
UC Irvine
ICS Technical Reports

Title
Reliable software through rational design

Permalink
https://escholarship.org/uc/item/6hh151df

Author
Freeman, Peter

Publication Date
1974

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6hh151df
https://escholarship.org
http://www.cdlib.org/

RELIABLE SOFTWARE THROUGH RATIONAL DESIGN

Peter Freeman

Technical Report #55

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

RELIABLE SOFTWARE THROUGH RATIONAL
DESIGN*

by

Peter Freeman

ABSTRACT

This paper describes two (related) ways that software unreliability
may occur: in response to unanticipated demands or due to unreliable
design processes. Five illustrative examples of design-induced
unreliability are presented. Design rationalization, a technique for
forcing careful and rational consideration of design decisions, is
described and its use to improve the reliability of a design process
is illustrated. Some experimental and abstract evidence supporting
the use of design rationalization to increase software reliability
is given.

!CS Technical Report #55
*Supported· by National Science Foundation grant GJ-36414

Note: This is a preprint of a paper submitted for publication

Peter Freeman

RELIABLE SOFTWARE THROUGH RATIONAL DESIGN

We are concerned with the design methods used to create

software and their effect on various properties of the resulting

artifacts. In this paper we describe two (related) ways that

software unreliability may occur: in response to unanticipated

demands or due to unreliable design processes. We then present

five illustrative examples of design-induced unreliability.

Design rationalization is a technique for forcing careful

and rational consideration of design decisions. We describe

it briefly and illustrate how it can improve the reliability

of a design process. We conclude by describing some experimental

and abstract evidence supporting the use of design rationalization

to increase software reliability.

TWO VIEWS OF SOFTWARE RELIABILITY

Two broad aspects of software reliability are illustrated by

the following figures:

planned desired
~~-~~~~·~~~~~~~-T~~~~~-..

inputs behavior

events

PROGRAMS

erroneous
behavior

Figure 1: Reliability Under
Unanticipated Demands

-1-

~
DESIGN ~·

c-=

l
inputs ·I PROGRAMS

F.igure 2: Reliability With
Respect to Original Goals

Does not
match
expected
behavior

;/
behavior•

Peter Freeman

The basic question in Figure 1 is, "How do we make a piece

of software resilient· to demands that were not anticipated in the

original design?". These demands may be erroneous inputs, changed

hardware characteristics (e.g. timings), the presence of other

systems and/or data in the operating environment, hardware failure,

and so on. Work on software structures that provide reliability

in the presence of unexpected demands will provide us increased

reliability (for example, see [15]).

The basic question in Figure 2 is "How do we insure that a piece

of software accurately embodies the operational goals of the

original task area?". In other words, from this viewpoint, reliable

software must be the product of reliable design.

In practice, both these concepts of reliability are important.

Whereas they must remain intertwined and interdependent, it is

useful to emphasize their differences when considering how to

improve their use. In the first case, we are concerned with software

structures - data organizations, control structures, protection

techniques, and so on. In the second case, we are concerned with

the processes and information used in system design.

Our interest here is to illustrate design-induced unreliability

and to propose a way of reducing that source of reliability problems.

- 2 -

Peter Freeman

EXAMPLES OF DESIGN-INDUCED UNRELIABILITY

The following examples illustrate how unreliable software may

be the result of unreliable design processes.

Example 1

A program is specified that takes text files and produces an

output file with a justified right margin. The input file may include

any ASCII character and the output file may be sent to a variety of

output devices (line printer, teletype, video display).

The program works fine until an input file containing ASCII

control-characters is processed and the justified file is sent to

a line printer. It is then noted that lines containing certain

control-characters are not right justified. Although readily explain­

able by a systems programmer, this is considered unreliable behavior

by the user.

The problem is caused by the fact that the designer used the

same output routine for all three output devices. The operating

system transliterates control-characters being sent to the line printer

into 2-character sequences., thus destroying the justification produced

by the program.

The constraints and information necessary to take account of this

were implicitly present in the specifications, but the design procedure

used did not force the designer to take account of them. Thus, they

were effectively ignored with the ensuing unreliable behavior the

result.

