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Abstract

Objective.—To develop and test the feasibility of a novel Single ProjectIon DrivEn Real-time 

Multi-contrast (SPIDERM) MR imaging technique that can generate real-time 3D images on-the-

fly with flexible contrast weightings and a low latency.

Approach.—In SPIDERM, a ‘prep’ scan is first performed, with sparse k-space sampling 

periodically interleaved with the central k-space line (navigator data), to learn a subject-specific 

model, incorporating a spatial subspace and a linear transformation between navigator data and 

subspace coordinates. A ‘live’ scan is then performed by repeatedly acquiring the central k-space 

line only to dynamically determine subspace coordinates. With the ‘prep’-learned subspace and 

‘live’ coordinates, real-time 3D images are generated on-the-fly with computationally efficient 

matrix multiplication. When implemented based on a multi-contrast pulse sequence, SPIDERM 

further allows for data-driven image contrast regeneration to convert real-time contrast-varying 
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images into contrast-frozen images at user’s discretion while maintaining motion states. Both 

digital phantom and in-vivo experiments were performed to evaluate the technical feasibility of 

SPIDERM.

Main results.—The elapsed time from the input of the central k-space line to the generation 

of real-time contrast-frozen 3D images was approximately 45 ms, permitting a latency of 55 ms 

or less. Motion displacement measured from SPIDERM and reference images showed excellent 

correlation (R2 ⩾ 0.983). Geometric variation from the ground truth in the digital phantom was 

acceptable as demonstrated by pancreas contour analysis (Dice ⩾ 0.84, mean surface distance ⩽ 
0.95 mm). Quantitative image quality metrics showed good consistency between reference images 

and contrast-varying SPIDREM images in in-vivo studies (mean NMRSE = 0.141, PSNR = 30.12, 

SSIM = 0.88).

Significance.—SPIDERM is capable of generating real-time multi-contrast 3D images with a 

low latency. An imaging framework based on SPIDERM has the potential to serve as a standalone 

package for MR-guided radiation therapy by offering adaptive simulation through a ‘prep’ scan 

and real-time image guidance through a ‘live’ scan.

Keywords

real time MR; subspace imaging; MR multitasking; MR-guided radiation therapy

1. Introduction

Image-guided radiation therapy (IGRT) is a technology that incorporates frequent imaging 

during the course of radiation therapy. It can improve the accuracy and precision of dose 

delivery and allows adaptive radiotherapy to account for temporal variations of the tumor 

in, for example, shape, volume size, and location (Dawson and Jaffray 2007, De Los 

Santos et al 2013). This is particularly important for the abdominal site that is often 

subject to breathing motion and filling effects. In recent years, MR-guided radiation therapy 

(MRgRT) has gained growing interest since the introduction of MR-Linac that integrates 

an MR scanner and a medical linear accelerator into one system (Mutic and Dempsey 

2014, Raaymakers et al 2009, 2017). For abdominal external beam RT, on-board MR 

imaging during daily treatment provides unique advantages over conventional cone-beam 

CT equipped in routine Linac systems: (a) superior visualization of the tumor and many 

organs-at-risk (OARs) based on versatile soft-tissue contrast, (b) real-time tomographic 

images for target tracking that permits respiratory-gated dose delivery, and (c) no ionizing 

radiation exposure (Otazo et al 2020). To achieve reasonable spatiotemporal resolution, 

tumor tracking with commercial MR-Linac systems is currently limited to real-time 2D 

imaging that continuously acquires a single or 2–3 orthogonal slices (Fast et al 2019, Witt 

et al 2020). However, due to potentially complicated motion trajectories in the abdomen, 

real-time 3D (volumetric) imaging is more desired for precision medicine.

Different methods have been proposed for fast real-time 3D imaging in the context of 

MRgRT. The motion-model based approach is commonly used, in which a high-quality 

3D reference image is first acquired, and motion fields (often called deformation vector 

fields, or DVFs) are estimated from continuous k-space acquisitions and then applied to the 
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reference to generate real-time images (Stemkens et al 2016, Otazo et al 2020, Huttinga et al 
2020, 2021). To acquire the motion-free reference image, breath-holding is needed and thus 

poses a restriction on achievable spatial resolution. Also, an inverse problem needs to be 

solved online to estimate the motion field, which limits the temporal resolution or latency in 

real-time imaging. Another class of approaches exploits artificial intelligence to reconstruct 

real-time images from highly undersampled k-space data. A patient-specific model based 

on, for example, principal component analysis (Dietz et al 2017) or convolutional neural 

network (Dietz et al 2019), can be trained prior to treatment. The undersampling factor, 

however, is very limited with existing techniques, which makes it difficult to achieve high 

temporal resolution. Recently, a signature matching technique was proposed whereby real-

time images are selected from an image dictionary (Feng et al 2020). The dictionary is 

built through a 4D-MR pre-scan that generates a group of 3D images based on respiratory 

amplitude binning of k-space data. Despite superior image quality and latency, there is a 

limited number of bins in the dictionary to choose from. More importantly, all methods 

above rely on continuous steady-state acquisitions for reference or template images, thus 

resulting in one single and fixed tissue contrast weighting (commonly T1-weighting) in the 

final real-time images. This contrast weighting is unsuitable for some tumor targets (Zhang 

et al 2018).

