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Abstract

This paper extends an existing continuum multi-lane formulation for traffic flow, provides a
discrete formulation for its numerical solution, and show initial results. The new formulation
enables a natural treatment of boundary conditions such as merges, diverges, lane-drops and
moving bottlenecks. The proposed model needs few extra parameters and is parsimonious.
The look-ahead distance, for example, induces that non-local conditions affect the flow at any
time-space point, causing smooth regime changes and fast waves. We find that as the look-ahead
distance tends to zero, the solution tends to the KW one. The example of a lane-drop is analyzed.



1 Introduction

Among the numerical extensions of the kinematic
wave (KW) model [1, 2] the multi-lane extension
has received little attention in the literature. The
first attempt [3] used a numerical scheme now
known to be unable to properly treat boundary
conditions in the KW model. Rather, existing
multi-lane KW theories have been developed to
solve specific problems [4-6] where traffic rules
are simple enough so that graphical KW solu-
tions are still tractable. Additionally, no more
than 2x2 problems (two user types and two lane
types) can be solved. In fact, in [4, 5] numeri-
cal methods are developed to solve the specific
problems.

This paper proposes a framework to solve gen-
eral 1x L problems using finite-difference schemes,
easily expandable for NV x L problems. During
the last decade much has been learned for deal-
ing with complex boundary conditions in the KW
model. Particularly, [7] pointed out that the flow
at the origin of the Riemann problem in the Go-
dunov scheme [8], g(ky, kq), is the cell transmis-
sion (CT) rule [9]:

9(ku, ka) = min{A(ky), p(ka)}, (1)

where k, and kg are the densities upstream and
downstream of the time-space point of interest.
Two monotonic functions A(-) and u(-) (see Fig.
la,) define the fundamental diagram and repre-
sent the ability of a (1-pipe) road segment for
sending resp. receiving flow. We shall call \(k)
and p(k) the demand and supply functions of a
segment.

Through flows and lane changing flows are
computed using discrete lane-choice models and
a FIFO rule for resolving conflicts. The contin-
uum formulation generalizes [3] where each lane
is represented by an independent conservation
equation and lane changing flows dictate com-
mon boundary conditions.

This paper is organized as follows: §§2 and
3 present the continuum resp. discrete formu-
lation followed by and example of a lane-drop
bottleneck in §4 and a discussion in §5.

2 The continuum formulation

Consider a freeway with L identical lanes where
identical vehicles flow. Let k 2 [k1,... k] and
q(k) 2 [q1(K), ... qr (k)] be vectors in RE; ky(t, x)
is the density in lane ¢ while gy(k) gives the out-
flow on £ = 1,... L. The outflow is the sum of
all possible partial flows g (k), ¢ =1,... L, em-
anating from £, ie

qe(k) = que (k). (2)
7

We call gy the through flows and gy, ¢’ # ¢, the
lane changing flows, which satisfy qp = —qpry.
In a segment without entrances or exits, the con-
servation equation in terms of outflows becomes

(3)

where the operators 9; and 0, give the vector
of time resp. space partial derivatives of k. A
general solution for (3) has not been identified
yet [10]. However, if the problem is expressed in
terms of the through flows the problem simplifies
to a set of scalar PDE’s with common boundary
conditions. To see this, note that the /th com-
ponent of (3) is

Oky  Oqu(k)
ot ox

that combined with (2) gives

Oque(ke) T

0£L

Ok + Opq(k) = 0
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ok
ot
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The RHS of (4) is called here the lane chang-
ing flow “gradient” and denoted ®,. When &, is
known, (4) becomes a set of L independent scalar
conservation laws, each one as in ordinary KW
theory.

Notice the similarity of (4) with the model in
[3] where @ is interpreted as a flow rather than
a gradient, and did not consider partial flows ex-
plicitly. The following section is a proposition for
their computation.



Partial flows

The basic assumption is that the demand for
movements £¢' (called here partial demands) and
the total supply in any lane can be obtained
knowing the current state of the freeway, ie know-
ing k. This is reasonable since demands respond
to the speed on different lanes and supply re-
flects the available space on the freeway. Both
variables, speeds and available space, are derived
quantities of k. We call partial demands Ay (k)
and total supply pe(k).

The problem of allocating the available sup-
ply is well known in the literature [11], but only
for single-pipe methods (eg, the merge model in
[12] uses a fixed split independent of the demand.)
Here, supply in lane ¢’ is split by analogy of a de-
terministic server of capacity py facing multiple
customer types arriving at rates Ay with iden-
tical service times and priorities. The splitting
coefficients are taken as the probability of a de-
parture being type £/, equal to Z)‘[f\'

- since we

assumed FIFO. Hence, in direct anglggy with (1)
we postulate

7)\86/ e
’ Zn )\nfl

We also impose an entropy-like condition stat-
ing that all the available supply should be used
if possible. Next, we formalize the computation
of partial demands.

qer (k) = min( A (k) (k). (5)

Partial demands

Lane-changing decisions are assumed given by a
discrete-choice process [13] that repeats contin-
uously in time. The choice function in this case
gives the proportion of users that would like to
change lanes. As opposed to traditional problems
treated with this technic, the choice for changing
lanes does not guaranty that the lane changing
will actually occur.

