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ABSTRACT OF THE DISSERTATION

Dynamics of the Artificial Axon

by

Ziqi Pi

Doctor of Philosophy in Physics
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Professor Giovanni Zocchi, Chair

The “Artificial Axon” (AA) is a synthetic excitable system developed in the Zocchi lab, con-

structed with the minimal biological components. Based on traditional black lipid membrane

setups, the AA is the first cell-free platform capable of producing action potentials (APs)

in time. This dissertation details the results of my work with the AA, using the voltage

gated potassium channel KvAP as the active ingredient. First, I report on experimental

measurements with the AA near the threshold for firing APs, a critical point of the system.

In particular, a delay in firing occurs due to the presence of a saddle node bifurcation, and a

scaling exponent for this delay is measured. Supplemented by numerical results, I show that

this behavior near the critical point has correspondence to the real neuron, due to the uni-

versal nature of the dynamics near a critical point. Next, I will characterize the AA in terms

of its phenomenology. Using a minimal 3D model based on the Hodgkin-Huxley model, I

construct a qualitative phase diagram in the parameter space of the system. The existence

of limit cycle regions in this phase diagram indicates that the AA is capable of generating

self sustaining AP trains with just a single ion channel. The analysis also shows that the

AA, having just one channel species with inactivation, possesses all the same dynamics as a

ii



two ion species system without inactivation, such as the Morris-Lecar model for the muscle

fiber of the giant barnacle. This result is followed by measurements of the effective inacti-

vation and recovery rates for our minimal model, qualitatively placing the AA with KvAP

on the phase diagram. Finally, I will present work on an experimental system consisting of

two AA connected by electronic “synapses”, and explore the feasibility of constructing an

autonomous oscillator with such a configuration. The connection of two AAs serves as a first

step for our long term goal of AA based networks. The dissertation concludes with a short

discussion on future directions for the Artificial Axon system.
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CHAPTER 1

Introduction

In the pursuit of understanding complex biological systems, an often rewarding approach

is to construct a minimal system in a controlled, synthetic environment, which is inspired

by the more sophisticated natural counterpart. In recent history, a great many innovations

have been brought about through inspiration from unique phenomena which occur in nature.

Some unconventional examples include the creation of Velcro from the clinging properties

of the Arctium plant, and the development of ultrahydrophobic paints from investigations

into the self-cleaning properties of lotus leaves [2]. Novel inventions aside, a more relevant

example is perhaps the influence biological computation has had on the rapidly advancing

field of artificial intelligence. Many of the innovations which contributed to the advancement

of AI have basis in the mechanisms which living organisms use to ”think” and compute, and

although philosophers have grappled with the concepts of consciousness and thought for cen-

turies, understanding of the underlying physiological mechanisms has only come to pass in

recent decades. It is now understood that, at the cellular level, neurons and synapses serve

as the fundamental units which are responsible processing and transmitting information in

the context of neurobiology [3]; neurons acts as the processing units while synapses transmit

and integrate the signals between neurons. These processes are in turn mediated by voltage

spikes in the membranes of neurons: action potentials.
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1.1 Action Potentials and Ion Channels

From an anthropological perspective, action potentials are among the most consequential

dynamical systems on Earth. The information contained in their frequency and spiking pat-

terns are utilized not just in the processing of information in the nervous system, but also in

a host of other physiological functions, e.g. pacemaking in the heart and the production of

insulin in the pancreas [4, 5]. These rapid fluctuations of the membrane potential are pow-

ered by concentration gradients of various ions across the cell membrane. Perhaps the most

well known feature of action potentials is that their generation is based on the “all-or-none”

principle; the output of an action potential requires an input which exceeds a threshold,

while the exact magnitude and duration of a suprathreshold input has little to no effect on

the characteristics of the resulting action potential.

Electrophysiology, the study of electrical phenomena in biological systems, has an exten-

sive history dating back to the 17th century, yet knowledge of action potentials is compara-

tively recent; the first recordings were made by Julius Bernstein in 1868. Furthermore, the

modern explanation for how action potentials are produced, the ionic theory of membrane

potential and excitability, did not gain widespread acceptance until the mid-20th century,

after Alan Hodgkin and Andrew Huxley provided strong evidence with their mold breaking

experiments on the squid giant axon [6]. Hodgkin and Huxley were among the first to make

direct recordings of the current across a cellular membrane, making use of Cole and Mar-

mont’s newly developed technique of voltage clamping, a method in which the membrane

potential of a cell is held fixed by an external feedback circuit. Based on their measurements

on the axon of the longfin inshore squid, they formulated a model which uses an equivalent

circuit representation for the flow of ions across a membrane. Crucially, they proposed that

the conductances of individual ions should be independent functions of the transmembrane

potential, with the specific form of the conductance determining the excitability characteris-
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tics of the membrane. They validated this theory by showing that the model quantitatively

accounted for the excitations seen in their experiment [7]. The Hodgkin-Huxley (HH) model

still remains relevant today, forming a class of models for action potential generation known

as “conductance based models”, with the proposed mechanisms of ion conduction being ap-

plicable to any excitable cell [4]. The molecular basis of voltage dependent conductances

in the HH model also pointed to the existence of a structure within cell membranes which

allowed for the selective passage of ions — known today as ion channels, though their exis-

tence would not be confirmed by experiment until the 1970s.

Ion channels are macromolecular pores embedded in the membranes of excitable cells

which serve as the fundamental excitable elements in the generation of action potentials

[8]. While their evolutionary origins remain uncertain, ion channels exhibit considerable

diversity. More than 300 different ion channels have identified in the human genome [9],

and though the role of ion channels in non-animal organisms is still poorly understood, a

large variety have been identified in microbes as well [10]. As the name implies, the role of

the ion channel is to allow passage of specific ions through the cellular membrane, but only

when specific conditions are met (“gating”). Channels are predominantly classified by the

type of ion they allow passage (Na+, K+, Ca2+, or Cl– ), and by the their gating mechanism

(voltage, chemical, pressure, etc). The diverse properties of these different channels lead to

the qualitative differences in action potentials generated across a wide spectrum excitable

cells.

1.2 Modern Directions

Experimental electrophysiology saw swift advancements in the decades following Hodgkin

and Huxley’s measurements. In the late 1970s, Erwin Neher and Bert Sakmann combined
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several novel methods developed in the preceding decade and introduced the patch clamp

technique, in which a small tip (∼ 1 − 2µm in diameter) filled with electrolytic solution

is pressed against the surface of a cell, electrically isolating a “patch” from the rest of the

cell membrane. This revolutionary new approach made single molecule experiments possi-

ble for the first time, and measurements of the current through individual ion channels as

they opened and closed were obtained. A further refinement of the technique came soon

after with the introduction of the “gigaseal” patch clamp, which was modified to have suc-

tion between the membrane and the tip. This vastly increased the seal’s resistance and

as a result significantly enhanced the signal-to-noise ratio of the current recordings. This

improved version of the patch clamp remains the preferred technique for a wide array of

present-day electrophysiological studies, owing to it’s minimal noise and broad applicability

[6]. Alongside these advances in experimental techniques, modern neuronal models have also

seen significant refinement since the original HH model. Incorporation of microscopic effects

that were previously poorly understood or neglected, such as channel kinetics, axon models

and the role of glial cells, have allowed these newer models to more closely reproduce the

measured electrical activities of more complex systems [3].

Separate from in vivo studies of action potentials, there has also been growing emphasis

on research of isolated ion channels; motivations vary, from efforts to explain the mecha-

nisms for channel gating [11], to quantifying their impact on human health and disease [12].

In regards to the former, imaging of channel structures with x-ray crystallography [13] and

cryogenic electron microscopy (cryoEM) [14] have led to a detailed understanding of the con-

formational changes ion channels undergo when switching between different states. These

results are complemented by in vitro investigations of isolated channels, which are typically

carried out by inserting them into artificial lipid bilayers. Examining channels in an extracel-

lular setting offers significantly improved control over experimental conditions; this in turn

facilitates a more systematic approach to the categorization of ion channel properties [15].
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Another direction which has surged in popularity in recent years is the replication of neu-

ronal behaviors using electronics. Neuromorphic engineering aims to mimic the structure and

function of neuronal networks using silicon integrated circuits [16]. A main motivator in this

endeavor is the low power consumption of the human brain (∼ 20W), a tiny fraction of the

power consumed by modern electronic devices [17]. In addition, the ability for biological

neural networks to “adapt” is a key feature which many machine intelligence designs seek to

emulate, and to that end techniques such as spiking neural networks have been developed

to more closely align the electronic networks with their biological counterparts. Despite

only recently coming into the mainstream, electronic implementations of spiking behavior

has had a long history. The first neuromorphic circuits consisted of MOSFETs, and were

relatively simple devices with high power consumption. Nowadays, with modern advances in

electronics and materials science, the scale of advanced neuromorphic devices have increased

dramatically. Cutting edge implementations involve millions of electrical “neurons” and

“synapses”, with greatly reduced power consumption rivaling those of the actual biological

system [3].

In summary, the unique properties of action potentials, in addition their central role in

physiological processes, have inspired several directions of research. In vivo studies focus

on production of action potentials within a cellular context; experiments typically involve

cell preparations which are clamped and immersed in a electrolytic solution, using various

external stimulus to obtain spiking patterns or current recordings. Similarly, modern models

for action potential generation aim to be aligned with experimental findings, and as a result

are concerned with accurately describing dynamics on the scale of individual neurons and

neuronal networks. These models require a high amount of complexity in order to account

for the various biological processes. In contrast, electronic implementations seek to reverse

engineering the biologically system, mimicking spiking neurons with intricate circuits of
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transistors. These implementations have the advantage of scale, with focus on the emergent

properties of the network, rather than the microscopics of the individual action potential.

With the ultimate objective of understanding the processes which constitute “thought”,

our path in pursuit of this goal is to move away from the reverse engineering strategy, and

embrace the bio-inspired constructionist philosophy. To that end, we take a slightly different

approach to this problem, from the view of building up from action potentials.

1.3 The Artificial Axon

In recent years, the Zocchi lab has introduced the idea of producing cell-free action poten-

tials in vitro [18, 19]. The platform, known as the “Artificial Axon” (AA, for short), is an

artificial excitable system which is capable of generating action potentials in time. Unlike

electronic realizations of the action potential, the AA has same microscopic mechanisms for

voltage dynamics as real excitable cells, consisting of reconstituted biological components

(phospholipid membrane and ion channels) immersed in electrolytic solution. The setup is

a modified version of traditional painted bilayer experiments, with voltage gated potassium

ion channels as the active elements of the system. We use the Archaean channel KvAP,

which is expressed and reconstituted entirely within the lab. Non-traditionally, a modified

voltage clamp is used to hold the system in an off-equilibrium excitable state. This clamp

plays a role similar to the second ionic species of an excitable cell, and is the key component

which allows for voltage dynamics.

While the AA is designed to have the same underlying mechanism for generating APs as

the neuron, it is not an attempt at replicating one. Our philosophy is to define a minimal

system; a tool to generate action potentials from the bottom up. We start by exploring the

simplest dynamics related to action potentials, and proceed from there. The experimental
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system also provides motivation and inspiration for developing models and theories in the

general field of complex systems.

The discussion of the AA begins with an overview of the experimental platform (Ch. 2),

followed by a description of the kinetic model used to describe the dynamics of the system

(Ch. 3). After the AA is introduced in full, I will present the results of my work with the AA,

starting with experimental measurements on critical behavior in the physical AA, near the

threshold for firing (Ch. 4). We find that behavior near the threshold for firing corresponds

to that of a saddle node bifurcation, the same correspondence as in real neurons. A scaling

exponent is measured and compared to the predicted result obtained from modeling the AA

as a 1D dynamical system. Next, focusing on the model we have developed for the AA, I will

present a thorough analysis of the system in parameter space, discussing phase diagrams,

identifying transitions, and building physical understanding through comparisons to other

systems with similar physics (Ch. 5). A key insight is that a system with one ion channel

species possessing inactivation (the AA with KvAP) can be phenomenologically equivalent

to a system with two channel species without inactivation (the Morris-Lecar model). As the

Morris-Lecar dynamical system accurately describes the electrophysiology of actual biolog-

ical tissue (the muscle fiber of the Chilean barnacle) [20], we can say that the one channel

species Artificial Axon is a simpler, more minimal system which is in theory capable of the

same basic phenomenology as a biological one. Penultimately, I will discuss nascent work

on systems of interconnected AAs (Ch. 6). A long term goal of the project is to construct

and study networks of AAs. As a first step, two AAs are connected through electronic

“synapses”, introducing the element of feedback to the system. Experimental data along

with numerical results show that with two AAs, it is possible to construct an “oscillator”, in

which two separate AAs fire continuously and autonomously through positive and negative

feedback. Finally, I will conclude with a brief discussion on the future direction of the AA

platform (Ch. 7). The AA, being minimal in its ingredients and construction, is a modular

7



system that can be adapted to survey a variety of electrophysiological phenomenon. Certain

modifications, such as incorporation of different kinds of channels (mechanosensitive, photo-

sensitive, etc.) or the addition of a second ion species, can be readily implemented with the

current setup. More ambitious directions, such as space extended AP generation or large

scale AA networks, present a larger challenge and will require radical improvements to the

system.
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CHAPTER 2

Materials and Methods

This chapter will serve as an overview of the Artificial Axon system as an experimental

platform. Specifications of the components, operating protocols, and methods for procuring

ion channels will be described in detail. The AA system has gone through several iterations

throughout the years, being maintained, updated, and improved by the work of previous lab

members [21, 22].

A brief overview of the physical system in its current iteration is as follows: The primary

ingredients is the voltage gated ion channel KvAP, which is the active component in gen-

erating action potentials. The channels are inserted into a phospholipid bilayer which rests

on a ∼ 200µm hole at the bottom of a plastic cup. The cup itself is firmly held in place

in a custom made Teflon chamber. The lipid membrane separates the Teflon compartment

and the inside of the plastic cup, and both sides are immersed in electrolyte solution. The

outer chamber is grounded, while the inner chamber’s voltage is controlled and monitored by

AgCl electrodes which connect the system to computer control via custom circuitry. Fig. 2.1

depicts a schematic of the setup, along with a picture of the chamber.

2.1 Apparatus

The exterior solution of the AA setup is housed in a custom made Teflon chamber, which

rests upon a metal plate with a rectangular hole cut in the center. The hole is fitted with
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Figure 2.1: Left: Schematic of the Artificial Axon setup (not to scale), displaying all the

essential components. Right: The chamber which houses the AA system.

a glass slide to facilitate observation with an optical microscope, and sealed with rubber

lining. The chamber is secured to the microscope stage via screw holes in the metal piece,

and the total volume of the Teflon chamber is ≈ 20mL. The interior solution is housed in

standard plastic centrifuge cups, which sit securely in premade holes in the Teflon chamber.

The cups are sourced from Beckman-Coulter and modified for use in the experiment, based

on techniques from [21]. They are first cut to a length such that the top of the cup sits flush

with the chamber, while the bottom rests just above the glass slide; this results in an interior

volume of ≈ 300µL. Then, using a heated metal tip, a conical protrusion is created at the

bottom of the cup, the tip of which is carefully sliced off using a razor blade so that a small

aperture is created. This hole is serves as the support for the phospholipid membrane and

is typically of the size 100− 200µm. Smaller holes are generally preferred for their stability.

The Teflon chamber in its current form can house up to three cups (i.e. three AAs), though

only two are currently in use.
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2.2 Chamber Solutions

To create the transmembrane ion concentration difference required for generating an action

potential, the two chambers of the AA (inside and outside the cup) are filled with salt solu-

tions of differing concentration. The specific salt used depends on the type of ion channel in

the membrane (e.g. KCl for KvAP), and the ratio of concentrations directly determines the

peak voltage of the action potentials generated (the Nernst potential). For KvAP, the typical

choice is [KCl]in = 30mM, and [KCl]out = 150mM, corresponding to a Nernst potential of

≈ 42mV at room temperature, measured as the potential of the inner chamber relative to

the outer chamber (grounded). These chosen concentrations result in peak voltage values

which are closely aligned to those seen in neurons, while remaining practical to produce.

Larger concentration differences can of course be used, but are more unwieldy and can lead

to less stable membranes.

The salt solutions are made starting with dry KCl from Sigma-Aldrich (or any other salt),

dissolved in DI water. HEPES is added at a concentration of 10mM and the pH is brought

to 7.0 using HCl and KOH. The interior solution (the lower of the two concentrations) has

an additional 120mM of sucrose added to minimize the osmotic pressure gradient across the

membrane. Finally the solutions are filtered through 0.22µm polyethersulfone filters from

Fisher Scientific and stored at room temperature.

2.3 Electronics

The voltage in the system is controlled and monitored using a custom LabView 2014 pro-

gram. The program communicates with the circuitry through a National Instruments DAQ

adapter, and the circuitry in turn connects to the Teflon chamber via the AgCl electrodes.

The main circuit is depicted in Fig. 2.2, it consists of a voltage clamping portion and a cur-

rent measurement portion, with a corresponding electrode for each. The current is measured
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by monitoring the voltage across the resistor RF , which is then amplified by a factor R1/R2

before being output to the computer and converted into a current. The clamping is done by

first choosing a desired clamp voltage Vc. The circuitry then compares the current voltage in

the system, V , to Vc, and injects a current Ic proportional to the difference (V −Vc) through

the AgCl electrode. This process repeats until the voltage in the system is equal to Vc.

