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Abstract

Background: Inconsistent results have been found in the literature on associations of greenness, 

or vegetation quantity, and physical activity. However, few studies have assessed associations 

between mobility-based greenness and physical activity from mobile health data from smartphone 

and wearable devices with fine spatial and temporal resolution.

Methods: We assessed mobility-based greenness exposure and wearable accelerometer data 

from participants in the US-based prospective Nurses’ Health Study 3 cohort Mobile Health 

(mHealth) Substudy (2018–2020). We recruited 500 female participants with instructions to 

wear devices over four 7-day sampling periods equally spaced throughout the year. After 

restriction criteria there were 337 participants (mean age 36 years) with n =639,364 unique 

observations. Normalized Difference Vegetation Index (NDVI) data were derived from 30 m x 30 

m Landsat-8 imagery and spatially joined to GPS points recorded every 10 min. Fitbit proprietary 

algorithms provided physical activity summarized as mean number of steps per minute, which 

we averaged during the 10-min period following a GPS-based greenness exposure assessment. 

We utilized Generalized Additive Mixed Models to examine associations (every 10 min) between 

greenness and physical activity adjusting for neighborhood and individual socioeconomic status, 

Census region, season, neighborhood walkability, daily mean temperature and precipitation. 
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We assessed effect modification through stratification and interaction models and conducted 

sensitivity analyses.

Results: Mean 10-min step count averaged 7.0 steps (SD 14.9) and greenness (NDVI) averaged 

0.3 (SD 0.2). Contrary to our hypotheses, higher greenness exposure was associated non-linearly 

with lower mean steps per minute after adjusting for confounders. We observed statistically 

significant effect modification by Census region and season.

Discussion: We utilized objective physical activity data at fine temporal and spatial scales to 

present novel estimates of the association between mobility-based greenness and step count. We 

found higher levels of greenness were inversely associated with steps per minute.

1. Introduction

The explosion of research on nature and health in environmental epidemiology led to 

numerous studies investigating the association between exposure to greenness, or vegetation 

quantity, and physical activity, as well as chronic disease outcomes (Fong et al., 2018; 

James et al., 2015, 2016; Jimenez et al., 2021; Kaplan, 1995). Green environments have 

been hypothesized to be associated with higher levels of physical activity and to provide 

additional benefits compared to physical activity in non-green environments due to increased 

opportunities for physical activity and psychological restoration (Almanza et al., 2012; 

Coombes et al., 2010; Dewulf et al., 2016; Hillsdon et al., 2006; Kajosaari and Pasanen, 

2021; Markevych et al., 2017; Mnich et al., 2019; Wheeler et al., 2010). However, 

previous studies examining the association of greenness with physical activity have reported 

inconsistent results (Klompmaker et al., 2018; Roscoe et al., 2022). Also, most of these 

studies used residential-based measures of exposure and self-reported measures of physical 

activity, making it difficult to infer true associations due to potential for measurement error 

(James et al., 2015; Jimenez et al., 2021).

Greenness exposure is often quantified by measuring surrounding residential greenness via 

satellite-derived greenness (Normalized Difference Vegetation Index) or greenspaces such 

as parks and gardens within a specific distance of the residential address (Fong et al., 

2018; James et al., 2015; Jimenez et al., 2021). Residential exposures do not quantify 

exposure occurring outside of these selected distances, nor do they capture how much 

time an individual spends in nature, and residence-based analyses cannot be used to 

explore if individuals obtain their physical activity in green environments. Additionally, 

the appropriate scale of residential exposures is challenging to discern. Researchers remain 

uncertain of the true spatial and temporal boundaries exerting contextual influences (James 

et al., 2015). This potential source of bias is known as the Uncertain Geographic Context 

Problem, which remains a critical limitation of prior research studies (Chaix et al., 2012, 