Let’s focus first on a single decision (of a sin-
gle driver) at some point (¢, z,¢) and then derive
its continuum formulation. The driver faces, at
most, three alternatives: (i) change to the left
lane ¢/ = ¢ — 1; (ii) stay in the same lane; and
(iii) change to the right lane ¢/ = ¢+ 1. We as-
sume that all the attributes necessary to make a

decision can be obtained from k(z). Thus, the
probability of choosing each alternative can be
denoted Py (0; k(z),x) and needs to satisfy

ZPM’(H;]{('I‘)’;U) =1, VE,ZC
Z/

where the location x is also included a an at-
tribute and 0 is the set of parameters of the dis-
crete choice model, omitted hereafter for clarity.

To derive a formulation in continuous time,
let 1/7 be the frequency of lane-changing deci-
sions (alternatively, 7 can be interpreted as the
time to complete a lane-changing maneuver given
that there is enough supply.) We define the choice
function in continuous time as Py (k(x),z) /7. If
we let A(k¢) be the total demand at (¢,z,¢) we
express partial demands as

Moo (k) = ko) Poer (K(x), ) /7. (6)

Various specifications for P(-) could be ex-
plored. This paper proposes the use of a parsi-
monious model described in the example section.

3 The discrete formulation

Based on formulation (4)-(6) we now present the
discrete model. We partition the freeway in cells
(i,¢) as shown in Fig. 1b, where i is the section
along the roadway and £ is the lane index. The
numerical grid (¢; 2 JAL, T4 2 iAx) has spacial
and temporal dimensions Az and At related by

Ax = ult,

for stability, where u is the fastest characteris-
tic in (3). Let &/, and ¢}, be the numerical ap-
proximation of ky(jAt,iAx) resp. qu (jAL, iAT).
(The time index will be omitted as much as possi-
ble.) Let Ajp be the partial demand for changing
from (7,£) to (i+1,¢') during time step j and let
;e be the total supply in (i, £').

The proposed numerical scheme consists of
the following independent loops indexed by sec-
tion and lane, where we use the symbol “:=" to
eliminate the time index:

Gioer = min{ Ay, WN@‘+1,€’};
n \in

At
kip := ki + E(Ei — Sie),



where Sy = > o Qe and By = > p Qi—1,0¢ are
the flows that exit and enter (i,¢) in time-step
Jj, respectively. Eqn. (7a) represents the discrete
analog of (5) (evaluated V¢',) while (7b) ensures
the conservation of vehicles. Total supplies are
readily obtained from the flow-density relation.
Partial demands are computed using

A
Niee (k) = N(kie) Poer (ky 23) At/ 7,

(8)
as one needs to account for the demand in the
entire time interval, ie, an approximation for the
following time integral of (6):

1 tj+At
/ M ke(s, ;) Poor (k(8,25), 2;)ds.
t

T .
J

Since At is small one can safely assume that A(-)
and Py (-) remain constant during the integra-
tion interval, resulting in (8) as claimed.

To see the correspondence between (7a) and
the continuum model (4) we rewrite (7b) as

i+1 j > Giee — Gi—1,0¢
kzj'e — k'zj'e + Qiee — Qi—1.ee _ _ UF#L
At Ax

Az

4 Example: Lane-drops

Consider a 1.2-mile, L-lane freeway segment that
has a lane-drop at D = 1.2 mi (see Fig. 2a.) At
t = 0 the freeway starts flowing at capacity. We
are interested in comparing the propagation of
the resulting wave with the KW solution.

We assume that each lane obeys a triangular
fundamental diagram with free-flow speed u =
60 mph, jam density for one lane x = 150 vpmpl
and wave speed w = 15 mph. It follows that

Nicer = ukig Py (k, 23) At/ T,
pier = w(k — kipr).

In this example we use 7 = 12 sec and the
simplest lane-choice model where

ng/(k,x) . T when Avw(t, l‘) > 0, (10)
T ~ | 0 otherwise.
The parameter 7 is a (fixed) lane changing pro-

portion (in % per time unit) and Auvgy(t,z) is

the average speed difference w.r.t the target lane,
measured across some look-ahead distance, L, ie

Al z+Lg
Dot & - [ (outts) — ot s))ds
Ly J,
in the continuum, where v;(¢,z) is the speed on
lane ¢ at (¢, x).

With these specifications, procedure (7) was
applied for At = 1 sec and all combinations of
L,={2,.4,.6,8} and 7 = {10,20,...70} % per
min. The data set analyzed herein consists of six
cumulative count curves (N-curves) measured at
the evenly-spaced locations shown in Fig. 2a.
Next we show some properties of the parameters
of the model.

