25  

 

    

Observed Behavior and ERP CFA: One-factor Solution  

 

    

 Latent 

Estimate 

Std. Error Z-Value Variance 

Estimate 

Std. Error Z-Value  λ 

EOM 1.00   0.675 0.098 6.92***  0.507 

RTC 0.762 0.147 5.20*** 0.805 0.069 11.66***  0.380 

SDRTC 1.750 0.217 8.05*** 0.254 0.049 5.20***  0.859 

SDRTI 1.780 0.229 7.76*** 0.198 0.051 3.90***  0.888 

PEA -0.602 0.100 -5.99*** 0.776 0.094 8.29***  -0.313 

CRN -0.636 0.148 -4.30** 0.907 0.077 11.80***  -0.307 

Pe Error -0.828 0.158 -5.24*** 0.820 0.077 10.62***  -0.404 

Cognitive Control    0.233 0.056 4.15***   

 

Covariances 

        

EOM~~PEA    -0.505 0.081 -6.22***   

RTC~~CRN    0.442 0.058 7.59***   

PEA~~Pe Error    -0.126 0.040 -3.13**   

CRN~~Pe Error    0.238 0.057 4.16***   

RTC~~Pe Error    0.182 0.053 3.41**   

SDRTC~~CRN    -0.126 0.042 -2.99**   

RTC~~PEA    -0.067 0.033 -2.01*   

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Table 26      

 

One-Factor Cognitive Control CFA: Comparison between One-factor Solutions 

 

 Behavior λ  Neural λ Behavior  

Std. Error Variance 

Neural  

Std. Error Variance 

EOM 0.508  0.507 0.740 0.098 

RTC 0.390  0.380 0.845 0.069 

SDRTC 0.870  0.859 0.243 0.049 

SDRTI 0.874  0.888 0.236 0.051 

PEA -0.310  -0.313 0.899 0.094 

CRN   -0.307  0.077 

Pe Error   -0.404  0.077 

 

Cognitive Control 

 

unstandardized estimate 

 

0.257(0.057)*** 

 

0.233 (0.056)*** 

      

Covariances Behavior   Neural    

EOM~~PEA -0.588***  -0.505***   

RTC~~CRN   0.442***   

PEA~~Pe Error   -0.126***   

CRN~~Pe Error   0.238***   

RTC~~Pe Error   0.182**   

SDRTC~~CRN   -0.126**   

RTC~~PEA -0.109***  -0.067*   

      

***p<.001, **p<.01, *p<.05, +p<.10 
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Table 27         

 

Exploratory EFA Model Results 

 

  

 Uniqueness Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

EOM 0.051 0.126 0.927 0.228 0.116    

ECOM 0.062 -0.921  0.228 -0.132    

RTC 0.005 0.456  0.327 0.744  0.102 0.323 

RTI 0.077  0.207 0.181 0.912    

SDRTC 0.005 -0.243 0.197 0.935 0.146    

SDRTI 0.296 -0.255 0.221 0.643 0.378  -0.111 -0.137 

PES 0.947  0.130 0.172     

PEA 0.385  -0.754 -0.127 -0.124  -0.110  

d-prime 0.005 0.741 -0.554 -0.328   0.133  

ERN 0.005     0.987 0.117  

CRN 0.454 0.477  -0.313 0.247 0.315 0.240  

Pe Correct 0.554      0.657  

Pe Error 0.298 0.305  -0.200 -0.111 0.165 0.722  

         

SS loadings  2.074 1.907 1.823 1.683 1.127 1.096 0.147 

Proportion 

of Variance 

 0.160 0.147 0.140 0.129 0.087 0.084 0.011 

Cumulative 

Variance 

 0.160 0.306 0.447 0.576 0.663 0.747 0.758 
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A post-hoc exploratory EFA analysis was run using the factanal function in r to 

determine how many factors might best explain all 13 measures that can be extracted from the 

Go/No-Go (R Core Team, 2017). Results indicated that seven factors were sufficient to explain 

variance in the Go/No-Go measures (χ2=9.18, p=0.327). No indicator variable loaded onto all 

factors. Factor 1 best described variance in ECOM (λ=-0.921), and d-prime (λ=0.741) and 

moderately described variance in RTC (λ=0.456), CRN (λ=0.477), and Pe Error (λ=0.305). 

Fewer ECOM were related to slower reaction times, more attenuated (less negative) CRN values, 

greater (more positive) Pe Error values, and better d-prime ratios. Factor 2 best accounted for 

variance in EOM (λ=0.927) and PEA (λ=-0.754), with moderate variance accounted for in d-

prime (λ=-0.554). Fewer EOM were related to greater post-error adjustments in accuracy and 

better d-prime ratios. Factor 3 accounted for the most variance in SDRTC (λ=0.935) and SDRTI 

(λ=0.643). Factor 4 accounted for the most variance in RTI (λ=0.912) and RTC (λ=0.744). 

Factor 5 best described variance in the ERN (λ=0.987). Notably, no behavioral variables loaded 

onto this factor. Factor 6 explained moderate variance in Pe values for correct (λ=0.657) and 

error (λ=0.722) trials. Only RTC (λ=0.323) and SDRTI (λ=-0.137) loaded weakly onto Factor 7. 

No factor explained variance in PES very well, such that PES demonstrated the most 

unexplained variance (λ=0.947). Results are presented in Table 27. 

SEM model with Observed Measures. The one-factor solution for the observed 

behavior and ERP CFA (see Table 25) was regressed onto the academic skills CFA (see Table 

18) to investigate whether the addition of neural indicator variables increase the variance 

explained in academic skills. Results of the model (χ2=31.83, df=26, CFI=0.995, AIC=5762.86, 

RMSEA=.030, SRMR=.043) are outlined in Table 28 and Figure 10. Results indicate a moderate 

negative relation between cognitive control and academics (β=-0.557, p<.001). The strength of 
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this association is slightly less than Aim 2 (β=-0.612, p<.001). While the addition of neural 

indicators did not increase the overall amount of variance explained in academic skills (Behavior 

= 44.1%, Behavior and ERP = 42.5%), results do indicate better predictions of literacy skills for 

passage comprehension (Behavior = 53.3%, Behavior and ERP = 55.5%) and letter word ID 

(Behavior = 72.7%, Behavior and ERP = 79.7%). Table 29 shows a comparison of factor 

loadings and standard error variances between models. 

Figure 10 

Observed SEM Model: Behavioral and Neural Indicators of Academic Skills 

 

 

Note: Anchor variables for each construct are indicated with dotted lines. Green lines are 

associated with positive factor loadings or covariances and red lines are associated with negative 

factor loadings or covariances. 
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Table 28  

 

Behavioral and ERP Indicators SEM: Solution for Observed Indicators 
 

 Latent  

Estimate 

Std.  

Error 

Z-Score Variance 

Estimate 

Std. Error Z-Value Cognitive 

λ 

Academic 

λ 

EOM 1.00   0.668 0.063 10.53*** 0.515  

RTC 0.751 0.152 4.96*** 0.805 0.074 10.86*** 0.380  

SDRTC 1.742 0.215 8.10*** 0.239 0.046 5.18*** 0.868  

SDRTI 1.729 0.213 8.11*** 0.218 0.045 4.89*** 0.876  

PEA -0.601 0.090 -6.70*** 0.773 0.070 11.07*** -0.318  

CRN -0.649 0.157 -4.14** 0.899 0.082 10.99*** -0.318  

Pe Error -0.819 0.157 -5.22*** 0.819 0.076 10.82*** -0.406  

Applied Problems 1.00   0.373 0.120 3.11**  0.797 

Passage Comprehension 0.902 0.175 5.14*** 0.445 0.109 4.09***  0.737 

Letter Word ID 1.060 0.196 5.40*** 0.203 0.131 1.55  0.884 

Cognitive Control    0.241 0.059 4.08***   

Academic Skills    0.575 0.125 4.61***   

         

Regressions         

Academic ~ Cognitive -0.557 0.149 -3.73***      

         

Covariances         

EOM~~PEA    -0.500 0.057 -8.71***   

RTC~~CRN    0.444 0.061 7.34***   

PEA~~Pe Error    -0.126 0.037 -3.45***   

CRN~~Pe Error    0.235 0.055 4.29***   

RTC~~Pe Error    0.182 0.054 3.41**   

SDRTC~~CRN    -0.113 0.039 -2.87**   

RTC~~PEA    -0.067 0.031 -2.15*   

Letter Word~~Passage Comprehension    0.153 0.114 1.34   

         

