
Lawrence Berkeley National Laboratory
LBL Publications

Title
Fast, High-fidelity Lyα Forests with Convolutional Neural Networks

Permalink
https://escholarship.org/uc/item/6hf02107

Journal
The Astrophysical Journal, 929(2)

ISSN
0004-637X

Authors
Harrington, Peter
Mustafa, Mustafa
Dornfest, Max
et al.

Publication Date
2022-04-01

DOI
10.3847/1538-4357/ac5faa
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6hf02107
https://escholarship.org/uc/item/6hf02107#author
https://escholarship.org
http://www.cdlib.org/


Fast, High-fidelity Lyα Forests with Convolutional Neural Networks

Peter Harrington1, Mustafa Mustafa1, Max Dornfest1, Benjamin Horowitz1,2 , and Zarija Lukić1
1 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; pharrington@lbl.gov

2 Department of Astronomy, Princeton University, Princeton, NJ, USA
Received 2021 July 9; revised 2022 March 3; accepted 2022 March 20; published 2022 April 26

Abstract

Full-physics cosmological simulations are powerful tools for studying the formation and evolution of structure in
the universe but require extreme computational resources. Here, we train a convolutional neural network to use a
cheaper N-body-only simulation to reconstruct the baryon hydrodynamic variables (density, temperature, and
velocity) on scales relevant to the Lyα forest, using data from Nyx simulations. We show that our method enables
rapid estimation of these fields at a resolution of ∼20 kpc, and captures the statistics of the Lyα forest with much
greater accuracy than existing approximations. Because our model is fully convolutional, we can train on smaller
simulation boxes and deploy on much larger ones, enabling substantial computational savings. Furthermore, as our
method produces an approximation for the hydrodynamic fields instead of Lyα flux directly, it is not limited to a
particular choice of ionizing background or mean transmitted flux.

Unified Astronomy Thesaurus concepts: Cosmology (343); Large-scale structure of the universe (902)

1. Introduction

Understanding the distribution and evolution of the matter in
the universe is at the core of modern cosmology and a main
motivation for the upcoming generation of astronomical
surveys. But to extract cosmological insights, observations
have to be compared to theoretical predictions for different
cosmological scenarios. Predicting observable quantities in
general, and the Lyα forest specifically, from the underlying
large-scale structure is complicated by the nonlinear mapping
between baryons (responsible for most of observables) and
dark matter (which dominates the gravitational dynamics). In
the early days preceding “precision cosmology,” simplified
models were successfully used, for example, the baryons-trace-
dark-matter approximation (Petitjean et al. 1995), or modifying
the matter density field (Gnedin & Hui 1996) or gravitational
potential (Gnedin & Hui 1998), to mimic the effects of
baryonic pressure smoothing. The gas temperature of the
intergalactic medium (IGM) in those models is usually
computed by imposing a polytropic temperature–density
relation (Hui & Gnedin 1997).

More recently, recipes to model the Lyα forest without
running full hydrodynamical simulations have been provided
by Peirani et al. (2014) and Sorini et al. (2016), as well as
models for specific summary statistics in Seljak (2012), but
they have not really been used in practice, due to their
complexity and/or applicability to only a limited range of
scales. Thus, Lyα forest forward models rely on computation-
ally expensive hydrodynamical simulations (Iršič et al. 2017;
Boera et al. 2019; Walther et al. 2019; Palanque-Delabrouille
et al. 2020; Rogers & Peiris 2021; Walther et al. 2021), and
solving inverse problems commonly requires running dozens
of simulations, at a rough cost of 2 million CPU hours per
simulation (see, for example, Walther et al. 2021). Of course, if
one wants to consider cosmological models beyond standard
ΛCDM or to model complex astrophysical phenomena