Effects of 7 and L,: smoothing

For ease of exposition, the following illustration
uses the schematic of Fig. 2b-c based on typical
N-curves from our sample, and by the end of the
section maps of the numerical solution are shown.

We are interested in the difference in the nu-
merical solution compared to the exact KW so-
lution, defined as §(¢) in part (b) of the figure,
and in the duration of the discrepancy, o in part
(c). Recall that the total flow in section ¢,

¢ = Z Qe

00

(11)

is the only comparable to the 1-pipe KW flow.
Only data where 6 > 0 is considered, ie, around
the time that the shock passes.

First, note that when {m = 0,L, > 0} or
L, = 0 the model gives the exact KW solution,
reassuring that the discrete model is properly for-
mulated. This was expected for 7 = 0 because
in the absence of lane changing (11) is the KW
solution for we are using triangular equilibrium
relations. It follows that L, is responsible for the
smoothing of the back-of-the-queue (BOQ.)

When L, remains fixed (Fig. 2b) points a
and d remain fixed and ¢ increases with 7, but o
remains unchanged. When 7 is held fixed (part
(c) of the figure,) the initial separation point a
goes to the right to point b in the figure, and
d — f as Ly — 0. This implies a reduction in §
and o as L, — 0.



To see why smoothing occurs, take L = 2,
assume that lane 2 terminates and that At = 7
for clarity in notation. The first lane chang-
ing takes place from lane 2 to lane 1 at (¢t =
(D — Ly)/u,x = D — Lg), which is the point
where the leader first sees the lane drop, call it
section ¢. It can be verified that the lane chang-
ing flow ¢y, = QT causes a queue in cell (i,1)

14w

carrying a flow ¢, = Q — qu = at a speed

T @
v =uw/[um +w(1+ m)]. Notice that qgﬂ is still
2Q but ¢/} = (£ +Q = QEZ < 2Q. Thus,
“small” bottlenecks caused by lane changing in-
duce local flow reductions before the actual wave
passes, smoothing-out the BOQ.

Several d-maps obtained with the numerical
method introduced here are shown in Figs. 3 and
4, for L = 2 and 3 lanes, resp. There is one (¢, z)
plane for every combination run, shown as rect-
angles in the figure. In both figures it is apparent
how L, dictates o (as shown in the top left (¢, x)
plane of Fig. 3,) and how § stabilizes at a lo-
cation that decreases with L,. The magnitude
of the discrepancy is also similar, as seen in the
scale box of the figures. The main difference is
the duration of the smoothing o, much larger for
L = 3. This is explainable since anticipation cre-
ates “fast waves” ( see Fig. 4) that are magnified
with the number of lanes. For example, if lane 3
terminates, the first lane changing will occur on
lane 3 (to 2) at a distance L, from the lane-drop,
and this induces in turn lane changing from lane
2 to 1 up to 2L, mi upstream of the first lane
changing.

5 Discussion

The evidence in the above paragraph confirms
the intuition that the inclusion of L, induces
the propagation of fast waves caused by antic-
ipation. As opposed to conventional single-pipe
waves, fast waves propagate across adjacent lanes
in the form of “small” bottlenecks induced by
lane-changers.

Further research is need to investigate other
functional forms for the choice function P(-), but
not deviate too much from the simple specifica-
tion (10) used in this paper. These functions

should be easy to calibrate for the BOQ is read-
ily observable in the field and we have identified
how the parameters affect the BOQ.

The analogy with a queueing system for split-
ting supplies could be used in more complicated
situations, such as special lanes, different vehicle
length and speeds. It may be advantageous to
generalize the FIFO rule by extending the incre-
mental transfer principle introduced in [5].

The particular traffic rules (ie, the heuristic
to compute the ®,’s) are part of boundary con-
ditions of the problem and cannot alter the sta-
bility of (4) as long as rules are stable.

We showed the case of a lane-drop, but the
model has been successfully tested with mov-
ing bottlenecks by including the method in [14]
for single-pipe models. In fact, the modelling of
moving bottlenecks is simpler in the multi-lane
framework since (i) their capacity is automat-
ically defined as the capacity of the remaining
lanes; and (ii) passing is handled naturally, with
no need for modifying the method. Current re-
search shows, encouragingly, that losses in capac-
ity comparable to the elusive capacity drop are
observed when cars changing lanes are modelled
as moving bottlenecks. When this concept is ap-
plied to vehicles passing a moving bottleneck, we
observe capacities that depend on the speed of
the original moving bottleneck, and the relations
match the empirical observations in [15].
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FIGURE 1 (a) Demand and supply functions; (b)
discretized freeway representation.

FIGURE 2 (a) Lane-drop; effects of the parame-
ters (b) L, constant; (c) m constant.

FIGURE 3 Numerical d-maps, L = 2 lanes.
FIGURE 4 Numerical J-maps, L = 3 lanes.
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Figure 1: (a) Demand and supply functions; (b) discretized freeway representation.
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