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Abstract  The plasticizer di (2-ethylhexyl) phthalate 
(DEHP) inhibits differentiation, impairs glucose metab-
olism, and decreases mitochondrial function in murine 
muscle satellite cells; however, if these effects are trans-
lated to human cells is unknown. The goal of this study 
was to evaluate changes in morphology and prolifera-
tion of primary human skeletal muscle cells exposed to 
DEHP. Rectus abdominis muscle samples were obtained 
from healthy women undergoing programed cesarean 
surgery. Skeletal muscle cells were isolated and grown 
under standard primary culture conditions, generat-
ing two independent sample groups of 25 subcultures 

each. Cells from the first group were exposed to 1 
mM DEHP for 13 days and monitored for changes in 
cell morphology, satellite cell frequency and total cell 
abundance, while the second group remained untreated 
(control). Differences between treated and untreated 
groups were compared using generalized linear mixed 
models (GLMM). Cell membrane and nuclear envelope 
boundary alterations, loss of cell volume and presence 
of stress bodies were observed in DEHP-treated cul-
tures. DEHP-treated cultures also showed a significant 
reduction in satellite cell frequency compared to con-
trols. Exposure to DEHP reduced human skeletal mus-
cle cell abundance. Statistical differences were found 
between the GLMM slopes, suggesting that exposure to 
DEHP reduced growth rate. These results suggest that 
exposure to DEHP inhibits human skeletal muscle cell 
proliferation, as evidenced by reduced cell abundance, 
potentially compromising long-term culture viability. 
Therefore, DEHP induces human skeletal muscle cell 
deterioration potentially inducing an inhibitory effect of 
myogenesis by depleting satellite cells.
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Introduction

Di (2-ethylhexyl) phthalates (DEHP) are widely 
used as additives in plastic products to increase flex-
ibility, endurance and transparency (ATSDR 2019). 
However, these chemical compounds are toxic and 
teratogenic (Park et al. 2020). According to the U.S. 
Environmental Protection Agency (EPA), DEHP is 
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the most widespread plasticizer and one of the six 
phthalates considered priority pollutants world-
wide (EPA 2012). Because DEHP is not covalently 
bound to the plastic polymer, this phthalate can be 
released and transported by air, water and soil (Hal-
den 2010). DEHP concentrations in nature depend 
on the environment where DEHP is deposited. Net 
et  al. (2015) reported that DEHP dust concentra-
tion varies between 600 µg g−1 d−1 in the U.S. and 
3000  µg g−1 d−1 in Denmark, estimating a general 
absorption per person of 70 µg kg−1 d−1. Despite a 
maximum exposure concentration of DEHP per day 
established at 25 µg kg− 1 for a human adult (60 kg) 
(World Health Organization 2017), concentrations 
as low as 100 µM could be harmful for different tis-
sues and systems (Brassea-Pérez et al. 2022).

Human exposure to DEHP mostly occurs 
by consuming food and beverages packaged in 
plastic (Kim et  al. 2014; Gurdemir et  al. 2019), 
but also through inhalation (Franken et  al. 2017), 
across the skin (Wu et al. 2015) and via parenteral 
administration (Fromme 2011; Kelley et  al. 2012; 
Steiner et al. 1998) found that DEHP concentration 
in human saliva after sucking on a PVC film, 
common in dental vacuum forming sheet, vinyl toys, 
and snorkel mouthpieces, is 1017 µg g−1 equivalent 
to 2.6 mM (2604 µM). DEHP is a lipophilic 
compound that can cross biological membranes; it 
is absorbed and metabolized in the intestine, and 
distributed through the vascular system reaching the 
liver, before excretion takes place (Rael et al. 2009; 
Choi et al. 2013). Within cells, esterase and lipase-
mediated metabolism hydrolyze DEHP into its 
primary metabolite mono-(2-ethylhexyl) phthalate 
(MEHP) (Koch and Calafat 2009; Choi et al. 2013). 
This monoester is lighter (lower molar mass) than 
DEHP and, therefore, preferentially transported into 
the vascular system. Thus, MEHP is a more reactive 
and potentially hazardous compound to human 
health than DEHP (Choi et  al. 2018). Chronic 
exposure to phthalates in humans and other animals 
is associated with endocrine dysfunction (Cho et al. 
2015), developmental alterations (Agarwal et  al. 
1986; Zuo et  al. 2014), cancer (Wang et  al. 2012; 
Yavasoglu et  al. 2014; Crobeddu et  al. 2019), and 
loss of cell proliferation and viability in different 
tissues (Ma et  al. 2018; Molino et  al. 2019; Chen 
et  al. 2020). Despite the available information 
on the hazardous effects of DEHP in mammals, 