In this work, we developed a novel technique named Single ProjectIon DrivEn Real-time 

Multi-contrast (SPIDERM) MR to provide real-time 3D images with flexible contrast 

weightings and a low latency. SPIDERM exploits the separability of spatial and dynamic 

information in a low-rank/partial separability model (Liang 2007). Briefly, a ‘prep’ scan, 

also serving as a pre-beam simulation scan, is first performed to learn a subject-specific 

model (a spatial subspace and a linear transformation from navigator data to subspace 

coordinates). A ‘live’ scan for beam-on real-time imaging is then performed by repeatedly 

acquiring the central k-space line only to dynamically determine subspace coordinates 

and generate 3D multi-contrast images on the fly utilizing the pre-learned model. We 

demonstrated its technical feasibility on a digital phantom and volunteers.

2. Theory

2.1. Spatiotemporal decomposition

As in Feng et al (2020), a 4D image I (x, t) can be modeled as low-rank using partially 

separable functions. Using a matrix expression, an image of the following form

A =
a x1, t1 ⋯ a x1, tNt

⋮ ⋱ ⋮
a xJ, t1 ⋯ a xJ, tNt

(1)

can be decomposed as

A = UxΦrt = u1 ⋯ uL ϕ1 ⋯ ϕNt , (2)
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where J is the total voxel number, Nt is the number of time points (or k-space lines); 

Ux ∈ ℂJ × L contains L spatial basis functions, and Φrt ∈ ℂL × Nt contains real-time temporal 

weighting functions (depicting relaxation, motion, contrast changes, etc). At a specific time 

point t = ts, the real-time image ats is a linear combination of the spatial basis functions, 

weighted by a vector ϕts = ϕ1, ts ⋯ ϕL, ts
T:

ats =
a x1, ts

⋮
a xJ, ts

= ϕ1, tsu1 + … + ϕL, tsuL = ∑
i = 1

L
ϕi, tsui . (3)

In practice, A as a whole can be reconstructed by recovering Φrt and Ux in a two-step 

approach (Liang 2007, Pedersen et al 2009, Christodoulou et al 2014, Biswas et al 2015). 

Typically, temporal weighting functions Φrt are first recovered using only ‘navigator data’ 

Dnav ∈ ℂM × Nnav, i.e. the central k-space line which is frequently sampled in time, where 

M is the number of points sampled per k-space line, and Nnav is the total number of 

navigator lines. Φrt is often extracted by calculating the singular value decomposition of the 

frequently sampled navigator data Dnav and selecting the L most significant right singular 

vectors.

Spatial basis functions Ux are then reconstructed by solving the following problem:

Ux = argminUx Dim − Ω EUxΦrt F
2 + λR Ux , (4)

where Dim ∈ ℂM × Nim denotes the ‘imaging data’, which is acquired from the entire k-

space with sparse sampling schemes, such as randomized Cartesian or golden-angle radial 

trajectories (Nim is the total number of imaging lines, Nnav + Nim = Nt), E is the signal 

encoding operator, Ω is the (k-t)-space undersampling operator, and R is a regularization 

functional to exploit compressed sensing. Both steps of this reconstruction process are 

non-causal, and are therefore appropriate for a ‘prep’ scan but not a real-time, on-the-fly 

‘live’ scan.

2.2. Image generation using pre-learned spatial subspace and linear transformation

Given Φrt extracted from the right singular vectors of Dnav, there exists a linear 

transformation T that maps Dnav to Φrt. For an individual time point t = ts, the navigator data 

dnav, ts ∈ ℂM × 1 can therefore be transformed into ϕts with ϕts = Tdnav, ts. Accordingly, the 

entire 3D image at t = ts can be generated with a simple matrix multiplication:

ats = Uxϕts = UxTdnav, ts . (5)

For successive scans using the same sequence, Ux and T are assumed to remain constant 

throughout the acquisition process, unless abrupt body motion or unexpectedly introduced 

contrast mechanisms force the new images outside the range of Ux. Therefore, we developed 
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the SPIDERM technique based on the constant nature of Ux and T. The ‘prep’ scan is 

first applied to learn Ux and T. Specifically, Φrt and Ux are reconstructed in the two-step 

approach, and T is calculated as:

T = ΦrtDnav
+ , (6)

where Dnav
+  is the pseudo-inverse of Dnav. Afterwards, the ‘live’ scan is performed: only dnav 

is acquired, and real-time 3D images can be generated on the fly by applying the matrix 

multiplication process according to equation (5) (figure 1).