affecting the Lyα signal like high column density absorbers
(Rogers et al. 2018), UV background fluctuations (Oñorbe
et al. 2019), or HeII reionization (Upton Sanderbeck &
Bird 2020) the number of needed simulations, and thus the
computational costs, will increase significantly. Such applica-
tions present a clear need for surrogate models that can mitigate
some of the cost of running full-fledged hydrodynamic
simulations for every test case.
Beyond generation of mock catalogs and hydrodynamic

emulators, there is also a growing need for fast hydrodynamical
mapping in the context of differentiable forward model
reconstructions (Horowitz et al. 2019). There, the underlying
matter distribution is reconstructed under constraints from
gravitational evolution and using, for example, the three-
dimensional Lyα tomographic reconstructions under the
Fluctuating Gunn–Peterson Approximation (FGPA; Gunn &
Peterson 1965) as done in Horowitz et al. (2019), Porqueres
et al. (2019), and Horowitz et al. (2021b). Reducing the
modeling cost via fast and efficient—even if approximate—
methods of reproducing the Lyα signal is thus of significant
interest to the community. Our paper addresses this issue using
data-driven modeling trained on hydrodynamical simulations.
In recent years, deep neural networks (NN) have become a

promising method to assist in solving these highly nonlinear
problems, by acting as surrogate models (which are differenti-
able by design) for complex phenomena. In particular,
Generative Adversarial Networks (Goodfellow et al. 2014;
GANs) and U-Nets (Ronneberger et al. 2015) have proven
useful in a variety of cosmology tasks that either directly
generate synthetic hydrodynamic quantities (Zamudio-Fernandez
et al. 2019), or reconstruct them from dark matter distributions.
The latter approach allows one to run cheaper N-body
simulations (or even surrogates for N-body evolution) to
generate a dark matter distribution, then rapidly estimate the
target hydrodynamic quantity corresponding to the dark matter
structure. In the context of the thermal and kinematic Sunyaev–
Zel’dovich effects, this approach has been shown to be useful
in reconstructing electron density, pressure, and momenta in
3D (Thiele et al. 2020) as well as gas pressure in 2D (Tröster
et al. 2019). These works showcase the success of NNs in
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producing hydrodynamic fields with superior statistical fidelity
compared to competing classical or semi-analytical methods.
While extremely promising, deep learning approaches are data-
hungry, and require generation of training data at the desired
output resolution (e.g., ∼100 kpc in Thiele et al. 2020) to
achieve maximal model fidelity. It is thus important to maintain
a reasonable volume of training data when extending such
models to finer-scale hydrodynamic reconstruction, and
investigate the data requirements in such regimes.

In this work, we use NNs to reconstruct 3D baryon
hydrodynamics from N-body dark matter simulations at
∼20 kpc h−1 resolution, an order of magnitude finer than
previous deep-learning-based hydrodynamic reconstructions.
Given a snapshot of dark matter, our model allows rapid
estimation of baryon density, temperature, and velocity fields,
which can be painted in over an arbitrarily large volume at the
given resolution.

The paper is organized as follows. We first describe the
simulation data used to train our model and detail how we
compute FGPA estimates and Lyα forest quantities in
Section 2. Then, we describe the model design and training
process in Section 3. Our results are presented in Section 4,
where we show sample output from our model and make
statistical comparisons against the true hydrodynamic fields.
Finally, we present conclusions and discussion in Section 5.