the potential impact of this compound in human 
skeletal muscle is still unclear (ATSDR 2019).

Skeletal muscle is composed of cells with multiple 
nuclei that form long fibers; these cells are involved 
in voluntary movements and represent 30% and 38% 
of body mass in adult women and men, respectively 
(Janssen et  al. 2000; Hill and Olson 2012). As a 
contractile apparatus, skeletal muscle fibers need 
to be continuously repaired. The proliferation or 
population growth capacity of skeletal muscle cells 
and fibers depends on self-renewal of myogenic 
satellite cells (Snijders et  al. 2015). Skeletal muscle 
satellite cells maintain cell populations which would 
spread or proliferate, differentiate into myoblasts, fuse 
forming multinuclear myotubes, and lead to myofiber 
formation (Etienne et  al. 2020). This regeneration 
process compensates for tissue loss due to attrition, 
exposure to xenobiotics or injury (Snijders et  al. 
2015; Chen et al. 2020; Etienne et al. 2020).

Chen et  al. (2020) suggested that DEHP/
MEHP induces mitochondrial dysfunction and 
inhibits myogenesis in murine skeletal muscle 
cells. Moreover, exposure to phthalates promotes 
fragmentation of the mitochondrial reticulum, 
compromising mitochondrial efficiency (Hoppins 
2014; Lackner 2014). By decreasing mitochondrial 
energy production, DEHP/MEHP could compromise 
muscle satellite cell viability and myogenic 
regeneration. Furthermore, skeletal muscle 
dysfunction may lead to metabolic disorders such as 
insulin resistance, obesity (Rabinowitz and Zierler 
1962) and even sarcopenia (Yang et  al. 2022). 
As plasticizers are found in many daily products, 
exposure to DEHP has increased in the last decades 
(Ferguson et  al. 2011; Kim et  al. 2014; Gurdemir 
et  al. 2019). The aim of this study was to analyze 
potential changes in skeletal muscle cell proliferation, 
abundance and morphology in primary human 
skeletal muscle cells exposed to DEHP.

Materials and methods

Sample collection

Rectus abdominis muscle biopsies (~ 3  g) were 
collected from five healthy adult (18–35 years old) 
females undergoing programed cesarean surgery 
and antenatal care at Instituto Mexicano del Seguro 
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Social (IMSS). Prior to sampling, informed consent 
was obtained from all volunteers. The research 
protocol and informed consent forms were registered 
and approved by Comité de Ética en Investigación 
and Comité Hospitalario de Bioética (F-CNIC 2019-
174 and R 2000-785-008), Comisión Nacional de 
Investigación Científica del Instituto Mexicano del 
Seguro Social (IMSS; 2018-785-010), as well as by 
Comisión Nacional de Bioética (CONBIOÉTICA-
09-CEI-009-20160601). Sample collection was 
carried out in accordance with the guidelines of 
CONBIOÉTICA and the Code of Ethics of the World 
Medical Association (Declaration of Helsinki).

Primary cell isolation and culture

Human skeletal muscle cells were grown from tissue 
explants in culture medium consisting of Dulbecco’s 
Modified Eagle Medium/Nutrient Mixture F-12 
(DMEM/F-12, 1X; Corning®), calf serum (FBS, 
12.4% v/v; Gibco™), penicillin/streptomycin (10 U 
mL−1; GibcoTM), l-alanine-l-glutamine (GlutaMAX, 
100X; Gibco™), sodium pyruvate (100 mM; 
Gibco™) and sulfonic acid (HEPES, 1 M; Gibco™). 
Skeletal muscle cells were incubated at 35 ± 1 °C in a 
humidified 5% CO2 incubator. Medium was changed 
every 3 days. Cells were allowed to reach ~ 98–100% 
confluence before being sub-cultured until enough 
biomass for the bioassays was obtained.

