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Abstract

Purpose—Fatigue is the most common symptom associated with cancer and its treatment. 

Investigation of molecular mechanisms associated with fatigue in oncology patients may identify 

new therapeutic targets. The objectives of this study were to evaluate the relationships between 

gene expression and perturbations in biological pathways and evening fatigue severity in oncology 

patients who received chemotherapy (CTX).

Methods—The Lee Fatigue Scale (LFS) and latent class analysis were used to identify evening 

fatigue phenotypes. We measured 47,214 ribonucleic acid transcripts from whole blood collected 

prior to a cycle of CTX. Perturbations in biological pathways associated with differential gene 

expression were identified from public datasets (i.e., Kyoto Encyclopedia Gene and Genomes, 

BioCarta).

Results—Patients were classified into Moderate (n=65, mean LFS score 3.1) or Very High 

(n=195, mean LFS score 6.4) evening fatigue groups. Compared to patients with Moderate fatigue, 

patients with Very High fatigue exhibited differential expression of 29 genes. A number of the 

perturbed pathways identified validated prior mechanistic hypotheses for fatigue, including 

alterations in: immune function, inflammation, neurotransmission, energy metabolism, and 

circadian rhythms. Based on our findings, energy metabolism was further divided into alterations 

in carbohydrate metabolism and skeletal muscle energy. Alterations in renal function-related 

pathways were identified as a potential new mechanism.
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Conclusions—This study identified differential gene expression and perturbed biological 

pathways that provide new insights into the multiple and likely inter-related mechanisms 

associated with evening fatigue in oncology patients.
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INTRODUCTION

Fatigue is the most common symptom associated with cancer and its treatments [1]. In 

addition, severe fatigue persists in approximately 30% of cancer survivors [2]. Severe fatigue 

has a negative impact on patients’ ability to tolerate treatments as well as on their quality of 

life [3]. Given the high occurrence rates and significant negative impact of fatigue on 

patients’ lives, it is imperative that effective treatments be developed for this devastating 

symptom.

To date, exercise is the only intervention that has demonstrated efficacy for the management 

of fatigue in oncology patients [4,5]. One of the major reasons for the paucity of efficacious 

interventions is the lack of knowledge of the underlying mechanisms for fatigue [6–10]. 

Findings from several studies suggest that fatigue is associated with alterations in: 

inflammation/immune function, energy metabolism, neurotransmission, and circadian 

rhythm (Figure 1A). Of note, most of the work on fatigue mechanisms has focused on an 

evaluation of changes in serum levels of inflammatory mediators and mediators of immune 

function.

One approach that can be used to identify the mechanisms for fatigue is to evaluate for 

changes in gene expression using a refined phenotype. An improved understanding of these 

mechanisms has the potential to identify targets that can be used to develop therapeutic 

interventions to alleviate this devastating symptom. In a pilot study from our research group 

[11], changes in gene expression profiling of evening fatigue were evaluated in a sample of 

breast cancer patients who were categorized into low (n=19) and high (n=25) fatigue groups. 

This categorization was done using evening LFS scores and an established clinically 

meaningful cut-point for evening fatigue (i.e., >5.6 on a 0 to 10 scale) [11]. Findings from 

this pilot study were consistent with previous reports that evaluated the relationship between 

fatigue severity and changes in gene expression in oncology patients [12–14] and suggest 

that alterations in inflammation, neurotransmission regulation, and energy metabolism are 

potential mechanisms for fatigue. In the current study, we used an extreme phenotype 

approach to evaluate for changes in gene expression in a larger sample of patients who were 

classified into Moderate versus Very High evening fatigue latent classes in order to further 

elucidate the molecular mechanisms underlying fatigue.
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METHODS

Patients and settings

This study is part of a longitudinal study of the symptom experience of oncology outpatients 

receiving CTX [15]. Eligible patients were ≥18 years of age; had a diagnosis of breast, 

gastrointestinal, gynecological, or lung cancer; had received CTX within the preceding four 

weeks; were scheduled to receive at least two additional cycles of CTX; were able to read, 

write, and understand English; and gave written informed consent. A total of 969 patients 

were approached and 582 consented to participate (60.1% response rate). The major reason 

for refusal was being overwhelmed with their cancer treatment. Of the 582 participants, a 

subset of 333 had complete gene expression data. For this analysis, we compared the 

extreme phenotypes in a subset of patients who were not included in our pilot study (i.e., 65 

patients with Moderate and 195 patients with Very High levels of evening fatigue) [16].