2. Simulations

We construct our training and testing data sets from pairs of
cosmological simulations run with the Nyx code (Almgren
et al. 2013; Sexton et al. 2021). Each pair of simulations share
identical initial conditions and cosmology, with one simulation
modeling the full-physics problem (dark matter particle N-body
dynamics as well as baryon hydrodynamics), while the other
just models the evolution of dark matter particles (N-body-
only). Initial conditions were produced by our in-house code
CosmicIC, using a single transfer function for the total matter
content, i.e., mass-weighted average of transfer functions for
dark matter and baryons. The N-body and hydrodynamical
simulations use the same initial conditions, thus the distribution
of baryons follows the distribution of dark matter in the initial
conditions. In Nyx, the dark matter particles are evolved with a
particle-mesh scheme, while the additional baryon hydrody-
namics are modeled as an inviscid ideal fluid on a set of
Eulerian grids. We neglect physics related to galaxy formation,
but we do include the main physical processes relevant for the
Lyα forest. We consider the chemistry of the gas as having a
primordial composition of hydrogen and helium, and we
include inverse Compton cooling off the microwave back-
ground and keep track of the net loss of thermal energy
resulting from atomic collisional processes (Lukić et al. 2015).
All cells are assumed to be optically thin to ionizing radiation,
and radiative feedback is accounted for via a spatially uniform,
time-varying UV background radiation given to the code as a
list of photoionization and photoheating rates (Haardt &
Madau 2012). We note that this is an extremely common
approach in Lyα cosmological simulations (Iršič et al. 2017;
Boera et al. 2019; Walther et al. 2019; Pedersen et al. 2021;
Rogers & Peiris 2021; Walther et al. 2021). The main reason
for this is that regions transparent to Lyα photons at redshifts
z 2 are in low-density regions (Lukić et al. 2015;
McQuinn 2016), and poorly understood physical processes

related to galaxy formation only play a minor role in those
regions (Desjacques et al. 2006; Kollmeier et al. 2006).3

With this paired data set, we can train our model to learn a
mapping from the cheaper N-body-only simulation into the
hydrodynamic fields of the full-physics simulation in a
supervised fashion. We use one pair of simulations for training,
and an independent pair, with identical cosmology but different
initial conditions, for testing. By restricting our training set to
just a single pair of simulations, we are investigating a more
realistic use-case scenario for our neural-network-based
approach. Training on one small cosmological volume and
then applying the trained model to large cosmological volumes
would allow one to more easily test different scenarios for gas
physics, cosmological parameters, or other astrophysical
effects. While our results would likely improve if we used a
larger training set, doing so would yield diminishing returns, as
the computational cost of generating data and training on it
would grow.
For both the training and testing pairs of simulations, the

cosmological parameters are Ωb= 0.05, ΩM= 0.31, ΩL= 0.69,
and h= 0.675. The physical fields of interest are defined on a
3D uniform 10243 grid, spanning a cube of L= 20Mpc h−1 per
side, with periodic boundary conditions. For the hydrogen and
helium mass abundances, we adopted values consistent with
the CMB observations and Big Bang nucleosynthesis (Coc
et al. 2013): Xp= 0.76 and Yp= 0.24. Dark matter N-body
dynamics are evolved with 10243 particles, then density and
velocities are deposited on the grid using Cloud-In-Cell (CIC)
interpolation. We select the z= 3 snapshot in each simulation,
as it lies in the center of the range of redshifts most relevant for
Lyα analysis.
Data scales in Nyx files can span many orders of magnitude, so

we normalize the data to order unity for training stability. For all
velocity fields, we scale linearly to ˆ ( · )vv 9 10 cm s7 1= ´ - .
The baryon density and temperature fields have a large dynamic
range, so we use

ˆ ( )
ˆ ( )

ˆ ( ) ( )
T T

log 14 ,

log 8 1.5,
log 1 12. 1DM DM

r r

r r

=

= -
= +

where ρ and T are the baryon overdensity and temperature (in
Kelvin), respectively, while ρDM is the overdensity of dark
matter. These choices ensure all target fields lie in the range
(−1, 1), as is typically chosen for generative models. Without
these normalizations in place, attempting to train on the native
data scales (or a linear transformation of them) resulted in
unstable training and poor performance. All network outputs
are transformed back into their original units before performing
analysis on statistical quantities.