Cell viability at different di (2‑ethylhexyl) phthalate 
(DEHP) doses

DEHP toxicity in skeletal muscle cells was tested 
prior to bioassays to establish the in  vitro DEHP 
theoretical concentration at which cell viability 
declines. The theoretical concentration was estimated 
according to the ratio (v/v) of dissolved DEHP in FBS 
and culture medium (Jones et al. 1975; Li et al. 2015). 
DEHP partially dissolves in cell culture medium; 
thus, initial concentration of DEHP in a stock solution 
is not maintained and the actual DEHP content 
(approximately 15% of the initial concentration) can 
be estimated as follows:

(1)
[DEHP]disolved = 0.1528x + 1.5263, R2 = 0.96, p = 0.021

 where x represents the DEHP concentration in the 
stock solution.

The proportion of live skeletal muscle cells was 
determined by trypan blue exclusion using a hema-
tocytometer (Ehrlich 1904; Louis and Siegel 2011). 
By estimating cell viability, it was found that, at a 
theoretical concentration of 925 µM DEHP, 40% 
of the cells were dead between 10 and 13 days of 
exposure (Fig. 1). Considering the apparent self-dif-
fusion coefficient (Dapp) of DEHP in the medium to 
be 4.04 × 10−7  cm min−1 (Hara 1993; Bernard et  al. 
2021), the concentration of dissolved DEHP in cul-
ture medium was estimated to be approximately 1000 
µM (1 mM). Where dissolved DEHP is the portion of 
the phthalate in contact with the cells in culture and 
can be absorbed by them. Therefore, further bioassays 
were carried out for 13 days using a 1 mM DEHP 
concentration. Prior to each assay, DEHP was diluted 
in FBS (12.4% v/v; Gibco™) for 24 h and added to 
the culture medium.

Di (2‑ethylhexyl) phthalate (DEHP) bioassay

Skeletal muscle cells were trypsinized (Freshney 
2016) and seeded in 25 cm2 T flasks. From each 
donor (biological replicate), 10 primary cell cultures, 
in independent T flasks, were obtained, for a total of 
50 T flasks (subcultures or experimental units; Mead 
et al. 2012). Cells were then assigned to two groups, 
one group was treated with a theoretical concentration 

Fig. 1   Relationship between the theorical concentration (Jones 
et al. 1975; Li et al. 2015) of dissolved di (2-ethylhexyl) phtha-
late (DEHP) and DEHP stock solution (black circles) and cell 
viability (gray triangles) in human skeletal muscle cells in pri-
mary culture
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of DEHP (1 mM, n = 25 T flasks) (Jones et al. 1975) 
for 13 days; the second group was kept as an untreated 
control (n = 25 T flasks). At the beginning of each 
bioassay, each T flask started at ~ 40–50% confluence.

Cell morphology, proliferation, and regeneration 
capacity

Human skeletal muscle cell cultures were monitored 
using an inverted microscope and ZEN 2.0 software© 
(Carl Zeiss Microscopy GmbH 2011). Photographs 
were taken under a 20× objective from random 
quadrants of each flask and saved in JPEG format 
(5 mp). Photograph quality parameters, including 
brightness (normal 0%), contrast ratio (20%), 
resolution (96 ppp), and noise (0%) were considered 
to select representative images.