2013; Kwan, 2012a, 2012b, 2019; Park and Kwan, 2017) evaluating greenness as an 

exposure. Due to the contextual nature of environmental exposures, there is not a set spatial 

boundary of influence. Measures of activity space (Brokamp et al., 2016; Kwan, 2019) – a 

term used to describe the set of locations with which a person has direct contact during day-

to-day activities (Perchoux et al., 2016) – present a solution to the Uncertain Geographic 

Context Problem. A growing number of studies have collected objective measures of 

mobility-based greenness exposure and physical activity (Almanza et al., 2012; James et al., 
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2017; Marquet et al., 2020, 2022a). Widespread use of mobile phone and wearable global 

positioning systems (GPS) technology (Markevych et al., 2017) have allowed researchers 

to evaluate contextual exposures using mobility-based measurements to quantify mobility-

based greenness.

Using data collected from the Nurses’ Health Study 3 (NHS3) Mobile Health (mHealth) 

Substudy participants, the aim of this intra-individual and repeated measures GPS study 

was to quantify associations of 10-min level mobility-based greenness exposure with 

aggregated 10-min level physical activity captured by a wearable device. Our aim was to 

determine associations between greenness exposure and physical activity using this rich 

source of objective data. We hypothesized that higher mobility-based greenness exposure 

was associated with higher mean steps-per-minute averaged over a 10-min period, after 

adjustment for potential confounders.

2. Methods

2.1. Population

2.1.1. Nurses’ Health Study 3 (NHS3)—NHS3 began in 2010 and is an ongoing 

open-enrollment prospective cohort of nurses and nursing students living in the US or 

Canada. Participants are required to be a registered nurse, licensed practical/vocational 

nurse, or nursing student and to be born on or after January 1, 1965 for eligibility 

into the study. At the time of selection for the mHealth Substudy there were 49,693 

participants enrolled in NHS3. Once enrolled, participants provide updated residential 

history and complete web-based questionnaires on lifestyle and medical characteristics every 

six months. For participants who have completed two or more questionnaires, the response 

rate is above 80% (Chavarro et al., 2016; Gaskins et al., 2015; Gaskins et al., 2015; Mooney 

and Garber, 2019).

2.1.2. NHS3 mobile health (mHealth) substudy—The NHS3 mHealth Substudy 

began enrollment in March 2018 and data collection was completed in February 2020 with 

500 enrolled participants (Fig. 1) residing in 42 of the 48 contiguous states during the data 

collection period.

The mHealth Substudy required participants to be aged 21 or older on March 12, 2018 

and demonstrate adherence to questionnaire completion by providing information on height, 

weight, physical activity, and sleep in prior NHS3 questionnaires for enrollment. As the 

study aimed to prospectively examine impacts of various lifestyle risk factors on sleep 

disturbance and Fitbit wearables have reduced accuracy in these populations, participants 

with a doctor-diagnosed sleep disorder were not eligible. Full study recruitment, protocol, 

and data collection methodology are detailed in an NHS3 protocol paper by Fore et al. 

(2020). In brief, mHealth participants wore a consumer-wearable fitness tracker (Fitbit™ 

Charge HR, Fitbit™ Charge 2 and Fitbit™ Charge 3) and downloaded a custom smartphone 

application on their personal smartphones for seven-day sampling periods every three 

months for a year from enrollment. This allowed us to capture seasonal variability in 

behaviors and exposures. Consistent with other mobility studies (Marquet et al., 2022b), we 

conducted a 7-day protocol. This time frame should capture behaviors and exposures across 
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work and nonwork days. A mobile phone application acquired GPS location data at ~10-min 

intervals throughout the 7-day sampling period. We omitted daily main sleep periods from 

the dataset under the assumption that physical activity does not occur during sleep periods 

using Fitbit™-derived sleep data. We included participants who provided at least 8 hours of 

GPS data on at least three unique days in primary analyses (Fig. 1).

2.2. Exposure

We used the Normalized Difference Vegetation Index (NDVI) as a measure of vegetation 

exposure, which was linked to GPS data to create a mobility-based greenness exposure. 