The distinct aspect of the electronic setup is the addition of the clamp resistor, Rc. In

traditional voltage clamping experiments, the current sourced from the operational ampli-

fiers is several orders of magnitude larger than other currents in the system. Thus the voltage

clamp will correct any deviations from the desired voltage instantaneously, hence the volt-

age is “clamped” to the value set by Vc. The addition of a resistor before the electrode

means that the output from the operational amplifier will instead be reduced by a factor

proportional to the resistance. The value Rc is chosen such that the clamping current is

roughly the same magnitude as the other currents in the system; the desired magnitude for

Ic being larger than the leak currents but smaller than the channel currents. This allows for

dynamics (i.e. action potentials) to occur in the system while still retaining control over the

voltage when the channels are not active. The circuit also contains a switch to bypass Rc,

which acts as a toggle between “current limited” mode (through Rc), and “voltage clamp-

ing” mode (bypassing Rc). This is useful for conducting more traditional electrophysiology

experiments, such as measuring channel rates.

An auxilliary circuit for clamping the current is also present in the system, shown in

Fig. 2.3. The role of this circuit is to inject constant current into the inner chamber, regardless

of the voltage across the membrane. In practice this circuit is used in conjunction with

threshold logic in Labview to connect two separate AA systems (2 cups) together. It injects

a current in one well proportional to the voltage in the other, and is only used for experiments

involving feedback (Ch. 6). The current clamp is completely modular and disconnected when
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Figure 2.2: Current limited voltage clamp schematic (left), and circuit (right). All op amps

are the TL071IP, with A1 and A4 being used as voltage followers. The values of the passive

components are: R1 = 1kΩ, R2 = 10 kΩ, RF = 20MΩ, C1 = 0.1µF. The clamp resistance

Rc is usually 2GΩ, but can vary (see text). Two identical copies of this circuit are used in

the experiment, one for each AA; they share a common ground with the extracellular side

of the Teflon chamber, as well as with the computer which controls the experiment.

not in use. When it is in use, it outputs through the same AgCl electrode as the one used to

measure the voltage. Thus there are always only two electrodes in the inner chamber (inside

the cup).

2.4 Phospholipid Bilayer Membrane

The semipermeable lipid membrane is where the “action” occurs, analogous to the cell mem-

brane in which ion channels are embedded in excitable cells. The lipid bilayer itself plays a

surprisingly key role in the dynamics of the system, as studies have shown that channel kinet-

ics depend on the lipid composition of the membrane itself [23]. In this work, the lipid chosen

for membrane creation is 1,2-diphytanoyl-sn-glycero-3-phosphocholine (“DPhPC”), follow-

ing previous lab work [21, 22]. DPhPC is purchased from Avanti Polar Lipids (dissolved

in chloroform at 25mg/mL), and stored under N2 gas in aliquots of 10µL in borosilicate
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Figure 2.3: Current clamp schematic (left) and circuit (right). The clamp consists of two

identical circuits, one for each AA. The current injected is ICC = VCC/RCC , where VCC the

measured voltage in the “pre-synaptic” AA. All op amps are the TL071IP; the resistances

are: R = 100 kΩ, RCC = 100MΩ.
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glass vials at -20◦C until ready to use. To create the membrane, the DPhPC is pipetted

onto the hole (“aperture”) in the plastic cup in a series of steps, and a pipette is used to

“paint” the membrane. The following describes how to prepare DPhPC for use in painting

the phospholipid bilayer:

To begin, an aliquot of DPhPC (10µL in a glass vial) is removed from the fridge and

dried under a steady stream of N2 gas for 10 minutes to evaporate the chloroform. Then,

250µL of pentane (C5H12) is added to the vial using a Hamilton glass syringe, and the con-

tents are dried again with N2 for another 10 minutes. This is to further remove any residual

chloroform, the presence of which significantly and negatively impacts the stability of the

lipid membranes. After the second stage of drying, DPhPC should be visible as a ring at

the bottom of the glass vial. The vial is attached to vacuum for further drying, again to

remove residual chloroform. The lipid can be held under vacuum for up to a week, but suffi-

cient chloroform removal should be reached after 30 minutes or so. Once removed from the

vacuum, 12.5µL of decane (C10H22) is added to the vial via syringe to dissolve the DPhPC

at a concentration of 20mg/mL. The solution is shaken by hand to mix, and a very small

amount of the decane-lipid mixture is dripped onto the aperture of the plastic cup(s), again

with a syringe. It is sufficient to wet only the immediate area around the aperture. The

cup(s) are placed under vacuum for 30 minutes to dry the decane, starting the vacuum at

low power as to prevent the decane from being violently pulled off the cup. This layer of

dry decane around the aperture creates a hydrophobic surface which supports the formation

of a bilayer in the aperture. Once sufficiently dried, the cup(s) are placed into the Teflon

chamber, which is then flooded with the relevant solution (e.g. KCl). Once the cup(s) are

immersed in solution, a small amount of the decane-lipid mixture is pipetted directly above

the aperture. The viscous decane will naturally flow from the pipette and sit on top of the

aperture, sealing it and preventing the diffusion of ions. Proper sealing can be confirmed

by monitoring the voltage (an unsealed or improperly sealed aperture will lead to a voltage
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Figure 2.4: Lipid bilayer (center) surrounded by decane, viewed from below through the

optical microscope.

reading of ≈ VN , whereas a proper seal will allow the current from the voltage clamp to keep

the voltage steady at Vclamp). To paint the lipid membrane, an empty pipette is inserted into

the inner chamber and placed near the aperture. A small bubble is formed at the tip of the

pipette by a partially pressing on the plunger; the bubble will attract nearby decane to it.

The bubble is carefully maneuvered near the aperture to slowly peel away decane from the

area. Once a sufficient amount of decane is removed from around the aperture, the lipid in

the area will spontaneously form into a bilayer membrane, which has a distinct sheen in the

microscope’s view. The creation of the membrane can also be confirmed electronically as it

has a different capacitance than the decane-lipid mixture. The thickness of the lipid bilayer

is ∼ 4 nm.

Once the membrane is painted, it is ready for the insertion of ion channels. The stability

of the painted membrane is affected by a number of factors, the dominant one being the

hydrostatic pressure. It is essential to minimize the pressure difference in the system before

painting a membrane by making sure that the solution level of the inner and outer chambers

are as close as possible. The horizontal orientation of the membrane means that differences
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in pressure lead to a force on the membrane, which can cause it to “burst” (violently come

apart). The simplest way to ensure the intracellular and extracellular solution levels are

equal is to simply leave the aperture of the cup unsealed for a few minutes after flooding the

chambers. The solutions will equilize during this time, while the change in ion concentration

due to diffusion through the aperture will be very small.

Other effects which can burst the membrane include large mechanical disturbances, e.g.

sudden movements of the chamber; or sudden capacitive spikes, e.g. interrupting the power

supply to the operational amplifiers. A membrane that is undisturbed and has no channels

inserted is quite stable, with a life time depending on the size and the shape of the aperture

which it sits upon. Larger and less uniform apertures tend to be less stable compared with

smaller and/or uniformly round apertures. Membranes will tend to shrink over time as the

surrounding decane slowly collapses inward, and eventually will either be completed buried

by decane or destroyed by a bursting event. If a membrane is destroyed in any way, it can

be repainted by the same method as before, and typically there will be no adverse effects.

Once ion channels have inserted into a membrane, the stability tends to decrease due to the

large amount of current flowing through it, though this is not always the case. In addition,

membranes that are destroyed and repainted after channels are inserted tend to have large

“leaks”, in that the voltage will rapidly fluctuate and be difficult to control via the voltage

clamp.

2.5 The Ion Channels

Once the electronics are connected, the chamber is immersed in solution, and the lipid

membrane is painted, ion channels are ready to be inserted into the system. Channels

are removed from storage and brought to room temperature by the warmth of the hand.
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They are very briefly sonicated and then mixed with a pipette. To insert, a small amount

of channels (∼ 0.1µL) is drawn with a pipette and brought as close to the membrane as

possible before being gently injected into the solution. The injection must be done very

carefully to minimize mechanical disturbances to the membrane. Channels will diffuse into

the solution and (may) eventually insert into the membrane. The process of insertion is

stochastic and can be instant or take more than 30 minutes. Successful insertion of channels

is confirmed by monitoring the voltage recordings in LabView. Insertion events typically

lead to fluctuations in voltage, while proper activity of the channels can verified by various

experimental protocols, depending on the specific channel.

2.6 Action Potential

Starting with the voltage clamped below threshold, a the simplest test to check if channels

are inserted and working is to raise the voltage clamp above threshold and monitor the

results. The occurrence of an action potential signifies that a sufficient number of channels

have inserted into the membrane. A typical voltage trace which confirms the insertion of

channels is shown in Fig. 2.5.

2.7 Gel stabilized system

The stability of the AA system can be increased by encasing it in a hydrogel to further

support the lipid bilayer. Preparations are based on [24] and [25]: 8 g/100mL poly-ethylene

glycol dimethacrylate (PEG-DMA) and 0.8 g/100mL Irgacure 2959 UV photo initiator (2-

hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiophenone) are dissolved in the usual KCl solu-

tion in which experiments are conducted. Once a membrane is painted, 365 nm UV light is

shone directly at the intracellular side (inside the plastic cup) for 90-120 s to solidify the gel.

Once gelled, the membrane is much more resistant to mechanical and electrical stress and
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Figure 2.5: Archetypal time course of the membrane potential when eliciting action potentials

in the Artificial Axon (red). The CLVC protocol used is shown below (blue, not to scale),

either a step (left) or a pulse (right) which causes the voltage to exceed the threshold for

firing will produce an action potential.

lasts much longer (>24 hrs, compared to 0-4 hrs for a typical preparation with no gel).

Due to the horizontal orientation of the bilayer membrane in the current setup, the gelled

membranes can be harder to work with compared to vertical setups. The reason being the

fluctuating hydrostatic pressure in combination with the fact that the lipid membrane must

bear a load. Currently there have not been any successfully attempts of inserting channels

into a gelled membrane. One technique which improves the success rate of the method is to

put an additional support cup under the usual cup containing the intracellular solution. This

gives the gel below the membrane a support structure, rather than having it free floating

in solution. An issue with the gel method with the current materials is that the UV light

seems to degrade the cups, preventing repeated use with the gel setup.
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2.8 KvAP

The AA serves as a minimal system for eliciting of action potentials. In principle this means

that any ion channel which can insert into a phospholipid membrane can serve as the active

component of the system. However, identifying suitable channels can be a difficult task, and

producing them even more so. The ion channel used in all experiments described in this work

is KvAP. The channels are produced in the lab in a difficult but well known process. The

next few sections will describe the step by step procedure for producing KvAP in explicit

detail. This is worth highlighting since quality of the channels plays an enormous role in

determining the outcome of the experiments. Many experimental limitations and failures

have been due to the quality (or lack thereof) of the produced channels.

The starting ingredient is the wild-type KvAP gene in pQE-60 vector, which was gifted

to Zocchi lab by the Roderick MacKinnon group. This wild type was then modified via

site-directed mutagenesis by predecessors in the lab [21]. Specifically, a point mutation was

performed at site 247 of the plasmid to change a single thymine (T) to an adenine (A). This

changes the amino acid starting at site 247 from a cysteine (TGC) to a serine (AGC). The

desired effect is to make aggregation of the proteins less likely by removing the capability to

form a disulfide bond. All steps described below start with the mutated plasmid. It should

be emphasized that KvAP production is extremely sensitive and small changes may have a

large effect on the final yield.

2.9 Expression of KvAP in E coli.

Starting with the mutant KvAP plasmid, the first step is to incorporate it into E coli.

and have them express the protein in large amounts. This is a slow biological process,

achieved over the course of three days, known as “expression”. Items marked (sterile) must

be done near an open flame with sterilized pipettes to prevent undesired bacteria from being
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introduced into the system.

2.9.1 Day 1

1. Prepare 10mL of stock ampicillin solution, using deionized H2O and powdered ampi-

cillin at a concentration of 1 g/mL. Store at 4◦C for use throughout the procedure.

2. Pre-chill empty 1.5mL vial.

3. Pre-heat SOC medium to 42◦C and incubator to 37◦C.

4. Thaw XL1-Blue Supercompetent Cells (Agilent) along with a vial of β-mercaptoethanol

(βME) in ice.

5. Thaw KvAP plasmid on ice.

6. (Sterile) Aliquot 60-100µL of cells to chilled 1.5mL vial, along with 1.7µL of βME.

7. Incubate mixture on ice for 10 minutes, gently swirling it by hand every 2 minutes.

8. (Sterile) Add 50 - 200 ng of KvAP plasmid to the aliquot of cells. Gently swirl to mix

and let incubate for 30 minutes.

9. Heat shock the mixture in 42◦C water bath for 45-60 seconds. Afterward immediately

incubate the mixture on ice for 2 minutes. The duration of the heat shock and icing

afterwards must be precise, and are essential for successful transformation.

10. Add 0.9mL of pre-heated SOC medium to cell mixture and incubate for 1 hour at

37◦C, with shaking at 375 rpm.

11. (Sterile) Use glass rod to spread 150µL of the cell mixture onto pre-made agar plates

(LB agar, Ampicillin, pH 7.0) along with 20µL of 100mg/mL ampicillin.

12. Incubate plates with agar side on top for 17 - 20 hours at 37◦C
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13. Prior to day 2, prepare flasks of LB broth solution using 25 g/L of LB broth (Fisher

Scientific) mixed with DI water. Seal with aluminum foil and autoclave at 250◦F for

45 minutes. Allow ample time to cool at room temperature. Autoclaved and sealed

broth can be made 1-2 weeks before use, the usual amount is 5×1L + 4×0.5L = 7L.

2.9.2 Day 2

1. (Sterile) Check agar plates to ensure separated colonies have formed. Alternatively,

thaw glycerol stock of E coli. on ice (see step 10 of day 2).

2. Using an open flame, sterilize three glass tubes and enough aluminum foil to cover each

tube.

3. (Sterile) Pipette 5mL of LB broth, followed by 5µL of ampicillin, into each glass tube.

4. (Sterile) If using colonies, use a pipette to scoop one colony into each tube; if using

glycerol stock, aliquot 25µL of the stock in each tube after it is fully thawed. Mix each

tube with a pipette.

5. Cover each tube with sterile aluminum foil and shake at 37◦C and 250 rpm for 4-5

hours.

6. After 4 hours, check the contents of the glass vial by mixing with a sterile pipette. The

cloudiness of it indicates the amount of cell growth.

7. (Sterile) If cell growth is sufficient and no foreign substances are in the vial, select one

glass tube and pour contents into a flask of 1 L LB broth. Discard remaining tubes, or

keep for future use (see step 10).

8. (Sterile) Add 1mL of ampicillin to the flask of LB broth which has the E coli..

9. Incubate at 37◦C and 220 rpm for 14 - 18 hours.
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10. (Optional) Leftover E coli. can be frozen and stored for future use. Mix DI H2O and

glycerol in a 1:1 solution (750µL total if using a 1.5mL tube) and vortex vigorously

to mix. This mixture can then be mixed 1:1 again with E coli. solution (i.e. 750µL

of E coli. for a 1.5mL tube). Vortex again and store at -80◦C. Glycerol stock can be

used in place of agar plate colonies, in which case expression starts at step 1 of day 2.

2.9.3 Day 3

1. (Sterile) Check the optical density (OD) of the broth by taking a 1mL sample from

flask with E coli. after incubating for 14-18 hours. Dilute either 2x or 3x with broth

from an unopened flask. Take a sample of pure broth of the same volume to use as a

blank.

2. Use a spectrometer to check OD at a wavelength of 600 nm. First measure the pure

broth as blank, then the sample. The actual OD is the result on screen multiplied by

the dilution factor. Target OD range is a minimum of 0.6 - 0.8, but in practice it may

be higher.

3. (Sterile) If target OD is reached, aliquot E coli. broth to the other flasks such that

each flask has an OD of 0.1, using the following formula:

C1V1 = C2(V2 + V1) → V1 =
0.1 ∗ 1000mL

C1 + 0.1

where V1 is the volume to add to each 1L flask (half for the 500mL flasks) and C1 is

the measured OD.

4. Prepare 17.1 g of BaCl2 in 66mL of DI H2O, resulting in 17.1 g/≈70mL = 1M BaCl2.

Ensure that the BaCl2 is fully dissolved by slightly heating and vortexing the solution.

5. (Sterile) Add 1mL ampicillin to each 1L flask and half that for each 500mL flask.
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6. (Sterile) Add 10mL of 1M BaCl2 per 1 L of broth for each flask for a concentration of

10mM BaCl2 in each flask. This helps slow the toxicity of the channels from affecting

the E coli. Procedures vary on whether to add the barium here or when adding the

IPTG, from trial and error it seems more effective to add it at this stage.

7. Shake flasks in incubator at 37◦C and 220 rpm for about 4 hours.

8. Prepare a 1M solution of IPTG by dissolving 1.192 g of IPTG in 5mL final volume of DI

H2O. “IPTG” is isopropyl β-d-1-thiogalactopyranoside which induces the expression

of KvAP in the E coli..