***p<.001, **p<.01, *p<.05, +p<.10 
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Table 29      

 

SEM: Comparison between Aim 2 and Aim 3 Models 

 

 

 Aim 2 Aim 3 Aim 2 Aim 3 

 Cognitive λ Academic λ Cognitive λ Academic λ Error Variance Error Variance 

EOM 0.515  0.515  0.732*** 0.668*** 

RTC 0.388  0.380  0.847*** 0.805*** 

SDRTC 0.884  0.868  0.217*** 0.239*** 

SDRTI 0.856  0.876  0.266*** 0.218*** 

PEA -0.315  -0.318  0.897*** 0.773*** 

CRN   -0.318   0.899*** 

Pe Error   -0.406   0.819*** 

Applied Problems  0.812  0.797 0.339*** 0.373** 

Passage Comprehension  0.729  0.737 0.467*** 0.445*** 

Letter Word ID  0.852  0.884 0.273* 0.203 

    

Cognitive Control 
 

0.264*** 0.241*** 

Academic Skills 0.559*** 0.575*** 

       

Regressions Β Std. Error β Std. Error   

Academic~Cognitive -0.612*** 0.133 -0.557*** 0.149   

       

Covariances  Estimate  Estimate   

EOM~~PEA  -0.584***  -0.500   

RTC~~CRN    0.444***   

PEA~~Pe Error    -0.126***   

CRN~~Pe Error    0.235***   

RTC~~Pe Error    0.182**   

SDRTC~~CRN    -0.113**   

RTC~~PEA  -0.110**  -0.067*   

Letter Word~~Passage Comprehension  0.207*  0.153   

       

***p<.001, **p<.01, *p<.05, +p<.10 
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Adjusted Measures SEM Model  

An Adjusted Measures SEM model including adjusted (predicted) measures of both 

behavioral and neural measures was run to examine whether accounting for trial features and 

child demographics in estimates of cognitive performance increases the relation between 

cognitive control and academic skills. Details on how ERP adjusted measures were calculated 

are detailed below in the Estimating Neural Measures section. Adjusted ERP measures were 

added as additional indicators to the finalized one-factor Adjusted Measure Model CFA 

identified in Aim 2 (see Table 16).  

Estimating Neural Measures. Linear regression models were used to estimate adjusted 

scores for ERPs, accounting for potential measurement bias from differences in child age and 

data quality. Final models for predicting variance in ERP components can be found in Table 30. 

Age was not a significant predictor of any of the ERP components (p>.05). Thus, the final 

model, only included a standardized score of EEG quality as a predictor variable along with a 

fixed intercept estimate. Lower quality of EEG data was statistically significant and related to 

more positive values in the Pe Error (β=-2.92, p=.001) and associations with negative values in 

the ERN (β=0.85, p=.102) and CRN (β=0.73, p=.105) were also near trend levels. 

Table 30 

Predictors of ERP Amplitudes 

 CRN ERN Pe Correct Pe Error 

Intercept 5.056(0.45)*** -6.338(0.52)*** 3.666(0.61)*** 19.721(0.89)*** 

EEG Quality 0.730(0.49) 0.849(0.52) 0.281(0.61) -2.92(0.89)** 

Model Statistic 2.65 2.67 0.21 10.78** 

Std. Error 7.021 8.095 9.53 13.91 

R2 0.011 0.011 0.001 0.042 

Adjusted R2 0.007 0.007 -0.003 0.038 

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Estimating Broader One-Factor CFA. In order to examine how ERPs loaded onto a 

behavioral cognitive control factor when cognitive measures were adjusted for potential 

measurement bias in child and trial features, adjusted (predicted) measures of ERP components 

were added to the Adjusted Measure CFA from Aim 2. The ERN and Pe components did not 

load well onto the factor, and so they were removed from the model. Next, covariances were 

examined incrementally to try and reach a better model fit. Details of the one-factor CFA model 

testing can be found in the Appendix B. The final one-factor model is presented below in Figure 

11 and Table 31.  

Figure 11 

Predicted Measure One-factor CFA Model with Neural Indicators 

 

 

Note: The anchor variable, EOM is indicated with a dotted line. Green lines are associated with 

positive factor loadings or covariances and red lines are associated with negative factor loadings 

or covariances.  
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Table 31 

Behavioral and ERP Indicators CFA: Solution for Predicted Indicators 

 

 Latent 

Estimate 

Std. 

Error 

Z-Value Variance 

Estimate 

Std.  

Error 

Z-Value λ 

EOM 1.000   0.046 0.005 9.29*** 0.974 

RTC 0.255 0.067 3.83*** 0.855 0.069 12.43*** 0.249 

RTI 0.379 0.068 5.60*** 0.829 0.068 12.20*** 0.361 

SDRTI 0.257 0.074 3.47** 0.936 0.080 11.20*** 0.240 

PEA -1.037 0.023 -44.51*** 0.000   -1.00 

d-prime -0.757 0.052 -14.67*** 0.493 0.049 10.14*** -0.708 

PES -0.214 0.066 -3.27** 0.919 0.074 12.38*** -0.204 

CRN -0.622 0.049 -12.65*** 0.661 0.065 10.24*** -0.580 

Cognitive Control    0.867 0.103 8.38***  

 

Covariances 

       

RTC~~RTI    0.631 0.061 10.31***  

RTC~~d-prime    0.303 0.044 6.88***  

EOM~~RTC    -0.030 0.008 -3.81***  

RTC~~PES    -0.157 0.035 -4.47***  

d-prime~~PES    -0.138 0.044 -3.16**  

SDRTI~~d-prime    -0.093 0.038 -2.42*  

RTI~~d-prime    0.101 0.044 2.28*  

d-prime~~CRN    0.101 0.032 3.16**  

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Table 32 

Comparisons between One-factor Predicted CFAs 

 Behavior λ Neural λ Behavior  

Error Variance 

Neural 

Error Variance 

EOM 0.974 0.974 0.052*** 0.046*** 

RTC 0.272 0.249 0.907*** 0.855*** 

RTI 0.321 0.361 0.895*** 0.829*** 

SDRTI 0.191 0.240 0.960*** 0.936*** 

PEA -1.00 -1.00 0.000*** 0.000*** 

d-prime -0.709 -0.708 0.493*** 0.493*** 

PES -0.181 -0.204 0.964*** 0.919*** 

CRN  -0.580  0.661*** 

     

Cognitive Control unstandardized variance estimate 0.945*** 0.867*** 

     

Covariances Behavior Neural   

RTC~~RTI 0.662*** 0.631***   

RTC~~d-prime 0.298*** 0.303***   

EOM~~RTC -0.064*** -0.030***   

EOM~~RTI -0.042**    

RTC~~PES -0.175*** -0.157***   

d-prime~~PES -0.140** -0.138**   

RTI~~SDRTI 0.111***    

SDRTI~~d-prime -0.108** -0.093*   

RTI~~d-prime 0.078** 0.101*   

EOM~~d-prime -0.021*    

EOM~~PES 0.025*    

d-prime~~CRN  0.101**   

 

***p<.001, **p<.01, *p<.05, +p<.10 
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The final model (χ2=17.61, df=13, CFI=0.996, AIC=4110.99 RMSEA=.044, SRMR=.026) 

included an additional indicator variable (CRN) and reduced the number of covariances to 8 

from the 11 included in the behavioral only CFA. Table 32 details the differences between the 

behavior-only and the one-factor CFA that includes neural indicators. Results indicate that there 

was little difference in factor loadings or indicator error variance between models. When the 

CRN was included as an indicator variable, the unstandardized error variance of the cognitive 

control construct decreased from 0.945 to 0.867, indicating that the CRN decreased the amount 

of dispersion in the latent factor.  

SEM model with Adjusted Measures. Results of the model (χ2=48.05, df=35, 

CFI=0.993, AIC=5744.69 RMSEA=.039, SRMR=.044) are outlined in Figure 12 and Table 33. 