2.3. Contrast regeneration: towards multi-contrast real-time imaging

In non-steady-state sequences with a periodic signal evolution (e.g. sequence with inversion 

recovery, saturation recovery, or T2 preparation module, etc), the temporal weighting 

functions (or the temporal subspace) Φrt contain the information not only about respiratory 

motion, but also contrast changes. There is a need in the ‘live’ scan to separate the 

motion information and contrast information, so that real-time images can be displayed 

with a stable contrast weighting, e.g. T1-weighted (T1w), T2-weighted (T2w), or proton-

density-weighted (PDw), while maintaining true motion states. This can be achieved by a 

data-driven image contrast regeneration method, as described below.

With respiratory binning, a multi-bin temporal subspace tensor Φ ∈ ℂL × Nseg × Np can be 

recovered from the navigator data Dnav with low-rank tensor completion (Christodoulou et al 
2018), where Nseg is the number of sampling points in a signal evolution cycle, and Np is the 

number of respiratory motion phases.

As the ‘live’ image comes in, its respiratory phase p is identified with the liver-dome 

position using nearest-neighbor matching to the ‘prep’ data, and Φp ∈ ℂL × Nseg is extracted 

from Φ at phase p. Then the target image contrast that would correspond to time t = tc(target)

can be synthesized in the ‘live’ scan by replacing ϕts in equation (5) with ϕts:

ϕts(tc
(target)) = ϕts + Δϕp, ts(tc

(target)) (7)

Δϕp, ts(tc
(target)) = Φp(: , tc(target)) − Φp(: , tc(original)), (8)

where tc(original) refers to the original time point within the signal evolution cycle 

corresponding to the absolute time point t = ts, while tc(target) refers to the time point 

with targeted contrast of interest, e.g. T1w, T2w, or PDw. This new term subtracts the 

contribution of the current contrast weighting, Φp(: , tc(original)) ∈ ℂL × 1, and replaces it with 

the desired contrast weighting, Φp(: , tc(target)) ∈ ℂL × 1.

Thus, equation (5) can be adapted as follows for contrast-frozen, motion-maintained real-

time imaging:
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ats = Uxϕts = Ux(Tdnav, ts + Δϕp, ts(tc
(target))) . (9)

Note that the original ‘live’ image ats = UxTdnav, ts is generated directly from the navigator 

data without binning, as in equation (5). The binning process is only used to generate the 

contrast update term Δϕp, ts, which ensures better separation of motion and contrast changes.

When using a pulse sequence in which multiple image contrasts present along the signal 

evolution, SPIDERM is able to generate multi-contrast real-time images using several 

different tc(target)’s. In this work, three different tc(target)’s were chosen to represent T1w, T2w, 

and PDw respectively, as indicated by black arrows in figure 2(b).

For simplicity, ats generated with equation (5) are denoted as contrast-varying (CV-

SPIDERM) images, while ats generated with equation (8) are denoted as contrast-frozen 

(CF-SPIDERM) images.

3. Methods

3.1. MRI protocol

Built upon the partial separability model (Liang 2007), the recently proposed MR 

Multitasking technique (Christodoulou et al 2018) can generate multi-contrast MR images 

with 3D coverage and high spatiotemporal resolution, without the assistance of external 

devices for gating or triggering (Hu et al 2020, Wang et al 2020, Han et al 2021). We tested 

the SPIDERM technique using an abdominal T1/T2 MR Multitasking sequence (figure 

2) (Deng et al 2019). A saturation recovery preparation and a T2 preparation are used 

to generate T1 and T2 contrast weightings, respectively, during each TR (figure 2(b)). A 

gap of 700 ms is intended to facilitate magnetizations’ full recovery and minimize T1 

weighting in subsequent PDw and T2w acquisitions. The k-space is continuously sampled 

with fast low-angle shot (FLASH) readouts using a stack-of-stars acquisition with golden 

angle ordering in-plane and Gaussian-density randomized ordering in the partition direction 

(figure 2(a)). The ‘imaging data’ is interleaved with ‘navigator data’ (central k-space 

line along the partition direction, kx = ky = 0) every 10th readout. The acquired data 

contains three overlapping dynamics, including respiratory motion, T1 relaxation, and T2 

relaxation. General imaging parameters for both phantom and volunteer studies were: axial 

orientation, TR/TE=6.0/3.1 ms, flip angle=5° (following SR preparation) and 10° (following 

T2 preparation), bandwidth = 762 Hz/pixel, water-excitation for fat suppression, BIREF T2 

preparation of 42 ms. The time per scan was 8 min.