Instruments

A demographic questionnaire obtained information on age, gender, ethnicity, marital status, 

living arrangements, education, employment status, income, and past medical history. 

Karnofsky Performance Status (KPS) scale was used to evaluate patients’ functional status 

[17]. Self-administered Comorbidity Questionnaire (SCQ) evaluated the occurrence, 

treatment, and functional impact of common comorbid conditions (e.g., diabetes, 

osteoarthritis, renal disease) [18]. Total SCQ score can range from 0 to 39.

The 13 item LFS assesses physical fatigue [19]. Patients rated each item using a 0 to 10 

numeric rating scale based on how they felt prior to going to bed each night over the 

previous week (i.e., evening fatigue). Higher LFS scores indicate greater fatigue severity. A 

score of ≥ 5.6 indicates a clinically meaningful level of evening fatigue [20]. The LFS has 

well-established validity and reliability [19].

Study Procedures

The study was approved by the Committee on Human Research at the University of 

California, San Francisco and by each of the study sites. A research staff member 

approached patients in the infusion unit to discuss participation in the study. All patients 

signed written informed consent. Depending on the length of their CTX cycle, patients 

completed questionnaires in their homes, a total of six times over two cycles of CTX (i.e., 

prior to the next CTX administration, approximately 1 week after CTX administration, 

approximately 2 weeks after CTX administration). Blood for ribonucleic acid (RNA) was 

collected at a single time point prior to the administration of the next cycle of CTX. Medical 

records were reviewed for disease and treatment information.

Procedures for RNA Processing

Sample processing—Total RNA was extracted from whole blood collected into 

PAXgene RNA stabilization vacutainers and processed using a standard protocol (Qiagen, 

USA). RNA concentration was measured by NanoDrop UV spectrophotometry 

(ThermoScientific, USA). Using the RNA 6000 Nano Assay (Agilent, USA), all of the RNA 

samples were determined to be of good quality (i.e., RNA Integrity Number ≥ 8).
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Microarray hybridization—Approximately 100 nanograms of total RNA was labeled 

using the Illumina Total Prep RNA Amplification Kit (Ambion, USA) and hybridized to the 

HumanHT-12 v4.0 Expression BeadChip (47,214 transcripts) (Illumina, USA). BeadChips 

were scanned using the iScan system (Illumina, USA) at the University of California, San 

Francisco Genomics Core Facility. Each HumanHT-12 BeadChip contained 12 sample 

BeadArrays.

Microarray preprocessing and normalization—Summary level data were calculated 

from the uncorrected, non-normalized, and non-transformed summary intensities at the 

probe level. Data preparation and analyses were done using two well-established protocols 

[21]. The quality control procedures were described in detail previously [11]. Two arrays 

were excluded because of poor hybridization performance for positive, background negative, 

and biotin controls assays. The remaining arrays displayed no unusual distance array signal 

intensity distributions with ArrayQualityMetrics. Background correction, quantile 

normalization, and log2 transformation were performed using limma [22]. Probes with 

insufficient expression measurements were excluded (n=2,619), leaving 43,923 probes 

spanning 16,980 genes for analysis.

Data Analyses

Latent Profile Analysis (LPA)—The method used to obtain the evening fatigue latent 

classes is described in detail elsewhere. [16] Briefly, LPA was used to identify subgroups of 

patients (i.e., latent classes) with distinct evening fatigue trajectories over the two cycles of 

CTX. Of the 582 patients included in the LPA, 20.0% (n=116) were in the Moderate, 21.8% 

(n=127) were in the High, and 58.2% (n=339) were in the Very High evening fatigue classes. 

For this paper, comparisons were made between the extreme phenotypes (i.e., Moderate 

(n=65) versus Very High (n=195) classes) for whom gene expression data were available.