The NDVI is the most widely used satellite-derived indicator of the quantity of 

photosynthesizing vegetation and has been previously used as a marker for exposure to 

greenness in epidemiological studies (Fong et al., 2018; James et al., 2015). NDVI ranges 

from − 1 to 1 with higher numbers indicating more green vegetation. NDVI values below 

0 represent water, ~0 represent rocks and bare soil including concrete, and values ~0.6–0.8 

represent temperate and tropical forests (Klompmaker et al., 2018). NDVI was rescaled 

so all values below zero were recoded to zero, so that all non-green areas were valued 

identically (James et al., 2017; James et al., 2016; James et al., 2017). We used Google 

Earth Engine Landsat specific processing methods to produce seasonal, cloud-free, Landsat 

8 raster images (Appendix A). We linked these seasonal 30 m x 30 m NDVI raster images to 

season-matched GPS mobility data across study enrollment years 2018 and 2019.

2.3. Outcome

We used accelerometry data from Fitbit™ wearable devices (Fore et al., 2020) to summarize 

physical activity in mean steps-per-minute, which we averaged for 10-min interval after 

each GPS-greenness location. Mean steps-per-minute is preferable to raw step counts, as 

averages fluctuate less with fine scale missingness in GPS data (Armstrong et al., 2019; 

Yuenyongchaiwat, 2016).

2.4. Covariates

We identified potential confounders a priori (Fong et al., 2018; James et al., 2016; Roscoe 

et al., 2022). These included individual participant measures of age (years; continuous), 

socioeconomic status defined as: education level (masters in nursing or higher; binary), 

and marital status (never [never married]]/ever [married, widowed, divorced]; binary). The 

NHS3 cohort does not have data on household income. Area-level measures included 

neighborhood socioeconomic status (z-score; quartiles), walkability (z-score; quartiles), 

mean daily temperature (Celsius; quartiles), daily precipitation (millimeters; binary), season 

and Census region (Northeast, Midwest, South, West).

We obtained age, education level and marital status from the full NHS3 cohort study dataset 

from participants initial questionnaire return (Module 1). Module 1 predated enrollment 

in the Substudy. We used a composite score of 7 census tract level variables from the 

2010 Census to estimate neighborhood Socioeconomic Status (nSES). Variables represented 

domains that have been previously associated with health outcomes, including education, 

employment, housing, wealth, racial composition, and population density (DeVille et al., 

2023). Z-scores were summed for each variable to create a nSES score. Higher scores 
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indicated higher nSES (i.e. less socioeconomic deprivation). We joined quartiles of nSES 

score using the location of each 10-min GPS point to create a mobility-based nSES.

We defined neighborhood walkability, a measure of population and business density, for 

each Census tract in the US as a composite 3-item score. This included z-scored intersection 

density calculated from 2019 Tiger/Line shapefiles of all roads with interstates removed 

(Bureau, 2022), population density, from 2019 ACS population data (Explore Census 

Data, 2022), and business density, from 2018 Infogroup US Historical Business Data 

(Infogroup, 2020). We summed the z-scores for each component variable (3-items) to create 

a neighborhood walkability index. Higher scores indicated more walkable areas. We joined 

quartiles of walkability score using the location of each 10-min GPS point to create a 

mobility-based walkability.

We obtained daily mean temperature and precipitation data at 800 m spatial resolution for 

the study period (2018–2020) from Parameter-elevation Regression on Independent Slopes 

Model (PRISM) (Luzio et al., 2008). PRISM variables were joined on date and paired GPS 

coordinates of each 10-min repeated measure for mobility-based measures of temperature 

and precipitation. We classified daily mean temperature into quartiles and dichotomized 

precipitation to any precipitation/no precipitation.

We defined the Census region of each GPS point as one of 4 census regions (Northeast, 

Midwest, South, West), and derived season (Spring (March–May), Summer (June–August) 

Fall (September–November), Winter (December-Febuary)) from the date (month) associated 

with each GPS point.