3.2. Digital phantom study

The feasibility of SPIDERM was evaluated using an open-source digital phantom in 

MATLAB (https://github.com/SeiberlichLab/Abdominal_MR_Phantom) (Lo et al 2019). 

First, k-space data of 60000 readouts (corresponding to a total scan time of 8 min) were 

simulated using the T1/T2 Multitasking sequence and the sampling pattern shown in figure 
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2. Additional imaging parameters included: matrix size = 320 × 320 × 40, and voxel size 

= 1.7 × 1.7 × 6.0 mm3. To demonstrate that our technique does not assume or rely on 

strictly periodic respiratory cycles, time-varying breathing patterns were simulated with 

pseudo-randomly interleaved normal (~4.2 s), long (~6.3 s) and short (~3.2 s) respiratory 

cycles.

The data of 60 000 readouts were viewed as the ‘prep’ scan, from which the spatial basis 

Ux, the linear transformation matrix T, and the multi-bin temporal subspace tensor Φ were 

generated. Then, 1000 additional time points of navigator data were simulated with variable 

respiratory motion positions and contrasts. These data were viewed as a portion of the ‘live’ 

scan and processed with the SPIDERM technique to generate real-time multi-contrast 3D 

images.

3.3. In-vivo studies

The in-vivo study was approved by local Institutional Review Board and written informed 

consent was obtained from all participating subjects. Experiments were performed in 

eight healthy subjects on a 3.0 T clinical scanner (Biograph mMR, Siemens Healthineers, 

Erlangen, Germany) equipped with an 18-channel phase array body coil. Additional imaging 

parameters included: matrix size = 320 × 320 × 52, field-of-view (FOV) = 550 × 550 × 312 

mm3, voxel size = 1.7 × 1.7 × 6.0 mm3.

For each subject, two identical T1/T2 MR Multitasking scans were performed successively, 

serving as a ‘prep’ scan and a ‘live’ scan, respectively. Volunteers were instructed to breathe 

normally during the two scans. Although repetitive acquisition of the same single k-space 

projection as navigator data is the only essential need in the ‘live’ scan, we adopted the 

same sequence as used in the ‘prep’ scan for the following purposes: (a) the navigator data 

acquired every 10th readout were used to generate CV-SPIDERM images with equation 

(5), and CF-SPIDERM images with equation (9), using the proposed SPIDERM technique; 

(b) the data of the entire scan, including both navigator data and imaging data, were 

reconstructed retrospectively as in the ‘prep’ scan, to generate ‘reference’ real-time contrast-

varying (CV-ref) images. Figure 3 illustrates the experimental design of in-vivo studies.

Image reconstruction was performed offline in MATLAB 2018a on a Linux workstation 

equipped with two 2.7-GHz 12-core Intel Xeon CPUs, one NVIDIA Quadro K6000 GPU, 

and 256 GBRAM.

3.4. Data analysis

3.4.1. Digital phantom study

3.4.1.1. Accuracy of motion depiction: The respiratory motion-induced displacement 

of the liver dome, measured as its distance from the top of FOV, was determined in 

1000 arbitrarily selected CV-SPIDERM images acquired during normal, long, or short 

respiratory cycles. Linear regression analysis was used to determine the agreement in the 

dome displacement between CV-SPIDERM and the ground-truth. Results were reported for 

time points in normal (603 time points), long (224 time points) and short (173 time points) 
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respiratory cycles respectively to investigate the impact of breathing patterns on motion 

depiction.

3.4.1.2. Geometric accuracy: T1-weighted CF-SPIDERM images at three arbitrarily 

selected time points corresponding to end-of-expiration (EOE), end-of-inspiration (EOI), 

and a medium phase (MED) were used to assess the organ-level geometric variation from 

the ground-truth. The pancreas was manually contoured on the CF-SPIDERM images 

and temporally corresponding ground-truth by a clinical medical physicist with 15 years’ 

experience using VelocityAI™ (Varian Medical System, Palo Alto, CA). The Dice similarity 

coefficient and mean surface distance (the mean voxel shortest distance from the surface of 

one structure to another) (Chalana and Kim 1997) were then determined.

3.4.2. In-vivo studies

3.4.2.1. Image quality: To assess the image quality of SPIDERM images, CV-SPIDERM 

and CV-ref images were compared using the following quantitative metrics. The mean 

values of these metrics among all 6000 time points in the live scan were reported for each 

subject. The average metrics of each signal evolution cycle were also measured and then 

plotted as a function of the signal evolution cycle to illustrate their temporal stability over 

the 8 min scan.