Demographic and clinical data—Demographic and clinical data were analyzed using 

SPSS version 23 (IBM, Armonk, NY) and Stata version 13.0 (StataCorp, College Station, 

TX). Descriptive statistics and frequency distributions were calculated for demographic and 

clinical characteristics as well as for fatigue severity. Independent sample t-tests, Mann-

Whitney U tests, Chi square tests, and Fisher’s Exact tests were used to evaluate for 

differences in demographic and clinical characteristics between the Moderate and Very High 

evening fatigue classes.

Differential gene expression—Differential expression (DE) of genes was examined 

with an estimation of gene-by-gene variance using limma [23]. Phenotypic characteristics 

that differed between the two classes (i.e., age, gender, body mass index (BMI), KPS score, 

cancer diagnosis) were included as covariates in the model. To control for batch effects, the 

BeadChip was included as a covariate in the model. To control for differences in signal 

intensities, array weights were assessed and applied to the intensity values. Adjustment for 

multiple comparisons was performed using the Benjamini and Hochberg method [24] and 

significance was assessed at a false-discovery rate (FDR) of 10. Finally, 488 genes 

functioning as transcription factors (TF) in humans were identified using the TRANSFAC 

database [25] obtained from the CIS-BP database [26] based on the gene ontology 

Flowers et al. Page 4

Support Care Cancer. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



annotation with term GO:0003700 “sequence-specific DNA binding transcription factor 

activity” [27] (Supplementary Table 1).

Differential pathway perturbation—A summary signal estimate of expression was 

calculated from all valid probes spanning each gene [28]. Summary signal intensities were 

obtained for 16,980 genes. Differential pathway perturbation was performed using 

competitive analysis with the Generally Applicable Gene Set Enrichment (GAGE) R 

package [29]. Genes with insufficient background expression levels and a whole genome 

gene expression microarray were utilized to decrease spurious results associated with 

alternative approaches [30,11].

Pathways and gene sets were defined using the 229 Kyoto Encyclopedia of Genes (KEGG) 

[31], 259 BioCarta [32], and 17,202 Gene Ontology (GO) [27] annotated sets provided by 

the gageData R package. Pathways model the complex interactions between genes in a 

biological setting and are not expected to be solely all up- or down-regulated. Therefore, 

differential perturbations were tested under three models: up-regulation, down-regulation, 

and simultaneous up/down (2D) regulation. While all of the genes in each pathway were 

included in this analysis, only a subset of these genes had discernible expression changes 

above background (i.e., essential contributing (EC) genes).

Objective query of publicly available transcriptome experiments—To better 

categorize and understand the biological significance of the molecular signatures associated 

with evening fatigue, we employed a data driven approach to leverage the collection of over 

1,800 data sets that are available in the National Center for Biotechnology Information Gene 

Expression Omnibus (GEO). Specifically, we employed ProfileChaser (http://

profilechaser.stanford.edu) to identify whole transcriptome DE profiles that existed in GEO 

similar to the ones that we identified [33]. Ten sets containing 5000 randomly selected genes 

with similar levels of expression observed in this study were evaluated separately. Then, the 

ten sets were combined and all profiles identified as significant were considered for 

interrogation.

The “factor” (i.e., unit of analysis) comparison identified by ProfileChaser was used to 

exclude findings that were un-interpretable. Due to the content-agnostic nature of this 

analysis (i.e., all pairwise comparisons of all categories are included), many of the 

significantly similar profiles that were identified were not appropriate for this study (e.g., 

sample ID) or were not easily interpretable in the context of the current study (e.g., a factor 

that split samples based on DE at different time points of a yeast colony’s development) 

were excluded. Results were reviewed for relevance to hypothesized mechanisms for fatigue 

by two authors (i.e., EF, KK). For all of the matches identified in the GEO database, 

manuscripts were obtained and findings were reviewed for relevance to the current study.

RESULTS

Demographic and Clinical Characteristics

As shown in Table 1, compared to patients in the Moderate class, patients in the Very High 

evening fatigue class were significantly younger, had a higher BMI, a lower KPS score, and 
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a higher evening fatigue score at enrollment. A higher percentage of patients in the Very 

High evening fatigue class were female or had a breast cancer diagnosis. A smaller 

percentage of the Very High evening fatigue class had a gastrointestinal cancer diagnosis.