9. After ≈4 hours, check OD of flasks via the same method as step 1 of day 3, if OD is

0.6 - 0.8 or greater, proceed. Otherwise, continue to shake and check periodically, but

do not exceed 5 hours of incubation.

10. (Sterile) Aliquot the appropriate amount of 1M IPTG solution to each flask such that

the final concentration is 0.4mM, using the same formula as step 3 of day 3. The

amount is usually around 400µL for the 1 L flasks.

11. Shake for another 4 hours at 37◦C and 220 rpm. Do not exceed as 4 hours as KvAP is

toxic to E coli. and the produced protein will degrade in quality over time.

12. Pour E coli. into centrifuge bottles, weighing the bottles with a scale to make sure that

their weights are as close as possible. Centrifuge at 4000 rpm for 20 minutes (depending

on the centrifuge’s ramp up time, 22 - 24 minutes). All the E coli. will aggregate at

the bottom of the bottles. Discard the supernatant and store the bottles at -20◦C until

ready to purify.
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Name Ingredients Amount Concentration Notes

Tris-HCl

(500mL)

Tris

H2O

30.29 g

to 500mL

0.5M

-

Stock solution

pH 8.0 + degas

Store at RT.

KCl

(500mL)

KCl

H2O

37.28 g

to 500mL

1M

-

Stock solution

Degas, store at RT.

DM

(20mL)

DM

H2O

4.826 g

to 20mL

0.5M

-

Centrifuge at 4000 rpm

to remove bubbles.

Store at 4◦C.

Table 2.1: Stock solutions needed for making the necessary buffers for KvAP purification.

All aqueous solutions are made with “NanoPure H2O”, which is DI water free of DNase and

RNase, purchased from Fisher Scientific. pH is adjusted using stock HCl and 5M KOH.

Degassing is done by putting the buffer under vacuum with a loose cap until no bubbling

occurs. DM is “n-Decyl-β-D-maltopyranoside”, a detergent and a key ingredient which is

needed to shield the proteins during the purification process. High quality (purity) DM is

essential for successful production of the final product.

2.10 Purification and Reconstitution of KvAP

Once KvAP has been successfully expressed, the next step is to extract it from the E coli.

and remove the unwanted portion (i.e. everything other than KvAP). This process is termed

“purification”. Following that is “reconstitution”, the process in which the KvAP obtained

from purification is encapsulated in small unilamellar vesicles (SUVs) to keep them stable

and ready to use in experiment. Tables 2.1 and 2.2 list buffers and other solutions which are

necessary for purification and reconstitution. They are listed with recommended volumes

and target concentrations. It is best to make these before proceeding (if permitted), as some

of the steps involved in purification and reconstitution are time sensitive.
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Name Ingredients Amount Concentration Notes

Lysis Buffer

(50mL)

Tris-HCl

KCl

Lysozyme

DNase

β-ME (14M)

PIC

H2O

5mL

5mL

10mg

10µL

7.4µL

1 tablet

to 50mL

50mM

100mM

0.2mg/mL

2µg/mL

2mM

-

-

Needed at start of

day 4. Must be freshly

made. Need 2x50mL

for large yields. “PIC”

is protease inhibitor

cocktail.

Wash Buffer

(50mL)

Tris-HCl

KCl

DM

Imidazole (1M)

H2O

2mL/5mL

5mL

0.5mL

1mL

to 50mL

20mM/50mM

100mM

5mM

20mM

-

Make before day 5.

Can store at RT

if DM not added

until before use.

Elution Buffer

(50mL)

Tris-HCl

KCl

DM

Imidazole (1M)

H2O

2mL/5mL

5mL

0.5mL

20mL

to 50mL

20mM/50mM

100mM

5mM

400mM

-

Make before day 5.

Can store at RT

if DM not added

until before use.

HPLC Buffer

(500mL)

Tris-HCl

KCl

DM

H2O

20mL

50mL

5mL

to 500mL

20mM

100mM

5mM

-

pH 7.5 + degas

Add DM after

pH and degas.

Lasts 2-3 expressions.

RC Buffer

(500mL)

KCl

HEPES

H2O

22.5mL

0.119 g

to 50mL

450mM

10mM

-

pH 7.4 + degas

Make before day 5

Store at RT

Table 2.2: Buffers needed for purification and reconstitution of KvAP. Water, pH, and degas

requirements are the same as the stock solutions (see Table 2.1).
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2.10.1 Day 4

1. Ensure that all buffers needed for the day are prepared. Lysis buffer must be freshly

made to ensure the potency of the protease inhibitor cocktail. The usual amount of E

coli. produced from expression usually requires > 50mL of lysis buffer.

2. Thaw E coli. on ice. Dissolve E coli. in lysis buffer by pouring the buffer into the

centrifuge containers and gently shaking by hand. Alternatively, shake in the incubator

at low rpm and at a low temperature.

3. Use Emulsiflex to lyse the E coli.. A pressure of 15,000-18,000 psi is required to lyse

the cells (exceeding this pressure is not beneficial). Running the E coli. through 2 - 3

times is sufficient. Store lysate in 50mL polypropylene conical tubes.

4. Immediately add DM to lysate for a DM concentration of 40mM. Unprotected KvAP

in aqueous solution will quickly aggregate and lose its function. Keeping the lysate at

lower temperatures (via ice) can also help slow KvAP degradation.

5. Rotisserie lysate for 3 hours (on low, ∼25 rpm) in a low temperature room, if possible.

The gentle mixing allows time for DM to bind to all the free roaming KvAP within

the lysate.

6. Centrifuge 50mL vials of lysate at 10,200 rpm for 1 hr. Most of the unwanted cell debris

is centrifuged out while the supernatant contains the KvAP encapsulated in DM. This

step can be done at even higher rpm for better results, depending on the capability of

the centrifuge being used.

7. Prepare 2 - 3mL of cobalt beads (Takara) in a chromatography column. A larger

amount of beads will lead to a higher yield, but may pick up unwanted particles.

8. Wash cobalt beads 3x with 8mL of wash buffer and drain. Evenly transfer the beads

into the 50mL tubes of lysate after centrifugation has completed. Rotisserie for another
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1.5 hours. The KvAP are his-tagged (i.e. six histidines are attached at the end of the

protein) and will bind to the cobalt beads during this time.

9. Run lysate through chromatography column to collect beads. This must be done

multiple times to collect all the beads, as they will stick to the side walls of the vials.

As the beads are collected the lysate also has more time to flow through the beads,

allowing for further protein binding to the beads. This process can be very slow, but

more repetitions lead to higher yields.

10. Wash the cobalt beads again with the remain wash buffer while disturbing them (shake

column or use pipette). Allow the beads to settle and drain the wash buffer.

11. Elute the KvAP by adding 12 - 14mL of elution buffer very slowly to the chromatog-

raphy column while disturbing the beads. Most of the KvAP should elute from the

first milliliter of elution buffer (“first elute”). A sample can be taken from the first one

or two elutes for troubleshooting.

12. Perform a Bradford Assay by mixing 40µL of eluted solution together with 760µL

of pre-diluted “Protein Assay Dye Reagent Concentrate” from Bio-Rad. The sample

should turn from reddish to blue to indicate the presence of protein (KvAP), with

darker blues indicating more protein.

13. Mix the assay sample via pipette, and extract 200µL for spectroscopy at 595 nm,

together with 200µL of dye with no protein in it (blank). Record ODs and calculate

the yield mass by comparing the OD of the blank to the OD of the sample.

14. Yield mass can vary despite careful adherence to protocols listed up until this point.

In general yield must be at least 2mg, otherwise there isn’t enough to proceed as more

will likely be lost during further purification and reconstitution.

15. Pipette in 1.5 units of thrombin per milligram of yield mass. Thrombin is used to

cleave away the his-tag, which is no longer of use. Leave eluted solution overnight
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at 12◦C in incubator. The low temperature slows the activity of thrombin. Optimal

time to allow for cleavage varies with thrombin concentration and temperature. From

experience, 16 hrs at 12◦C seems to work well.

16. Dry 250µL of 25mg/mL DPhPC (1,2-diphytanoyl-sn-glycero-3-phosphocholine, Avanti

Polar Lipids) under N2 gas for 10 minutes. Add 250µL pentane and dry for another

10 minutes. Then leave attached to vacuum to dry overnight.

2.10.2 Day 5

1. Ensure that the HPLC is maintained and properly working prior to proceeding.

2. Make DM in RC if no previous stock is available. This is DM made as per Table 2.1,

except with RC (reconstitution) buffer instead of water as the solvent. Because only

a small amount is needed, it is usually made in 1.5mL tubes and as a result it can

be difficult to get precisely 500mM. This can be adjusted for in the step where it is

needed, so there is no need for high precision. Once made, DM in RC can be stored

at 4◦C as stock solution for future expressions.

3. Remove eluted protein with thrombin from the incubator and place in 4◦C fridge as

needed to further slow thrombin activity once 16 hours has been reached.

4. The next step is to run the eluted proteins through the HPLC for further purification,

while also preparing vesicles for reconstitution. These two processes must be performed

such that they are completed as close to simultaneously as possible. Typically the

vesicles take longer to make, while the HPLC requires more attention.

2.10.2.1 HPLC

5. Centrifuge the eluted solution from day 4 at 5000× g for 2 - 5 minutes at a time to

reduce volume down to < 2µL, using a 50mL filtered conical tube. It is essential that
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care be taken to properly mix the solution after each centrifuge step, as the protein

will tend to aggregate at the bottom. This is an extremely important step, not doing

so will lead to significantly lower yield.

6. Once the eluted solution is below 2µL, load into HPLC using a 2µL syringe, taking care

not to introduce bubbles into the HPLC column. (Note: One untested but promising

alternative to improve yield is to load the eluted solution into the HPLC several times.

This means that the solution would not have to be condensed into a < 2µL volume,

which from experience is a key step that causes a lot of loss. This would take a longer

time as the capacity of the HPLC is only 2µL, so multiple loads would mean multiple

HPLC runs, each taking 25 - 50 minutes.)

7. Run solution through the size exclusion HPLC column at 0.5mL/min, collecting the

fracs which fall under the large 280 nm/260 nm peak (typically fracs 11 - 14). This

typically occurs ≈12 minutes into the process.

8. Combine fracs and perform another Bradford Assay (day 4 step 12) on the solution to

find the post-HPLC yield. There will typically be a loss of 30 - 50% compared to the

yield from the end of day 4.

9. Based on the yield from the assay, centrifuge the channels at 7500× g in 15mL filtered

conical tubes for 4 - 8 minutes total, in steps of 1 - 2 minutes at a time, to reduce to a

concentration of ∼10µg/mL. For a typical yield this results in a final volume of around

150 - 250µL. Once again it is essential to mix solution between each centrifuge run

so that the channels do not all clump at the bottom.

10. Once the solution is near the target concentration, place in 4◦C fridge until vesicles

are also finished.
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2.10.2.2 Vesicles

11. Resuspend previously dried DPhPC using RC buffer to a DPhPC concentration of

20mg/mL. (312.5µL of RC buffer for 250µL of dried DPhPC at 25mg/mL.)

12. Gently shake to dissolve all the lipid into the solution. The solution will be turbid, use

vortex mixer on the lowest setting to further mix for no more than 10 minutes. The

resulting solution should become “milky” (white and opaque). Vortexing the solution

too long causes it to be unworkable in terms of creating SUVs.

13. Prepare ice cold water in the sonicator, filling up to ∼25% of operational level. There

are various water levels which yield “resonance” that is not achieved at full operational

levels. It is vital that the sonication strength is large to allow for the breakdown of

large lipid vesicles into smaller ones. Wrap vial of DPhPC suspended in RC buffer in

parafilm, and submerge only the portion of the vial containing the buffer into the son-

icator and begin sonicating. Take care to find a spot of maximum sonication strength.

Sonicate until the solution clears up and becomes a translucent blue. This may take

anywhere from 5 minutes to > 8 hours, or never at all. The more translucent the solu-

tion, the more confirmation there is that the solution is made up of small unilamellar

vesicles, which are key for encapsulating the ion channels. During this process, it’s

also essential that the water is constantly replaced with cold water, as the sonication

process heats up the water and DPhPC undergoes a transition at higher temperatures

which prevents it from ever forming SUVs.

This step is extremely important and not easily replicable, depending on several factors.

Many attempts were made to standardize this, but issues remained with consistency

of results. The above description is the latest method which yielded usable channels,

further modifications may lead to improved results.

14. Once the solution is sufficiently translucent, check the final volume again with a Hamil-

ton syringe. Add DM in RC for a concentration of 10mM DM, mix and rotate gently
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for 30 minutes.

15. Place in fridge until HPLC step is also complete.

16. Ideally, the HPLC procedure should finish at the same time as the vesicles, i.e. the

channels are eluted from the HPLC just as the 10mM DM/lipid solution have been

mixed for 30 minutes. If simultaneity cannot be achieved, it is preferable if the HPLC

step is finished later, as it’s best to avoid having the channels be at low volumes as

much as possible.

17. Once both vesicle and HPLC steps are completed, the two solutions must be combined

along with an additional amount of DM in RC for a final DM concentration of 17.5mM.

The amount of vesicle solution, Vlipid, depends on the desired mass ratio of lipids to

channels. The following formulae help determine the amount of each solution to use:

n =
Vlipid × CRCDM

Mchannels

where CRCDM is typically 20mg/mL as per step 11 of day 5, and Mchannels is obtained

from step 8 of day 5. Vlipid is recommended to be the entirety of it (total lipid mass

should be 6.25mg if there is no loss from sonication), as based on experience a slightly

higher mass ratio (n ∼ 10) produces better results. Meanwhile, to determine the

amount of DM in RC to add:

17.5mM =
5mM× Vchannels + 10mM× Vlipid + CRCDM × VRCDM

Vchannels × Vlipid × Vchannels

where CRCDM is the concentration of the prepared DM in RC, and VRCDM is the

required amount.

18. Once combined, allow solution to sit at room temperature for 2 hours, gently mixed by

hand every 20 minutes, or alternative placed on a gentle rotator for the entire duration.
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19. Scoop out roughly 60 - 100mg of Bio-beads (BioRad) into four separate 1.5mL cen-

trifuge tubes. Thoroughly wash the beads three times each with ethanol, then wash

again three times with NanoPure water, and finally three more times with RC buffer.

Leave the beads submerged in RC buffer and label the tubes “1”, “2”, “3”, “4” in

approximate order of most beads to least.

20. Degas beads in vacuum chamber. This can get messy as beads tend to “jump” out

of tubes as gas is removed from the RC buffer. Loss can be minimized by partially

closing the caps on the tubes. Store at 4◦ after degas until ready to use.

21. Prepare three spin desalting columns (Zeba, Thermo Scientific) in the centrifuge, fol-

lowing the instructions on the packaging. Take care to mark the side that faces outward.

22. After the channels/lipid mixture has been allowed to mix at room temperature for 2

hours, pipette the mixture into the desalting columns one by one and centrifuge. The

mixture should be clear before desalting, and if done correctly, they should remain clear

after desalting. An opaque/cloudy mixture after desalting indicates that something

went wrong, and the channels most likely will not be fully functional.

23. After desalting, remove the RC buffer from the first tube of beads (labeled “1”) and

carefully pipette all channels into the tube, taking care to mix the solution with a

pipette before transferring. Place tube back into fridge on its side to maximize the

exposed surface area of the beads and allow to rest for 12 hours.

24. Repeat the previous step three more times, cycling through all four tubes of beads over

the course of 48 hours. Thoroughly mix solution before transferring to new tube. This

is the final step to remove any remaining DM from the solution, and allows the channels

to migrate into the lipids. If anything has gone awry (most likely at sonication step,

i.e. the formation of SUVs), then the solution may become cloudy or turbid during

these 48 hours.
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25. After the channels have been allowed to rest in the fourth and final tube for 12 hours,

the production process is complete, and channels can be flash frozen and stored until

ready to use.

2.11 Storage and Handling of KvAP

The KvAP channels must be flash frozen and stored at -80◦C to maintain their function in

the long term. To flash freeze, split the produced channels into 10-15µL aliquots and dip into

into liquid nitrogen for 30 - 45 seconds. Ensure that the entirety of the aliquot is submerged.

After the liquid nitrogen bath, promptly store in a -80 ◦C fridge until ready to use. When

removed from the fridge for an experiment, channels are thawed at room temperature by

hand and briefly sonicated and mixed with a pipette before use. Channels stored at -80◦C

can maintain function for at least 18 months.
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CHAPTER 3

Model

The Artificial Axon generates action potentials using a single species of voltage gated potas-

sium ion channels (KvAP) as the active ingredient. With the archetypal Hodgkin-Huxley

(HH) and Morris-Lecar (ML) models as a basis, this chapter will discuss the formulation of

a minimal 3D model for the AA dynamical system. The model satisfies two key criteria:

it describes the dynamics of the physical AA accurately, i.e. produce results which are in

agreement with the experiment; and it is simple enough such that it lends itself to analysis

as a dynamical system (Ch. 5), i.e. it has a minimal amount of dimensions in parameter

space.