2.5. Statistical methods

Due to the intensive longitudinal nature of the dataset, we explored the possibility of 

nonlinear associations between mobility-based greenness exposure and physical activity 

using Generalized Additive Mixed Models (GAMM). We accounted for repeated measures 

within the same participant using a random intercept for participant. We fit NDVI using 

natural cubic splines with three knots using the mgcv package in R 4.1 to account for 

possible non-linearity. We adjusted models for the a priori selected confounders listed 

above. We specified an autoregressive correlation structure due to the repeated-measure, 

longitudinal nature of the data.

2.6. Effect measure modification

We assessed the presence of effect measure modification through models stratified on 

quartiles of walkability and nSES, median age (< 0.05) of effect modification we included 

multiplicative interaction terms. 2.7. Sensitivity analyses To address epidemiologic and 

geographic biases, we conducted four sensitivity analyses to test the robustness of our 

analyses. Fig. 3 provides a visual representation of the smartphone mobility data from 

participants used in this analysis and how we restricted these data for the sensitivity analyses 

described in detail below.

The first sensitivity analysis was designed to minimize selective daily mobility bias (Fig. 2a) 

(Plue et al., 2020). In mobility studies with intensive longitudinal data, this bias functions 
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as a confounder. The phenomenon, where it is difficult to discern whether an individual 

is passively exposed to a space or actively seeks it, is referred to as a ‘selective (daily) 

mobility bias’. As researchers’ understanding of this bias is relatively new, it is understudied. 

To assess the impact of selective daily mobility bias, we restricted activity space to GPS 

locations within a standard deviation ellipse — subject-specific standard deviation of the 

x-coordinates and y-coordinates from the mean center of that subject’s points, to eliminate 

locations outside of an individual’s normal range.

We focused our second sensitivity analysis on associations during time outside of work 

(Fig. 2b). We omitted time at work by geocoding workplace addresses at the time of study 

and restricting GPS location data to locations outside of a 160-m radial buffer (0.1 mile). 

The size of this buffer was derived from hospital dimensions (the typical workplace of our 

study participants) as the majority of hospital sizes are thought to fall within this buffer size 

(Insights from a Healthcare Architect’s Journal, 2019).

In our third analysis, we omitted datapoints that may include sedentary behaviors or driving 

(Fig. 2c). We used timestamps in addition to GPS locations to estimate velocity, and 

restricted analyses to velocities that fell between walking and running (0.8–4 m/s) to obtain 

datapoints of active transport or recreating (Cruciani et al., 2018).

Lastly, we restricted our cohort to 208 participants who provided at least 12 h of GPS 

location data daily on 5 unique days in two distinct sample periods (restricted analytical 

dataset) (Fig. 1). This stringent criterion maximizes the amount of data per individual across 

time, to support the primary analysis findings with a robust intra-individual sample.

3. Results

3.1. Descriptive

Participants in the primary analytical cohort of the NHS3 mHealth Substudy resided in 42 

out of 48 states across the contiguous US (Fig. S1. After selecting participants who provided 

at least 8 h of GPS data daily on 3 unique days and omitting main sleep periods, the 

primary analytic cohort included 337 participants with 639,364 observations (Fig. 1). Each 

participant had on average 96.2 observations per day (SD 44.1) or approximately 16 h per 

day and a total of 1878 observations (SD 847.2) or approximately 313 h during the 1-year 

study period (Table 1). Averaged across seasons, greenness exposure was 0.31 (SD 0.2) and 

participants took 7.0 (SD 14.9) steps per minute (Table 2).

On average, we observed small variations by season for both the exposure and outcome with 

the spring months having the highest mean greenness exposure and highest average step 

count per minute (Table 2). Participants residing in the South had the smallest annual change 

in NDVI (Table 2). Similar seasonal variations were observed among the restricted dataset of 

208 participants with 498,521 observations who provided at least 12 h of GPS data daily on 

5 unique days in two distinct sample periods (Supplemental Table 1).
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3.2. Generalized Additive Mixed Models

We observed a statistically significant non-linear association between mobility NDVI and 

mean steps per minute (Fig. 4).