Differences in Gene Expression

After controlling for significant differences in demographic and clinical characteristics, 29 

DE genes were identified (Table 2). Seventeen genes were up-regulated and 12 genes were 

down-regulated in the Very High compared to Moderate evening fatigue classes. Three loci 

(i.e., LOC644537, LOC100131792, LOC647747) are not predicted in the current annotation 

release and their functions are unknown. Of the remaining 26 genes, seven were assigned 

one or more functional roles that can be associated with hypothesized mechanisms for 

fatigue (i.e., immune function/inflammation (i.e., ubiquitin D (UBD), ubiquitin conjugating 

enzyme E2 V1 (UBE2V1), complement factor H related 5 (CFHR5), mitogen activated 

protein kinase 4 (MAPK14)); energy metabolism (i.e., calcium voltage-gated channel 

subunit alpha1 E (CACNA1E), potassium voltage-gated channel subfamily Q member 5 

(KCNQ5)); and renal function (i.e., CFHR5, matrix metallopeptidase 24 (MMP24)).

Differentially Perturbed Pathways

Differentially perturbed pathways were evaluated using these databases (i.e., KEGG, 

BioCarta, GO). Using KEGG, 39 down-regulated, 162 2D perturbed, and no up-regulated 

pathways were identified. Using BioCarta, 84 2D and no up- or down-regulated pathways 

were identified. Using GO, six up-regulated, 241 down-regulated, and 3,517 2D pathways 

were identified (Supplementary Table 2). Table 3 summarizes the differentially perturbed 

pathways that were identified for evening fatigue.

Identification of Similar Whole Transcriptome Gene Expression Patterns from Publicly 
Available Data

ProfileChaser was used to identify publicly available gene expression studies that shared 

whole-transcriptome patterns of DE that were similar to those patterns observed in this 

study. A total of 592 unique comparisons spanning 155 GEO sets were identified as 

significant in the ten split analyses (Supplementary Table 3).

DISCUSSION

Differential Gene Expression and Perturbed Pathways

While the exact mechanisms underlying fatigue in oncology patients are not well 

understood, the most commonly cited interacting mechanisms include alterations in: 

immune function/inflammation, energy metabolism, neurotransmission, and circadian 

rhythm (Figure 1A). In the current study, all of these previously identified mechanisms [11] 

were confirmed. We expand the discussion to address alterations in immune function and 

inflammation separately. In addition, we provide evidence that energy metabolism can be 

divided into carbohydrate metabolism and skeletal muscle energy. We also provide new 

evidence that suggests that alterations in renal function are involved in the development of 

fatigue. Based on the findings from this study, a new mechanistic model for fatigue is 
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illustrated in Figure 1B. The remainder of the discussion focuses on the refined and potential 

new mechanisms underlying fatigue.

Inflammation and Immune Function

We identified discrete genes and pathways that suggest alterations in both inflammation and 

immune function influence evening fatigue severity. In the current study, two new genes 

associated with inflammation (i.e., UBE2V1, CFHR5) were down-regulated in patients in 

the Very High compared to the Moderate evening fatigue class. UBE2V1 activates nuclear 

factor kappa-light-chain-enhancer of activated B cells (NFκ-β), [32] which controls cytokine 

production. Alterations in UBE2V1 appear to inhibit stress-induced apoptosis through NF-

κβ [34]. CFHR5, which activates complement in the inflammatory cascade, particularly in 

renal tissues, including the glomeruli, [35] was also down-regulated. Polymorphisms in this 

gene were associated with changes in complement function associated with renal disease 

[36]. In addition, risk loci in this gene were associated with immunoglobin A-induced 

nephropathy [37]. From the KEGG database, the complement and coagulation cascade 

(hsa04610) was 2D perturbed. From the BioCarta database, ten interleukin pathways and the 

interferon-α (INF-α) pathway exhibited 2D perturbations. One of the findings from the 

ProfileChaser query (i.e., GDS1407), that described high and low levels of cytokine 

responses in leukocytes following lipopolysaccharide treatment, had a similar pattern of 

whole transcriptome changes as in the current study. Taken together, these findings suggest 

that alterations in inflammation contribute to the development of fatigue.