The images that met the required quality 
parameters were used for further processing, 
including determination of cell morphology, cell 
abundance, and satellite cell frequency. Changes in 
physical cell characteristics, including cell volume 
loss (plasmolysis), presence of bodies in the cytosol 
(Ravel-Chapuis et  al. 2016), and changes in the 
nuclear envelope (Ye et  al. 2017), were registered. 
Cell confluence measured as the percentage of the 
surface culture area that is covered with cells was 
also considered. Cell proliferation was quantified 
based on changes in cell abundance and used as an 
indicator of cell population growth. Cell abundance 
was estimated using ImageJ (Schneider et  al. 2012). 
To ensure consistency across images, a reference 
scale was set for each image using ImageJ software 
(Schneider et  al. 2012), considering that 574 
pixels in each 20×  objective image is equivalent to 
0.02  cm. Total cell abundance was then calculated 
by extrapolating the number of cells counted in each 
photograph (0.0061178 cm2) to the total surface of 
each flask (25 cm2). Total cell count was reported as 
the mean of total number of cells in 25 cm2 per day 
in each culture flask. This method provides accurate 
and consistent measurement of the cell population 
over the course of the experiment. The frequency of 
satellite cells, which are a major component of the 
regenerative capacity of muscles (Charifi et al. 2003), 
was used as a proxy of the regeneration capacity of 
skeletal muscle. Satellite cells were identified as those 
showing a characteristic round shape and approximate 
size of 25 ± 15  μm (Allbrook 1981; Gregory 2004) 

using a 2D landmark-based geometric morphometric 
analysis conducted in ImageJ software (Schneider 
et  al. 2012), following the methodology described 
by Labno in  2014 for automated cell counting in 
mixed samples. The following parameters were used 
for particle analysis: (1) size exclusion, where cells 
larger than 50 μm were excluded by the software; (2) 
structure, by setting cell shape circularity between 
0.8 and 1; (3) color, using the minimum method 
for thresholding in hue, saturation, and brightness 
(HSB). The data obtained following this automated 
process was visually confirmed. Total satellite cell 
numbers were estimated using the same extrapolation 
parameters used for total cell abundance. Satellite 
cell absolute frequency was divided into two sets to 
calculate the average daily frequency of satellite cells 
in the first (1–7 days) and second (8–13 days) weeks 
of the bioassays, respectively.

Statistical analyses

Shapiro–Wilks (W) and Levene’s tests were used to 
evaluate statistical assumptions of normality and 
homoscedasticity, respectively, before statistical 
analyses were performed (Hector 2015). Non-
parametric Wilcoxon test was applied to estimate 
statistical differences in satellite cell frequency 
between control and treatment groups through the 
first (1–7 days) and second week (8–13 days) of 
bioassays.

To avoid observation bias during cell counts, 
the full data set was subjected to bootstrapping, 
using 1000 iterations; no statistical differences were 
observed between sample and resample distributions 
(X2 = 2400, p = 0.2405). Hence, raw data were used to 
compute further analyses. Cell abundance quantified 
in each flask was treated as an independent subsample 
of each human skeletal muscle cell culture (n = 5). 
For each culture condition (control, DEHP exposure), 
generalized linear mixed-effects models (GLMMs) 
(Bates et  al. 2015; Handayani et  al. 2017) were 
adjusted to analyze skeletal muscle cells response, 
in terms of cell proliferation (response variable). 
Random slopes, intercepts and non-random effect 
from independent cultures were considered for model 
building (Table 1).

GLMM were designed following a gamma dis-
tribution with an identity link function (f(x) = x) 
as it yielded the best fit for model building and 
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data distribution showed no statistical differences 
with respect to a reference gamma distribution 
(X2 = 32,680, p = 0.275). Goodness of fit and model 
selection for correlated and uncorrelated intercepts 
and slopes were based on Akaike’s information crite-
rion (AIC). Nagelkerke R-squared, an alternative test 
for fitted models, was estimated as well as the signifi-
cant relationship described by the model (p value), by 
using the likelihood ratio test (Chi-square test) (Kaba-
coff 2015). For this estimation, each GLMM is com-
pared against a null model which is nested in the fit-
ted models. GLMM data are presented as means and 
standard deviations. The slope coefficient and con-
stants were statistically tested to evaluate differences 
in skeletal muscle cells between DEHP-treated and 
control cells using Student’s t-test (Ferson and Burg-
man 2000). All analyses were performed using RStu-
dio 4.0.3® (RStudio Team 2020) and all reported p 
values lower than 0.05 (α = 0.05) were considered sta-
tistically significant.