Results indicate a negative relation between cognitive control and academics, that was the same 

strength as the association Aim 2 (β=-0.308, p<.001). Given the factor loadings, the cognitive 

control construct is a construct of poor cognitive control – such that higher factor loadings are 

associated with greater errors of omission and longer and more variable reaction times for both 

Go and No-Go trials as well as lower d-prime ratios, less PES, and greater (more negative) CRN 

values. Therefore, better cognitive control skills (negative Z-scores) were associated with higher 

academic skills (positive Z-scores). Table 34 shows a comparison of factor loadings and error 

variances between models. 

Table 35 shows factor loadings, model fit, and regressions between latent factors for 

Observed and Adjusted Measures SEM models. Model fit, as indexed by AIC, was better for 

Adjusted Measures models than Observed Measures models. The cognitive latent factor in the 

Observed Measures models best described variance in the SDRT indicators (λSDRTC=0.868, 
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λSDRTI=0.876). Whereas, the cognitive latent factor in the Adjusted Measure models best 

described variance in EOM (λ=0.974). Additionally, the cognitive latent factor in Adjusted 

Measures model described variance in 7 out of 9 behavioral measures. While, the cognitive latent 

factor in the Observed Measure model described variance in 5 out of 9 behavioral measures. 

There were also differences in factor loadings of ERP components, as the CRN (λ=-0.318) and 

Pe Error (λ=-0.406) loaded onto the cognitive control latent factor in the Observed Measures 

model but only CRN (λ=-0.580) loaded onto the cognitive latent factor in the Adjusted Measures 

model. Directionality of factor loadings was consistent across models. All models showed a  

 

Figure 12 

Adjusted Measures SEM Model: Behavioral and Neural Indicators of Academic Skills 

 

Note: Anchor variables for each construct are indicated with dotted lines. Green lines are 

associated with positive factor loadings or covariances and red lines are associated with negative 

factor loadings or covariances.   
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Table 33 

Behavioral and ERP Indicators SEM: Solution for Adjusted Indicators 

 Latent Estimate Std.Error Z-Score Variance 

Estimate 

Std. Error Z-Value Cognitive 

λ 

Academic 

λ 

EOM 1.00   0.046 0.004 11.09*** 0.974  

RTC 0.255 0.064 3.99888 0.855 0.074 11.49*** 0.249  

RTI 0.379 0.063 6.05*** 0.829 0.075 11.09*** 0.361  

SDRTI 0.257 0.066 3.86*** 0.936 0.084 11.09*** 0.240  

PEA -1.037 0.015 -67.78*** 0.000   -1.00  

d-prime -0.757 0.049 -15.32*** 0.493 0.044 11.29*** -0.708  

PES -0.214 0.066 -3.26** 0.919 0.083 11.09*** -0.204  

CRN -0.622 0.056 -11.02*** 0.661 0.060 11.09*** -0.580  

Applied Problems 1.00   0.307 0.121 2.55*  0.836 

Letter Word ID 0.963 0.166 5.82*** 0.270 0.112 2.42*  0.843 

Passage Comprehension 0.815 0.149 5.48*** 0.499 0.095 5.24***  0.699 

Cognitive Control    0.867 0.082 10.54***   

Academic Skills    0.634 0.131 4.85***   

 

Regressions 

        

Academic ~ Cognitive    -0.308 0.067 -4.62***   

 

Covariances 

        

RTC~~RTI    0.631 0.066 9.58***   

RTC~~d-prime    0.303 0.044 6.93***   

EOM~~RTC    -0.030 0.007 -4.22***   

RTC~~PES    0.157 0.038 -4.15***   

d-prime~~PES    -0.138 0.042 -3.27**   

SDRTI~~d-prime    -0.093 0.035 -2.63**   

RTI~~d-prime    0.101 0.039 2.55*   

d-prime~~CRN    0.101 0.030 3.34**   

Passage Comprehension~~ 

Letter Word ID 

   0.213 0.098 2.18**   

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Table 34 

Comparisons between Adjusted Score SEM Models 

 Aim 2 Aim 3 Aim 2 Aim 3 
 Cognitive λ Academic λ Cognitive λ Academic λ Error Variance Error Variance 

EOM 0.974  0.974  0.046*** 0.046*** 

RTC 0.244  0.249  0.895*** 0.855*** 

RTI 0.361  0.361  0.830*** 0.829*** 
SDRTI 0.240  0.240  0.936*** 0.936*** 

PEA -1.00  -1.00  0.000 0.000 
d-prime -0.710  -0.708  0.488*** 0.493*** 

PES -0.204  -0.204  0.919*** 0.919*** 

CRN   -0.580   0.661*** 
Applied Problems  0.836  0.836 0.307*** 0.307* 

Letter Word ID  0.843  0.843 0.270*** 0.270* 

Passage Comprehension  0.699  0.699 0.499** 0.499*** 
Cognitive Control     0.867*** 0.867*** 

Academic Skills     0.634*** 0.634*** 
       

Regressions β Std. Error β Std. Error   

Academic ~ Cognitive -0.308*** 0.067 -.308*** 0.067   
       

Covariances  Estimate  Estimate   

RTC~~RTI  0.651***  0.631***   
RTC~~d-prime  0.301***  0.303***   

EOM~~RTC  -0.061***  -0.030***   
EOM~~RTI  -0.0308     

RTC~~PES  -0.172***  0.157***   

d-prime~~PES  -0.133**  -0.138**   
RTI~~SDRTI  0.046     

SDRTI~~d-prime  -0.103**  -0.093**   
RTI~~d-prime  0.085*  0.101*   

EOM~~d-prime  -0.015     

EOM~~PES  0.024+     
d-prime~~CRN    0.101**   

Covariances (cont).  Estimate  Estimate   

Passage Comprehension~~ 

Letter Word ID 

 0.213*  0.213**   

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Table 35 

Comparisons of Observed and Adjusted Measures SEM Models 

         
 Observed Measures Model Adjusted Measures Model 

 Aim 2 Aim 3 Aim 2 Aim 3 
 Cognitive λ Academic λ Cognitive λ Academic λ Cognitive λ Academic λ Cognitive λ Academic λ 

EOM 0.515  0.515  0.974  0.974  
RTC 0.388  0.380  0.244  0.249  

RTI     0.361  0.361  
SDRTC 0.884  0.868      
SDRTI 0.856  0.876  0.240  0.240  

PEA -0.315  -0.318  -1.00  -1.00  
d-prime     -0.710  -0.708  

PES     -0.204  -0.204  
CRN   -0.318    -0.580  
Pe Error   -0.406      

Applied Problems  0.812  0.797  0.836  0.836 
Letter Word ID  0.852  0.884  0.843  0.843 
Passage Comprehension  0.729  0.737  0.699  0.699 

         
Error Variance unstand. stand unstand. stand unstand. stand unstand. stand 

Cognitive Control 0.264 1.00 0.240 1.00 0.866 1.00 0.866 1.00 
Academic Skills 0.558 0.849 0.575 0.885 0.633 0.885 0.633 0.885 
         

Regressions β Std. Error Β Std. Error β Std. Error β Std. Error 
Academic ~ Cognitive -0.612*** 0.133 -0.557*** 0.149 -0.308*** 0.067 -.308*** 0.067 
         

Fit Indices         

χ2 16.01  31.83  29.53  48.05+  
CFI 1.000  0.995  0.996  0.993  
AIC 5385.84  5762.86  5150.51  5744.69  

RMSEA 0.002  0.030  0.034  0.039  
SRMR 0.039  0.043  0.037  0.044  
         

***p<.001, **p<.01, *p<.05, +p<.10   
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negative association between cognitive control and academic skills. Factor loadings indicate that 

the cognitive control latent factor reflects poorer cognitive control. Therefore, greater academic 

skills were predicted from greater (more negative) cognitive control skills. The strength of 

associations between the cognitive control and academic latent factors was stronger for Observed 

Measures models than for Adjusted Measures models. However, because the Adjusted Measures 

models described variance in more behavioral indicators of Go/No-Go task performance it is 

difficult to directly compare these values. However, comparisons of the R2 indices across models 

suggest that the Observed SEM models accounted for the most variance in literacy subtests of 

the Woodcock-Johnson. Whereas, the Adjusted SEM models accounted for the most variance in 

the applied problems subtest. Table 36 highlights the percentage of variance accounted for in 

each academic measure across traditional multiple regression and SEM models. Traditional 

regression models showed worse goodness-of-fit as indicated by R2 between .019 and .122, as 

compared to the Observed SEM (.535> R2>.782) and Adjusted SEM (.488> R2>.711) models. 