3.1 Membrane Voltage

In biological systems, electrical excitations typically occur in the membranes of excitable

cells [8]. Accordingly, the starting point for describing the dynamics of the Artificial Axon

is the equation for the transmembrane potential, i.e. the voltage across the phospholipid

bilayer. Like the cell membrane, the lipid bilayer in the AA is sandwiched between two

conducting media which are the electrolytes (KCl) on either side, and acts as the dielectric

of a parallel plate capacitance. In these conditions the region is mathematically analogous

to the charging of a capacitor. For the AA, this capacitance is charged by two kinds of ionic

currents: the current through the voltage gated ion channels embedded in the membrane,

and the current injected by the AgCl electrodes of the current limited voltage clamp. The

relation between these charging currents and the potential of the membrane is given by:
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C
dV

dt
= Ichannels + Iclamp (3.1)

The charge carriers for Ichannels are K+ ions, and for Iclamp, Cl
– , Ag+, and all other ions

in solution. Dividing through by C, and substituting in V/R for each current, an equation

for the voltage across the membrane is obtained:

dV

dt
=

N0χ

C
(po(t) + χℓ/χ) [VN − V (t)] +

1

RC
[Vc − V (t)] (3.2)

The first term in Eq. (3.2) corresponds to the channel current, with driving force propor-

tional to [VN − V (t)], VN being the Nernst (reversal) potential for the potassium ions:

VN =
kT

|e|
ln

(
[K+]out
[K+]in

)
(3.3)

where |e| is the charge of the K+ ion, T the absolute temperature, k the Boltzmann constant

(at room temperature, kT/|e| ≈ 25mV), and square brackets denote concentration. The

other parameters are N0, the number of functional ion channels embedded in the membrane;

C, the membrane capacitance; χ, the conductance per open channel; χℓ, the leak conduc-

tance, which is present even if the channel is closed (χℓ << χ); and po(t), the probability

that a channel is open at time t (or equivalently, the fraction of channels in the open state

at time t, i.e. N0χ po(t) is the total channel conductance).

The second term in Eq. (3.2) corresponds to the clamp current, with driving force pro-

portional to [Vc−V (t)]. Here R is the series resistance of the CLVC, and Vc is the command

voltage to the CLVC, which serves as the control parameter in the experiments. This clamp

term is exactly equivalent to the presence of a second, reversed ionic gradient with Nernst

potential equal to Vc and total leak conductance χc = 1/Rc [19, 26].
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N0 C χ χℓ/χ R VN Vc

100 300 pF 170 pS 1/1000 2GΩ 42mV −200mV

Table 3.1: Typical experimental values for the parameters of Eq. (3.2), with Vc such that

the system rests at Vr. The exact values of N0, C, χℓ and VN will vary with each individual

preparation of the AA.

In the case of KvAP, the channels are predominantly closed for large negative voltage

values (V ≤ −120mV). As a result, if Vc is held at a large negative value, a steady state

solution of Eq. (3.2) exists such that V (t) = Vr is also large and negative:

Vr =
N0χℓVN + Vclamp/R

N0χℓ + 1/R
(3.4)

The CLVC resistance R is chosen such that the clamp current is sufficient to pull the

resting potential to negative values Vr ∼ −100mV with channels closed, while also ensuring

that Icurrent with channels open can overwhelm the the clamp current so that the AA can

fire. In terms of the parameters of the model, the requirement is N0χℓ < 1/R ≪ N0χ.

Given parameter values usually observed in the experiments (Table 3.1), Vr ≈ −190mV,

Iclamp ≈ 100 pA, with characteristic time scales C/(N0χ) ∼ 10ms, RC ∼ 1 s, and C/(N0χℓ) ∼

10 s for the channels, clamp, and leak currents, respectively. Under these conditions, the sys-

tem is in an excitable state; starting from the resting potential V (t) = Vr, a perturbation

such as a positive input current or a step increase in Vc can cause the system to fire an action

potential [27].

Equations of the form of Eq. (3.2) underlie many models of nerve excitability [28]. These

are known as conductance based models, for the fact that the electrical excitability of the

system is solely contained within the (voltage and time dependent) conductance terms [8].
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In the case of the AA, there is the clamp conductance, a constant; a small leak conductance

N0χℓ; and the channel conductance, N0χ po(t). In other words, po, the channel opening

probability, is the key term which determines the system’s capability for generating action

potentials, as well as the attributes of those generated APs. In general the probability po(t)

is specified by a set of rate equations which reflect the microscopic dynamics of the channels.

3.2 Channel Dynamics

There is some flexibility in the choice of model which determines the form of po. This

choice can be informed by considering the progenitor HH model, which was devised by Alan

Hodgkin and Andrew Huxley to explain their experimental findings in the squid giant axon

[7]. More generally, the HH model provides a mathematical description for how action po-

tentials are generated and propagated in the (commonly encountered) system of two ion

species, sodium and potassium, which have opposing concentration gradients across the cell

membrane. In this model, the conductance of sodium is given by the term m3hχ̄Na, while

the potassium conductance is described by n4ḡK. The form of these conductances were de-

termined empirically to account for the excitable behavior they observed in the experiments.

m and n are coefficients which represent the “open” probability of sodium and potassium

channels, respectively, with the powers representing the number of sub-units which must be

aligned (“open”) for the channel itself to open. The coefficient h serves a similar purpose, but

represents the inactivation sub-unit for sodium, which has an opposing effect compared to m

and is completely independent of the opening and closing of the channel. These coefficients

vary from 0 to 1, depending on the voltage, and multiply onto the maximum conductance

of the channels χ̄Na and ḡK.

This model of the channel conductances proved to be quite successful, and subsequent
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Figure 3.1: State diagram of the proposed model for the channel dynamics of KvAP. The

channel is considered to have three states: open (O), closed (C), and inactive (I). The voltage

dependent rates of opening (ko), closing (kc), inactivation (ki), and recovery (kr) move the

system between these three states.

models have been largely based on the same principles [20, 23]. As such, a similar approach

will be taken for the AA, while keeping the model as simple as possible. Knowing that

the KvAP possesses an inactive state [23], the minimal model for KvAP channel dynamics

consist of three states: open, closed, and inactive. The state diagram for the model is shown

in Fig. 3.1. In order to minimize the dimensions of parameter space, the three states are

connected with the fewest number of rates allowable. The main feature of this model is that

the inactive state is accessed only from the open state and flows into the closed state. The

unidirectional rates are strictly speaking unphysical, but represent a permissible approxima-

tion if the rates for the transitions C → I and I → O are small. The key advantage of a such

approximation being the reduced number of parameters to consider. Note that a key dif-

ference with the HH model is that inactivation no longer independent of opening and closing.

In reality, the detailed channel dynamics are more complex than shown in Fig. 3.1,

and models with more states and corresponding transition rates [23] have been formulated.

However, the specifics of these microscopic details are not important for the descriptions of
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action potentials that are the focus of the AA. In addition, a more complete description leads

to the introduction of several more rates, i.e. an uncomfortable proliferation of the number

of parameters in the model. Thus, the simplified model of Fig. 3.1 is employed with the

assumption that these complications do not change the qualitative features of the system.

3.2.1 Rates

With the model defined, all that remains to complete the mathematical description of the

system is define a form for the rates and relate them to Eq. (3.2). As KvAP is a voltage-

gated ion channel, the rates at which the channels open and close, ko and kc, must also

be voltage dependent. Considering the transition between states as a 1D barrier crossing

process [7, 8, 23, 29], the rates are given Arrhenius form:

ko(V ) = κ eα(V−V0) kc(V ) = κ e−α(V−V0) (3.5)

The parameters κ, α and V0 (the “half-voltage”, at which ko = kc = κ) are chosen to

be symmetric, minimizing the number of parameters [20]. The rates of inactivation and

recovery, ki and kr, are assigned similar forms:

ki(V ) = κi e
αi(V−V i

0 ) kr(V ) = κr e
−αr(V−V r

0 ) (3.6)

From the state diagram, a set rate of differential equations can be written down for the

time evolution of the probabilities po, pi, and pc. The condition that po+ pc+ pi = 1 reduces

the number of equations needed to determine the system. Eliminating the closed state, the

remaining rate equations are:
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

dpo

dt
= (1− po − pi) ko − po (kc + ki)

dpi

dt
= po ki − pi kr

(3.7)

where pc is substituted with (1 − po − pi). Eqs. (3.7) are coupled to Eq. (3.2) through the

voltage dependence of the rates, Eqs. (3.5), (3.6). Thus, Eqs. (3.2), (3.7) fully describes the

AA with KvAP channels as a 3D dynamical system.

The 3D system can also be approximated as a 1D system in certain situations, by equat-

ing po in Fig. 3.2 with pe, the “equilibrium” opening probability. The latter is purely a

function of the voltage, reflecting the open - closed equilibrium of the channel in the absence

of inactive states, whereas the former is also history (time) dependent. If channel dynam-

ics are fast compared to all other timescales in the system, and if the inactive state is not

present or not accessed, then the channel will always be in equilibrium with respect to the

instantaneous voltage, and po(t) ≈ pe(V ). This is a useful approximation, especially when

considering the dynamics at the threshold for firing (as inactivation does not play a role),

and will be discussed further in Ch. 4.

The form of the term pe is obtained by considering the opening rate for a two state system,

i.e. the model of Fig. 3.1 with the inactive state removed. This is exactly equivalent to the

coefficient n in the HH model. In this case, Eqs (3.7) reduces to an ordinary differential

equation:

dpe
dt

= (1− pe) ko − pe kc (3.8)

with solution:
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pe(V ) =
ko(V )

kc(V ) + ko(V )
=

1

1 + e−
2q
kT

(V−V0)
=

1

2

[
1 + tanh

(
V − V0

γ

)]
(3.9)

and so pe has the form of a Fermi-Dirac distribution, where q/(kT ) = α from Eq. (3.5) and

V0 is the same half-voltage. Also shown is an equivalent form commonly used in electrophys-

iology literature, with pe in terms of the hyperbolic tangent [20] and γ = kT/q.

Eqs (3.2), (3.7) describes the dynamics of the physical AA well [26]. The model can be

numerically simulated and used to probe how the AA responds under various conditions.

Comparisons between time traces measured from the physical AA and ones obtained nu-

merically from integrating the dynamical system will be presented in the following chapters.

The parameter values used are obtained through a combination of measurements and fitting

the experimental traces [26, 27]

3.3 Rates for the KvAP

3.3.1 Experimental Measurements

Rates for the KvAP have been reported before [23], however these previous measurements

correspond to the states of a more detailed kinetic model for the KvAP (higher dimension

in phase space, in order to account for the physical gating properties of the channels) which

cannot be mapped onto Fig. 3.1. Thus, it is necessary to measure the “effective” rates

Eqs. (3.5), (3.6) to determine the phenomenology of system with KvAP. In order to do so,

a modified version of the AA is used in which the voltage is clamped in the traditional

manner (i.e. Rc = 0). The experiments are then carried out in standard electrophysiological

fashion [8, 23], using various voltage protocols and measuring the current to extract the rates.
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3.3.1.1 Opening and Closing Rates

The opening and closing rates ko and kc of the model can be directly extracted from pe

through the equivalence in Eq. (3.9). Using the values obtained for pe from previous work

in the lab [18] and converting to the form of Eq. (3.5), the resultings rates are:

ko(V ) = 0.3 e46(V+0.016) kc(V ) = 0.3 e−46(V+0.016) (3.10)

3.3.1.2 Measuring the Inactivation Rate

The protocol to measure ki is as follows: the system is first held at a resting voltage

Vr = −120mV where almost all channels are in the closed state. At t = 0 voltage is

stepped up to V1 = 100mV, firing in the process, and held there for a time t1 = 100ms. At

the end of this time interval most channels are open and only few are inactivated, since at

V1 the opening rate is faster than 100 ms and the inactivation rate considerably slower. At

t = t1 the voltage is dropped to a lower value V2, held there for a time t2 (∼ 1 s). The value

of V2 is in the range between -80mV and 0mV, i.e. above threshold so that the channels

start to inactivate but do not recover significantly. At, t = t1 + t2 = ∆t, the voltage is

stepped back up to V1 = 100mV for a second firing. Finally the voltage is returned to the

resting state Vr to begin another measurement.

The measured quantity is the clamp current (equal to the channel current if we neglect

leak currents). The proportion of open channels at time t1 (immediately before the voltage

is stepped to V2) is constant. While the system is held at V2, some channels will inactivate

with a rate ki(V2), thus the second step to V1 will elicit a smaller current than the first. The

ratio of these two current peaks as a function of V2 and t2 allows us to extract the rate ki(V ).

Fig. 3.2 shows several current traces which illustrate the protocol.
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Figure 3.2: (a) Representative time traces of the current corresponding to the voltage clamp

protocol used to measure the inactivation rate ki(V ). The initial peak (red trace) gives the

maximum current I0, and the ratio of subsequent peaks in comparison gives the ratio of

inactivated channels after a time t2 = 1 s spent at V2 (legend). (b) The inactivation rate

ki(V ) plotted vs V , obtained from time traces as in (a). The solid line is a fit with an

exponential function ki(V ) = k0 exp(βV ), returning the values k0 = 0.878 s−1, β = 8.13V−1.
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Quantitatively, the initial state is prepared with pi(t = 0) ≈ 0 and po(t = 0) ≈ 1. Since

we want the effective rate O → I we consider d(po)/dt = −ki(V ) po for the dynamics while

the system is held at V = V2, choosing V2 such that kr(V2) ≈ 0. Therefore after the time

t2 we have: po(t2, V ) = po(0) exp[−ki(V ) t2]. For a given voltage, the current is I ∝ po

so Ipeak/I0 = po(t2, V )/po(0) = exp[−ki(V ) t2] where Ipeak is the peak value of the current

when the voltage is stepped to V1 the second time, and I0 the initial peak of the current,

when the voltage is stepped to V1 the first time (red trace in Fig. 3.2(a)). The quantity

−(1/t2) ln(Ipeak/I0) = ki(V ) (where V = V2), obtained from traces as in Fig. 3.2(a), is plot-

ted vs V in Fig. 3.2(b), together with a fit to the form ki(V ) = k0 exp(βV ) (solid line), from

which the parameters k0 and β are determined. From this a value for the inactivation rate

is obtained: ki = 0.878 e8.13V

3.3.1.3 Measuring the Recovery Rate

To measure the recovery rate kr, the system is prepared in a state where all channels are in-

active, pi = 1. The is achieved by holding the AA at an above threshold voltage V1 = 100mV

for an extended period of time (> 5 s). The voltage is then stepped to a V2 below the thresh-

old for firing (between −120 to −80mV), and held there for a time ∆t; during this time, a

fraction of the channels recover (into the closed state), with rate kr(V2); then the voltage is

stepped back up to V1. A reference measurement is also taken where the system is held at

V2 for a long time (> 20 s) before stepping the voltage back to V1. The ratio of measured

current over reference current gives the ratio of open channels (i.e. channels which have

recovered from inactivation) as a function of V2 and ∆t; kr(V ) can be extracted by repeating

the process for several values of V2 and ∆t. Fig. 3.3 shows a sample data set demonstrating

the protocol, along with the fit for determining kr. The resulting rate is: kr = 0.034 e−11.4V
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Figure 3.3: (a) Representative time traces of the current corresponding to the voltage clamp

protocol used to measure the recovery rate kr(V ). Each curve represents a firing of the

AA after recovery for a time t2 (legend) at V2 = −150mV. The red trace corresponding

to t2 = 20 s is taken to be the maximum current, and the ratio of subsequent peaks in

comparison gives the ratio of recovered channels after t2. (b) The recovery rate kr(V )

plotted vs V , obtained from time traces as in (a). The solid line is a fit with an exponential

function kr(V ) = k0 exp(βV ), returning the values k0 = 0.034 s−1, β = −11.4V−1.
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ko(V ) kc(V ) ki(V ) kr(V )

0.3 e46(V+0.016) 0.3 e−46(V+0.016) 0.878 e8.13V 0.034 e−11.4V

Table 3.2: Rates determined from fitting the model on to experimental traces.

3.3.2 Measured Rates of the AA System

To summarize, the measured rates for the model (in units of s−1, V −1) are shown in Table 3.2.

The purpose of obtaining these rates is to provide guidance for the experiments in order to

realize interesting dynamical behavior and understand the phenomenology. It should be

emphasized that measurements are of effective rates for the model, and are not meant as

definitive statements on the inherent properties of the KvAP channel. This is because rates

are highly sensitive to experimental conditions, and cannot be decisively measured as a fixed

quantity without reference to other parameters. For example, the measurements performed

in this section were all done using the lipid DPhPC to create the bilayer membrane (Ch. 2),

and it has been shown that using a different lipid results in large differences in inactivation

times [23] as well as differences in the V0 of Eq. (3.9) [30]. In addition, fluctuations in

other uncontrolled parameters such as leak current, membrane capacitance, and especially

temperature [31, 32], may alter the rates from one experiment to another.

Fig. 3.4 shows a comparison between an experimentally obtained data for an the firing

of an action potential compared with a numerical simulation of the model Eqs. (3.2), (3.7).