Results

A DEHP theorical concentration of 1 mM (cell 
viability <  60%) was used for further analysis as 
other tested concentrations (10, 100 and 200 µM) did 
not affect skeletal muscle cell viability (≥ 90%).

Di (2‑ethylhexyl) phthalate (DEHP) induces 
morphological changes in human skeletal muscle 
cells in primary culture

From the 526 total photographs obtained, 413 (78.5%) 
images met the required quality parameters; total cell 
abundance and satellite cell frequency were calculated 

throughout the bioassay. Figure  2 shows representa-
tive images of the morphological changes observed in 
primary human skeletal muscle cells exposed to DEHP 
(1 mM). From day 3 of the bioassay, phthalate micelles 
were observed in the cytosol. Satellite cell membranes 
shrunk and contracted, and some skeletal cells lost vol-
ume; these changes were observed especially in cells 
without adjacent or neighboring cells. On day 6, DEHP 
particles were observed inside the nucleus and the 
nuclear envelope appeared dissociated. At this time, 
some satellite and skeletal muscle cells were seen floating 
in the media. Plasmolysis and stress bodies formation in 
the cytosol increased with DEHP exposure time. On day 
9, plasmolyzed cells were prevalent and the intercellular 
spaces became more evident with time in cells exposed 
to DEHP. During the second week of DEHP exposure, 
the cytoplasmic material was almost covered by stress 
bodies surrounding the nuclei. Control cultures started to 
show cells growing on top of other cells, forming layers, 
when 85–90% confluence was reached. By day 13, more 
DEHP micelles were observed in the cytosol and nuclei, 
leading to cell shape change, loss of cell adherence to the 
culture flask, loss of cell layering, and cell death (Fig. 2). 
In contrast, in the control samples skeletal muscle cell 
layers were piled one on top of the other (~ 3 layers) and 
large multinucleated myotubes were observed.

Table  2 summarizes the total number of human 
skeletal muscle cells and of satellite cells under 
control conditions and following exposure to di 
(2-ethylhexyl) phthalate (DEHP, 1 mM) for 13 
days. Figure 3 shows the frequency of satellite cells 
within primary human skeletal muscle cells exposed 
to DEHP (1 mM) for 13 days. The absolute fre-
quency of satellite cells was significantly lower in 
cells exposed to DEHP compared to controls (with-
out DEHP); this was observed from day 1, and by 

Table 1   Factors used to build generalized linear mixed-effects models (GLMMs) to analyze human skeletal muscle cell population 
growth in untreated (control) and di (2-ethylhexyl) phthalate (DEHP, 1 mM) treated cell cultures for 13 days

(||) Indicates non-random effect from independent samples

Treatment Variable Type Description Formula

Control Cell abundance Continuous Response variable y ~ β0 + β1x + (x||human)
Culture time Continuous x: Explanatory variable
Human Categorical Random effect

DEHP Cell abundance Continuous Response variable y ~ β0 + β1x + (x||human)
Culture time Continuous x: Explanatory variable
Human Categorical

random effect
Random effect
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day 7 (first week, Fig. 3A), as well as by day 8 to 13 
(second week, Fig. 3B). DEHP-treated cells showed 
a decrease in satellite cell frequency despite avail-
able spaces in the culture flask. In contrast, skele-
tal muscle cells continued proliferating during the 

entire bioassay and satellite cells were frequently 
observed in the control group. Higher frequency of 
satellite cells in controls could be related to a higher 
potential of these cells to be resilient and cope with 
DEHP effects after 13 days of exposure.