Additional findings support the role of immune function as both independent from and 

overlapping with inflammation. UBD plays a role in the processing of major 

histocompatibility (MHC) class I and II antigens [38]. A large number of differentially 

perturbed pathways related to immune function were identified (Table 3), including several 

found in our prior study (i.e., antigen processing and presentation (hsa04612), natural killer 

cell mediated cytotoxicity (hsa04650), chemokine signaling pathway (hsa04062), and NOD-

like receptor signaling pathway (hsa04621)) [11]. Finally, we found differential perturbation 

in the NFκ-β pathway (nfkbpathway).

Energy Metabolism

Alterations in energy metabolism may contribute to the development of fatigue [6–10]. In 

the current study, we identified perturbations in pathways broadly related to energy 

metabolism and separated these pathways into two distinct categories.

Carbohydrate Metabolism

Insulin-mediated glucose uptake is a process by which carbohydrates and other nutrients are 

metabolized. Insulin resistance, which occurs in the setting of excessive intake of 

carbohydrates and other nutrients, is a major cause of inflammation. Patients treated with 

CTX are at increased risk for impaired insulin sensitivity and increased inflammation [39]. 

CACNA1E, which is associated with type 2 diabetes and insulin sensitivity [40] and is 

hypothesized to regulate insulin secretion [41], was one of the DE genes that was up-

regulated in the current study. In addition, DE of MAPK14, which up-regulates 

inflammation in skeletal muscle in insulin resistant individuals with type 2 diabetes, [42] 
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was up-regulated in the current study. In terms of perturbed pathways, nine pathways related 

to carbohydrate metabolism in the KEGG database and the insulinpathway from the 

BioCarta database were identified. These data suggest that changes in insulin sensitivity and 

carbohydrate metabolism may influence inflammatory pathways that result in fatigue in 

oncology patients receiving CTX. Additional studies are needed to determine whether 

improving insulin sensitivity in patients receiving CTX could decrease inflammation and 

fatigue severity.

Skeletal Muscle Energy

KCNQ5, which was DE in the current study, is a highly abundant sodium channel in skeletal 

muscle [43]. How alterations in this gene’s expression may be related to fatigue severity is 

not known. From the KEGG database, perturbations in the oxidative phosphorylation 

pathway and from the BioCarta database perturbations in the igf1rpathway and 

igf1mtorpathway were identified. Using ProfileChaser, studies of the skeletal muscle system 

with similar whole transcriptome differential expression patterns to the current study were 

found (Supplemental Table 3). For example, in one study (i.e., GDS1541), changes in gene 

expression in whole blood from healthy males both immediately following exercise and after 

60 minutes of rest were similar to those observed in our study. The similarity in patterns of 

whole transcriptome changes found between exercise-induced fatigue and Very High versus 

Moderate fatigue in oncology patients receiving CTX suggests that some mechanisms that 

underlie fatigue may be ubiquitous.

Renal Function

CTX can result in renal damage and impaired renal function. Impaired renal function can 

lead to the accumulation of toxins that increase inflammation and immune responses. In 

addition, fatigue is a common symptom reported by patients with renal disease [44]. In a 

previous study of oncology patients, [45] higher levels of blood urea nitrogen were 

associated with worse fatigue. In the current study, no differences in the occurrence of renal 

disease were found between the Very High (1%) and Moderate (0%) evening fatigue classes. 

However, we identified DE of MMP24, which had increased expression in kidney biopsies 

of patients with diabetes and is hypothesized to play a role in diabetic renal tubular atrophy 

[46]. As described above, CFHR5 is a component of the inflammation-related complement 

protein. Variations in this gene are known to be associated with perturbations in the 

complement pathway, which results in renal damage and disease [35,36]. From the KEGG 

database, three pathways related to renal function were perturbed. Our study provides 

evidence that impairment in renal function may be related to fatigue severity in patients 

receiving CTX. Additional studies are needed to confirm or refute these findings.

