UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Learning in Multi-Robot Systems

Permalink
https://escholarship.org/uc/item/6hg1f4wn

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 18(0)

Author
Mataric, Maja |

Publication Date
1996

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6hg1f4wn
https://escholarship.org
http://www.cdlib.org/

Learning in Multi-Robot Systems

Maja J Mataric
Volen Center for Complex Systems
Computer Science Department
Brandeis University
Waltham, MA 02254
maja@cs.brandeis.edu

Learning in Situated Domains
Introduction

Reinforcement learning (RL) has been successfully ap-
plied to a variety of domains, and has recently been
attempted on situated agents such as mobile robots.
While simulation results are encouraging, work on phys-
ical robots has been slow to repeated that success. The
key challenges of situated domains include: 1) modeling
a combination of discrete and continuous state spaces
based on multimodal perceptual inputs; 2) modeling
real-world events that may neither be caused directly
by the agents nor perceived by it, but subsequently af-
fect its behavior; 3) the number of learning trials rea-
sonably available to an agent and the non-uniform ex-
ploration of the learning space mandated by the agent’s
external environment; 4) dealing with multiple concur-
rent and sequential goals; 5) modeling a combination of
discrete and continuous, immediate and delayed, multi-
modal feedback that may be available to the agent.

Designing Reward Functions

Rather than encode knowledge explicitly, RL methods
hide it in the reinforcement function which often employs
some ad hoc embedding of the domain semantics. One
more direct way to utilize implicit domain knowledge is
to convert reward functions into error signals, akin to
those used in learning control. Immediate reinforcement
in RL is a weak version of error signals, using only the
sign of the error but not the magnitude. Intermittent
reinforcement can be used similarly, by weighting the
reward according to the accomplished progress.

We suggest that such reinforcement can be introduced
1) by reinforcing multiple goals, and 2) by using progress
estimators. Since situated agents have multiple goals,
it is straightforward to reinforce each one individually,
with a heterogeneous reinforcement funciion, rather than
to attempt to collapse them into a monolithic goal fune-
tion. However, multiple goals are not sufficient for speed-
ing up situated learning if each of them involves a com-
plex sequence of actions. Such time-delayed goals are
alded by progress metrics along the way, in addition to
reinforcement upon achievement. We propose progress
estimators, functions which provide positive or negative
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Figure 1: R2 robots used to learn foraging.

reinforcement based on immediate measurable progress
relative to specific goals. These ”partial internal crit-
ics” serve a number of important functions in noisy
worlds: they decrease the learner’s sensitivity to inter-
mittent errors, they encourage exploration and minimize
thrashing, and they decrease the probability of fortu-
itous rewards for inappropriate behavior that happened,
by chance, to achieve the desired goal. For a detailed
discussion please see Matari¢ (1994).

Figure 2: Genghis-1I six-legged robots used to learn box-
pushing.

Experimental Design

Both of our learning experiments were conducted on fully
autonomous mobile robots on-board power, sensing, and
computation. The first set of experiments was done
with 4 IS Robotics R2 robots equipped with bump and
infra-red sensors for detecting collisions and contacts,
radio transceivers for positioning, communication, and
data gathering, and situated on a differentially steerable
wheeled base equipped with a gripper (Figure 1). The
second set of experiments was done on 2 IS Robotics
Genghis II robots, equipped with two whisker contact



sensors, an array of 5 pyro-electric sensor for detecting
the location of the goal (the light), and using six-legged
alternating tripod gate for propulsion (Figure 2). All of
the robots were programmed in the Behavior Language
and were controlled by collections of parallel, concur-
rently active behaviors that gather sensory information,
drive effectors, monitor progress, and contribute rein-
forcement.

The Learning Tasks

The first learning task consisted of finding a mapping
between conditions and behaviors into an efficient policy
for group foraging. Foraging was chosen because it is a
nontrivial and biologically inspired task, and because our
previous group behavior work (Matari¢ 1992) provided
the basis behavior repertoire from which to learn behav-
ior selection, consisting of avoiding, dispersing, search-
ing, homing, and resting. Utility behaviors for grasp-
ing and dropping were hard-wired as were their condi-
tions. By considering only the space of conditions nec-
essary and sufficient for triggering the above behaviors,
the agents’ learning space was reduced to the power set
of the following state variables: have-puck?, at-home?,
near-intruder?, and night-time?. The reduced foraging
task should, in theory, be easily learnable. In practice,
however, quick and uniform exploration is not possible
in the noisy multi-agent domain.

The second learning task consisted of finding a policy
for each of the robots to cooperatively push a long box
to the goal. Unlike the foraging task, box-pushing re-
quired careful coordination between the agents, in turn
requiring either accurate sensing, or communication, or
both. The task is designed so that a single-agent so-
lution, due to the size and shape of the box, is much
less efficient than an effective two-agent solution, but
the two-agent solution requires intricate cooperation or
the box is pushed in the wrong direction or out of reach
of one of the robots. The task was decomposed into
basic behaviors: pushing, pausing, turning. The task
required that each agent learn not only its own strat-
egy for keeping the box within reach and moving toward
the goal, but also the right behaviors in response to the
other agent, as sensed through the state of the box and
as communicated between the agents. The details of the
experiments and the data are described in Simsarian &
Matari¢ (1995).

Learning Results

The reinforcement learning algorithms we used summed
all of the multimodal reinforcement over time. Behav-
iors were switched based on external events, as well as
inputs from internal progress estimators. Reinforcement
was based on a collection of internal functions that mon-
itored external events and internal progress estimators.
Learning was continuous and incremental over the life-
time of the agent.
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Figure 3: The performance of the three reinforcement
strategies on learning to forage. The x-axis shows the
three reinforcement strategies. The y-axis maps the per-
cent of the correct policy the agents learned, averaged
over twenty trials.
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Both learning experiments were evaluated first by
comparing the system performance to the control hard-
wired behavior for foraging and for box-pushing. Second,
the foraging learning performance was also compared to
two alternative approaches, one using only multimodal
reinforcement but no progress estimators, and the other
using traditional Q-learning with positive reinforcement
when a puck was dropped in the home region (Figure 3).

Summary

The goal of this work has been to bring to light some of
the important properties of situated domains, and their
impact on the existing reinforcement learning strategies.
We have argued that the noisy and inconsistent proper-
ties of complex worlds require the use of domain knowl-
edge. We proposed a principled approach to embedding
such knowledge into the reinforcement based on uti-
lizing heterogeneous reward functions and goal-specific
progress estimators. We believe that these strategies
take advantage of the information readily available to
situated agents, make learning possible in complex dy-
namic worlds, and accelerate it in any domain.
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