2.1. FGPA Estimates

The long-standing method to reconstruct hydrodynamic
quantities for purposes of Lyα modeling is the FGPA (Gunn &
Peterson 1965; Sorini et al. 2016). This procedure takes the
dark matter overdensity ρDM from the N-body simulation, with
or without artificial smoothing, to produce estimates for the
baryon density ρ and temperature T, given by a power-law

3 For a recent work done at higher precision and challenging this view, see
Chabanier et al. (2020).
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relation (Hui & Gnedin 1997)

( ) ( )T T , 20
1r r= á ñ g-

where 〈〉 denotes averaging over volume. The estimate for ρ is
usually attained by applying Gaussian smoothing (with
smoothing length λG roughly given by the Jeans filtering
scale) to ρDM to simulate baryonic pressure smoothing. In this
work, we empirically determine the best-fit T0, γ, and λG for
our simulation. We best-fit the Gaussian smoothing scale using
least-square differences between the smoothed dark matter
density from the N-body simulation and the actual baryon
density field from the hydrodynamical simulation. We then fit
density and temperature in the hydrodynamical simulations to
the power-law relation in Equation (2) as described in Lukić
et al. (2015), arriving for our particular simulation and redshift
z= 3 at values:

( )

T

h

12, 300 K
1.49

43.5 kpc , 3G

0

1

g
l

=
=
= -

which are in good agreement with observational constraints
(Walther et al. 2019). We use these values to compute FGPA
estimates for the hydrodynamic fields in the test simulation and
use the resulting Lyα flux as a baseline to compare against the
accuracy of our neural network approach. Additionally, FGPA is a
useful starting point for the neural network training process,
providing an initial guess upon which the network can improve.

2.2. Lyα Computation

Given the true or estimated baryon hydrodynamics fields, we
can then compute Lyα flux analytically. We use the Gimlet
code (Friesen et al. 2016) to do this step. We compute the
optical depth, τ, of neutral hydrogen at a fixed redshift, which
is related to the transmitted flux fraction with ( )F exp t= - .
We do not account for the finite speed of light when we cast
rays in the simulation, but we use the thermodynamical state of
baryons at a fixed cosmic time. The simulated spectra are thus
not meant to fully reproduce observed Lyα forest spectra, but
to recover the flux statistics in a given redshift window. Our
calculation of the spectra accounts for Doppler shifts due to
bulk flows of the gas and for the thermal broadening of the Lyα
line. We have neglected noise and metal contamination, but
this is common practice in the field and they are not relevant for
this paper. We refer to Lukić et al. (2015) for specific details of
these calculations. Finally, we rescale the UV background
intensity so that the mean flux of all spectra from the network
model predictions and hydrodynamical simulation match. Note
that, with our NNs, we predict the hydrodynamic fields (ρ, T, v)
directly, and thus we use identical pipelines and assumptions
when calculating Lyα forest quantities from Nyx simulations
and NN models. This makes our approach orthogonal to any
particular choices made in modeling Lyα forest from basic
thermodynamical quantities.

3. Model Design

3.1. Evaluation Metrics

We evaluate the accuracy of our model primarily by
comparing the PDF (Rauch et al. 1997) and 1D power spectra
(Croft et al. 1999) of our model’s Lyα fields against those of

the test simulation. The Lyα flux variation along some line-of-
sight axis is defined with respect to fluctuations about the
global mean, F̄ , as ( ¯ ) ¯F F FFd = - . From this, the 1D power
spectrum P(k) is given by

( ) ( ) ( ) ( )P k k k , 4F F
* d d= á ñ

where ( )kF
d is the Fourier transform of δF and the mean 〈〉 is

taken over all modes with magnitude k along the given line-of-
sight axis (one flux skewer per spatial location i, j). From this,
we can compute the transfer function T(k), defined by

( ) ( )
( )

( )T k
P k

P k
, 5

U Net

True
=

-

to assess how closely our predicted Lyα fields match the test
simulation in power spectra.
During training, we use early stopping to select the best

model according to how closely the PDFs of the hydrodynamic
reconstructions for r̂, T̂ , and v̂ match those of the ground truth
fields. This is sufficient for evaluating most of our hyperpara-
meter settings. To select our final model from the best
configurations, the hydrodynamic reconstruction is computed
for the entire test simulation at once by applying our network to
the full 10243 volume.4 We choose our final model based on
the accuracy of the PDF and P(k) for the Lyα fields computed
from the hydrodynamic reconstruction.