1. Normalized root mean square error (NRMSE)

NRMSE =
∑i ISPIDERM − Iref

2

∑iIref
2 , (10)

where ISPIDERM and Iref denote the magnitude pixel values of CV-SPIDERM and 

CV-ref images of the ‘live’ scan respectively.

2. Peak signal-to-noise ratio(PSNR)

PSNR = − 10lg MSE
Imax

2 , (11)

where Imax is the maximum magnitude pixel value, and MSE denotes the mean 

squared error.

3. Structural similarity index (SSIM)

SSIM = 2μref ⋅ μSPIDERM + c1 2σref,SPIDERM + c2
μref

2 + μSPIDERM
2 + c1 σref

2 + σSPIDERM
2 + c2

, (12)

where μ(·) and σ(·) denotes the mean and variance respectively, σ ref,SPIDERM is 

the covariance, c1 = 0.01, c2 = 0.03.

3.4.2.2. Accuracy of motion depiction: The respiratory motion-induced displacement 

of the liver dome was determined in the same coronal view of SPIDERM images 

(CV-SPIDERM, CF-SPIDERM T1w, and CF-SPIDERM PDw) and CV-ref images. CF-

Han et al. Page 8

Phys Med Biol. Author manuscript; available in PMC 2022 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SPIDERM T2w images were not included in this comparison because the banding artifact 

at the liver dome caused by field inhomogeneity during T2 preparation made it difficult to 

accurately measure the distance (see Discussion for more details). The first 1000 time points 

of the 8 min ‘live’ scan were selected in each volunteer for linear regression analysis.

4. Results

4.1. Digital phantom study

Figure 4 shows the comparison of true reference, CV-SPIDERM, and CF-SPIDERM 

images of the digital phantom. Representative time points shown in figures 4(a) and 

(b) corresponded to end-of-expiration and end-of-inspiration, respectively. The respiratory 

motion-induced displacement was visually comparable between SPIDERM images and the 

true reference. CF-SPIDERM T1w, T2w and PDw images showed appropriate contrasts 

respectively. As shown in figure 5, the displacement of the liver dome measured from 

CV-SPIDERM images and reference images were strongly correlated in all three different 

respiratory cycles (normal cycles: slope = 0.90, intercept = 1.48, R2 = 0.984; long cycles: 

slope = 0.90, intercept = 1.43, R2 = 0.991; short cycles: slope = 0.88, intercept = 2.35, R2 = 

0.983).

The pancreas contour analysis showed a Dice similarity coefficient of 0.91, 0.84 and 0.85 for 

EOE, MED and EOI time points respectively. Mean surface distances were reported as 0.57, 

0.95 and 0.87mmfor EOE, MED and EOI respectively.

4.2. In-vivo studies

The average elapsed time from the input of the central k-space line to the generation of 

real-time contrast-frozen 3D images was approximately 45 ms. Given that the navigator data 

(one central k-space line) can be acquired in 6 ms, a real-time display latency of 55 ms 

or less can be reached. This is achieved using MATLAB 2018a on a Linux workstation 

equipped with two 2.7-GHz 12-core Intel Xeon CPUs.

The NRMSE, PSNR and SSIM values between CV-SPIDERM and CV-ref images for 

each volunteer are shown in table 1. The average NRMSE, PSNR and SSIM among eight 

volunteers were 0.141, 30.12 and 0.88 respectively.

Figure 6 shows the time courses of various quantitative image quality metrics during the 

8 min live scan. Compared with the first 25 signal evolution cycles, the average NRMSE, 

PSNR and SSIM changed by +9.1%, −3.2% and −0.9% respectively in the last 25 signal 

evolution cycles, indicating a slight metric degradation. Abrupt increase in NRMSE or 

decrease in PSNR/SSIM were visible in some volunteers (such as Volunteer 3), which 

presumably arose from sudden deep breaths.

Figure 7 shows the comparison between reference images and SPIDERM images in in-vivo 
studies. As shown in figures 7(a) and (b), CV-SPIDERM images had comparable image 

quality with CV-ref images, and CF-SPIDERM images demonstrated appropriate image 

contrasts of T1w, T2w and PDw. Banding artifacts caused by imperfect T2 preparation and 

main field inhomogeneity were visible at the liver dome area, making CF-SPIDERM T2w 
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images’ quality suboptimal (see Discussion for more details). A movie showing several 

respiratory cycles of the same volunteer can be found in supplementary video S1 (available 

online at stacks.iop.org/PMB/67/135008/mmedia).

Figure 8 displays CV-ref images and CF-SPIDERM (T1w, T2w and PDw) images of another 

volunteer within an arbitrarily selected respiratory cycle. Motion states were consistent 

between CF-SPIDERM images and CV-ref images, while image contrasts remained stable in 

CF-SPIDERM images among different motion states.