 

Table 36 

Percent Variance Explained in Academic Subscales: Comparisons across Predictive Models  

Analytic Approach Letter Word 

ID 

Passage 

Comprehension 

Applied  

Problems 

Traditional 

Regression 

Behavioral Indicators 10.2% 8.1% 1.9% 

Behavioral and Neural Indicators 12.2% NA 6.3% 

Observed 

SEM 

Behavioral Indicators 74.0% 53.5% 64.8% 

Behavioral and Neural Indicators 78.2% 54.4% 63.5% 

Adjusted 

SEM 

Behavioral Indicators 71.1% 48.8% 70.0% 

Behavioral and Neural Indicators 71.1% 48.8% 70.0% 
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Discussion 

Brain and behavior measures of performance on computerized tasks are widely used to 

quantify cognitive control skills, estimate differences in academic achievement, and investigate 

the etiology of neurodevelopmental disorders. While computerized tasks afford researchers tight 

experimental control, varying task features related to task randomization, may bias estimates of 

accuracy and reaction time measures by influencing performance on individual trials. However, 

whether trial features have a practically significant impact on performance for these types of 

forced-response tasks is underexplored. Moreover, studies often report bivariate relations 

between academic skills and a single score of cognitive control performance. As a result, 

relations between cognitive control and academic skills are inconsistent and relatively weak.  

The current project aimed to investigate relations between academic skills and cognitive 

control using novel methods for quantifying both overt (observable behavior) and covert 

(internal cognitive processes indexed by neural measures) cognitive processes. IRT models were 

leveraged to identify task features that impact children’s behavioral performance and 

accommodate for inter-trial variation in Go/No-Go performance among children. SEM models 

were then used to estimate relations between latent factors of cognitive control and academics 

and examine how neural measures loaded onto behavioral factors of cognitive control. Overall, 

findings indicate that trial randomization does lead to differences in trial difficulty. Additionally, 

a latent factor of cognitive control incorporating multiple measures of Go/No-Go task 

performance was more strongly related to academic outcomes than traditional multiple 

regression approaches. Neural measures did not help explain additional variance in academic 

skills. However, it is possible that the error-identification mechanisms these neural measures 

reflect differentially relate to performance for individual children, causing some to increase their 
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task performance, whereas others may disengage due to higher emotional reaction to erring. 

Analyses exploring underlying factor structure of all Go/No-Go measures indicate that task 

performance may best be supported by multidimensional theories of cognitive control. 

Implications for developmental and clinical researchers are discussed below.  

Go/No-Go Task Performance 

Overall, children performed well on the Go/No-Go task demonstrating low occurrences 

of errors of omission and moderate occurrences of commission errors. However, there was quite 

a range in performance, with average EOM ranging from 0% to 61.92% and average ECOM 

ranging from 5% to 96.92%. Additionally, gender differences emerged in reaction time variables. 

Specifically, boys had greater variance in average RTC values than girls and also showed greater 

inter-trial variability in reaction time to Go trials. However, girls showed greater variance in 

inter-trial reaction times for No-Go trials, indicating perhaps that girls made fewer EOM overall 

and had slower average reaction time to Go trials. This was accompanied by higher d-prime 

scores for girls as well, indexing a better ratio of successful hit trials to incorrect false alarm 

trials. This supports previous work that indicates that average performance for boys and girls is 

similar in measures of cognitive control, but that within gender, the distribution of performance 

may be more variable for boys than girls (Montroy et al., 2016). 

Findings from Aim 1 of the current study demonstrate that task features can impact 

children’s speed and accuracy on the Go/No-Go task, replicating findings from Durston 

(Thomas, Worden, et al., 2002; Thomas, Yang, et al., 2002) and Schulz (2009) work in which 

trial difficulty was experimentally manipulated. Trial-level variance as indicated by the random 

effect of trial (see Table 7) was greater for Go trials, such that trial order accounted for 

approximately 2.53% of the variance in RTC and 8.60% of the variance in EOM. Whereas for 
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No-Go trials, trial order only accounted for 1.39% of variance in RTI and 2.80% of variance in 

ECOM. This may be explained by the greater frequency of Go versus No-Go trials in the task, by 

design. Trial order was operationalized as the sequential trial in the game (e.g., 1st trial, 150th 

trial, 320th trial). It is important to keep in mind that trial features were randomized within 

children which is why trials were cross-classified among children. So, regardless of whether the 

trial was preceded by a correct response or an error or any number of Go trials, additional 

variance was explained simply by which trial a response was being used to estimate expected 

reaction time and likelihood of erring.  

Greater number of preceding Go trials was related to increased reaction times and 

likelihood of error on both Go and No-Go trials in the current sample. Results indicated that each 

additional preceding Go trial was related to less than 5 ms difference in RT and less than 1% 

difference in expected likelihood of error. As such, these effects are not particularly practically 

significant unless comparing performance on trials with few-to-none preceding Go trials and 

large amounts of preceding Go trials. The current project utilized data from a task that had large 

variability in the range of preceding Go trials between participants. Some participants only 

completed a task with 0 to 8 preceding Go trials, while others completed a task with 0 to 22 

preceding Go trials. I suggest that future researchers keep the range of trial difficulty consistent 

across children completing Go/No-Go tasks in order to minimize any potential biases in 

performance estimations. Having a moderate range of preceding Go trials may also help ensure 

that there will be a sufficient amount of error trials for extraction of ERP components, as 

cognitive tasks with high accuracy rates may not produce a sufficient amount of usable neural 

data to estimate ERN and Pe Error components. 
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Additionally, trial performance was impacted by the previous trial accuracy such that 

post-error trials were associated with slower reaction times to both Go and No-Go stimuli as well 

as increased likelihood of having an omission error but decreased likelihood of making an error 

of commission. This finding suggests that children in the current sample may have shown 

increased orientation to an error and decreased their speed, which in turn lead to less task 

engagement (greater chance of EOM) or better motor inhibition (less chance of ECOM). 

Correlations among observed average variables also support this assumption as vigilance in 

response to Go trials (less EOM) was related to better PEA as measured by the average of Go 

trial performance following correct versus incorrect trials. However, only about one-fourth of the 

sample demonstrated post-error increases in accuracy. It may be that children have varied 

reactions to making an error such that some disengage from the task due to frustration or 

decreased feelings of competence, while others may increase their effort in order to improve 

their performance. Competing theories of post-error slowing also support the notion that 

individuals respond differently to errors (Gehring & Fencsik, 2001; King et al., 2010; Steinborn 

et al., 2012). Notably, PEA only compares average accuracy on Go trials following error – 

though does not distinguish between omission and commission errors. It may be that commission 

errors elicit a different post-error response than omission errors. Future research should 

investigate whether error type influences post-error adjustments to performance.  

Relations between Measures of the Go/No-Go 

A one-factor solution of cognitive control derived from the Go/No-Go task demonstrated 

better goodness-of-fit than a two-factor solution. For the observed model, variance in standard 

deviations in reaction time measures was best explained by the cognitive control construct. In the 

adjusted score model, accuracy indicators had the highest factor loadings perhaps due to smaller 
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sample variances in SDRTC and SDRTI. Additionally, standard errors in variances estimates 

were smaller in the adjusted score model than the observed model. Notably, post-error slowing 

was not well correlated with any other behavioral measure. This finding emerged despite over 

half of the children demonstrating a positive PES value, indicating increased reaction times in 

response to error.  

This unexpected finding may be explained by competing theories about the function of 

PES. One widely held idea is that PES is an index of either a conscious task strategy (Gehring & 

Fencsik, 2001; MacDonald et al., 2000). Individuals trade off speed for accuracy, slowing down 

to avoid future error. In contrast, PES has also been thought to reflect a heightened emotional 

reaction to error, causing decreased reaction times, accuracy, and perhaps disengagement from 

the task (Notebaert et al., 2009; Steinborn et al., 2012). Perhaps relations with other behavioral 

variables were not observed in the current analysis because PES indexed different reactions to 

errors for different children. Competing reactions to error may in turn present with varied 

relations to accuracy measures which would be masked in average correlations among all 

children. More work is needed to understand the variance in children’s error-related adjustments 

in reaction time. 