3.2. Network Architecture

As the target baryon hydrodynamical fields each have their
own unique features, we partition the problem and train one
generator network each for r̂, T̂ , and v̂. For all generator
networks, we use the U-Net architecture (Ronneberger et al.
2015). U-Nets are convolutional neural networks, consisting of
several downsampling blocks that reduce spatial dimensions as
they extract features, then several upsampling blocks that build
back up to the output dimensionality. At each spatial feature
scale in the upsampling path, skip connections concatenate the
corresponding features from the downsampling path along the
channel dimension. This design is efficient in extracting high-
level, long-range features through the sequential downsam-
pling, while maintaining the ability to resolve fine-grained
details via skip connections. The fully convolutional nature of
the U-Net allows us to train on smaller subvolumes and then
predict on larger volumes without issue.
We base our U-Net architecture loosely on the pix2pix

model (Isola et al. 2016), and on the architectures used in our
initial investigation (Harrington 2019). We did not do an
exhaustive hyperparameter sweep, due to the computational
costs of training and evaluating our networks, but we tested
numerous settings for major design parameters like the number
of down- and upsampling blocks, learning rate, loss function
weights, and input crop size.
Each downsampling block in our U-Nets consists of a 3D

convolution with stride 2, followed by a leaky ReLU activation
(Maas et al. 2013). There are a total of six downsampling blocks,
and a corresponding six upsampling blocks. Each upsampling
block consists of a 3D transposed convolution with stride 1/2,

4 This step is done on CPU rather than GPU due to the memory requirement,
but only takes several minutes to complete. Alternatively, one can reduce
memory requirements by iteratively predicting on smaller subvolumes and
stitching them together post hoc by averaging overlapping edges. We have
confirmed this approach does not noticeably degrade the quality of results.
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followed by a ReLU activation (Nair & Hinton 2010), except the
final upsampling convolution, which has a tanh nonlinearity.5

After each upsampling block, the incoming skip connections
from the corresponding downsampling block are concatenated
to the features along the channel axis.
The input to the network consists of the normalized dark

matter density and velocity fields ( ˆ ˆ ˆ ˆ )v v v, , ,x y z
DM DM DM DMr ,

Figure 1. Schematic depicting our model, which predicts the hydrodynamic fields from an input n-body simulation. We train separate networks for r̂, T̂ , and
ˆ ( ˆ ˆ ˆ )v v vv , ,x y z= , and for r̂ and T̂ we predict the correction to the FGPA approximations ˆ T̂,FGPA FGPAr rather than the full fields. As the model reconstructs the raw
hydrodynamic fields, it is independent of Lyα-specific physical details.

Figure 2. Slices of the test simulation, with the true and predicted Lyα fields along the z-axis line-of-sight. At left, we show a slice through the full volume of the input
dark matter density and the line-of-sight dark matter velocity vz for reference. The corresponding true and predicted Lyαz fields for this slice are shown in the center
panels, and at left we show zoom-ins to regions A and B to better contrast our model against the ground truth.

5 We follow the pix2pix model in using Leaky ReLU activations in the
downsampling path and ReLU activations in the upsampling path.
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which are supplied as different feature channels over a 3D
volume. During training, we generate samples by randomly
cropping subvolumes from the training simulations. We find
best performance with crops of size 1283 for the density and
temperature fields, and 2563 for the velocity fields. As
additional augmentations, we randomly apply rotations and
transposes from the octahedral group to these training samples.
Together, the random crops and rotations implicitly enforce the
large-scale homogeneity and isotropy of the universe, and help
extend the utility of our single pair of training simulations.