Complex Etiology

Based on the evidence from a number of reviews [6–10] and the findings from this study, 

fatigue is likely to occur as a result of epistasis at single gene and pathway levels, as well as 

through gene-environment interactions. Two of the DE genes identified in the current study 

are examples of these complex interactions. Impaired glucose metabolism is a cause of renal 

damage and this study and others found that MMP24 is DE in individuals with diabetes and 

renal impairment [46]. Another example is CFHR5. This gene codes for a subunit of the 
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inflammation-related complement protein in renal tissue. Evidence from this study and 

others [47,6] supports the role of inflammation in the development of fatigue. In addition, 

we found evidence for perturbations in renal function including DE expression of CFHR5. 

Finally, the patterns of DE across multiple pathways may be regulated by upstream driver 

genes. Changes in these genes (e.g., TF) may regulate large number of genes with diverse 

functions and explain some of the variation observed across functional categories observed 

in this study. However, no putative TF were found to be significantly DE. Additional studies 

are needed to understand the complex interactions among the hypothesized mechanisms for 

fatigue that are illustrated in Figure 1B.

Limitations

Several limitations warrant consideration. Gene expression was measured from whole blood, 

which may not reflect the same biologic activity that occurs across the blood brain barrier or 

within discrete organs and tissues. Despite controlling for significant covariates, the sample 

was heterogenous in terms of the type of CTX received, stage of disease, and number of 

previous CTX cycles. While no differences were found in caregiver responsibilities, 

additional measures of caregiver burden should be evaluated in future studies. While all of 

the gene expression studies of fatigue in oncology patients, including our own, identified 

differences in genes involved in inflammation, the specific genes and pathways identified 

differed, which may be due to differences in the classification of the patients who were 

evaluated and/or the fatigue phenotype.

Conclusions

Findings from this study support the main hypothesized mechanisms for fatigue (i.e., 

inflammation, immune function, energy metabolism, neurotransmission, circadian rhythm). 

In addition, we differentiated inflammation and immune function as discrete categories; 

further specified energy metabolism into insulin metabolism and skeletal muscle energy; and 

provided new evidence for renal function. Through the use of data-mining approaches, 

similar whole transcriptome changes were found in non-cancer systems for each of the 

hypothesized molecular mechanisms of fatigue found in this study. These findings suggest 

that a number of common mechanisms contribute to the development of fatigue in oncology 

patients. This study provides novel information about the complex epistatic mechanisms that 

underlie the development of fatigue in oncology patients receiving CTX. Confirmation of 

these findings may help to identify patients who are at greater risk for more severe fatigue 

during CTX. Once confirmed in larger studies that are adequately powered to include 

additional covariates, new interventions may be developed that may ameliorate this 

devastating symptom.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Potential mechanisms for fatigue. Panel A depicts previously hypothesized mechanisms for 

fatigue. Panel B depicts a revised model with additional mechanisms for fatigue.
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Table 1

Differences in Demographic and Clinical Characteristics Between the Moderate and Very High Evening 

Fatigue Classes

Characteristic

Moderate Evening Fatigue 
(n=65)

Very High Evening Fatigue 
(n=195) Statistics

Mean ± SD Mean ± SD

Age (years) 60.0 ± 12.0 56.0 ± 12.0 t=2.39, p=0.018

Education (years) 16.4 ± 3.1 16.4 ± 3.0 t=−0.01, p=0.992

Body mass index (kg/m2) 25.3 ± 4.9 27.2 ± 6.4 t=−2.17, p=0.032

Lee Fatigue Scale evening fatigue score 3.1 ± 1.5 6.4 ± 1.5 t=−15.81, p<0.000

Karnofsky Performance Status score 84.0 ± 11.2 77.9 ± 11.5 t=3.45, p=0.001

Self Administered Comorbidity Questionnaire score 2.2 ± 1.3 2.5 ± 1.4 t=−1.57, p=0.116

Time since diagnosis 1.7 ± 2.8 2.5 ± 4.1 t=−1.46, p=0.146

Hemoglobin (g/dL) 11.9 ± 1.4 11.7 ± 1.4 t=1.13, p=0.261

Hematocrit (%) 35.3 ± 4.1 34.8 ± 4.0 t=0.91, p=0.363

n (%) n (%)

Gender (female) 45 (69.2) 166 (85.1) FE, p=0.006

Self-reported ethnicity X2=1.58, p=0.664

 White 44 (68.8) 137 (71.7)

 Asian/Pacific Islander 11 (17.2) 22 (11.5)