Neural indicators did not improve model fit or factor loadings for behavioral indicators. 

However, variance estimates for cognitive control decreased for both observed and predicted 

CFA models, indicating that neural measures reduced the distribution of the latent factor, also 

demonstrated by smaller standard error variances. Notably, the ERN did not load onto the 

cognitive control construct, even though in the traditional regression approach the ERN was the 

only significant neural predictor of the letter word ID subscale. The ERN component is perhaps 

the most frequently reported response-locked ERP component in investigations of cognitive 
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control (Downes et al., 2017; Gehring et al., 2011). Findings from the exploratory EFA highlight 

that the ERN may index a separate but related construct to cognitive control. Errors of 

commission was the only behavioral indicator to load onto the ERN factor in the EFA, such that 

greater (more negative) amplitudes in the ERN were associated with fewer errors of commission. 

Thus, the ERN may index error salience associated with commission but not omission errors. 

The CRN and Pe Error loaded onto cognitive control constructs but in unexpected and 

contradictory directions. The CRN is thought to index an attention cue to sustain engagement 

through a task (Maier et al., 2011), whereas the Pe is thought to reflect error salience (Overbeek 

et al., 2005). Therefore, it was anticipated that greater errors of omission would have been 

associated with smaller (less negative) CRN values and larger (more positive) Pe values. 

However, in the current analysis greater errors of omission were associated with larger (more 

negative) CRN values and smaller (more attenuated) Pe values. Future research should 

investigate whether there is a non-linear association between behavioral and neural predictors 

that could explain this unexpected finding. 

Overall, findings from the current project demonstrates that observations of multiple 

cognitive processes can be estimated from performance on one task. Often, children are required 

to complete a battery of cognitive tasks during participation in a research study. Large batteries 

can be laborious and result in greater data missingness due to cognitive fatigue or boredom. 

While there is merit in using multiple tasks to assess cognitive control, many studies limit 

performance on a task to one score of children’s functioning. Findings from the current study 

highlight that different behavioral and neural measures derived from the same task appear to 

reflect different cognitive processes. As such, it is suggested that researchers either create a latent 

construct of cognitive skills from varying task measures, as done in this study, or limit the 
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generalizability of the measure to the trial (i.e., Go, No-Go) and performance type (i.e., accuracy, 

reaction time). Future studies that investigate relations among multiple performance measures 

from two or three cognitive control tasks – each with similar measures of reaction time, 

accuracy, and ERP components - would greatly increase our understanding of how task 

specificity may alter relations among behavioral indicators. For example, assessing reaction time 

and accuracy measures in a Go/No-Go, flanker, and Sternberg task which are thought to be 

measures of inhibition, attention, and working memory, respectively (Corbin & Marquer, 2013; 

Servant & Logan, 2019). Findings from such work would clarify whether individual measures 

represent different cognitive constructs or whether there are more similarities among type of 

measure (i.e., reaction time or accuracy) across tasks. 

The methodological approach chosen for estimating CFAs does present with a few 

limitations. In the current study, estimated relations between behavioral indicators were 

completed prior to the addition of neural indicators. However, the exploratory EFA results 

demonstrated that ERPs and behavioral indicators shared loadings onto multiple underlying 

cognitive factors. As such, future research may consider estimating cognitive constructs with all 

neural and behavioral variables at the same time.  

Additionally, the goal of the current project was to find models that best fit as many 

Go/No-Go task measures as possible to match the theory that multiple performance measures on 

the task reflect related cognitive control skills. Although factor loadings varied in strength among 

indicator variables, CFA results explained how the underlying cognitive control skill predicted 

variance in Go/No-Go performance measures. There may in fact be multiple “best fit” models 

for measures of cognitive control depending on task features and sample populations. Future 

studies may choose to have a higher factor loading criterion for indicator variables. While these 
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approaches can be applied to any computerized task, I would expect to see differences in which 

measures of behavior are correlated within task based on task design and sample demographics. 

For example, children in the current study were in elementary school. Elementary school is a 

developmental period where cognitive control is rapidly developing and variation between 

participants is typically larger than adult populations. Therefore, similar investigations with 

different developmental populations should be pursued in the future to investigate whether 

relations between these measures differ across development. 

Relations between Cognitive and Academic Skills 

Relations between cognitive control and academic skills were assessed in three iterations. 

The traditional regression approach utilized multiple regression models to predict academic 

outcomes in three separate models predicting literacy or math subtests of the Woodcock-

Johnson. This approach weights the predictor variables equally. The SEM model approach 

regressed a latent factor of cognitive control onto a latent factor of academic skills. SEM models 

allow for indicator variables to have different factor loadings onto latent constructs. The SEM 

approach was completed for both observed cognitive control measures and adjusted (predicted) 

cognitive control measures. Both behavioral and neural dependent variables were assessed as 

predictors of academic skills. 

Comparisons across analytic approaches suggest that single score correlations with 

academics may be underestimating relations between cognitive and academic skills. Traditional 

regression models were least able to predict academic outcomes, explaining between 1.9% and 

12.2% of variance in academic subscales. Only one behavioral predictor mapped onto each 

academic measure in the traditional multiple regression approach. D-prime predicted 

performance on the literacy subscales, while RTC predicted performance on the applied 
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problems subtest. Additionally, ERP components did not relate to the passage comprehension 

subtest. However, the ERN was significantly associated with letter word identification and the 

CRN was related to applied problems, though neither demonstrated strong relations with the 

academic outcome. Both the Observed and Adjusted Measures SEM models were able to predict 

a moderate to high amount of variance in academic skills. The Observed SEM models best 

predicted outcomes in the literacy subtests of the Woodcock-Johnson, accounting for 

approximately 53% to 78% of the observed variance in passage comprehension and letter word 

identification performance. Whereas, the Adjusted SEM models accounted for the most variance 

in the applied problems subtest, approximately 70%. However, Observed and Adjusted Measure 

models showed at most a 7% difference in variance explained. Together, these findings highlight 

that there may not be one “best choice” cognitive variable that can predict variance in all 

academic skills. It is likely beneficial to consider performance across multiple measures of 

cognitive control when predicting academic skills, as academic achievement is dependent upon 

several cognitive processes that allow children to attend in the classroom and demonstrate 

positive approaches to learning, such as persistence (Li-Grining et al., 2010; Torgrimson et al., 

2021).  

Although neural and behavioral measures of cognitive control are thought to index 

similar but distinct cognitive processes, results from the current investigation indicate that there 

was not much difference in factor or residual variance between SEM models that included only 

behavioral indicators of cognitive control (Aim 2) or that included behavioral and ERP indicators 

of cognitive control (Aim 3). Similarly, there were small changes in factor loadings and barely 

any changes in predictive quality between cognitive control and academics. This may be due to 

the statistical approach which fit ERP measures onto factors of cognitive control after finalizing 



99 

 

the best fit among behavioral indicators. Exploratory analyses indicated that the CRN and Pe 

Error were most related (though moderately) to accuracy on No-Go trials, as indexed by ECOM. 

ECOM was not retained as an indicator variable in any of the SEM analyses, likely due to 

relatively weak associations with other behavioral variables. Additionally, findings showed that 

the ERN was not well correlated with other measures. Specifically, the ERN only loaded onto a 

factor comprised of the ERN, CRN, and Pe Error, of which the CRN and Pe Error had relatively 

weak factor loadings. Yet, the traditional multiple regression approach indicated that the ERN 

was related to performance on the letter word identification subtest. Future research may 

consider alternative approaches to mapping relations among Go/No-Go task measures that would 

allow for academic associations with ECOM and the ERN to be modeled.   

Conclusion 

In computerized cognitive control tasks have been proposed as more “objective” 

assessments of clinical impairments to improve diagnostic accuracy, predict response to 

treatment, and provide an understanding of mechanisms of the disorder – specifically in 

biopsychological processes that underly observable symptoms (Cuthbert & Insel, 2013; Geraldo 

et al., 2019). However, previous work indicates that impairments in cognitive control skills are 

not always apparent in average scores from neuropsychological assessments (Nigg, 2005). It has 

been suggested that trial-to-trial variability within performance may better help characterize 

different clinical syndromes (DuPaul & Stoner, 2014). This study provides evidence that both 

children’s latent abilities and trial order does account for difference in trial-to-trial performance.  