For the baryon density and temperature targets, we observe a
performance benefit when incorporating the FGPA estimates
into the training workflow, as depicted in Figure 1. In this
setup, the network predictions are added to the FGPA estimate
to produce the final field, so the model is trained to predict a
correction term to the FGPA estimate rather than the full
hydrodynamic field at once. This accelerates convergence and
improves the statistical fidelity of our final fields.

3.3. Loss Functions

The main component of our loss function is the 1 distance
between the generated and target fields. The velocity U-Net is
trained entirely with this loss function, but for the baryon
density and temperature fields, we observe an inability to
adequately capture high-density/temperature features training
only with 1 loss. This is consistent with the well-known
tendency of 1 to seek a conservative (maximum-likelihood)
estimate and average over fine-scale features, causing notice-
able blurring in the network output (Isola et al. 2016).

Thus, for the density and temperature fields, we also employ
an adversarial loss, given by a discriminator D. Contrary to a
standard adversarial setup, our discriminator operates in
Fourier space rather than the original data space. This is
motivated by the observation that taking a sample (cube with
side length N) and removing the N/2 smallest-scale Fourier
modes along each axis retains much of the important detail,
while reducing dimensionality by a roughly an order of
magnitude (a factor of 2 along each dimension). With our large
3D training samples, this reduction of dimensionality helps
compensate for the added overhead of training an additional
discriminator network.

We thus use the following procedure when training our spectral
discriminator D. The discriminator’s input fields x are crops (with

side length N= 128) of the baryon density or temperature field,
coming from either the training simulation or our generator
network. We compute the discrete Fourier transform of these
crops (with wavenumbers {−N/2,K, 0,K, N/2−1}) along each
dimension, then drop modes with |k|>=N/4 to get the truncated
Fourier transform x̃t. Then, we feed the truncated Fourier
coefficients ˜ ˜f x xt t*= to the spectral discriminator, which tries
to classify the sample as real or fake. Our discriminator has four
downsampling convolutional layers, followed by three fully
connected layers that end in a single output classifying the input as
real or fake. To give the spectral discriminator additional context,
we concatenate the dark matter density input as an additional
feature channel before applying the Fourier truncation.
Following the standard non-saturating GAN formulation

(Goodfellow et al. 2014), the adversarial loss for the
discriminator is

( ) ( ( )) ( ) D f D flog log 1 , 6D real fake= - - -

while the total loss for the r̂ and T̂ U-Nets is

( ) ( )‐  D flog , 7U Net 1 fakel= +

where λ= 500 is a hyperparameter to up-weight the impor-
tance of the 1 loss.

4. Results

In the following sections, we will visualize our Lyα and
corresponding hydrodynamic fields, and detail how closely
they mach the test simulation in the summary statistics. We
compare against the FGPA Lyα estimates as a baseline. Then,
we will analyze the hydrodynamic reconstructions and examine
some failure modes.

Figure 3. The PDF (left) and power spectrum (right) of full-volume Lyα flux fields from our model and FGPA, compared against the test simulation. Lines and shaded
regions represent the mean and min/max per bin across Lyα fields with lines of sight along the x, y, and z axes.

Figure 4. The cross-correlation coefficient rc of our predicted Lyα field over
the relevant length scales. We used the z-axis line of sight for this plot.
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4.1. Lyα Fields

A visualization of our results is shown in Figure 2, where we
render some of the input fields and corresponding Lyα fields at
a randomly chosen slice in the x–z plane (z was chosen as the
line of sight here). The slices run the entire length of the
simulation box, but several zoomed-in regions are also shown
for increased detail on the right-hand side.