Fig. 2   Morphologi-
cal changes in primary 
human skeletal muscle 
cells exposed to 1 mM of 
di (2-ethylhexyl) phthalate 
(DEHP) for 13 days. All the 
images were taken under 
20× objective and zoomed 
in for appreciation. Black 
arrows (

) point at intercellular 
spaces and white arrows (

) indicate phthalate 
micelles

Table 2   Total number of human skeletal muscle cells and of 
satellite cells under control conditions and following exposure 
to di (2-ethylhexyl) phthalate (DEHP, 1 mM) for 13 days. Cell 

abundance was obtained by extrapolating the number of cells 
counted in each photograph to the total surface area (25 cm2) 
of each flask

Data are shown as mean ± standard error

Treatment Culture Day Total number of skeletal muscle cells per 
25 cm2

Total number of 
satellite cells per 25 
cm2

Control 1 275,046 ± 44,802 14,984 ± 0.82
DEHP 223,593 ± 32,389 16,346 ± 0.98
Control 7 439,474 ± 133,585 6,837 ± 1.71
DEHP 319,332 ± 111,871 3,869 ± 1.09
Control 13 577,979 ± 161,911 4,491 ± 1.26
DEHP 407,070 ± 144,338 774 ± 0.39
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Di (2‑ethylhexyl) phthalate (DEHP) reduces human 
skeletal muscle cell proliferation under primary 
culture conditions

Significant contribution of the explanatory 
variable culture time was found for both, control 
(t-test = 121.5, p < 0.001) and DEHP-treated 
GLMMs (t-test = 94.18, p < 0.001), meaning that in 
models, culture time is a predictor variable for cell 
proliferation, regardless of culture condition. The 
GLMMs suggest that the time of culture contributes 
to explain 91% and 90% of deviance of the total 
number of skeletal muscle cells in control and 
DEHP treatment conditions, respectively (Fig.  4). 
Residuals from GLMM for both control (W = 12, 
p = 0.055) and DEHP-treated (W = 15, p = 0.34) 
cells were normal, achieving linearity in both 
cases. The variable human, independent samples, 
was tested as random effects in the models, but its 
contribution does not improve model goodness of fit 

test, so no random effects from human independent 
samples were assumed for GLMM building.

According to the GLMM for control cells, the 
average cell abundance after the average culture 
time (6.5 days) was 223,489 cells in 25 cm2 plus 
the starting cell quantity for the bioassay (~ 200,000 
cells), considering a standard error of 231 cells. For 
DEHP-treated cells, the expected average cell abun-
dance at 6.5 days was 203,660.3 cells in 25 cm2 plus 
the starting cell number (~ 200,000 cells), consider-
ing a standard error of 260 cells (Table 3).

The prediction equations for the GLMMs are 
represented as follows:

 where ŷ is indexed i for i-th human samples, x repre-
sents culture time.

(2)Control ŷi = 223, 488.6 + 33, 236.7xi

(3)DEHP ŷi = 203, 660.3 + 17, 866.9xi

Fig. 3   Absolute frequency of satellite cells within primary 
human skeletal muscle cells exposed to 1 mM of di (2-ethyl-
hexyl) phthalate (DEHP) for 13 days. A  Data from day 1 to 
7 of bioassay; B data from day 8 to 13 of bioassay. Statistical 

differences were estimated using Wilcoxon tests. ***signifi-
cant differences (p < 0.001) between treatments; black circles 
denote outliers
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For control cells, the expected increase in cell 
abundance per day was 33,237 ± 273.6 cells, which 
is higher than and statistically different from (t-test 
= − 56.18, p < 0.001) the expected value for DEHP-
treated cells (17,867 ± 520 cells) (Fig.  4). These 
results suggest that human skeletal muscle cells 
proliferated at a lower rate when exposed to DEHP 
compared to control cells. Moreover, positive 
slopes were observed in both GLMMs, indicating 
that cell proliferation was maintained throughout 
the bioassay; however, cell abundance significantly 

decreased with time in DEHP-treated but not in 
control cells (Fig. 4).