 Black 2 (3.1) 9 (4.7)

 Hispanic/Mixed/Other 7 (10.9) 23 (12.0)

Married or partnered (%, yes) 44 (67.7) 129 (66.2) FE, p=0.880

Lives alone (%, yes) 11 (17.2) 40 (20.7) FE, p=0.592

Currently employed (%, yes) 22 (33.8) 70 (36.1) FE, p=0.767

Annual household income U, p=0.625

 <$30,000 13 (22.4) 36 (20.1)

 $30,000–$70,000 12 (20.7) 34 (19.3)

 $70,000–$100,000 9 (15.5) 27 (15.3)

 >$100,000 24 (41.4) 79 (44.9)

Childcare responsibilities (% yes) 11 (16.9) 56 (29.0) FE, p=0.071

Eldercare responsibilities (% yes) 5 (8.3) 14 (7.9) FE, p=1.000

Exercise on a regular basis (% yes) 47 (72.3) 135 (69.6) FE, p=0.755

Cancer diagnosis X2=9.23, p=0.026

 Breast cancer 18 (27.7) 86 (44.1) p=0.020

 Gastrointestinal cancer 24 (36.9) 41 (21.0) p=0.013

 Gynecological cancer 14 (21.5) 49 (25.1) p=0.619

 Lung cancer 9 (13.9) 19 (9.7) p=0.3610

Prior cancer treatment U, p=0.219

 None 15 (23.1) 23 (11.9)

 Only CTX, surgery, or RT 24 (36.9) 96 (49.7)

 CTX and surgery, or surgery and RT, or CTX and RT 19 (29.2) 34 (17.6)
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Characteristic

Moderate Evening Fatigue 
(n=65)

Very High Evening Fatigue 
(n=195) Statistics

Mean ± SD Mean ± SD

 CTX, surgery, and RT 7 (10.8) 40 (20.7)

Metastatic sites X2=1.22, p=0.748

 No metastasis 20 (30.8) 72 (37.3)

 Only one lymph node metastasis 16 (24.6) 38 (19.7)

 Only metastatic disease in other sites 15 (23.1) 41 (21.2)

 Metastatic disease in lymph nodes and other sites 14 (21.5) 42 (21.8)

Abbreviations: CTX – chemotherapy; dL – deciliter; FE – Fisher’s Exact test; g – grams; kg – kilograms; m2 – meters squared; RT – radiation 
therapy; U – Mann Whitney U test
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Table 2

Differentially Expressed Genes in Very High Evening Compared to Moderate Fatigue Classes

Probe Gene Symbol Gene Name Entrez Gene ID Log Fold Change

ILMN_1719206 EDARADD EDAR associated death domain 128178 0.042

ILMN_1682100 IGSF10 immunoglobulin superfamily member 10 285313 −0.044

ILMN_1797974 AIG1 androgen-induced 1 51390 0.133

ILMN_1678841 UBD ubiquitin D 10537 0.052

ILMN_2350183 ST5 suppression of tumorigenicity 5 6764 0.054

ILMN_1810852 LAMC1 laminin subunit gamma 1 3915 0.068

ILMN_1664047 CACNA1E calcium voltage-gated channel subunit alpha1 E 777 0.161

ILMN_2318869 UBE2V1 ubiquitin conjugating enzyme E2 V1 7335 −0.051

ILMN_1689246 PIEZO1P1 piezo type mechanosensitive ion channel component 1 
pseudogene 1