The model presented here can be replicated with any computerized task that has trial-

level behavioral data. This may be particularly important for clinical research and investigations 

into potential early predictors of neurodevelopmental disorders. Additionally, findings provide 
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preliminary evidence that adjusted performance scores may better help capture unitary constructs 

of cognitive control than observed measures, though additional research is needed to support this 

claim. Moreover, results of the current study emphasize that incorporating multiple measures of 

cognitive control from even one behavioral task is superior to predicting variance in academic 

outcome measures than singular cognitive outcome measures. Overall, findings suggest that 

researchers consider reducing the total amount of cognitive tasks that participants are asked to 

complete and instead maximize the value of the data that can be extracted from one cognitive 

task, by including multiple measures of performance in estimations of ability.  
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Appendix A 

Table A1 

RT Correct: IRT Factor Estimates by Model 

 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Fixed Effect (SE)  

(Intercept) 555.66(4.48)*** 567.92(4.53)*** 577.42(4.33)*** 568.63(5.75)*** 735.63(28.79)*** 729.71(2907)*** 

Trial 

Difficulty  -5.06(0.25)*** -5.06(0.25)*** -5.06(0.25)*** -5.06(0.25)*** -4.64(0.26)*** 

Data 

Source   

-

107.88(13.45)*** 

-

105.77(13.36)*** 

-

111.47(12.67)*** 

-

111.54(12.79)*** 

Female    17.44(7.57)* 15.91(7.16)* 16.54(7.23)* 

Age     -26.97(4.56)*** -26.54(7.23) 

Post-Error      10.84(1.99)*** 

Random Effect (SD)  

Trial ID 755(27.48) 791.5(28.13) 793.7(28.17) 793.6(28.17) 793.4(28.17) 758.1(27.53) 

Subject 5039(70.98) 5048.6(71.05) 4118.4(64.17) 4042.7(63.58) 3598.4(59.99) 3666.2(60.55) 

Residual 25739(160.43) 25562.9(159.88) 25562.4(159.88) 25562.4(159.88) 25562.4(159.88) 25564.5(159.89) 

Fit Statistics  

AIC 803631.6 803226.3 803170.0 803166.8 803135.8 784257.2 

BIC 803677.7 803271.4 803224.2 803230.0 803208.1 784338.3 

Log 

Likelihood -401811.8 -401608.1 -401579.0 -401576.4 -401559.9 -392119.6 

Deviance 803623.6 803216.3 803158.0 803152.8 803119.8 784239.2 

Residual 

(df) 61713 61712 61711 61710 61709 6056 

Chi-square 

(p)  407.27(p<.001) 58.25(p<.001) 5.26(p=.022) 32.98(p<.001)  

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Table A2 

RT Error: IRT Factor Estimates by Model  

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Fixed Effect (SE)  

(Intercept) 469.77(4.39)*** 477.49(4.74)*** 481.47(4.85)*** 475.35(6.32)*** 633.05(31.80)*** 621.63(32.14)*** 

Trial 

Difficulty  -2.70(0.63)*** -2.69(0.64)*** -2.69(0.63)*** -2.67(0.63)*** -1.48(0.69)* 

Data 

Source   -47.10(14.69)** -45.22(14.68)** -50.16(14.14)*** -50.25(14.27)*** 

Female    12.35(8.23) 10.64(7.91) 11.61(7.98) 

Age     -25.47(5.04)*** -25.03(5.09)*** 

Post-Error      22.01(5.35)*** 

Random Effect (SD)  

Trial ID 541.4(23.27) 550.1(23.45) 552.8(23.51) 552(23.50) 558.9(23.64) 465.8(21.58) 

Subject 3932.1(62.71) 3924.7(62.65) 3751.7(61.25) 3714(60.94) 333.2(57.73) 3383.2(58.17) 

Residual 29766.4(172.53) 29698.5(172.33) 29696.5(172.33) 29697(172.33) 29689.2(172.31) 29661.1(172.22) 

Fit Statistics  

AIC 166470.1 116453.9 116445.8 116445.6 116423.1 113648.5 

BIC 116498.4 116489.4 116488.3 116495.2 116479.7 113712.0 

Log 

Likelihood -58231.0 -58222.0 -58216.9 -58215.8 -58203.5 -56815.2 

Deviance 116462.1 116443.9 116433.8 116431.6 116407.1 113630.5 

Residual 

(df) 8816 8815 8814 8813 8812 8602 

Chi-square 

(p)  18.13(p<.001) 10.11(p=.001) 2.24(p=.134) 24.53(p<.001) 

 

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Table A3 

EOM: IRT Factor Estimates by Model 

 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Fixed Effect (SE)  

(Intercept) -2.87(0.07)*** -2.81(0.08)*** -2.87(0.08)*** -2.84(0.11)*** 0.62(0.54) 0.03(0.52) 

Trial 

Difficulty  -0.03(0.01)*** -0.03(0.01)*** -0.03(0.01)*** -0.03(0.01)*** 0.01(0.01)* 

Data 

Source   0.62(0.25)* 0.61(0.25)* 0.50(0.23)* 0.42(0.22) 

Female    -0.06(0.14) -0.10(0.13) -0.06(0.13) 

Age     -0.56(0.09)*** -0.53(0.08)*** 

      1.19(0.03)*** 

Random Effect (SD)  

Trial ID 0.11(0.33) 0.11(0.33) 0.11(0.33) 0.11(0.33) 0.11(0.33) 0.08(0.29) 

Subject 1.37(1.17) 1.37(1.17) 1.34(1.16) 1.34(1.16) 1.17(1.08) 1.07(1.03) 

Fit Statistics  

AIC 34600.3 34581.9 34577.6 34579.5 34542.0 31943.1 

BIC 34627.7 34618.4 34623.3 34634.2 34605.9 32015.9 

Log 

Likelihood -17297.2 -17286.9 -17283.8 -17283.7 -17264.0 -15963.6 

Deviance 34594.3 34573.9 34567.6 34567.5 34528.0 31927.1 

Residual 

(df) 67672 67671 67670 67669 67668 65984 

Chi-square 

(p)  20.43(<.001) 6.22(.013) 0.18(.668) 39.45(<.001)  

 

***p<.001, **p<.01, *p<.05, +p<.10 
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Table A4 

ECOM: IRT Factor Estimates by Model 

 

 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Fixed Effect (SE)  

(Intercept) -0.48(0.05)*** -0.55(0.05)*** -0.58(0.06)*** -0.40(0.08)*** -0.32(0.41) -0.24(0.42) 

Trial 

Difficulty  0.03(0.01)*** .03(0.01)*** 0.03(0.01)*** 0.03(0.01)*** 0.02(0.01)*** 

Data Source   0.34(0.19)+ 0.30(0.18) 0.29(0.18) 0.29(0.18) 

Female    -0.36(0.10)*** -0.36(0.10)*** -0.38(0.10)*** 

Age     -0.01(0.07) -0.02(0.07) 

Post-Error      -0.10(0.04)* 

Random Effect (SD)  

Trial ID 0.02(0.15) 0.02(0.15) 0.02(0.15) 0.02(0.15) 0.02(0.15) 0.02(0.13) 

Subject 0.73(0.85) 0.73(0.85) 0.72(0.85) 0.69(0.83) 0.69(0.83) 0.71(0.84) 

Fit Statistics  

AIC 27902.4 27879.9 27878.6 27868.3 27870.3 27139.2 

BIC 27926.5 27912.0 27918.7 27916.5 27926.5 27203.2 

Log 

Likelihood -13948.2 -13935.9 -13934.3 -13928.2 -13928.1 -13561.6 

Deviance 27896.4 27871.9 27868.6 27856.3 27856.3 27123.2 

Residual (df) 22614 22613 22612 22611 22610 22017 

Chi-square 

(p)  24.52(<.001) 3.34(.068) 12.22(<.001) 0.04(.845)  

 

***p<.001, **p<.01, *p<.05, +p<.10  
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Table A5 

Predicted and Observed Measures of Behavior: Descriptive Statistics 

 Min Mean Max SD 

Variable Observed Predicted Observed Predicted Observed Predicted Observed Predicted 

EOM 0.00 0.49 8.93 8.79 61.92 61.10 10.00 9.74 

ECOM 5.00 8.42 39.35 39.41 96.92 91.01 18.63 17.30 

RT Correct (ms) 362.35 361.42 555.99 554.65 769.76 761.12 71.35 69.83 

RT Error (ms) 309.67 338.83 470.01 467.63 667.54 630.59 71.57 56.35 

SDRTC (ms) 58.76 23.09 158.83 27.85 295.01 34.55 42.89 1.65 

SDRTI (ms) 29.77 5.35 153.75 15.39 352.87 23.12 61.64 2.61 

PEA -70.72 -32.17 -9.57 -10.29 7.58 -0.90 13.31 7.63 

PES (ms) -131.29 -1.29 17.45 18.52 178.91 37.46 51.51 6.64 

d-prime -0.42 -0.15 1.86 1.84 3.74 3.49 0.83 0.76 
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Appendix B 

A series of models were run to estimate one-factor and two-factor CFAs of cognitive 

control. Model fit criterion included chi-square (p>.05), comparative fit index (CFI,>0.900), root 

mean square approximation (RMSEA, <.05), and standardized room mean square residual 

(SRMR, <.05). One and two-factor models were compared using AIC criterion. For all models, 

variables and co-variances were removed/added one-at-a-time to increase goodness of fit. 