Discussion

We found that exposure to DEHP concentration 
lower than 1 mM did not significantly reduce skeletal 
muscle cell viability, as reported in previous studies 
(Chen et  al. 2020). High DEHP concentration, such 
as 1 mM, was used in prior studies with grass carp 
(Ctenopharyngodon idella) hepatocytes (cultured 
in 96-well plates) (Cui et  al. 2020, 2021), but not 
in studies with other vertebrates’ skeletal muscle 
cells. Negative effects of DEHP exposure have been 
observed in other cells, such as human endometrial 
cells (Cho et  al. 2015), erythrocytes (Melzak et  al. 
2018), placental cells (Tetz et al. 2013), and gametes 
(Al-Saleh et  al. 2019). Some authors describe 
cell alterations, including decreased cell size or 
plasmolysis, nucleus fragmentation (Alberts 2013), 
DNA damage (Al-Saleh et  al. 2019), vacuolization 
(Sung et  al. 2003), and lower cell density (Patel 
et  al. 2015). These changes have been related to 
programmed cell death and cellular senescence 
(Alberts 2013; Baar et  al. 2018). In the freshwater 
prawn (Macrobrachium rosenbergii), exposure to 
phthalates (including DEHP) produced alterations in 
nuclear morphology of hemocytes and promoted cell 
vacuolization leading to cell death via apoptosis and 
necrosis (Sung et  al. 2003). The authors observed 
that prawn hemocytes treated with 100 mg mL−1 of 
DEHP primarily die via necrosis on the first 10 min 
of exposure; then, at 40  min the main cell death 
pathway was apoptosis (Sung et al. 2003).

In the present study, the observed changes in 
skeletal muscle cell morphology, such as plasmolysis, 

Table 3   Summary of the effects of culture time in both control and di (2-ethylhexyl) phthalate (DEHP, 1 mM) treated cells on 
human skeletal muscle cell proliferation capacity during 13 days of bioassay

Std. Error, standard error; t-test, test for non-parametric Student’s t-distribution; p, significance level; AIC, Akaike information 
criterion
 **Statistical differences

Treatment Variable Estimate Std. Error t-test p AIC

                      Control Intercept 223,488.6 231.1 967.0 < 0.001** 615.5
Time 33,236.7 273.6 121.5 < 0.001**

                      DEHP Intercept 203,660.3 259.8 783.91 < 0.001** 602.3
Time 17,866.9 519.6 34.39 < 0.001**

Fig. 4   Generalized linear mixed models (GLMM) showing 
the total number of primary human skeletal muscle cells esti-
mated in a 25 cm2 T flask throughout 13 days. Lines represent 
the calculated linear regression models describing the asso-
ciation between number of cells and time of culture for cells 
exposed to di (2-ethylhexyl) phthalate (DEHP, 1 mM) (---) and 
the corresponding controls (

). Plotted values are those predicted by the GLMMs (n = 25, 
per treatment). The gray area represents the standard error for 
each GLMM.
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could be associated to cell death, which could 
explain cell deterioration and population loss. The 
origin of cell stress bodies observed during the 
bioassays was not confirmed; but, according with 
the literature, they could be vacuoles (Sung et  al. 
2003) or apoptotic bodies produced as a consequence 
of cell disfunction (Alberts 2013). Alternatively, 
these bodies could be lipid droplets, which have 
cytoprotective functions against lipotoxic agents and 
lipid peroxidation promoters (Jarc and Petan 2019), 
or peroxisomes, which are produced massively 
as cytoprotective factors during stress processes 
(Elcombe and Mitchell 1986; Lapinskas et al. 2005). 
Stress granules, cytoplasmic aggregates of protein 
and RNA that contribute to cellular protection, have 
been observed in arsenite-treated (0.5 mM) C2C12 
mouse myoblasts; these granules are more evident 
after 45  min of exposure (Ravel-Chapuis et  al. 
2016; Chen et  al. 2020) observed stress granule 
formation in C2C12 mouse myoblasts at different 
stages of differentiation (proliferating, quiescent 
and differentiated) upon exposure to DEHP and its 
primary metabolite, MEHP.