128615 0.051

ILMN_1778333 MMP24 matrix metallopeptidase 24 10893 −0.068

ILMN_1704029 LOC653453 fibroblast growth factor 7 pseudogene 653453 0.040

ILMN_3188342 HPN-AS1 HPN antisense RNA 1 100128675 −0.042

ILMN_1735719 UNG uracil DNA glycosylase 7374 −0.039

ILMN_1771172 LOC644537 ^ 0.045

ILMN_3214384 LOC100131792 ^ 0.035

ILMN_1718248 CFHR5 complement factor H related 5 81494 −0.048

ILMN_1689866 KIF24 kinesin family member 24 347240 −0.043

ILMN_1745223 CDC42EP4 CDC42 effector protein 4 23580 0.131

ILMN_1741586 LOC647747 ^ 0.045

ILMN_2388090 MAPK14 mitogen activated protein kinase 4 1432 0.189

ILMN_1690833 KCNQ5 potassium voltage-gated channel subfamily Q member 
5

56479 −0.032

ILMN_3236231 MBD3L5 methyl-CpG binding domain protein 3 like 5 284428 0.032

ILMN_2335198 NCOA1 nuclear receptor coactivator 1 8648 0.046

ILMN_1663718 LHFPL3 lipoma HMGIC fusion partner-like 3 375612 −0.033

ILMN_1714327 SETD1A SET domain containing 1A 9739 −0.117

ILMN_2259966 TGM5 transglutaminase 5 9333 −0.073

ILMN_2400922 OPRL1 opioid related nociception receptor 1 4987 0.195

ILMN_3305466 ZNF788 zinc finger family member 788 388507 0.052

ILMN_1735905 FLJ36144/GOLGA6L2 Golgin A6 family-like 2 283685 −0.063

^
Locus not predicted in recent annotation release.

*
Benjamini-Hochberg false discovery rate of 10

CHO – carbohydrate metabolism; IF – immune function; IN – inflammation; NE – not established; RF – renal function; SME – skeletal muscle 
energy
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Table 3

Differentially Perturbed Pathways in the KEGG and BioCarta Databases

KEGG Biocarta

Inflammation

hsa04060 Cytokine-cytokine receptor interaction 2D fibrinonlysispathway 2D

hsa04610 Complement and coagulation cascades 2D Il7pathway 2D

Il3pathway 2D

Il10pathway 2D

Il2pathway 2D

Il12pathway 2D

Il22bpathway 2D

Il1rpathway 2D

Il4pathway 2D

Infapathway 2D

Il6pathway 2D

il2rbpathway 2D

Immune Function

hsa04612 Antigen processing and presentation 2D nkcellspathway 2D

hsa05330 Allograft rejection 2D/↓ nfkbpathway 2D

hsa05332 Graft-versus-host disease 2D/↓

hsa04640 Hematopoietic cell lineage 2D

hsa04650 Natural killer cell mediated cytotoxicity 2D/↓

hsa05323 Rheumatoid arthritis 2D/↓

hsa05310 Asthma 2D/↓

hsa04660 T cell receptor signaling pathway 2D

hsa04662 B cell receptor signaling pathway 2D

hsa05322 Systemic lupus erythematosus 2D

hsa05320 Autoimmune thyroid disease 2D/↓

hsa04672 Intestinal immune network for IgA production 2D/↓

hsa05340 Primary immunodeficiency 2D

hsa05220 Chronic myeloid leukemia 2D

hsa04062 Chemokine signaling pathway 2D

hsa04621 NOD-like receptor signaling pathway 2D/↓

hsa04612 Antigen processing and presentation 2D

Circadian Rhythm

hsa04710 Circadian rhythm - mammal 2D

Neurotransmitters

hsa04722 Neurotrophin signaling pathway 2D

hsa04130 SNARE interactions in vesicular transport 2D gabapathway 2D
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KEGG Biocarta

Carbohydrate Metabolism

hsa04940 Type I diabetes mellitus 2D/↓ insulinpathway 2D

hsa04910 Insulin signaling pathway 2D

hsa04920 Adipocytokine signaling pathway 2D

hsa00010 Glycolysis/Gluconeogenesis 2D/↓

hsa04973 Carbohydrate digestion and absorption 2D

hsa00020 Citrate cycle (TCA cycle) 2D/↓

hsa04930 Type II diabetes mellitus 2D

hsa00620 Pyruvate metabolism 2D

hsa00052 Galactose metabolism 2D

Skeletal Muscle Energy

hsa00190 Oxidative phosphorylation 2D/↓ igf1rpathway 2D

igf1mtorpathway 2D

Renal Function

hsa04964 Proximal tubule bicarbonate reclamation 2D

hsa04962 Vasopressin-regulated water reabsorption 2D

hsa04614 Renin-angiotensin system 2D

Abbreviations: 2D – two dimensional perturbation; KEGG – Kyoto Encyclopedia of Genes and Genomes; ↓ – down-regulation
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