As shown in figure 9, the displacement of the liver dome measured from SPIDERM 

images and reference images were strongly correlated (CV-SPIDERM images: slope = 0.98, 

intercept = 1.29, R2 = 0.986; CF-SPIDERM T1w: slope = 0.98, intercept = 1.32, R2 = 0.983; 

SPIDERM PDw images: slope = 0.98, intercept = 1.59, R2 = 0.983).

5. Discussion

In this work, we developed a novel technique, named SPIDERM, for real-time multi-

contrast 3D imaging with a latency of 55 ms or less. Our initial digital phantom and healthy 

volunteer studies demonstrated the technical feasibility of SPIDERM.

Major innovations of the SPIDERM framework are as follows. First, superb imaging latency 

can be achieved. The low-rank/partial separability model is used in SPIDERM, as in many 

previous subspace reconstruction frameworks (Pedersen et al. 2009, Zhao et al 2012, Lam 

and Liang 2014, Christodoulou et al 2018, Dong et al 2020). However, in SPIDERM, all the 

parameter estimations, where inverse or optimization problems are involved, are conducted 

only after the ‘prep’ scan. Constant subspace weighting functions and the constant linear 

operator are prepared for the ‘live’ scan. Therefore, only the navigator data needs to be 

sampled in the ‘live’ scan, and real-time images are generated with matrix multiplication 

and vector addition, which are both simple forward processes. The latency of 55 ms to 

generate real-time 3D images is much shorter than those afforded by previous methods, such 

as 170 ms in MR-MOTUS(Huttinga et al 2022), ~300 ms in MRSIGMA (Feng et al 2020), 

or 476 ms in Stemkens et al (2016). Second, simultaneous multiple contrast weightings 

are available in a real-time imaging setting. Given the overlapping dynamics within the 

T1/T2 MR Multitasking sequence, images of different contrast weightings can be generated 

simultaneously using the contrast regeneration algorithm. This allows the end users to select 

the most appropriate contrast weighting or even synthesize a unique contrast weighting 

for target tracking and delineation. It provides more flexibility than previous techniques 

in which a fixed image contrast weighting based on a steady-state acquisition is available 

(usually T1-weighted (Feng et al 2020, Huttinga et al 2020) or T2/T1-weighted (Stemkens et 
al 2016, Dietz et al 2017) only).

In this work, we assessed the performance of the SPIDERM in motion depiction and 

geometric accuracy in phantom and/or in-vivo studies. Both digital phantom and in-vivo 
results demonstrated excellent correlation between SPIDERM images and reference images 

in liver dome displacement (R2 ⩾ 0.98). Geometric analysis also showed small variation in 

digital phantom (mean surface distance ⩽ 0.95mm). In digital phantom studies, the ground 
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truth was available as the reference. However, there was no true reference in in-vivo studies. 

Ideally, real-time 2D images from fully sampled data should be used as a reference for 

accurate comparison. In previous work, 2D real-time projections were also used for this 

purpose (Feng et al 2020). However, such real-time 2D references are not available in 

this work because the single k-space line acquisition scheme was used in SPIDERM and 

inclusion of 2D references would interrupt contrast evolution. Therefore, reference images 

were generated by retrospective reconstruction using both navigator data and imaging data 

from the live scan (figure 3). This is a limitation of our evaluation study, as geometric 

artifacts shared by the reference images and SPIDERM images which would not be detected 

by the comparison here.

SPIDERM, involving ‘prep’ and ‘live’ scans, is compatible with the current MRgRT 

workflow. A typical MRgRT procedure starts with a pre-treatment phase, in which brief MR 

scans are used for position confirmation and replanning purposes, followed by the treatment 

phase guided by real-time imaging tracking. The ‘prep’ scan in the proposed technique can 

fit into the on-board pre-treatment phase to provide multi-contrast and motion-resolved 3D 

images while learning the spatial subspace and temporal linear transformation. During the 

beam-on treatment phase, the ‘live’ scan can generate real-time multi-contrast (e.g. T1w, 

T2w, and PDw) 3D images on the fly. Hence, an imaging framework based on SPIDERM 

possesses the potential to serve as a standalone package for MRgRT.

The T1/T2 MR Multitasking sequence (Deng et al 2019) was chosen to evaluate and 

validate the SPIDERM method. The sequence itself is a free-breathing volumetric body 

imaging technique based on MR Multitasking. It can provide spatially co-registered T1w, 

T2w, and PDw images, and respiratory phase-resolved 3D images with one single scan. 