The predicted Lyα field has a high degree of visual fidelity,
and closely matches the ground truth in diffuse IGM regions
where densities are lower or where there is not much gas
motion (see zoom-in panel A). By contrast, regions where gas
is collapsing onto a filament structure show more of a
discrepancy (zoom-in panel B), as the redshift distortion from
the velocity field effectively stretches the size of the filament in
the redshifted Lyα field and amplifies any discrepancies
between the true and reconstructed hydrodynamic fields along
the filament. In general, dense filaments and clusters make up
an exceedingly small fraction of the total volume, so the model
has more difficulty capturing the fine-scale features in these
regions, due to limited training examples.

Because at z= 3 the Lyα transmission drops to zero at an
overdensity of a few (see Figure 7 in Lukić et al. 2015), we can
still obtain statistically accurate Lyα fields from our hydro-
dynamic reconstructions without necessarily capturing the full

range of scales in the gas physics. This is demonstrated in
Figure 3, where we show the PDF and 1D power spectrum of
our Lyα estimates and compare against the ground truth. We
compute the metrics for Lyα fields with lines of sight along all
three axes of our box, and plot the mean, minimum, and
maximum per F and k bin across the three fields.
In both statistical measures, the Lyα estimates from our

model are within a few percent of the ground truth across the
relevant F and k bins, significantly improving on the FGPA
Lyα estimates. Our model begins to accumulate an excess of
power in P(k) near k∼ 10 h Mpc−1, as does FGPA. Beyond 10
h Mpc−1, both our model and FGPA begin to diverge from the
truth, with our model having an excess of power at high
wavenumbers while FGPA diverges in the other direction.
However, k∼ 10 h Mpc−1 is typically the highest mode
considered in Lyα spectroscopic studies, limited by contam-
ination from metal lines (see Sorini et al. 2016 and references
therein), so we truncate the plot near that wavenumber and do
not consider the discrepancies beyond it to be detrimental to
our approach.
To further evaluate our model, we compute the cross-

correlation coefficient rc, defined as

( )r
P

P P
, 8c

rt

rr tt

=

Figure 5. Predicted baryon density and temperature fields, sliced at the same location as plotted in Figure 2. In the right-side panels, we show zoom-ins to regions A
and B as before. In the lower left panels, we plot the full-volume PDFs for these fields (after transforming back to original simulation units) compared to the ground
truth and FGPA. The reconstructed baryon density field has captured the full range of scales to within ∼10%, while the temperature field has overfit to the distribution
of the train simulation, which differs significantly from the test simulation.
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where Prt is the cross-power and Prr are Ptt are the auto-powers
of the reconstructed and true Lyα fields, respectively. The
cross-correlation for the z-axis line of sight is shown in
Figure 4. We see good agreement, with rc> 0.95 across the
relevant k range.

4.2. Hydrodynamic Fields

Inspecting the direct output of our model, the hydrodynamic
fields, gives more insight into the difficulty of our task. In
Figure 5, we visualize slices of the density and temperature
fields at the same location as in Figure 2, comparing our
reconstructions against the ground truth fields. While there is
good agreement by eye, the zoomed-in panels show discre-
pancies between the true and generated fields, particularly in
how sharply resolved the edges of filament structures are.
There are also some small-scale artifacts, especially in the
temperature field, which possibly contribute to the excess of
power seen at small scales in the Lyα P(k).

In the lower left panels, we also plot the PDFs of the two
fields, computed over the entire 10243 volume of the test
simulation. The full-volume PDF for the density field actually
shows remarkable agreement between our model’s reconstruc-
tion and the true field, with the full range of scales captured to
within ∼10%. This is in contrast to FGPA, which completely
fails in estimating densities beyond ( ¯ )  103r r .