Using the rates of Table 3.2 as a starting point, the final simulation has the parameters in

Table 3.3. The results demonstrate that the measured rates provide a good reference for

numerical simulations of the system, while at the same time giving an idea of where the

KvAP rates fall in the parameter space of the model (Ch. 5). This aligns with the goal of

determining which of the dynamical phases can be accessed with the present experimental

setup. Knowledge of the phase diagram in parameter space will also guide the choice of

alternative channels to improve the AA.
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ko(V ) kc(V ) ki(V ) kr(V ) N0 C χ VN Rc

3 e53(V+0.016) 3 e−53(V+0.016) 2 e8V 0.01 e−11V 80 182 pF 167 pS 42mV 2GΩ

Table 3.3: Fitted rates for the red trace in Fig. 3.4.
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Figure 3.4: Time trace of an action potential firing obtained from the physical AA (blue),

fitted with a numerical comparison obtained from integrating the 3D dynamical system using

the rates of Fig. 3.2 as a starting point (red).
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CHAPTER 4

Critical Behavior Near Threshold

This chapter will detail results on the dynamics of the AA near the threshold for firing. In

this region, the AA can be approximated by a 1D dynamical system. The threshold then

corresponds to a saddle-node bifurcation, where two critical points collide and annihilate,

resulting in a delay in firing APs due to critical slowing down near the remnant of the

bifurcation. This effect is measured, and a scaling exponent extracted.

4.1 Normal Form of the Saddle-Node Bifurcation

The occurrence of a saddle-node bifurcation in the firing of the Artificial Axon can be shown

by comparing the behavior of the system near threshold to the normal form of the saddle-

node bifurcation. In one dimension, the normal form is:

ẋ = r + x2 (4.1)

where r is a control parameter. For r < 0 the system has two fixed points (ẋ = 0), one

stable and one unstable. They merge at the critical point r = 0; for r > 0 the velocity is

always positive so the system escapes to infinity. The transition exhibited by the dynamical

system Eq. (4.1) as the parameter r goes through the critical value r = 0 is termed a saddle

node bifurcation [33]. The system exhibits critical slowing down near the critical point: for

r > 0, Eq. (4.1) integrates to:
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x(t) =
√
r tan(

√
r t+ b) b = arctan(x(0)/

√
r) (4.2)

From the form Eq. (4.2), it can be seen that the time to escape to infinity is finite. Starting

from a large negative value x(0), so that b ≈ −π/2, that time is:

τ ∼ π√
r

∝ r−1/2 (4.3)

which can also be estimated by:

τ ∼
∫ +∞

−∞

dx

r + x2
=

π√
r

= π (r − rc)
−1/2 (4.4)

The time to escape diverges as one approaches the critical point from above, and scales with

the distance to the critical point with characteristic exponent −1/2. The relations Eqs. (4.3),

(4.4) are exact if τ is the time for x(t) in Eq. (4.1) to move from x = −∞ at t = 0 to x = +∞

at t = τ . They also approximate the time for the system to move between two finite values

of x across the transition. The reason is that for r close to the critical value, the dominant

contribution to τ comes from the neighborhood near x = 0, where there previous was a fixed

point; thus the escape time is roughly independent of the starting and end points.

4.2 Saddle-Node Bifurcation in the Artificial Axon

The existence of the bifurcation in the AA system can be shown explicitly if the following

two approximations are made: po(t) is taken to be the equilibrium value pe(t) in Eq. (3.2),

and the inactive state pi is neglected. The first approximation is valid if the opening and

closing rates are much faster than the other time scales in the system, which is the case

for the KvAP. The second approximation is also reasonable near the threshold for firing; to

generate an action potential, the system must start at a large negative resting voltage and

approach the threshold from below, with channels starting in the closed state. Under the
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model of Fig. 3.1, channels cannot inactivate until they open; meaning that the in the region

of interest near the threshold for firing (where channels have just begun to open), inactivation

is negligible. Given these two approximations, the 3D dynamical system Eqs. (3.2), (3.7),

reduces to 1D:

dV

dt
= −N0χ

C
[pe(V ) + χℓ/χ][V (t)− VN ]−

1

RC
[V (t)− Vclamp] (4.5)

where pe(V ), the steady state open probability, is a Fermi-Dirac function as discussed in

Ch. 3:

pe(V ) =
1

1 + e−
2q
kT

(V−V0)
(4.6)

with experimentally determined values V0 = −16.1 mV, γ = kT/q = 21.7 mV [18]. The

fixed points (dV/dt = 0) of the dynamical system Eqs. (4.5), (4.6) are given by:

pe(V ) =
1

N0χR

(
V − Vclamp

VN − V

)
− χℓ

χ
(4.7)

Fig. 4.1 shows plots of Eq. (4.7) as a function of V for three different values of Vclamp, the

relevant range of voltages being Vrest < V (t) < VN (Vrest ≈ −200mV). The fixed points of

the system are given by the intersection of the two curves.

For Vclamp sufficiently negative, shown in Fig. 4.1(a), there are 3 fixed points. As Vclamp is

increased, the stable and unstable fixed points on the left merge at a critical point as shown

in Fig. 4.1(b), i.e. the threshold, where the two curves in the figure are tangent to each

other. For values of Vclamp greater than the critical point, there is only one stable fixed point

near the Nernst potential, as in Fig. 4.1(c). This is the same bifurcation as exhibited by the

dynamical system Eq. (4.1), thus the same behavior should occur near the critical point. If

Vclamp is stepped close to, but above, Vcrit, there will be a delay time for firing, scaling as:
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Figure 4.1: Plots of the LHS (blue) and the RHS (red) of equation (4.7), for three different

Vclamp values; the dotted asymptote indicates the Nernst potential VN .

(a) Vrest < Vclamp < Vcrit, two stable (s) fixed points and one unstable (u).

(b) Vclamp = Vcrit, at the critical point V = V1.

(c) Vclamp > Vcrit, the only remaining fixed point is near VN (action potential deplorizes).
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τ ∼ (Vclamp − Vcrit)
−1/2 (4.8)

To show this, first note that the critical point, Vclamp = Vcrit, V (t) ≡ V1, is defined by:



pe(V1) =
1

N0χR

V1 − Vcrit

VN − V1

−
χℓ

χ

dpe

dV

∣∣∣∣∣∣∣
V=V1

=
∂

∂V

 1

N0χR

V − Vcrit

VN − V


∣∣∣∣∣∣∣
V1

=
1

N0χR

VN − Vcrit

(VN − V1)2

(4.9)

Set Vclamp = Vcrit + ϵ and write (4.5) in the form:

dV

dt
= F (V, Vclamp) (4.10)

Expanding around the critical point:

F (V, Vcrit + ϵ) ≈ F (V, Vcrit) +
1

RC
ϵ (4.11)

while

F (V, Vcrit) ≈ F (V1, Vcrit)+
∂

∂V
F (V, Vcrit)|V1 (V − V1)

+
1

2

(
∂2F

∂V 2

)∣∣∣∣
V1

(V − V1)
2

(4.12)

Using Eq. (4.7), the first two terms on the RHS of Eq. (4.12) vanish. Also, the coefficient of

the quadratic term is positive. Finally,
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F (V, Vcrit + ϵ) ≈ 1

RC
ϵ+ b (V − V1)

2

b =
1

2

∂2F

∂V 2

∣∣∣∣
V1

> 0, ϵ = Vclamp − Vcrit > 0

(4.13)

Thus, close to the critical point the dynamical system Eq. (4.5) reduces to the form of

Eq. (4.1). Using the estimate Eq. (4.4) for the delay time:

τ ∼
∫ +∞

−∞

dV

ϵ/RC + b(V − V1)2
=

π√
bϵ/(RC)

= π

√
RC

b
(Vclamp − Vcrit)

−1/2

(4.14)

and, noting that b ∝ N0χ/C:

τ ∝ RC√
N0Rχ

(Vclamp − Vcrit)
−1/2 (4.15)

The delay time scales with the distance to the critical point with the exponent −1/2, as

expected, with a prefactor proportional to the characteristic RC time scale, modulated by

a factor which depends on the number of channels and the ratio between the open channel

conductance and the CLVC conductance.

The rate at which the voltage proceeds to the fixed point close to the Nernst potential

can be visualized via trajectories in phase space. Fig. 4.2(a) shows a plot of dV/dt vs V for

several trajectories (time traces) obtained from directly integrating the full (3D) AA model.

Note that a point in the plane of Fig. 4.2(a) does not completely represent the state of the

system, as inactivation is unaccounted for. However, this plot is still useful for a qualitative

description of the delay in firing. When Vclamp is stepped up, dV/dt jumps to a positive value
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and the voltage immediately starts to rise. For Vclamp > Vcrit, dV/dt reaches a minimum

in the vicinity of the critical point V1, i.e. the dynamics of the system slows down in this

vicinity. This is shown in Fig. 4.2(b), where 1/(dV/dt) for the blue trajectory is plotted.

This quantity is proportional to the time the system spends near the voltage V . The peak

in this plot identifies a “bottleneck region” which is ultimately responsible for the scaling

behavior of the delay time τ . Eventually, dV/dt will start to rise again due to the opening of

the channels and spiking will occur, as shown in the right half of Fig. 4.2. The subsequent

drop and sign change in velocity is due to the inactivation of the channels which moves the

fixed point back near Vcrit.
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Figure 4.2: (a) Trajectories in phase space from integrating the 3D model. Starting from

Vclamp = −200mV, the clamp was stepped up to −86mV (black), −58.8mV (blue), and

−18.18mV (red) and held steady. The black trajectory is below threshold and fails to

depolarize. The blue trajectory, reaching closer to the saddle-node remnant, experiences a

significant delay before firing compared to the red. (b) The same blue trajectories from (a)

juxtaposed with the corresponding plot of 1/(dV/dt) (brown trace, y-axis). The area under

the brown curve represents the total time elapsed, with most of the contribution coming

from the vicinity of the saddle-node remnant.
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4.3 Experimental Measurements

The delay in firing near threshold can also observed experimentally in the physical Artificial

Axon system. Starting with an AA prepared in the usual way (Ch. 2), the system is held

steady at a voltage by the clamp at Vclamp = −200mV. At this voltage almost all the channels

are in the closed state, pc ≈ 1, po ≈ pi ≈ 0. Vclamp is then stepped up to various values

between 0 and −100mV and held steady. If functional ion channels are in the membrane

and Vclamp is above the threshold Vcrit, the AA will fire. Whereas if Vclamp is below Vcrit, the

AA does not fire and voltage will stabilize at V (t) ≈ Vclamp. After the AA has fired, Vclamp

is stepped back to −200mV and held there for 20 s to allow the channels to recover from

inactivation; this process is then repeated, varying the value that Vclamp is stepped to.

Fig. 4.3 shows the resulting time traces of the experimental protocol, for various values

of Vclamp. As predicted by the analysis in Section 4.2, there is a delay time, τ , it takes to

depolarize the inner chamber when membrane voltage is stepped close to the voltage thresh-

old Vcrit from below. The measure of delay τ adopted here is defined as the time interval

between the step in Vclamp and the peak of the action potential. Note that for electrophysi-

ologists, various other definitions of the firing time exist. With regards to our goal of using

τ to find the threshold voltage and extracting the scaling exponent, the choice of τ does not

significantly alter the results.

Of course, the dynamics of the real system reduces to Eq. (4.1) only near the critical

point, and consequently the exact solution Eq. (4.2) applies to the physical AA only close

to the critical point. This is shown in Fig. 4.4, where the different time traces from Fig. 4.3

are rescaled according to Eq. (4.2), and are seen to collapse into a “universal” form near the

critical point V = V1.
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Figure 4.3: Series of action potentials evoked by stepping the CLVC to the values shown in

the key, plotted on a common time axis. Firing is delayed as Vclamp is decreased towards

Vcrit, until Vclamp is below threshold and no action potential is fired (black trace).
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Figure 4.4: Experimental data Fig. 4.3 plotted in the form of Eq. (4.2). Near the critical

point (V = V1, dashed line) the traces collapse as the dynamics in this region are uni-

versal. The particular parameters used in Eq. (4.2) are: b = −π/2, V1 = −66 mV, and

r = (Vclamp − Vcrit) /RC.
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4.3.1 Determining the Threshold

Based on the derivations in Section 4.2, the delay time τ should be a function of (Vclamp −

Vcrit), scaling with a theoretical exponent of −1/2. In order to fit the experimental data

with this relation and verify whether the same scaling holds, it is essential to have a precise

determination of the threshold Vcrit, i.e. the location of the critical point in phase space.

A direct measurement Vcrit involves repeated experiments involving the variation of Vclamp

until a value is found such that any clamp value below it does not elicit firing. In practice,

direct measurement of the threshold is not very realistic, as the required resolution cannot

be realistically attained when considering noise and stability of the experiment.

Instead, given that Vcrit is a parameter value at the critical point of the system, fitting

techniques can be employed to extrapolate it from time trace data. For a given data set of

AA firings as a function of Vclamp (e.g. Fig. 4.3), plots of log τ vs log (Vclamp − Vcrit) are pro-

duced for various values of Vcrit near the empirically observed value. Each plot is fitted to a

second order polynomial in log (Vclamp − Vcrit). A quadratic coefficient is obtained from each

of these plots, which is then plotted against the corresponding Vcrit value. Performing linear

regression on the plot of quadratic coefficients vs Vcrit, the value of Vcrit which corresponds

to a quadratic coefficient of zero is taken to be the threshold (Fig. 4.5). To put it in simpler

terms: for a given data set, different values of Vcrit are trialed, and the one which returns

a straight line in the plot of log τ vs log (Vclamp − Vcrit) is chosen to be the actual value, as

that is the expected behavior of the system.

It’s important to emphasize that Vcrit is different from the critical membrane voltage at

which the axon fires, defined as the membrane voltage corresponding to the location of the

critical point (V (t) = V1, see Section 4.2). The methods that have been employed in electro-

physiology for estimating action potential thresholds actually estimate this latter quantity,
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Figure 4.5: The quadratic coefficients of plots of log τ vs log(Vclamp − Vcrit), for different

values of Vcrit. The x-intercept of the least squares fit (blue line) is taken as the threshold

value Vcrit for the purpose of obtaining scaling exponents. In this case, Vcrit ≈ −66.5mV

the well known methods all relate to observing changes in the derivative of the voltage [34].

In our setup, we could also keep the CLVC fixed, and introduce a traditional current clamp

injecting a current Icc into the AA. We would then have a corresponding threshold Icrit,

which is the more usual situation in electrophysiology (the scaling would remain the same).
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4.3.2 Scaling Near the Threshold

The determination of the critical exponent under the scaling assumption for one data set is

shown in Fig. 4.6. Fig. 4.6(a) is a log-log plot of the delay time τ vs (Vclamp − Vcrit), using

the threshold value Vcrit = −90.6 mV, determined using the method of the previous section.

The slope of the linear fit gives a critical exponent β = −0.57± 0.04, close to the theoretical

value of -1/2. Fig. 4.6(b) is a linear plot of the same data with the delay time plotted directly

against Vclamp, i.e. without predetermining Vcrit. The solid line is a three parameter fit to

the power law:

τ = α (Vclamp − Vcrit)
β (4.16)

This fit returns the values: α = 9.49, Vcrit = −87.5 ± 6.1 mV, and β = −0.51 ± 0.11. The

values for Vcrit and the scaling exponent β differ slightly compared to the values obtained

from Fig. 4.6(a), but are compatible within error.

Though experimental data in Fig. 4.6 shows good agreement with the prediction that the

scaling exponent should be -1/2, it is lacking in the sense that the range of the measurements

is quite limited, covering only a decade in the control parameter (Vclamp − Vcrit). This is a

result of several factors, most notably the relatively small number of channels in the AA,

which limits how close one is able to get to the critical point, and beyond that, the stability

and noise in the system.

Fig. 4.7(a) shows plots for two more independent data sets; the values of Vcrit were deter-

mined in the same way as for the plot in Fig. 4.6. These data sets show differing values of the

scaling exponent, which is likely due to the drifting of the threshold during the experiment.

To be specific, this is because in the experimental system, parameters such as N0 and C can

change over the course of the experiment. For example, a painted membrane may shrink as
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Figure 4.6: (a) Data from one set of recordings in the physical AA, uncertainty on individual

measurements is given by a representative error bar on one data point. (a) Log-log plot of τ

(Vclamp − Vcrit), with Vcrit = −90.6± 1.1 mV. The resulting scaling exponent from the linear

fit is β = −0.57 ± 0.04. (b) The same data plotted on a linear scale with Vcrit as a free

parameter. The exponent obtained this way is β = −0.51± 0.11.

the decane surrounding it collapses inward, changing the size of the membrane and thus its

capacitance; or channels which were pipetted in may not have inserted into the membrane

immediately, floating above the membrane and stochastically inserting over time, altering

the number of channels N0. As a result of these fluctuations, the threshold may shift over

the course of an experiment.

The following observation supports the idea that threshold drift may be the cause of the

mismatched exponents: The time traces corresponding to the purple dots in Fig. 4.7(a) are of

the same data set as shown in Fig. 4.3. From Fig. 4.3, it can be seen that Vclamp = −56.4mV

is just below threshold, while Vclamp = −54.6mV is just above. This constrains the threshold

to be in the range Vcrit = −55.5 ± 1mV. Fig. 4.7(b) shows the log-log plot with the “ex-

perimentally constrained” value of Vcrit, eliminating the longest delay data point which is

clearly off (the longest delay points being most affected by a drift in Vcrit). There is a slight
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Figure 4.7: (a) Two additional data sets (purple and green dots) obtained from two indepen-

dent experiments, plotted the same way as Fig. 4.6(a). For the purple dots (same data set

as Fig. 4.3), Vcrit = −66.5± 0.6mV, and the slope of linear fit (orange) is β = −0.81± 0.03.

For the green dots, Vcrit = −54.4±1.0mV, and β = −0.44±0.04. (b) The same data as the

purple dots in (a), plotted using the “experimentally constrained” value Vcrit = −55.5mV.