There were three distinct relationships with inflection points at 0.2 and 0.6 NDVI. Between 

NDVI values of 0–0.2, higher values of NDVI were very weakly associated with greater 

mean steps per minute (0.8 step more per 0.1 difference in NDVI). In contrast, between 

NDVI values of 0.2–0.6, higher values of NDVI were associated with fewer mean steps per 

minute (1.0 fewer mean steps per minute per 0.1 difference in NDVI). Lastly at NDVI values 

above 0.6, higher values of NDVI were weakly associated with increased mean steps per 

minute with 0.5 step more per 0.1 increase in NDVI (Fig. 4).

3.3. Stratified analyses

We observed no evidence of effect modification by median age, race, neighborhood SES, 

neighborhood walkability, mean daily temperature and daily precipitation presence.

Statistically significant effect modification by both season and region were observed. 

Seasonal stratified analyses revealed inverse associations in the Fall, Spring and Summer 

with no association in the Winter (Fig. 5).

Regional differences were observed across the strata, with the Northeast and Southern 

regions following the pattern of the main analysis (Fig. 6). An inverse association was 

observed in participants residing in the Midwest and no association was observed in the 

West until NDVI was greater than 0.6, whereupon increasing values of NDVI were inversely 

associated with steps per minute (Fig. 6).

3.4. Sensitivity analyses

In sensitivity analyses attempting to restrict bias due to selective mobility, non-work location 

and restriction of cohort to those with more data, we did not identify any statistically 

significant differences from the primary analysis (Supplemental Figs. 2, 3, 4). When we 

restricted our analyses to active transportation velocities that fell within walking and running 

(Fig. 2c) as a transportation mode, we observed no association between NDVI value and 

steps per minute (Fig. 6).

4. Discussion

Overall, we found a small negative association of 10-min level mobility-based greenness 

with objectively measured mean step count per minute across the most frequent NDVI 

exposure range (0.2 up to 0.60). Our results expanded upon previous work on the 

association between greenness and physical activity at the residential level. Klompmaker et 

al. saw a positive relationship between residential NDVI and self-reported physical activity 

(Klompmaker et al., 2018) in a Dutch national health surveys, and Marquet et al. observed 

a positive association looking at weekly activity spaces and step counts among working 

adults in the US (Marquet et al., 2022b). However, our findings were the 10-min scale 

and attempted to assess the momentary association between greenness and physical activity, 

whereas previous studies examined greenness exposure over a longer timescale. Our results 
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were consistent with those of Persson et al. (2019), in which individuals moving to greener 

environments had a decrease in their physical activity. Furthermore, when we restricted our 

analysis to walking or running physical activity data only, we did not observe an association 

between smartphone mobility-based greenness and steps-per-minute. This suggests that 

green environments may be associated with sedentary behavior but when an individual 

conducts physical activity, their speed does not alter across levels of NDVI. This finding 

supports conclusions by James et al. (James et al., 2017) who suggest walkability rather than 

greenness as a predominant driver of accelerometry based physical activity (Baobeid et al., 

2021).

We observed evidence of effect modification across region and season. Regional differences 

drove associations with mild nonlinear positive associations between increases in NDVI 

and mean steps-per-minute observed in lowest and highest levels of NDVI in the South, 

and consistent negative associations observed in the Midwest. The South has the smallest 

seasonal change in NDVI, suggesting the positive association could be due to maintaining a 

green environment throughout the year.

Our results driven by fine-scale spatial and temporal data suggest that more research 

is needed to understand physical activity as a mechanism underlying how exposure to 

greenness is associated with improved health outcomes across various spatial and temporal 

scales, due to inconsistent results in the literature.

Our study has limitations. First, NHS3 is a cohort of predominantly upper-middle class 

white women nurses and as such these findings may have limited generalizability outside 

this population. Diverse cohorts should assess effect modification across race/ethnicity and 

SES to further confirm our findings. Secondly, step count as a proxy for physical activity 

remains another limitation, as it does not capture physical activity from weight-lifting, 

cycling, gardening, or swimming. However, most of the US and NHS3 participants record 

walking as the primary source of physical activity (CDC, 2013). Lastly, we standardized 

blue space to zero in our NDVI exposure, however blue space is thought to have associated 

health benefits like green space (Georgiou et al., 2021; White et al., 2021). Understanding 

how to mutually account for the two exposures is an important next step.