In the temperature field, the reconstructions from FGPA and
our model both differ significantly from the truth. For
reference, we have also plotted the full-volume PDF of the
temperature field from the training simulation, and we see that
FGPA and our model both closely track the train distribution
for T/K< 105, indicating overfitting. However, there is a

clear distributional difference between the training and
testing simulations, with the latter having almost an order-of-
magnitude higher contribution from temperatures T/K>∼105

and a subsequent deficit in the PDF at lower temperatures. This
suggests we are in the low-data regime by training on a single
20Mpc h−1 at ∼20 kpc resolution, as the training and testing
data are not identically distributed despite having identical
cosmologies and physical models. Compounding this discre-
pancy between training and testing, the clear lack of high
temperatures above T/K= 105 confirms that our model is
failing to correctly resolve the sharp boundaries of high-
temperature shocks forming at the edges of filament structures.
Inspecting the test simulation more closely, we find a rare

widespread shocked region of size∼5 cMpc, a significant fraction
of the length of the entire box. In Figure 6, we show slices of this
region for the true fields and our model’s reconstructions. It is
clear that the model does not reproduce the shock structure,
instead painting in a fairly smooth rendering of the filament
structures in the area. Given that the model is trained on randomly
cropped subvolumes of size 2.5 cMpc, it is unreasonable to expect
coherent shock structures as large as this to be well-represented.
Furthermore, as such structures form O(1) times per 20Mpc h−1

box, they are exceedingly rare in the training data. In fact, there is
no shocked region as large as this in the training simulation, hence
the clear difference between the temperature PDFs in the training
and testing simulations.

5. Conclusion

In this work, we have presented a convolutional neural
network approach to map from collisionless n-body simulations
to fully hydrodynamical simulations, reconstructing the baryon

Figure 6. The widespread (∼5 cMpc) shocked region in the test simulation our model fails to capture. The left column shows some of the input dark matter fields,
which indicate a dense cluster but do not otherwise contain information about the exact location and shape of a shock front. The middle panels show the baryon
velocity and temperature fields at the same location, and reveal that the model has failed to capture the shock features. On the far right, we show the Lyα slices
corresponding to this shocked region.
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density, temperature, and velocity fields. We find this mapping
can match the statistical properties of the true hydrodynamical
simulations across a wide range of scales. When computing an
observable quantity, Lyα flux, from our model output, we can
outperform existing semi-analytical methods across all scales
and match the true simulated power spectra within ∼5% up to
k∼ 10 h Mpc−1.

The range of scales accurately mapped with this method is
well beyond the resolution of next-generation observations
(Walther et al. 2021), as well as that of alternate machine-
learning-based approaches for modeling Lyα forest (Siniga-
glia et al. 2021). Our method provides an alternative to
running costly hydrodynamical simulations for mock catalog
generation and the construction of Lyα power-spectra
emulators. The network can conveniently be trained on small
simulated boxes at a given point in cosmological and
astrophysical parameter space, then applied to a large dark-
matter-only box at inference time. Thus, as the size of the
inference box grows, this approach enables increasingly
impressive reductions in computational cost.

Beyond Lyα forest statistics, there are some notable
limitations to this method. Processes not well-described by
the dark matter distribution are difficult to predict, particularly
the high-temperature gas shocks seen in Figure 6. While these
regions have limited effect on summary statistics used for Lyα
cosmological analysis, they are of significant astrophysical
interest, as they are associated with the physics of the Warm
Hot Intergalactic Medium (Cen & Ostriker 1999; Pfrommer
et al. 2006; Vazza et al. 2019). Considering our NN design, the
predictions in Figure 6 are not entirely unreasonable, given the
input dark matter fields from the n-body simulation (visualized
in the far left panels). These inputs contain a dense cluster
toward the edge, but do not have obvious indicators of the scale
or detailed shape of the shock front. Thus, passing these inputs
to a deterministic model such as ours yields a more
conservative prediction, as the model does not have the
expressive capacity to represent the many possible shapes of
shocked gas. We thus propose that a variational model
producing multimodal outputs would best resolve shocks like
the one shown in Figure 6. Such a model would synthesize
multiple realizations of the hydrodynamic variables via some
latent variable, conditioned on the input n-body fields. We
explore this challenge in Horowitz et al. (2021a), a companion
work to this paper.
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