The linear fit excludes the point closest to threshold (see text); β = −0.50± 0.04.

N0 C χ χℓ/χ Rc V (t = 0) pc(t = 0)

110 329.7 pF 170 pS 8.8×10−4 2GΩ -200mV 1

Table 4.1: Parameters used in integrating the 3D dynamical system directly.

curvature, but fitting to a straight line returns an exponent close to −1/2 (β = −0.50±0.04).

While these results clearly demonstrate that the scaling behavior described is present in

the AA, the experimental conditions prevent precise measurements of the exponent. To ex-

plore regions closer to the threshold and verify whether the scaling holds, numerical methods

are adopted to supplement the experimental results.
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Figure 4.8: Two action potentials recorded in the physical AA, demonstrating delay in firing

for clamp values near threshold. For both traces, the CLVC was held at Vc = −200mV

before being stepped up at t = 0.28 s to Vc = 0mV (blue) and Vc = −54.55mV (red). The

dashed line shows the threshold Vcrit ≈ −66.5mV, while dotted line is the Nernst potential.

The break in the blue trace at t ≈ 5.5 s corresponds to the CLVC being stepped down again

to Vclamp = −200mV.
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Figure 4.9: Action potentials produced from integrating the 3D model. The clamp protocol

and other settings follow those in Fig. 4.8. Namely, Vclamp(t = 0) = −200mV, at t = 0.28 s

the clamp is raised to 0mV for the blue trace and −54.55mV for the red, displaying the

same delay in firing effect. The dashed line shows the threshold Vcrit ≈ −59.1mV, the dotted

line shows the Nernst potential.
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4.4 Numerical Results

By integrating 3D dynamical system Eqs. (3.2), (3.7) directly, the delay in firing near the

threshold can be reproduced numerically. Figs. 4.8 and 4.9, show a comparison between an

experimental firing of the AA and numerically simulated firing from integrating the model.

With proper fitting of the system parameters (Table 4.1), the numerical results match very

closely with that of the physical system. Simulated AAs can access a large range in the

distance to threshold, and in turn provide a good determination of the scaling exponent.

This is because, unlike the experiment, there are no concerns of noise or stability, and with

the parameters truly fixed there is also no drifting of the threshold. With that in mind, the

“experiment” is carried out numerically, repeating the same methods as the previous section,

i.e. producing a series of action potentials for different values of Vclamp, measuring the delay

time τ , determining the threshold Vcrit, and producing a log-log plot of τ vs (Vclamp − Vcrit)

to determine a scaling exponent. Fig. 4.10 shows one such data set, the resulting linear fit

has a slope of β = −0.51, very close to the theoretical value. The numerical result also

shows good agreement with the experimental data in the range where they overlap, further

affirming how well the numerical approach models the physical system.

The data of Fig. 4.10 shows that the scaling relation holds for a relatively large range in

the parameter (Vclamp − Vcrit). This naturally leads to the question of whether this behavior

holds for values of Vclamp arbitrarily close to the threshold, as is the case with the normal form

of the saddle node bifurcation. Further simulations show that this is not the case; there is

deviation from the expected scaling extremely close to the threshold, shown in Fig. 4.11. For

a distance to threshold of less than ≈ 0.2mV, the relationship between τ and (Vclamp–Vcrit)

is no longer a straight line in the log-log plot. This is not entirely unexpected; the reason

being that the effect of inactivation becomes non-negligible at long delay times. Though the

inactivation rate is much smaller than the opening rate at threshold voltage, given a long

enough delay time, some fraction of the channels will inevitably inactivate before firing. This
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Figure 4.10: Log-log plot of the delay time τ vs distance to the critical point (Vclamp − Vcrit)

on the simulated AA (purple), using the same procedure as the experimental data of Fig. 4.6.

The threshold is determined to be Vcrit = −91.4mV, compared to −90.6mV for the exper-

imental data in Fig. 4.6(a). The linear fit returns a scaling exponent of β = −0.51. The

experimental data of Fig. 4.6 are overlaid (red) for comparison, shifted downward for visual

clarity.
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effectively reduces the number of channels in the system, which, as shown in Fig. 4.12, will

result in a shifting of Vcrit. Thus, even in the simulated system, which is idealized compared

to the physical one, deviation from -1/2 scaling is still unavoidable when very close to the

threshold, as the assumption of a 1D dynamical system is no longer valid when inactivation

has a sizable effect.

Solutions to Eq. (4.7) with steady state opening were also calculated numerically to ob-

tain a relation between N0 and Vcrit for varying values of χℓ. The results show that for a

given ion channel and clamp (fixed R and χ), there exists a range of N0 such that excitability

is possible, above and below which there is no bifurcation and thus no possibility of action

potentials occurring. This fact can also be seen directly from the graphical representation

of Eq. (4.7) in Fig. 4.1: increasing N0 makes the slope of the RHS of Eq. (4.7) shallower,

and thus Vcrit more negative, but since χℓ/χ > 0 there is a maximum N0 beyond which the

only fixed point is the one close to VN (i.e. a steady state with channels open). Conversely,

decreasing N0 makes the slope of the RHS of Eq. (4.7) steeper, and thus Vcrit increases; the

critical point V1 (Eq. (4.9)) moves towards the inflection point of the open probability curve

pe(V ), and if N0 is too small, the unstable fixed point disappears, and so there is no firing.

In the case that there is no leak (χℓ = 0), there is a logarithmic relationship between the

number of channels and the threshold. This is in agreement with previous numerical studies

[1] that calculate a relationship between conductivity and threshold voltage, since the total

conductance is directly proportional to the number of channels. As χℓ increases, Vcrit be-

comes more negative, and the relationship is no longer logarithmic. When the leak is taken

to be the same value as in the simulation, the numerical solutions with steady state opening

are in good agreement with the simulation of 3D model, indicating that the threshold does

not depend strongly on the opening model. These results are displayed in Figs. 4.12 and 4.13.

68



 1

 10

 100

 0.1  1  10  100

τ
 (

s
)

Vclamp − Vcrit (mV)

Figure 4.11: Log-log plot of delay time vs distance to critical point obtained from the nu-

merical integration, the same plot as Fig. 4.10 for a different data set. Points extremely close

to the critical point showcase deviation from expected scaling, due to channel inactivation.

The linear fit excluding the leftmost four data points returns a scaling exponent of -0.50,

with Vcrit = −59.26mV
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Figure 4.12: Numerically calculated relation between the number of channels in the system

and the threshold, using steady state opening probabilities and no leak. The blue fit is

logarithmic with coefficient −kT/2q (Eq. (4.6)) [1].
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Figure 4.13: When a leak χℓ is introduced into the system, the threshold voltage is depressed.

The red circles are from Fig. 4.12 (χℓ = 0), and the green circles are with χℓ/χ = 10−3, both

calculated using steady state opening. The purple squares were simulated with the full model

Eqs (3.2), (3.7) and χℓ/χ = 9.1×10−5, they agree extremely well with the steady state result

for the same value of χℓ (not plotted). All parameters are identical to Fig. 4.12.
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4.5 Discussion

When considering the Artificial Axon purely from the perspective of threshold firing, i.e.

without considering the shape or dynamics of the action potential after depolarization, the

system can be modeled as a 1D dynamical system using the equilibrium opening rate pe(V ).

It can be explicitly shown that the system passes through a saddle-node bifurcation when

Vclamp is stepped above threshold, with critical slowing down occurring near the threshold

due to the remnant of a fixed point. This slowing down scales with the distance to threshold

(Vclamp−Vcrit) with an exponent of -1/2 and is observable in the physical AA. However, as a

result of the limited range of the scaling behavior in the experiments, the critical exponent

cannot be determined with high accuracy. In the simulated system where there is no issue

of stability and noise, a much larger scaling range is observed, and correspondingly a better

determination of the scaling exponent follows. The numerical results match the theoreti-

cal prediction for the scaling exponent, while also matching the experimental findings in the

range where they overlap. Simulations further show that experimental limits which arise due

to issues of stability and noise are not the only factors which cause deviations from power

law scaling, but that there is also an intrinsic dynamical effect which has a large influence

on the scaling behavior close to the threshold: channel inactivation.

Physically, channel inactivation restricts the range where scaling is observed, similar to

finite size effects in other condensed matter systems. The “finite size” is here the finite

number of channels (more precisely the finite total conductance with open channels, N0χ),

which prevents arbitrarily long delay times. However, channel inactivation does not change

the nature of the bifurcation and therefore does not change the scaling exponent, as is evi-

dent from the simulation (Fig. 4.10), which contains inactivation dynamics but still gives a

scaling exponent of almost exactly −1/2 . The simulations also demonstrate the ’stability’

of the scaling exponent, in that significantly varying the rates and conditions do not alter
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the scaling behavior correspondingly. This is to be expected since the scaling phenomenon

arises from the saddle-node nature of the critical point, which is universal.

It is interesting to note that if the experimental data from Fig. 4.7 are taken and plotted

with the simulated threshold rather than the fitted threshold, a scaling exponent much closer

to the theoretical one is obtained. This further supports the reasoning for the deviation in

experimental behavior (i.e. the drift in voltage threshold as over the course of an exper-

iment). The reasoning is that if a drift had occurred, it would have likely decreased the

voltage threshold over time, as channels floating above the lipid membrane tend to inserted

over time, increasing the number of channels in the system. As such, a simulation using fits

on the first few data points would be well suited to provide an estimate for how the system

would behave in the absence of this drift. The simulation rates are obtained from fits on the

spikes closest to the critical point, which were the data points first recorded in the experiment.

In summary, scaling behavior of the delay time τ extending infinitely close to the crit-

ical point is a property of the 1D dynamical system Eq. (4.1). The 3D dynamical system

Eqs. (3.2), (3.7), which provides a good description of the dynamics of the physical AA,

reduces to the 1D dynamical system Eqs. (4.5), (4.6) in the limit of fast channels without

inactivation. The latter system is equivalent to Eq. (4.1) in the vicinity of the critical point,

meaning it has exactly a saddle node bifurcation and thus also exhibits scaling extending

infinitely close to the critical point, this corresponds to similar firing behavior in real neurons

[20, 28, 35, 36, 37, 38]. However, this is only an approximation of the 3D system, the question

then arises whether the latter, and the physical system it represents, also exhibit the same

scaling properties. The results in this chapter indicate that the scaling exponent of −1/2 is

indeed robust, but the scaling range of the 3D system is limited. This restricted range as

analogous to finite size effects, as reasoned above. Finally, note that the findings here per-

tain only to the system with regards to behavior near the threshold for firing. The Artificial
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Axon as modeled by Eqs. (3.2), (3.7) in its full form displays several other transitions to

spiking in different regions of parameter space, these will be detailed in the following chapter.
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CHAPTER 5

Artificial Axon: A Dynamical Systems Perspective

Motivated by the desire to generate interesting dynamics with the AA and understand the

types of behavior available to the system, a numerical analysis of the minimal model de-

veloped in Ch. 3 is conducted in this chapter. We begin with the construction of a phase

diagram for the AA through simulations of the model, identifying regions in parameter space

which give rise to different types of voltage dynamics. The goal is to qualitatively place the

present experimental system in the phase diagram and understand the criteria on chan-

nel properties necessary for obtaining desired behaviors, such as single channel oscillations.

Along the way, bifurcations which separate the different regions in the phase diagram will be

explored, along with other intriguing features of the dynamical system, including a transition

which may not have been described before in other electrophysiological models.

5.1 The Artificial Axon as a 3D Dynamical System

The dynamics of the AA with KvAP as the ion channel is modeled by the following set of

equations (Ch. 3):

dV

dt
=

N0χ

C
po(t) [VN − V (t)] +

χc

C
[Vc − V (t)]

dpo
dt

= [1− po(t)− pi(t)]ko(V )− po(t)[kc(V ) + ki(V )]

dpi
dt

= po(t)ki(V )− pi(t)kr(V )

(5.1)
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Eqs. (5.1) being a slightly modified version of Eq. (3.2) more suited for theoretical dis-

cussions. The leak conductance is neglected (χℓ << χ), and Rc is rewritten as an equivalent

conductance term χc, for consistency with χ. Eqs. (5.1) form the 3D dynamical system which

describes the AA, but even in this minimal representation the parameter space is still high

dimensional, making direct analysis rather difficult. Progress can be made by identifying

and focusing on the most relevant parameters with respect to the experiments. The control

parameters in the experiment are Vc, the clamp voltage, and χc, the clamp conductance, and

the effective rates of Fig. 3.1, which define the suitability of the channel for obtaining inter-

esting dynamical behavior, such as autonomous firing. In general (and specifically for the

KvAP) ko, kc ≫ ki, kr, and so the most relevant parameters are then the clamp voltage, the

clamp conductance [39], and the rates of inactivation and recovery. The focus in subsequent

sections will be on the parameter space spanned by these four quantities.

5.1.1 Phase Diagram

In order to understand the requirements on channel dynamics to obtain various temporal

patterns, a phase diagram can be constructed to explore the dynamical behavior of Eqs. (5.1),

representing a single AA. For an initial discussion of the qualitative aspects of the system, ki,

kr are first taken as constant (independent of voltage). Thus only the opening and closing

rates are coupled to the voltage. The result is a 4D parameter space spanned by Vc, χc,

ki, and kr. Fig. 5.1 shows one representation of the phase diagram, namely a cut through

parameter space in the plane of kr and ki, for Vc = −50mV, χc = 500 pS. The diagram is

obtained by simulating the AAs with the given parameters at each point on the plane and

recording the firing rates of the time traces. The protocol to fire the AA is the same as

previously discussed; starting with the system clamped at a large negative resting potential,

Vc is stepped up to an above threshold value to fire. The remaining parameters of the

simulation are shown in Table 5.1.

We identify four regions of distinct behavior, as labeled in Fig 5.1. In Region I, the
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Figure 5.1: Phase diagram of the dynamic behavior obtained from simulating the model

Eqs. (5.1), with voltage independent inactivation and recovery rates ki and kr. The phase

plane shown is a cut through a higher dimensional parameter space, for χc = 500 pS and

Vc = −50mV. Four distinct regions of behavior are identified.

N0 C χ χℓ/χ VN χc kco(+), koc(−) Vc(t = 0)

250 330 pF 170 pS 4.18× 10−4 42mV 500 pS 0.3 e±106(V+0.018) -200mV

Table 5.1: Simulation parameters for the 3D dynamical system. The system is simulated

with the initial state of V = −200 mV, pc = 1.
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dynamical system Eqs. (5.1) produces large, repeating action potential which reach close to

the Nernst potential (i.e. spike trains). The firing rate increases as kr increases, while the

width of the AP decreases for increasing ki. In Region II the system exhibits “oscillations”,

distinct from behavior in Region I in that the firing rate is higher, and with exception of

the first peak, the amplitude is smaller. The transition from Region I to Region II is quite

interesting; depending on the control parameters χc and Vc, there can be either a sharp jump

in firing rate or a smooth continuous increase. This transition is discussed further in the

next section. Fig. 5.2 showcases representative behavior in these two regions.

Region III corresponds to damped oscillations, the damping increasing as kr increases,

corresponding to a collapse of the stable limit cycle to a single fixed point. Finally, in Region

IV the system fires only once, after which the voltage remains constant at a relatively high

value; here the system moves directly to the fixed point without spiraling (overdamped).

Representative examples of these two regions are shown in Fig. 5.3.

In summary, for the case that the inactivation and recovery rates are voltage independent,

there are four possiblebehaviors when the system is excited (i.e. stepped above threshold

from rest): AP trains, oscillations, damped oscillations, and single shot firing. This phe-

nomenology of the AA, possessing only one channel species with inactivation, is the same

as for the Morris-Lecar system which possesses two channel species without inactivation

[20, 40, 41].

The phase diagram of Fig. 5.1 is representative of the system; while it is only one slice

through a higher dimensional parameter space with the two control parameters Vc and χc

held fixed, taking a different slice in parameter space (e.g. χc vs Vr, ki vs χc, etc) will yield

the same regions of behavior. Changing these control parameters (or the other parameters,

such as C, N0, etc) shifts the boundary lines in the ki, kr plane but does not fundamentally

alter the possible behaviors.

78



-75

-50

-25

 0

 25

 50

 0  5  10  15  20  25  30

 0.2

 0.4

 0.6

 0.8

 1

M
e
m

b
ra

n
e
 V

o
lt
a
g
e
 (

m
V

)

Time (s)

Figure 5.2: Two representative time traces of the voltage independent model, illustrating the

sharp increase in frequency as one crosses from Region I to Region II in the phase diagram of

Fig. 5.1. The blue trace has kr = 0.18 s−1 while the red trace has kr = 0.19 s−1, with all other

parameters identical (ki = 10.4 s−1). The purple and orange traces show the probability that

channels are open (po) for the blue and red traces respectively, with scale on the second

y-axis.
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Figure 5.3: Two additional time traces of the voltage independent model, displaying damped

oscillations and single shot AP behavior. The blue trace (kr = 0.22 s−1) corresponds to

Region III of the phase diagram of Fig. 5.1, the red trace (kr = 0.5 s−1) to Region IV.