Our study also had a number of strengths. First, we were able to utilize a time-variant 

mobility greenness measure at 30 m resolution, which enabled us to identify the quantitative 

value of greenness at a precise moment better addressing the exposure of interest. The 

intensive longitudinal spatial and temporal data allowed us to quantify momentary greenness 

exposure and physical activity at the minute-level and conduct several analyses examining 

seasonal trends and potential confounders or effect modifiers of the association. Second, 

utilizing an objective physical activity metric instead of self-reported physical activity 

reduced the likelihood of recall bias in our study compared to studies that used self-reported 

measures of physical activity. Lastly, as the mHealth Substudy was nested within the larger 

NHS3 cohort, we obtained high quality data from participants and covariate data prior to 

collection of exposure or outcome, reducing the likelihood of misclassification.
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As environmental data becomes easier to access in mass quantities, it is essential that 

we prioritize real time exposure data. Environmental epidemiology too often ignores 

consequences of the uncertain geographic context problem and defining the extent of the 

exposure in question (Hooper et al., 2013; Kwan, 2012b; Spiegelman, 2010). By linking fine 

scale spatial and temporal greenness and physical activity data, we attempt to address critical 

gaps in the literature and look holistically at contextual environmental exposures beyond 

the residential environment. In conclusion, we did not observe higher levels of physical 

activity in greener locations in this intensive longitudinal spatial temporal analysis. Rather, 

the association was nonlinear in nature and across most frequent exposure distributions, 

greener locations were observed to be associated with fewer steps-per-minute.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study participant flow diagram for the Nurses’ Health Study 3 mHealth Substudy and 

restriction criteria for primary analytic dataset and secondary analytic dataset for cohort 

population (N) and GPS mobility observations (n).
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Figure 2: 
Three panel exposure map* a) GPS mobility data over traditional residential buffers of 270 

m and 1230 m and a selective daily mobility bias restriction criterion, b) workplace omitted 

GPS mobility data over traditional residential buffers, and c) active transport (walk to run 

velocities) GPS mobility metrics of exposure over traditional residential buffers.

*This figure does not represent participant data. Data were obtained via the author’s 

personal collection.
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Figure 3. 
Associationsa between NDVIb and average steps per minute across a 10-min period.
a Controlling for age (years; continuous), socioeconomic status defined as: educationlevel 

(masters in nursing or higher; binary), and marital status (never [never married]]/

ever [married, widowed, divorced]; binary), and area-level measures of neighborhood 

socioeconomic status (z-score; quartiles), walkability (z-scores; quartiles), mean daily 

temperature (Celsius; quartiles), daily precipitation (millimeters; binary), season and Census 

region in the 2018–2020 Nurses’ Health Study mHealth Substudy.
b NDVI values below 0 represent water, ~0 represent rocks and bare soil including concrete, 

and values ~0.6–0.8 represent temperate and tropical forests.

* Average steps per minute across each 10-min collection period.
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Figure 4. 
Associationsa between NDVIb and average steps per minute across a 10-min period 

stratfiying on season.
a Controlling for age (years; continuous), socioeconomic status defined as: education 

level (masters in nursing or higher; binary), and marital status (never [never married]]/

ever [married, widowed, divorced]; binary), and area-level measures of neighborhood 

socioeconomic status (z-score; quartiles), walkability (z-scores; quartiles), mean daily 

temperature (Celsius; quartiles), daily precipitation (millimeters; binary), and Census region 

in the 2018–2020 Nurses’ Health Study mHealth Substudy.
b NDVI values below 0 represent water, ~0 represent rocks and bare soil including concrete, 

and values ~0.6–0.8 represent temperate and tropical forests

*Average steps per minute across each 10-min collection period.
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Figure 5. 
Associationsa between NDVIb and average steps per minute across a 10-min period 

stratifying on region
a Controlling for age (years; continuous), socioeconomic status defined as: education 

level (masters in nursing or higher; binary), and marital status (never [never married]]/

ever [married, widowed, divorced]; binary), and area-level measures of neighborhood 

socioeconomic status (z-score; quartiles), walkability (z-scores; quartiles), mean daily 

temperature (Celsius; quartiles), daily precipitation (millimeters; binary), and season in the 