Satellite cells, which are muscle stem cells, 
differentiate into myoblasts and have a crucial role 
in muscle maintenance and repair (Snijders et  al. 
2015). The presence of DEHP/MEHP in skeletal 
muscle cells promotes alterations in mitochondrial 
morphology, such as changes from its filamentary 
reticular network form into vesicles, which are 
less efficient at producing ATP (Chen et  al. 2020). 
Likewise, phthalates block insulin-induced glucose 
cell uptake (Chen et  al. 2020). Without glucose, 
and with less efficient mitochondria, satellite cells 
are not able to differentiate into myoblasts (Chen 
et  al. 2020). This process leads to loss of cell 
abundance, decreased satellite cell recruitment and 
differentiation, and concomitant inhibition of muscle 
regeneration (Chen et al. 2020).

Human skeletal muscle cell proliferation was 
maintained, but satellite cell frequency decreased 
significantly after 13 days of DEHP exposure (1 
mM = 390.564  µg mL−1). Gutiérrez-García et  al. 
(2019) found that human hematopoietic stem cells 
from umbilical cord blood lost 82% of the cell 
population after 14 days of in vitro DEHP exposure 
(100  µg mL−1). Differentiated skeletal muscle cells 
were more resilient than satellite cells. This could be 
explained due to satellite cells being more sensitive to 

epigenetic alterations that impair cell function (Pérez 
et al. 2019), which reduce their capacity to deal with 
exogenous agents, including phthalates.

Differentiated skeletal muscle cells have high 
energy requirements due to their contractile function 
(Kanatous et  al. 1999; Ravussin and Smith 2006). 
This activity is matched with high blood flow demand 
which makes skeletal muscle more vulnerable to 
circulating xenobiotics (Molina-Ortiz et  al. 2013). It 
could be expected that metabolically active tissues 
that naturally deal with other kind of stressors, such 
as the contractile effort in muscle cells, could deal 
with xenobiotic effects (Rodrigues-Lima et al. 2003). 
Skeletal muscle, as a major organ in the human 
body, could have a role in degradation of xenobiotic 
compounds (Cooper and Plum 1987; Chen et  al. 
2020), including phthalates (ATSDR 2019). Further 
information is needed to assess the pathways in 
skeletal muscles that derive into DEHP/MEHP 
metabolization.

Based on the results from this study, it can be 
speculated that exposure to DEHP could aggravate 
muscular pathologies or syndromes such as 
sarcopenia, which is characterized by loss of muscle 
mass and function (Huang et  al. 2021). Loss of 
satellite cells reduce myoblast recruitment, promoting 
cell culture deterioration and loss of cellular integrity. 
These processes are similar to those associated with 
cellular senescence (Serrano et  al. 2008), which 
involves cellular aging and related diseases. In  vivo 
skeletal muscle cell deterioration could involve other 
factors including xenobiotic exposure (Chen et  al. 
2020), chronic diseases (Morley 2001), malnutrition, 
vitamin D deficit (Malafarina et  al. 2012), thermal, 
mechanical, oxidative, or pharmacological stresses 
(Mcardle et al. 2002), among others.

Conclusion

Di (2-ethylhexyl) phthalate (DEHP) exposure for 
13 days induces alterations in cell membrane and 
nuclear envelope boundaries, cell volume loss, 
presence of stress bodies, and reduced frequency 
of satellite cells in primary human skeletal muscle 
cell cultures. Based on the slope comparisons, we 
suggest that cells exposed to DEHP show lower 
proliferation rates than control cells. The results from 
this study suggest a potential link between DEHP 
exposure and functionality in human skeletal cells 
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in primary culture. The lower frequency of satellite 
cells in DEHP-treated cells as compared to controls 
could overwhelm the repair function leading to cell 
biomass loss over time. Exposure to DEHP reduced 
human skeletal muscle cell proliferation capacity as 
evidenced by reduced cellular abundance, which is 
more evident at 13 days of xenobiotic exposure.

In summary, changes in both morphology and 
proliferation capacity were observed in human 
skeletal muscle cells under primary cell culture 
following exposure to DEHP (1 mM) for 13 days. 
These results contribute to understand the toxic 
effects of phthalates in human skeletal muscle and 
support previous research on the myogenic inhibitory 
effect of DEHP in skeletal muscle cells in other 
mammalian species and could suggest a potential 
link between DEHP exposure and muscle cell 
functionality.
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