The purple and orange traces display the corresponding probability that the channels are

inactive, pi. Parameters other than kr are identical to Fig. 5.2.
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5.1.2 Phase Transition

A point of particular interest in the phase diagram is the nature of the transition between

regions I and II. Fig. 5.4(a) shows the firing rate vs kr for four different values of Vc, with

fixed ki = 10.4 s−1, χc = 500 pS. Each curve is a crossing between Region I and Region II on a

particular cut of the phase plane kr, ki, with the orange curve (Vc = −50mV) corresponding

to Fig. 5.1. The lower part of each curve corresponds to AP trains in Region I, while the

upper points are of oscillations in Region II. For Vc = −54mV a sharp transition is seen

around kr ≈ 0.21 s−1, where the firing rate increases steeply. This transition smooths out

as Vc is raised to higher values, with the transition point moving to lower values of kr. The

same transition is present in other cuts of the parameter space as well. Fig. 5.4(b) depicts a

similar situation, with the roles of ki and Vr swapped. Here the transition point in kr shifts

more drastically while the change in sharpness is less prominent, however the phenomenology

remains identical.

5.2 The Reduced 2D Dynamical System

Displaying phase space trajectories often gives better insight into the nature of a bifurcation.

In the Hodgkin-Huxley model, a standard technique is to reduce the system to two dimensions

in order to plot the trajectories on a plane [8]. The same approach can be applied here,

provided care is taken to preserve the dynamics. Specifically, in the regime ki, kr ≪ ko, kc,

the 3D system Eqs. (5.1) can be reduced to 2D by introducing a new coordinate pa(t), the

probability that channels are “active” (i.e. not inactive: open or closed, pa = po+ pc). Since

the interconversion C ⇌ O is fast with respect to other timescales in the system, po(V, t) can

be substituted by pa(t)pe(V ) in Eqs. (5.1), where pe(V ) is the equilibrium opening probability

in the absence of inactivation as defined in Ch. 3.
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Figure 5.4: (a) Firing rate as a function of kr for several values of Vc (legend) with

ki = 10.4 s−1. A clear transition is seen (Region I to Region II), with the critical value

of kr and sharpness of the transition depending on the clamp strength. (b) Firing rate as a

function of kr, same as (a), but with three different ki (legend) and fixed Vc = −50mV. The

transition seen in (a) is also present here. For both plots, χc = 500 pS.

pe(V ) =
1

1 + e−
2q
kT

(V−V0)
(5.2)

Using pa(t) + pi(t) = 1, the lower two equations in Eqs. 5.1 can then be replaced by a

single equation for pa, reducing the system to two dimensions. Taking it a step further, the

system can be recast in dimensionless form to standardize the subsequent analysis. Eq. (5.1)

suggests the choice of τ = C/(N0χ) as the time scale and VN as the voltage scale. Writing the

total channel conductance N0χ as χ0 (so τ = C/χ0), Eq. (5.1) can be made dimensionless by

dividing all voltages by VN and scaling by τ . Similarly, the rates become dimensionless when

scaled by τ , e.g. k̃r = τkr. With these changes, the 3D dynamical system is transformed

into a dimensionless 2D dynamical system in terms of the coordinates V (t), pa(t):
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−2q/kT V0 N0 C χ pa(t = 0) V (t = 0)

4 -0.2 50 300 pF 200 pS 1 -1

Table 5.2: Parameters for simulations of the 2D dynamical system. The initial condition of

the system is above threshold, so firing begins immediately. Note that N0, C, and χ are only

for recovering dimensional quantities from the results if needed; they are not necessary for

the simulation.

dV

dt
= pa(t) pe[V (t)] [1− V (t)] + χc [Vc − V (t)]

dpa
dt

= kr − kr

[
1 +

ki
kr
pe[V (t)]

]
pa(t)

(5.3)

where all terms are implicitly dimensionless, i.e. V/VN → V , t/τ → t, χc/χ0 → χc, etc.

Numerically, taking some “standard” values for the experimental parameters, C = 300 pF,

χ = 200 pS, N0 = 100, the time scale is C/(N0χ) = 1.5× 10−2 s; so for example the (dimen-

sional) rate kr = 0.2 s−1 corresponds to the dimensionless rate (Ckr)/(N0χ) = τkr = 3×10−3.

If the parameters (q, V0) of Eq. (5.2) which define the open probability function pe(V ) are

fixed, then the 2D dynamical system Eq. (5.3) once again depends only on the four control

parameters χc , Vc , kr, and ki/kr; the first three of which are analogous to the same χc, Vc,

kr in the 3D system.

Referring to Fig. 5.1 as a guide, the nature of the transitions in the system can be elu-

cidated by sampling points along a horizontal line across the phase diagram, i.e. for fixed

choices of (Vc, χ, ki) excite the system at various values of kr and record the resulting firing

rates. The relevant simulation parameters are given by Table 5.2.

For the fixed values Vc = −1.7, ki = 0.15, and χc = 0.05, the behavior of Region I in

Fig. 5.1 (AP trains) is seen in the interval 4.03× 10−3 ≲ kr ≲ 9.20× 10−3. Fig. 5.5(a) shows
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Figure 5.5: (a) Phase space trajectory (blue) in the V , pa plane for the 2D dynamical system,

displaying the limit cycle corresponding to an AP train, with kr = 6.0 × 10−3, ki = 0.15,

Vc = −1.7, and χc = 0.05. Also shown are the nullclines dpa/dt = 0 (red) and dV/dt = 0

(orange). (b) Time trace of the AP train corresponding to the limit cycle shown in (a).

the phase space trajectory for kr = 6.0× 10−3, which is a limit cycle, the corresponding AP

train is shown in Fig. 5.5(b).

For kr ≥ 9.21 × 10−3 the system exhibits damped oscillations, corresponding to the be-

havior of Region III in the phase diagram. The transition between AP trains and damped

oscillations is sharp. Fig. 5.6 shows the same quantities as Fig. 5.5, for kr = 9.20 × 10−3,

which is in Region II, close to the transition to Region III (note the difference in spike shape

compared to Fig. 5.5(b)). Fig. 5.7 shows these plots for kr = 9.21 × 10−3, on the other

side of the transition in Region III. Here the phase space trajectory spirals into the (stable)

fixed point, corresponding to damped oscillations of V (t). Note that with the above pa-

rameter values (specifically, the relatively small ki) the system did not cross through Region

II. Rather, the transitions I → II and II → III have “merged”, in the sense that the

transition from AP trains to damped oscillations is also accompanied by a steep increase in

frequency (Figs. 5.6(b), 5.7(b)). The phenomenology just described is that of a subcritical
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Figure 5.6: (a) Phase space trajectory for kr = 9.20 × 10−3 (other parameters are same as

in Fig. 5.5), just inside Region I. (b) Time trace of the trajectory shown in (a).
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Figure 5.7: (a) Phase space trajectory for kr = 9.21×10−3 (other parameters are same as in

Fig. 5.5), just outside Region I. There is no longer a stable limit cycle and trajectory spirals

into the stable fixed point. (b) Time trace of the trajectory shown in (a).
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Figure 5.8: Eigenvalues λ of the stability matrix at the fixed point, calculated numerically

for the dynamical system Eqs. (5.3) for different values of kr. From left to right, the points

correspond to: kr = (10.0, 9.30, 9.20, 9.10, 9.0, 8.0)×10−3. Other parameters are as in Fig. 5.5.

Hopf bifurcation [33]. The linear stability analysis of the fixed point close to the bifurcation

shows that the eigenvalues of the stability matrix form a complex conjugate pair and cross

the imaginary axis from right to left as the fixed point changes from unstable to stable.

The eigenvalues λ (real and imaginary part) are shown in Fig. 5.8 for different values of kr

near the bifurcation. With the parameter values of this section, the bifurcation point is at

kr ≈ 9.21× 10−3, as expected.

For kr ≳ 12 × 10−3 (not shown) the system is so heavily damped that there are no
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Figure 5.9: (a) Limit cycle for kr = 9.18× 10−3 with the initial state (V = −0.5, pa = 0.39),

showing the presence of an unstable limit cycle. Other parameters are same as in Fig. 5.5.

(b) Time trace of the trajectory shown in (a).

oscillations; depending on the initial conditions, it either approaches the fixed point value

from one side or fires once and then approaches the fixed point. This is the behavior of

Region IV of Fig. 5.1, the transition into this region being one from the underdamped to the

overdamped regime.

In general, the behavior of the system is independent of the choice of initial conditions.

Since there is only one fixed point, for any starting point (V (0), pa(0)) the system either

spirals into the fixed point, if it’s stable, or moves to the limit cycle. However, there are

exceptions to this near the Hopf bifurcation. Fig. 5.9 shows such a case. The system starts

at (V, pa) = (−0.5, 0.39), which is close to the fixed point. The trajectory travels outwards

and makes several loops before stabilizing at the larger stable limit cycle. A trajectory which

starts slightly closer to the fixed point would instead spiral inward. This bistability arises

from the presence of an unstable limit cycle which is in between the stable fixed point and

stable limit cycle. For kr values far from the Hopf bifurcation, this phenomenon is not seen

because the fixed point itself is unstable.
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Figure 5.10: (a) Firing rate for the reduced 2D model as a function of kr, varying Vc

(legend) with ki = 0.35 and χc = 0.05 held fixed. The phenomenology is the same as for the

3D system. In particular, there is a sharp transition for a critical value of Vc. (b) The same

transition displayed for fixed Vc = −1.7, χc = 0.05 and different values of ki (legend).

By moving up in the phase diagram, i.e. increasing ki, the existence of Region II in 2D

system can be shown as well. Fig. 5.10, which is analogous to Fig. 5.1, but obtained for

the 2D system, demonstrates this. In Fig. 5.10(a) the firing rate vs kr is plotted with fixed

ki = 0.35 and different values of Vc. It is evident that the phenomenology remains the same

as the 3D system: at a critical value of Vc the transition is sharp, and it smooths out as Vc

is raised, with the transition shifting to smaller values of kr. Fig. 5.10(b) displays the same

transition for fixed Vc and different values of ki.

Figs. 5.11, 5.12 show representative phase space trajectories and time traces across the

Region I → Region II transition, for the 2D system. Different from the Hopf bifurcation

corresponding to the transition II → III, the fixed point inside the limit cycle remains

unstable on both sides of the transition. This is confirmed by an analysis of the eigenvalues

of the stability matrix at the fixed point, which remain on the right side of the imaginary

axis in both cases.
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Figure 5.11: Phase space trajectory (a) and corresponding time trace (b) for the 2D system

just prior to the I → II transition. kr = 17.03× 10−3, ki = 0.35, Vc = −1.73, χc = 0.05.
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Figure 5.12: Phase space trajectory (a) and corresponding time trace (b) for the 2D system

just after the I → II transition. kr = 17.05× 10−3, ki = 0.35, Vc = −1.73, χc = 0.05
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In addition to the subcritical Hopf bifurcation, the system also contains a few other

bifurcations which are similar to those of the Morris-Lecar system [40, 41]. These will be

described briefly, using ki as the bifurcation parameter: Starting at small ki, there is one

stable fixed point at the intersection of the V and pa nullclines, which is globally stable. This

corresponds to the system having no excitability, i.e. action potentials cannot be produced.

As ki increases, the V nullcline moves to the right, and a saddle-node bifurcation will occur

when the two nullclines intersect at a second point, resulting in two additional fixed points

post-bifurcation. As ki is further increased, one of the newly created fixed points will an-

nihilate with the original stable fixed point in another saddle-node bifurcation. This causes

limit cycles to arise (Region I and Region II), as the only remaining fixed point is unstable.

Finally, as ki is increased further, the remaining fixed point becomes stable through the Hopf

bifurcation described above and all trajectories spiral into it (Region III), until eventually

no oscillations occur (Region IV).

The transitions explored in this section can also be found when following different tra-

jectories in parameter space. Since the control parameters which have to do with channel

rates are kr and ki/kr, a natural trajectory is to keep the latter fixed. The overall picture

remains the same: as an example, Fig. 5.13 depicts the firing rate vs kr for fixed ki/kr.

5.2.1 Analogy to the Magnetization Transition

The plots of Fig. 5.4 and Fig. 5.10 present a qualitative resemblance to a number of equi-

librium phase transitions. In Fig. 5.4(a), the firing rate ν vs kr of the Vc = −54mV curve

exhibits a sharp transition; for kr ≥ kc
r = 21.15 × 10−2 s−1, the system exhibits power law

behavior, with (ν − νc) ∝ (kr − kc
r)

β, with νc ≈ 58mHz, and a scaling exponent β ≈ 0.317

(Fig. 5.14). For Vc > −54mV the transition appears smoothed out. This resembles the

behavior of the magnetization M vs temperature T for a ferromagnet close to the Curie
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Figure 5.13: The transition from Region I to Region II in the 2D system, explored along

trajectories with fixed ki/kr = 25. The different curves correspond to Vc in increments of

0.02, starting at Vc = −1.52 (violet) and ending at Vc = −1.72 (red).
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Figure 5.14: Scaling exponent for the firing rate as a function of the recovery rate, for Region

II of the purple curve in Fig. 5.4. The critical values k
(c)
r and νc were determined by starting

with a value very close to the the I→ II transition and making small adjustments until the

points fall into a straight line.
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Figure 5.15: (a) Hysteresis in the firing rate of the 2D model. Starting with χc = 0.05,

kr = 13.4 × 10−3, ki = 0.25, and V
(i)
c = −1.718, the clamp value is increased in increments

of 2 × 10−6 until V
(f)
c = −1.716 (2, 000 total Vc values sampled), staying at each Vc value

for t = 20 so that a firing rate can be calculated. The process is then reversed, with the

clamp returning to initial value through the exact same intermediate values. (b) A zoomed

out plot of the same transition in (a), showing the onset of oscillations (Vc ≈ −1.74), as

well as additional hysteresis at the subcritical Hopf bifurcation (Vc > −1.71). This plot was

generated by sampling points from V
(i)
c = −1.75 to V

(f)
c = −1.70, with same parameters as

in (a).

point. In zero external magnetic field (H = 0) the magnetization rises abruptly for T < Tc,

exhibiting power law behavior M ∝ (Tc − T )β. Experimentally, the scaling exponent for

systems in the Ising universality class is 0.31 ≤ β ≤ 0.33; for the Ising model in 3D it is

β ≈ 0.325 [42].

For finite field (H ̸= 0) the transition appears smoothed out in the M - T plane. With the

correspondence ν ↔ M , kr ↔ T , Vc ↔ H, the plots in Fig. 5.4 resemble the magnetization

vs temperature as the external field is turned on. For the magnetic system, a plot M vs

H would display the phenomenon of hysteresis for T < Tc. The question to ask then, is

whether the firing rate ν vs clamp voltage Vc could also show hysteresis, for kr < kc
r.
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To investigate the occurrence of hysteresis in our model of the AA, the 2D voltage in-

dependent model is simulated in a slightly different way. The system begins in some initial

state with χc, ki, and kr fixed, with an initial clamp value V
(i)
c . The clamp voltage is then

increased “adiabatically” from this initial value to a final value V
(f)
c over a time interval T , in

uniform increments (V
(f)
c > V

(i)
c ). The process is then reversed, with the clamp lowered from

V
(f)
c to V

(i)
c over the same interval T . The firing rate is calculated for each time increment t

(t = T/N where N is the number of Vc values sampled between the initial and final values)

and plotted as a function of Vc for both the forward and reverse processes. The results of this

protocol show that, for certain parameter choices, there is a difference in firing rate between

the forward and reverse processes in the vicinity of the I → II transition, i.e. a hysteresis loop

in the Vc − ν plane. Fig. 5.15(a) shows the result for χ = 0.05, kr = 13.4× 10−3, ki = 0.25.

The jump in firing rate corresponds to the I → II transition, and occurs at slightly different

values of Vc depending on the system’s direction of approach. Note that the hysteresis loop

shown here is not due to the subcritical Hopf bifurcation in the system, which corresponds

to the transition II → III. The existence of hysteresis at a subcritical Hopf bifurcation is well

known [33], and occurs at slightly larger values of Vc. This can be seen in Fig. 5.15(b).

5.3 Voltage Dependent Inactivation and Recovery

It is interesting to ask how the dynamics change if ki and kr are instead voltage dependent,

as is the case for the KvAP channel used in the experiment. Taking the voltage dependence

to be of the Arrhenius form, k = κ exp[α(V − V0)], simulations of the system show that the

phenomenology remains the same. The voltage dependent model produces the same four

types of behavior (AP trains, oscillations, damped oscillations, and single shot AP) as found

in the voltage independent model, for a wide range of parameter values. Fig. 5.16 shows

example time traces from a system with voltage dependent inactivation and recovery rates:

ki = 3 e20V , kr = κr e
−20V , Vc = −56mV, and all other parameters identical to the voltage
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independent model. In the figure, the system traverses through the four regions in the same

fashion as before (I → II → III → IV) as κr is increased. Holding κr fixed and varying an-

other parameter again produces the same four regions of behavior. Most notably, the sharp

transition between Region I and Region II which was found in the voltage independent model

is preserved (for certain parameter choices).

While the voltage dependent model more closely aligns with the experiment, it is not as

useful for the purpose of analyzing the transitions between regions in the system, given that

the voltage independent model has the same phenomenology with less parameters. Having

shown that removing the voltage dependence from ki and kr does not fundamentally alter

the available behaviors of the system, the preceding analysis on the model with constant ki

and kr should remain applicable to the experiment.