2018–2020 Nurses’ Health Study mHealth Substudy.
b NDVI values below 0 represent water, ~0 represent rocks and bare soil including concrete, 

and values ~0.6–0.8 represent temperate and tropical forests

*Average steps per minute across each 10-min collection period.
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Figure 6. 
Associationsa between NDVIb and average steps per minute across a10-min period, 

restricting on active transportation (walk to run velocity) GPS mobillity data
a Controlling for age (years; continuous), socioeconomic status defined as: education 

level (masters in nursing or higher; binary), and marital status (never [never married]]/

ever [married, widowed, divorced]; binary), and area-level measures of neighborhood 

socioeconomic status (z-score; quartiles), walkability (z-scores; quartiles), mean daily 

temperature (Celsius; quartiles), daily precipitation (millimeters; binary), season, and 

Census Region in the 2018–2020 Nurses’ Health Study mHealth Substudy.
b NDVI values below 0 represent water, ~0 represent rocks and bare soil including concrete, 

and values ~0.6–0.8 represent temperate and tropical forests

*Average steps per minute across each 10-min collection period.
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Table 1.

Study demographics for the Nurses’ Health Study mHealth Substudy Across Restriction Criteria.

Variable Primary Analytic Dataset (n=337) Secondary Analytic Dataset (n=208)

Variable N % / Mean (SD) N %

Age Age 330 36.0 (7.3) 208 25.96 (7.0)

Race White 317 94.1 192 92.3

Black 8 1.8 6 2.9

Asian 2 0.1 2 1

Mixed Race 4 1.2 2 1

Other 6 1.8 6 2.9

Ethnicity Hispanic 14 4.2 8 3.9

Married Yes 207 61.4 127 61.1

No 130 38.6 81 38.9

Advanced Degree Yes 88 26.1 52 25

No 249 73.9 156 75

Employment Yes 319 96.7 203 97.6

No 11 3.4 5 2.4

Variable Main Study Observations (n=639,364) Restricted Study Observations (n=498,521)

Walkability Mean 637,505 −0.02 (2.5) 496,962 −0.06 (2.4)

nSES Mean 636,476 1.6, (3.3) 496,283 1.7 (3.3)

Temperature Mean 604,911 15.1 (10.0) 466,207 15.0 (10.0)

Precipitation Mean 604,911 3.4 (9.0) 466,207 3.3 (8.9)

Greenness Mean 639,364 0.3 (0.2) 498,521 0.3 (0.2)

Seasonality Fall 167,871 26.3 134,660 27

Winter 127,860 19.9 103,797 20.8

Spring 136,117 21.3 105.248 21.1

Summer 207,496 32.4 154,816 31.1
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Table 2.

Participant Greenness and Physical Activity Distributions Across Seasons

N Steps/Min Mean (SD) Steps/Min Min, Max Greenness Mean (SD) Greenness Min Max

Total Participants 337 7.04 (14.93) 0.00, 263.78 0.31 (0.21) 0.00, 0.84

Fall 277 6.76 (14.62) 0.00, 181.00 0.27 (0.20) 0.00, 0.82

Winter 252 6.60 (14.25) 0.00, 183.13 0.21 (0.15) 0.00, 0.73

Spring 202 7.43 (15.44) 0.00, 219.00 0.37 (0.20) 0.00, 0.84

Summer 283 7.27 (15.19) 0.00, 263.78 0.37 (0.21) 0.00, 0.84
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