Therefore, reconstructed images from the ‘prep’ scan can be used for pre-treatment 

planning. Furthermore, it uses a k-space acquisition pattern (‘navigator data’ + ‘imaging 

data’) specifically designed for the partial separability model, for which the spatial subspace 

and linear temporal transform are already available as byproducts of image reconstruction 

and do not need to be calculated as a post-processing step. However, it is worth noting that 

the core idea of SPIDERM is not limited to this specific Multitasking sequence for ‘prep’ 

scans. Variations of SPIDERM for real-time image generation and contrast regeneration are 

feasible with different ‘prep’ methods, as long as spatial basis functions are calculated and 

stored after the ‘prep’ scan and frequently sampled navigator data can be easily transformed 

to temporal weighting functions. We also note that in the current T1/T2 MR Multitasking 

sequence, a modified golden-angle stack-of-stars trajectory was used to sample the imaging 

data, with golden angle ordering in-plane and Gaussian-density randomized ordering in the 

partition direction. The isotropy of spatial resolution still needs to be improved for coronal 

or sagittal views. However, the SPIDERM scheme is not limited to this specific sampling 

pattern. Other sampling patterns, such as the rotating cartesian k-space (ROCK) pattern (Han 

et al 2017), may also be applied.

We used an image processing algorithm based on thresholding to estimate the real-time 

diaphragm position. Several factors may contribute to the errors in this estimate. First, the 

real-time images are of changing contrast and have a slice thickness of 6 mm. Second, the 

use of T2 preparation pulses can cause banding artifacts around the liver dome area at a 
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series of subsequent time points, even after contrast regeneration. Those artifacts present a 

challenge for automated position measurement algorithms. Therefore, some obvious outliers 

in figure 9, which indicate errors of up to 2 cm, does not necessarily mean the real error 

for SPIDERM is 2 cm. Even with these outlier position measurements, we note that the 

tracked liver dome positions are still highly correlated between the real-time images and the 

reference.

Currently, SPIDERM assumes that the spatial subspace and the linear transformation from 

navigator data to temporal weighting functions are constant throughout the acquisition 

process. Under this assumption, a pre-learned spatial subspace and linear transformation can 

be used as constant operators, therefore only the navigator data is needed to update real-time 

images. In some scenarios, however, this assumption may not be satisfied. For instance, a 

bulk body movement would reduce the spatiotemporal correlation of the signal evolution, 

thus destabilizing both the spatial subspace and linear transformation. In real radiotherapy 

settings, immobilization devices are typically used to minimize rigid body motion, which 

may help lessen the likelihood of such movement. Another challenging scenario is that an 

abnormal respiratory pattern, such as a deep breath that forces the new image outside the 

pre-learned subspace, also can correspond to an image outside the fixed spatial subspace, as 

shown in supplementary information figure S1. To address this, a sudden deep breath could 

be recognized by setting an acceptance range for ϕ1,:, the first component of contrast-frozen 

temporal weighting functions (ϕ in equation (7)). If the generated ϕ1, ts goes out of the 

acceptance range at specific time point ts, the image at ts should be rejected for display, as in 

supplementary information figure S2. An automatic detection of abrupt motion may trigger 

beam-off until the respiratory pattern returns to normal. Further, internal organ motion and 

gradual displacement due to non-cyclic organ motion (such as peristaltic motion) may also 

break the basic assumption. This would be an interesting topic to explore in our future work.

The current SPIDERM technique has several limitations. First, the reconstruction time 

for stack-of-star sampling-based MR Multitasking is currently several hours, which is 

acceptable for retrospective reconstruction, but would be prohibitively long for the ‘prep’ 

scan in practical applications. This will be addressed from two angles in the future. On one 

hand, direct reconstruction acceleration can be done based on the current MR Multitasking 

technique, including optimization of sampling trajectory with Cartesian acquisition (Chen 

et al 2021), improvement of the iterative reconstruction process, as well as transformation 

of the code from MATLAB to, for example, C++. On the other hand, given enough data 

acquired with this sequence, deep learning reconstruction may be introduced to further 

reduce the reconstruction time (Chen et al 2019). Second, banding artifacts caused by 

B0 field inhomogeneities and imperfect T2 preparation pulses may still be visible at the 

liver dome, which degraded the image quality of T2w images, as shown in figure 7. As 

a feasibility study, all experiments in this work were performed at 3 T, which made the 

quality of B0 field shimming and T2 preparation refocusing pulses suboptimal, particularly 

for large field of view. This problem may be alleviated with adoption of advanced pulse 

designs, higher-order shimming technologies, or lower field strength. Third, during the 

binning process based on the liver-dome position for contrast regeneration, exhale and inhale 

portions of the breathing cycle were not differentiated, which could lead to errors. This may 
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be addressed in the future by modifying the binning procedure to separate these portions as 

different phases.