Variables were removed if they demonstrated large negative residual variances and lambda 

factor loadings -1> λ>1 or fell below +/- 0.100 for lambda factor loadings (p>.05). Covariances 

were then added in incrementally, using the modindices function in lavaan, while also 

accounting for theoretically relevant residual shared variances (e.g., reaction time variables likely 

had shared variance relating to motor skills that would not be explained by cognitive control 

construct) in order to obtain a well-fitting model. Covariances were removed if they were not 

statistically significant (p>.05) unless retention of covariance in the model increased goodness-

of-fit.  

One-Factor CFA Model Testing: Observed Behavioral Indicators 

Ten models in total were run. Goodness-of-fit statistics for each model are presented in 

Table B1. Model 1 presented with all variables meeting the criterion of a factor loading +/- 

0.100, and thus covariances were incrementally added to improve model fit. In Model 2, a 

covariance between RTC and RTI was added. In Model 3, a covariance between SDRTC and 

SDRTI was added. However, the factor loading of RTI fell below the loading threshold 

(λ=0.003, p=.909), and was removed as an indicator variable in Model 4. In Model 4, ECOM had 

a low and statistically non-significant loading (λ=0.058, p=.329) and was removed from further 

analyses. In Model 6, a covariance between EOM and PEA was added. However, PES dipped 
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below the desired threshold (λ=0.012, p=.170) and was removed. In Model 7, d-prime had a 

large negative variance and high factor loading (λ=-2.697, p=.195) and was removed from 

additional models. In Model 8, the covariance between SDRTC and SDRTI was no longer 

significant (p=0.688) and so was removed from Model 9. A final covariance between RTC and 

PEA was added in Model 10 in order to improve χ2 and RMSEA fit indices.
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Table B1 

Fit Indices for One-Factor CFA Models of Observed Behavioral Indicators 

 

Model # Model 

Parameters 

df χ2 CFI AIC RMSEA SRMR 

1 18 27 1324.08*** 0.342 6673.25 0.409*** 0.190 

2 19 26 982.23*** 0.515 6333.41 0.358*** 0.251 

3 20 25 745.76*** 0.635 6098.94 0.317*** 0.229 

4 17 19 909.4*** 0.458 5780.60 0.404*** 0.193 

5 15 13 262.30*** 0.751 4963.83 0.258*** 0.122 

6 16 12 140.74*** 0.871 4844.27 0.193*** 0.196 

7 14 7 126.26*** 0.880 4027.54 0.244*** 0.213 

8 12 3 11.21* 0.986 3492.03 0.098+ 0.036 

9 11 4 11.45* 0.988 3490.28 0.081 0.031 

10 12 3 2.21 1.000 3483.04 0.000 0.009 

        

***p<.001, **p<.01, *p<.05, +p<.1 
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Two-Factor CFA Model Testing: Observed Behavioral Indicators 

Ten models in total were run. Goodness-of-fit statistics for each model are presented in 

Table B2. In Model 1, ECOM had a negative variance of -0.034 that was not statically 

significant (p=.136). As such, ECOM error variance was set to 0 in Model 2. In Model 2, PES 

showed a low factor loading to Inhibition (λ=0.048, p=.415) and was removed from Model 3. In 

Model 4, a covariance between RTC and RTI was added. In Model 5, a covariance between 

SDRTC and SDRTI was added. In Model 6, a covariance between RTC and SDRTC was added. 

In Model 7, a covariance between SDRTI and RTC was added. In Model 8, a covariance 

between RTI and SDRTI was added. In Model 9, a covariance term between RTI and SDRTC 

was added. A final covariance between EOM and PEA was added in Model 10 in order to 

improve X2 and RMSEA fit indices.
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Table B2 

Fit Indices for Two-Factor CFA Models of Observed Behavioral Indicators 

 

Model # Model 

Parameters 

df χ2 CFI AIC RMSEA SRMR 

1 26 19 616.10*** 0.697 5981.28 0.331*** 0.147 

2 25 20 617.10*** 0.697 5980.27 0.323*** 0.147 

3 24 21 617.77*** 0.697 5978.94 0.315*** 0.148 

4 25 20 391.39*** 0.812 5754.56 0.254*** 0.122 

5 26 19 240.17*** 0.888 5605.34 0.201*** 0.109 

6 27 18 136.76*** 0.940 5503.93 0.152*** 0.098 

7 28 17 116.83*** 0.949 5486.01 0.143*** 0.086 

8 29 16 53.63*** 0.981 5424.80 0.091** 0.059 

9 30 15 27.88* 0.993 2401.05 0.055 0.030 

10 31 14 21.28+ 0.996 5396.45 0.043 0.028 

        

***p<.001, **p<.01, *p<.05, +p<.1 
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One-Factor CFA Model Testing: Predicted Behavioral Indicators 

Fifteen models in total were run. Goodness-of-fit statistics for each model are presented 

in Table B3. In Model 1, ECOM had a lower factor loading (λ=0.010, p=.857) and was removed 

as an indicator from further analyses. In Model 2, SDRTC had a low factor loading (λ=0.098, 

p=.137) and was removed as an indicator variable. In Model 3, PEA had a negative error 

variance of -0.009 (p=.474) and so the error variance of PEA was set to 0 in Model 4. In Model 

5, a covariance term between RTC and RTI was added. In Model 6, a covariance term between 

RTC and d-prime was added. A covariance term between RTC and EOM was added in Model 7. 

Next, a covariance term between RTI and EOM was added to Model 8. In Model 9, a covariance 

term between RTC and PES was added. In Model 10, a covariance between d-prime and PES 

was included. A covariance term between RTI and SDRTI was added to Model 11. In Model 12, 

a covariance between SDRTI and d-prime was included. In Model 13, a covariance between RTI 

and d-prime was added. A covariance between EOM and d-prime was added to Model 14. A 

final covariance term between EOM and PES was added to Model 15. 
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Table B3 

Fit Indices for One-Factor CFA Models of Adjusted Behavioral Indicators 

 

Model # Model 

Parameters 

df χ2 CFI AIC RMSEA SRMR 

1 18 27 1267.22*** 0.473 6233.09 0.400*** 0.191 

2 16 20 464.32*** 0.715 5415.64 0.278*** 0.153 

3 14 14 401.81*** 0.742 4600.94 0.311*** 0.155 

4 13 15 402.15*** 0.742 4599.27 0.300*** 0.155 

5 14 14 175.66*** 0.892 4374.79 0.201*** 0.088 

6 15 13 77.94*** 0.957 4279.07 0.132*** 0.069 

7 16 12 65.51*** 0.964 4268.64 0.125*** 0.070 

8 17 11 54.50*** 0.971 4259.32 0.117*** 0.068 

9 18 10 43.91*** 0.977 4251.04 0.109** 0.059 

10 19 9 25.95** 0.986 4238.63 0.089* 0.046 

11 20 8 25.25** 0.989 4236.38 0.087* 0.042 

12 21 7 14.57* 0.995 4227.70 0.061 0.035 

13 22 6 11.74 0.996 4226.87 0.058 0.024 

14 23 5 7.87 0.998 4224.99 0.045 0.022 

15 24 4 4.03 1.000 4223.16 0.005 0.020 

        

***p<.001, **p<.01, *p<.05, +p<.1 

 



113 

 

Two-Factor CFA Model Testing: Adjusted Behavioral Indicators 

Eleven models in total were run. Goodness-of-fit statistics for each model are presented 

in Table B4. In Model 1, SDRTC had a low factor loading onto the attention construct (λ=0.099, 

p=.140) and was removed from Model 2. In Model 3, a covariance between RTC and RTI was 

added. A covariance between PES and SDRTC was added to Model 4. In Model 4, ECOM had a 

low negative variance of -0.014 (p=.591). As such, in Model 5, the error variance for ECOM was 

held constant at 0. In Model 6, a covariance between RTC and PES was added to the model. 