5.4 Dynamics in the Experimental System

The rates measured in Ch. 3 can be approximately mapped on to the voltage independent

phase diagram of Fig. 5.1 by considering the range of possible voltages encountered in the

physical system. Typical experimental conditions are bounded from below by the resting

voltage and above by the Nernst potential: -200mV < V < 42mV. This corresponds to a

window 0.02 < kr < 0.33 and 0.17 < ki < 1.24 for the rates. This rectangle lies almost

entirely in Region IV of the phase diagram (Fig. 5.17). This in agreement with the ex-

perimental observations, as no large scale autonomous oscillations have been observed with

the present system, and most firings of the AA result in single shot APs. However, the

possibility of observing oscillations in a single AA may still remain. Fig. 5.18 shows that,

though small, it is possible for secondary firings to occur in the AA. Thus, while the KvAP

in its current form is most likely not suitable for exploring some of the more interesting

behaviors discussed in this chapter, the location of its rates in phase space is not as far from
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Figure 5.16: Representative time traces of the 3D model with voltage dependent recovery and

inactivation rates. The x-axis is time (s), and the traces from top to bottom are representative

of regions I− IV, and correspond to κr = 0.037, 0.038, 0.06, and 0.3 s−1, respectively. The

fixed inactivation and recovery parameters are: κi = 3 s−1, αr = −20V−1, αi = 20V−1,

V
(r)
0 = V

(i)
0 = 0, with clamp value Vc = −56mV. Other parameters (N0, C, etc.) are

identical to the voltage independent case (Table 5.1). The top two traces are chosen to

showcase the sharp transition between Region I and Region II.
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Figure 5.18: Action potentials (red) from the AA elicited in the usual way, by stepping the

clamp (blue, not to scale) from the resting potential to an above threshold value. Of interest

is the secondary firings which occur without additional input to the CLVC.

autonomous oscillations as previously believed.

5.5 Discussion

The simplified Hodgkin-Huxley type model analyzed in this chapter captures the dynamics

of the experimental system quite well. The reduced number of parameters in the model

allows a mapping of the important features of the system’s parameter space in the form of

a phase diagram. A key insight is that the AA, a synthetic biology system consisting of one
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voltage gated channel species with inactivation, can be dynamically equivalent to a biologi-

cal system of two voltage gated channel species without inactivation (e.g. the Morris-Lecar

model). This raises the question of whether action potentials dependent on a single gated

channel species exist (or have existed) in nature. To my knowledge, no such system has been

identified.

The bifurcations in the model that occur when the system moves across regions in the

phase diagram have universal character, which should therefore be maintained across differ-

ent systems. Indeed, the Hopf bifurcation corresponding to the onset of AP trains seen in

the AA is well established for the neuron [28], and is commonly encountered in other models

of excitability (e.g. the Chialvo map [43]). In contrast, the transition separating regions

I and II in the phase diagram is less established. In fact, this transition does not seem to

have been discussed in the electrophysiology literature, either in theory or experiments. A

qualitative analogy with the magnetization transition also prompted a search for hysteresis,

which is indeed present.

The analysis of the AA as a dynamical system discussed here has been focused on tran-

sitions in the model as a function of the inactivation and recovery rates, ki and kr. The

motivation for focusing on the rates stems from the desire to establish guidelines for the

future choice of channels, as a direction for potentially improving the experimental system.

The main conclusion here is that channel with much faster (or more strongly voltage de-

pendent) inactivation would be desirable for generating interesting dynamics. Using the

measured rates of KvAP as a base, a faster recovery rate would place it at higher in the

phase plane of kr, ki, where the dynamics of Region I or Region II may be possible. Alter-

native channels aside, it should be noted that the same bifurcations can also be explored

as a function of parameters which are experimentally controlled in the AA: χc and Rc. For

example, Fig. 5.19 shows plots of the firing rate vs clamp conductance χc for the reduced
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Figure 5.19: Firing rate of the AA as a function of the clamp conductance, χc, computed

for the 2D voltage independent model. Each curves corresponds to a different Vc values

(legend). For lower clamp values a sharp transition occurs in firing rate as χc is increased

past a critical value (Region II → Region I).
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2D model, for different values of the clamp voltage Vc. The transition I → II is again visible

as a sharp increase in firing rate as χc is lowered past a critical value. The fact that the

transition is also present in this slice of the parameter space means that it may be possible

to design an experiment to observe it with the current AA setup, as both χc and Vc are

control parameters. It would be difficult to observe this same behavior in experiments with

living cells, because one does not have the same control over the experimental parameters.
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CHAPTER 6

Connected Systems

Despite the fact that the excitable system discussed in this work is named “Artificial Axon”

(for historic reasons), the action potentials generated by the AA do not actually propagate in

space as they would in the biological axon. While there are plans to address this directly by

developing a space extended version of the AA, this chapter will instead focus an alternative

approach and one of the long term goals of the AA project: building a network of intercon-

nected AAs. The first step in such an endeavor is the addition of “electronic synapses” to

the system. These connections introduce the possibility of feedback, and serve as ways for

individual AAs to communicate among each other. The choice of synaptic strength enables

the formation of both excitatory and inhibitory connections, mirroring the characteristics

of the biological system. Preliminary results with two connected AAs will be discussed.

Specifically, a system which propagates action potentials discretely, and initial experimental

and numerical results for the two AA oscillator.

6.1 Electronic Synapse

To connect individual AAs, a current clamp circuit (Fig. 2.3) is used as an electronic imitation

of a synapse. The mechanism is similar to that of the dynamic clamp used in traditional

electrophysiology experiments [44], though simplified. A synapse links two AAs by receiving

the voltage from the ”pre-synaptic” AA as input, and delivering a current proportional

to that voltage to the post-synaptic AA as output. These synapses are tunable via the

coefficient of proportionality α, and the activation threshold VT (if the pre-synaptic voltage
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is below VT the synapse is “off”, it does not inject any current). Thus, the current delivered

by a synapse is given by:

I2(t) = αV1(t)Θ[V1(t)− VT ] (6.1)

where Θ is the step function, and the subscripts “1” and “2” denote the pre-synaptic and

post-synaptic AAs, respectively; and so for α > 0 the synapse is “excitatory” (injecting

positive current), while for α < 0 it is “inhibitory”. The specifications of the current clamp

are described in Ch. 2, and the control parameters of the synapse α and VT are set directly in

the LabView program which interfaces with the AA platform. With the synapse active, the

equation describing the membrane voltage in the post-synaptic AA will have an additional

term which corresponds to the synapse current:

dV

dt
=

N0χ

C
(po(t) + χℓ/χ) [VN − V (t)] +

1

RC
[Vc − V (t)] +

1

C
I2(t) (6.2)

In the experiments, the usual value for the threshold is VT = 0, so that the synapse is

only active if there is firing in the pre-synaptic AA. Typical values of the synapse “strength”

are of the order |α| ∼ 10 pA / mV = 10 nS. For excitatory synapses, the value of α is chosen

such synaptic current is just enough to bring the AA above threshold, so that the dynamics

arising from the opening of the ion channels are preserved.

6.2 Discrete Propagation

With the current experimental setup supporting up to two AAs and two synapses, the sim-

plest connected system that can be constructed consists of two AAs connected by a single

“excitatory” synapse (α > 0). Fig. 6.2 shows experimental time traces of the voltage for this

configuration. The first axon (AA1) is caused to fire in the standard way, by stepping up its
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Figure 6.1: Diagram of two connected Artificial Axons. Each axon possesses its own clamp

and measurement electrode. The current clamps which connect the AAs output through the

measurement electrode. The two separate ground electrodes are connected externally.

clamp (CLVC1) above threshold from the resting value. As V1 crosses zero from the opening

of the ion channels, the synapse starts to inject positive current into AA2, eventually causing

it to fire. Then, as the channels in AA1 inactivate, V1 crosses zero again in the downwards

direction and the synapse stops injecting current. V2 is pulled back to the resting potential

by a combination of channel inactivation and its clamp (CLVC2). During this whole process

CLVC2 is held steady at the resting value. V1 does not return to its resting potential because

there are no further inputs to CLVC1 after the initial step up. The end result is that AA2

goes through a complete action potential cycle, including repolarization, with AA1 acting

as the input. If AA2 was connected in the same way to a third axon AA3, a similar action

potential cycle would be generated in AA3, and so on. A system of several AAs linked in such

a way would allow for discrete spatial propagation of action potentials. The configuration

described here is similar to a previously result in the lab [27], in which the firing of an action

potential in AA1 elicits a firing in AA2. The difference being that, here AA1 is made to fire

via adjustment of its clamp value, rather than using an external current source, reducing

the number of electronic components in the system. In summary, with a single excitatory
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synapse, AA1 provides an input signal to AA2 which then fires a complete action potential

cycle. AA1 can be thought of as a sensory input, which could be realized in practice by

embedding light or chemically gated channels in AA1, for example.

6.3 Oscillator with Two Artificial Axons

As discussed in Ch. 5, a single AA with KvAP cannot sustain autonomous oscillations for a

constant input current. Nevertheless, by connecting two AAs with synapses it is in principle

possible to construct an oscillator. For this purpose a second synapse is added to the previ-

ous construction which provides inhibitory feedback. Now AA1 connects to AA2 through an

excitatory synapse (α12 > 0), and AA2 connects back to AA1 through an inhibitory synapse

(α21 < 0). Fig. 6.3(a) shows an experimental result with this set up, with the only input

once again being the initial step up of CLVC1. The dynamics are similar to Fig. 6.2 at first,

with the excitatory synapse playing the same role as before. However, now when V2 crosses

zero, the inhibitory synapse starts injecting negative current into AA1, pulling V1 down to

negative values below the resting potential (hyperpolarization). As V2 crosses zero again on

the falling edge, the inhibitory synapse shuts off and AA1 repolarizes (V1 rises again) since

the CLVC1 remains at an above threshold value. If AA1 is able to fire as it did initially as a

result of this repolarization, in principle the process would repeat and a train of APs would

be generated in both AAs, i.e. an oscillator. As Fig. 6.3(a) shows, this did not occur in the

experimental attempt, as the second firing of AA1 was significantly weaker, due to an insuf-

ficient number of channels recovering from the inactive state during the hyperpolarization

step. This in turn meant that the current provided to AA2 through the excitatory synapse

was not enough to elicit a second AP, and the “oscillations” died out.

Fig. 6.3(b) shows a numerical simulation which replicates the protocol and experimental
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Figure 6.2: Experimental measurements of the voltage for a two AA system connected by

one excitatory synapse, showing discrete propagation of an action potential. Both AAs begin

with their respective clamps at a below threshold value, Vr ≈ −100mV. The process initiates

when AA1 (blue) is caused to fire by raising its CLVC above threshold at t ≈ 1.8 s. When V1

crosses zero, the synapse starts to inject current into AA2 (red), causing it to fire as well. As

V1 falls below zero due to inactivation, the synapse shuts off and V2 is returns to its resting

potential. The end result is a complete action potential in AA2, with the initial step up of

AA1’s CLVC as the only input.
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Figure 6.3: (a) Experimental measurements of the voltage from two AAs connected by

one excitatory and one inhibitory synapse. The protocol is the same as Fig. 6.2, the only

difference being the addition of the inhibitory synapse α21 = −25 nS. The firing of AA1

(blue) causes the excitatory synapse (α12 = 6nS) to inject current into AA2 (red), as before.

When AA2 fires, the negative synaptic current injected in AA1 pulls V1 down sharply. In

this experiment, not enough channels in AA1 recovered from inactivation during the negative

voltage swing, as a result the second firing of AA1 was much weaker and could not elicit firing

in AA2, prematurely ending the cycle. (b) The same protocol as in (a), numerically simulated

with a combination of measured rates and fitted parameters: N0 = 250, C = 275 pF,

χ = 167 pS, α12 = 7.33 nS, α21 = −10.67 nS, and VT = 0.
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measurements of Fig. 6.3(a). The goal being to determine whether it is possible to avoid the

issue of insufficient recovery encountered in the experiment through adjustments in the con-

trollable parameters. After various probings of the simulated system, the somewhat expected

result is that to alleviate the issue of the inactivated channels, one only needs to increase the

inhibitory synapse strength. Fig. 6.4 shows autonomous oscillations occurring in the model,

obtained with the same parameter settings as for Fig. 6.3(b), except the strength of the

inhibitory synapse AA2 → AA1 has been increased from α21 = −10.67 nS to α21 = −20 nS.

Thus the conclusion is that autonomous oscillations are achievable with the current exper-

imental system, and the key factor in determining whether oscillations are sustained or die

out is how low AA1 is pulled by the negative feed back from AA2. A hyperpolarization value

for AA1 of at least ≈ −200mV is indicated by the simulations to be the minimum required

for sustained oscillations under the present conditions.

6.4 Outlook

The system of two AAs connected by electronic synapses show promise for progressing the

Artificial Axon system beyond single firing measurements, and serves as a prototype for

future network developments. Each synapse providing an additional tunable parameter

allows for a high degree of control in the experiments. The main challenge which limits the

successful implementation of the oscillator, and in turn the feasibility of scaling up, is the

stability of the experiment. While simulations show that a stronger inhibitory synapse is

sufficient to generate oscillations with two AAs, the reality is that the lipid membrane in the

experiment cannot withstand arbitrarily large voltages. As a result the synapse strengths

must be carefully adjusted such that the desired dynamics can occur, while also ensuring

that the stability of the experimental platform is not compromised. Given these obstacles,

a substantial amount of work required to advance the AA beyond the two-well setup.
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Figure 6.4: Numerical simulation of the two AA system (V1 blue, V2 red) identical to that

of Fig. 6.3(b), except the inhibitory synapse strength has been increased to α21 = −20 nS.

As a result, AA1 experiences more intense hyperpolarization, which allows more channels to

recover from inactivation and enables sustained oscillations in both AAs.

109



CHAPTER 7

Future Directions

In closing, the work presented here demonstrates the capabilities of the Artificial Axon as a

cell-free breadboard for electrophysiological studies. The idea is to construct, at each scale,

the minimal system which retains the essential properties of the more complex biological

systems, and the AA fulfills such a role. As a minimal generator of action potentials, it is

capable of producing the same behaviors as those in the neuron. Yet it is also distinct as

an excitable system in that it generates action potentials with one ion species, a possibility

which is not usually considered in traditional live cell setups.

In terms of the dynamics of a single AA, the reported measurements of critical behav-

ior bridge the gap between the AA and real neurons through the universal properties near

criticality, despite the fact that the AA as a system does not fire with the same level of

complexity as the neuron. On the prospect of generating more than single shot action po-

tentials, analysis of our minimal model for the AA shows that AP trains and oscillations are

permitted by the system, and so achieving them becomes a matter of accessing the relevant

regions in the phase diagram. With consideration of the control parameters which span the

parameter space (ki, kr, Vc, and χc), the latter two seem especially viable as ways to move

through the phase space, as they are adjustable parts of the experiment circuitry. A simple

change which could lead the system to oscillations is to consider χc as a tunable parameter,

swapping the fixed clamp resistance Rc for a potentiometer. In practice however, the range

of available χc is restricted, as the original role of the clamp resistor (to suppress leaks, hold
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the system off equilibrium, and allow for channel dynamics) must still be satisfied. On the

other hand, a more difficult, but still feasible, approach is to tinker with the inactivation and

recovery rates. As briefly mentioned in Ch. 3, it has been shown that different compositions

of the lipid membrane have a significant effect on the kinetics of the channel, with the net

charge of the lipid strongly influencing the half voltage of equilibrium opening rates [23, 30].

This phenomenon could be utilized to our advantage as a quick and simple way to “modify”

channel rates without having to directly altering the channel’s structure via mutagenesis.

Channel kinetics may also change as a function of temperature [15, 31, 32], which could be

another way to indirectly tune the system. All in all, a variety of methods can be used to

increase the tunability of the system, and the implementation of some combination of them

will likely necessary for exploring the phase space experimentally.

The aspect demanding the most focus in improving the system pertains to its scalability.

Extending the AA beyond a two-axon configuration will require significant efforts, given the

difficulty of sustaining multiple operational AAs. Fragility of the lipid membrane and the

inconsistency of channel functionality are the main obstacles. Possible strategies include

using hydrogels to stabilize the system [24, 25], an endeavor which is currently underway in

the lab. Other, more systemic, changes could involve moving from a suspended lipid setup

to a supported lipid one.

Beyond these immediate areas of improvement, there are several long term directions for

the AA which we would like to explore in the future, ideally once issues of robustness and

ease of construction are ameliorated. The first is the implementation of different types of

channels in AA. One could imagine a chip consisting of an array of independent AAs, each

constructed with a different kind of ion channel. Such a system could be developed into

a “synthetic nose” for assaying potential new drugs with respect to their effect on channel

dynamics, for example. Another direction of interest is the creation of a space extended
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AA, with generated action potentials propagating in space as they do in the real axon. The-

oretical work done on this front by another lab member has shown that even a minimal

implementation can generate interesting behavior, such as the propagation of solitary waves

[39]. Finally, we have in mind to build a “neural network” on the computer which obey the

dynamics of the AA. The idea is inspired by the function of chromatophores in the skin of

the octopus, which allow them to camouflage in response to changes in the environment. By

combining modern machine learning techniques with the biological underpinnings of the AA,

we hope make progress on addressing a question which is no doubt the most consequential

one of the modern age: “How does an octopus think?”
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