6. Conclusion

SPIDERM is a novel imaging technique for real-time multi-contrast 3D imaging with a low 

latency. An imaging framework based on SPIDERM can potentially become a standalone 

package for MRgRT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The workflow of the SPIDERM technique. A ‘prep’ scan is first performed to learn and 

store the subject-specific model, including the spatial subspace Ux and the transformation T 
from navigator data dnav to subspace coordinates ϕ; a ‘live’ scan is then performed to acquire 

a single central k-space line for tracking dynamic information, which is adequate to generate 

on-the-fly 3D images, given the pre-learned model from the ‘prep’ scan. Contrast-frozen 

images can be generated from contrast-varying images in the ‘live’ scan, allowing real-time 

imaging with a contrast weighting at user’s discretion.
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Figure 2. 
(a) K-space sampling pattern and (b) sequence diagram of the T1/T2 Multitasking sequence. 

(a) The k-space is continuously sampled using a stack-of-stars FLASH sequence with 

golden angle ordering in the x–y plane and Gaussian-density randomized ordering in the 

z-direction, interleaved with navigator data (central k-space line along z-direction, kx = ky 

= 0) every 10th readout. (b)A saturation recovery (SR) preparation and T2 preparation (T2-

Prep) are used to generate T1-weighted (T1w) and T2-weighted (T2w) signals, respectively, 

during each magnetization evolution cycle. A gap of 700 ms is intended to facilitate 

magnetizations’ full recovery and thus minimize T1 weighting in subsequent PDw and T2w 

acquisitions.
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Figure 3. 
In-vivo experimental design. Two identical 8 min scans were performed successively to 

serve as a ‘prep’ scan and a ‘live’ scan, respectively. Both navigator data and imaging data 

were acquired in the ‘live’ scan. SPIDERM images (CV-SPIDERM and CF-SPIDERM) 

were generated using navigator data from the ‘live’ scan, while reference images (CF-ref) 

were generated by retrospective reconstruction using both navigator data and imaging data 

from the ‘live’ scan.
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Figure 4. 
Comparison of true reference images and SPIDERM-generated images at representative 

time points corresponding to (a) end-of-expiration and (b) end-of-inspiration. The grey 

dashed lines indicate that respiratory positions in SPIDERM images were consistent with the 

ground truth.

Han et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2022 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
(a)–(c) Linear regression analysis of the motion displacement in reference images and 

CV-SPIDERM images for the digital phantom study. Time points from normal, long, and 

short respiratory cycles showed an R2 of 0.984, 0.991 and 0.983 respectively.
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Figure 6. 
Metric evolutions of eight healthy volunteers over the 8 min live scan.
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Figure 7. 
Comparison of reference images and SPIDERM images of a representative volunteer 

(Volunteer 4 in table 1) at (a) the end-of-expiration state and (b) the end-of-inspiration 

state. Corresponding time points of the contrast-varying images were: (a) right before 

T2 preparation, and (b) ~60 ms after saturation recovery. Contrast-varying images were 

renormalized to avoid possible dimness after saturation recovery. The grey dashed lines 

indicate that the respiratory positions in SPIDERM images were consistent with the 

reference image.
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Figure 8. 
Comparison of (a) CV-ref images and (b) CF-SPIDERM T1w/T2w/PDw images within a 

respiratory cycle. Grey dashed lines are drawn at the top position of liver dome within the 

cycle for better visualization of the organ displacement.
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Figure 9. 
(a)–(c) Linear regression analysis of the motion displacement in reference images and 

SPIDERM images for in-vivo studies. CV-SPIDERM images, CF-SPIDERM T1w images 

and CF-SPIDERM PDw images had R2 of 0.986, 0.983 and 0.983 with CV-ref images, 

respectively.

Han et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2022 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Han et al. Page 25

Table 1.

Mean NRMSE, PSNR and SSIM values between CV-SPIDERM and CV-refimages for each volunteer.

Volunteer NRMSE PSNR SSIM

1 0.127 ± 0.062 31.16 ± 4.34 0.89 ± 0.04

2 0.113 ± 0.043 32.33 ± 4.74 0.93 ± 0.03

3 0.120 ± 0.058 32.07 ± 4.85 0.91 ± 0.04

4 0.186 ± 0.057 27.56 ± 4.98 0.88 ± 0.03

5 0.127 ± 0.065 30.13 ± 4.64 0.85 ± 0.06

6 0.117 ± 0.035 31.43 ± 4.86 0.90 ± 0.04

7 0.108 ± 0.026 31.96 ± 5.33 0.92 ± 0.04

8 0.233 ± 0.038 24.36 ± 5.41 0.77 ± 0.07

Mean 0.141 30.12 0.88
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