Next, a covariance between RTC and EOM was added to Model 7. In Model 8, a covariance 

between EOM and RTI was added. A covariance between SDRTI and RTI was added to Model 

9. A covariance between SDRTC and RTC was then added to Model 10. A final covariance 

between SDRTC and SDRTC was added to Model 11 to reach fit indices thresholds for 

goodness-of-fit.  
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Table B4 

Fit Indices for Two-Factor CFA Models of Adjusted Behavioral Indicators 

 

Model # Model 

Parameters 

df χ2 CFI AIC RMSEA SRMR 

1 26 19 374.27** 0.849 5356.09 0.255*** 0.114 

2 25 20 377.08*** 0.848 5356.94 0.249*** 0.118 

3 26 19 112.30*** 0.960 5094.16 0.131*** 0.075 

4 27 18 78.85*** 0.974 5062.71 0.109*** 0.061 

5 26 19 79.34*** 0.974 5061.20 0.105*** 0.061 

6 27 18 59.58*** 0.982 5043.44 0.090** 0.059 

7 28 17 47.45*** 0.987 5033.31 0.079* 0.059 

8 29 16 37.56** 0.991 5025.43 0.069 0.058 

9 30 15 33.34** 0.992 5023.20 0.065 0.055 

10 31 14 29.14* 0.994 5021.00 0.061 0.051 

11 32 13 15.83 0.999 5009.69 0.028 0.035 

        

***p<.001, **p<.01, *p<.05, +p<.1 
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One-Factor CFA Model Testing: Observed Behavioral and ERP Indicators 

Ten models in total were run. Goodness-of-fit statistics for each model are presented in 

Table B5. In Model 1, Pe Correct had a low factor loading (λ=-0.002, p=.979) and was removed 

from the indicator variables in Model 2. In Model 2, the ERN had a low factor loading (λ=-

0.018, p=.788) and was removed from the indicator variables. A covariance between CRN and 

RTC was added to Model 4. In Model 5, a covariance between PEA and Pe Error was added. In 

Model 5, the covariance between RTC and PEA was no longer significant and it was removed 

from Model 6. A covariance between CRN and Pe Error was then included in Model 7. A 

covariance between RTC and Pe Error was next added to Model 8. In Model 9, a covariance 

between SDRTC and CRN was included. The covariance factor between RTC and PEA was 

added back into Model 10 in order to improve goodness-of-fit in RMSEA. 
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Table B5 

Fit Indices for One-Factor CFA Models of Observed Behavioral and Neural Indicators 

 

Model # Model 

Parameters 

df χ2 CFI AIC RMSEA SRMR 

1 20 25 264.11*** 0.701 5649.61 0.197*** 0.136 

2 18 18 188.02*** 0.768 4948.50 0.196*** 0.121 

3 16 12 139.87*** 0.815 4247.45 0.208*** 0.113 

4 17 11 50.77*** 0.942 4160.36 0.121*** 0.070 

5 18 10 35.58*** 0.963 4147.16 0.102** 0.067 

6 17 11 39.07*** 0.959 4148.66 0.102** 0.070 

7 18 10 31.91*** 0.968 4143.49 0.094 0.059 

8 19 9 23.51** 0.979 4137.10 0.081 0.041 

9 20 8 13.17 0.993 4128.75 0.051 0.033 

10 21 7 8.60 0.998 4126.19 0.031 0.025 

        

***p<.001, **p<.01, *p<.05, +p<.1 
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Two-Factor CFA Model Testing: Observed Behavioral and ERP Indicators 

Twelve models in total were run. Goodness-of-fit statistics for each model are presented 

in Table B6. In Model 1, Pe Correct did not significantly load onto either construct of attention 

(λ=0.035, p=.598) or inhibition (λ=-0.070, p=.262) and was removed from the indicator variables 

in Model 2. In Model 3, the ERN was removed from the attention construct (λ=0.024, p=.717) 

and a covariance between Pe Error and the ERN was added. A covariance between the ERN and 

CRN was included in Model 4. In Model 5, a covariance between the CRN and Pe Error was 

added. Next, a covariance between the CRN and SDRTC was included in Model 6. A covariance 

between the Pe Error and PEA was then included in Model 7. A covariance between RTC and 

EOM was added in Model 8. In Model 8, the error variance of d-prime was negative, -0.010 

(p=.618). As such the error variance of d-prime was held constant at 0 in Model 9. A covariance 

between CRN and RTI was then added to Model 10. A covariance between RTC and the CRN 

was included in Model 11. Last, a covariance between the ERN and RTC was included in Model 

12 to reach the threshold for goodness-of-fit.  
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Table B6 

Fit Indices for Two-Factor CFA Models of Observed Behavioral and Neural Indicators 

 

Model # Model 

Parameters 

df χ2 CFI AIC RMSEA SRMR 

1 43 48 280.11*** 0.887 7176.88 0.140*** 0.090 

2 40 38 195.93*** 0.921 6475.14 0.130*** 0.077 

3 40 38 172.18*** 0.933 6451.39 0.120*** 0.071 

4 41 37 118.90*** 0.959 6400.12 0.095*** 0.056 

5 42 36 107.24*** 0.964 6390.46 0.090** 0.052 

6 43 35 90.24*** 0.972 6375.45 0.080** 0.051 

7 44 34 79.13*** 0.977 6366.35 0.073* 0.048 

8 45 33 62.24** 0.985 6351.45 0.060 0.048 

9 44 34 62.64** 0.986 6349.85 0.059 0.048 

10 45 33 57.11** 0.988 6346.32 0.054 0.045 

11 46 32 46.65* 0.993 6337.87 0.043 0.040 

12 47 31 43.76+ 0.994 6336.98 0.041 0.038 

        

***p<.001, **p<.01, *p<.05, +p<.1 
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One-Factor CFA Model Testing: Adjusted Behavioral and ERP Indicators 

Eight models in total were run. Goodness-of-fit statistics for each model are presented in 

Table B7. Model 1 did not converge and received an error notification that the sample covariance 

matrix was not positive-definitive. In Model 2, removing the ERN and Pe Correct indicator 

variables allowed the model to converge and the sample covariance matrix was a positive-

definitive. Pe Error was removed as an indicator variable in Model 3, as it had a low factor 

loading (λ=0.043, p=.480). In Model 4, a covariance between the CRN and d-prime was added to 

the model. In Model 5, the covariance between RTI and SDRTI was removed because it was no 

longer significant (p=.165). Similarly, in Model 6 the covariance between EOM and d-prime was 

removed (p=.104). In Model 7, the covariance between EOM and PES was removed (p=.126). 

Last, the covariance between RTI and EOM (p=.064) was removed in Model 8.  
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Table B7 

Fit Indices for One-Factor CFA Models of Adjusted Behavioral and Neural Indicators 

 

Model # Model 

Parameters 

df χ2 CFI AIC RMSEA SRMR 

1 NA NA NA NA NA NA NA 

2 28 17 392.09*** 0.791 4817.66 0.299*** 0.114 

3 26 10 19.14* 0.994 4117.00 0.061 0.025 

4 27 9 7.32 1.000 4107.18 0.000 0.021 

5 26 10 8.93 1.000 4106.79 0.000 0.023 

6 25 11 11.92 0.999 4107.78 0.018 0.023 

7 24 12 14.35 0.998 4108.21 0.028 0.024 

8 23 13 19.13 0.996 4110.99 0.044 0.026 

        

***p<.001, **p<.01, *p<.05, +p<.10 
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