- 3 -

Peter Freeman

Example 2

A PRINT command is specified for an operating system. The intended

effect is to create a line printer listing from a file.

The command works fine most of the time. However, sometimes

it deletes the file after printing and other times it doesn't. This

seems very unreliable to a group of users who only use the machine

occasionally to perform Fortran calculations.

The designer built the program so that unless a special parameter

is set, the command will delete the file after printing if its name

has a particular form (e.g., a qualifier LST or TMP). A user does not

normally think of PRINTing as being an operation that will also delete

the file. Indeed, for most files it will not have this effect and since

the need for the parameter is not prominently displayed in the documentation,

many users do not know of it. Some language processors, such as Fortran,

automatically add the LST or TMP qualifier to their output files but not

to those of the user program.

The designer was not required to take into account any design goals

* relating to the user interface, which resulted in this somewhat arbitrary

design. Alternatives, such as warning the user that the file will be

deleted and asking for confirmation, did not occur to the designer since

he was able to pick the first thing that occurred to him. Since he

was also the programmer responsible for maintaining the disks, his

(hidden) design goal for the co:rmnand was to free up space on the disk.

* For example, the complex of attributes, called user-centeredness
[13], relating to the "friendliness" of a computing environment.

- 4 -

Peter Freeman

Example 3

A timesharing system is designed to handle 20 interactive terminals.

Each is assumed to be performing small calculations in BASIC. A small

average response time is desired.

The system works well in practice and gains new users. When

more than 22 or 23 users are on-line, response time degrades very

rapidly. In effect, the system breaks down (is unreliable).

This unreliable performance is found to be caused by a rigid

scheduling algorithm, not a lack of resources. If the designer had

tried several alternatives, a scheduler that was more flexible could

have been found.

Example 4

A timesharing system which can be accessed remotely via telephone

is designed to provide data security through a system of passwords.

Because there are several passwords (associated with different

files), once a user is logged on (which also requires a password) the

system may be queried for the file passwords.

Some tim~ after the system is declared operational, a user has

his files "robbed" of important information. The timesharing company

is sued over the unreliability of its system.

What happened in fact is this. Substandard telephone connections

sometimes cause the connection to be broken between user and system.

When this happens, the system does not log off the disconnected user.

If someone else dials in on the same phone number that has been discon­

nected, the system simply connects the new user to the existing job

- 5 -

Peter Freeman

associated with that port. The new (and bogus) user may then obtain

the file passwords of the original user associated with the j.ob.

Although there are several fixes or safeguards to prevent this

situation, if the designer had carefully understood the operation

of the phone answering module when designing it, the pathological case

that permits the system to connect a user to someone else's job might

have been discovered.

Example 5

An order-entry system is constructed for on-line usage. It

requires the user to enter something for every position on the standard

company order form, even if no information is required for this particular

order. This proves to be inconvenient since many orders do not use

the full form. So, the system is modified to permit the user to skip

certain positions by just hitting carriage-return when queried for the

information.

It is discovered, however, that sometimes skipping entries later

causes erroneous behavior on the order-processing system. The behavior

appears to be quite random and the system becomes so unreliable that

a manual back-up syst8m is instituted.

After many tests the trouble is finally discovered. When an

entry item is skipped, nothing is entered in that position in the

data field. Correct operation of the order-processing system, however,

requires a standard null entry if there is no information present.

When nothing is stored in a position, there may or may not be a null

symbol already present, depending on the past history of the file

- 6 -

Peter Freeman

and the system. -Likewise, the behavior of the order-processing system

is indeterminant when a null entry is expected but not found.

If the designer making the change had been aware of the requirements

of the order-processing system for null symbols and had explored the

alternatives for action when a carriage-return was given, then this

unreliable behavior might have been avoided.

Reliable Design and Designing for Reliability

Most readers have a set of similar examples which could illustrate

our point that the design process may introduce into the system

what appears to the user as unreliability. Before describing a partial

cure for unreliable design, it is important to stress the difference

between reliable design and designing for reliability.

It should be obvious (but judging by much of the software produced,

it is not) that everything possible should be done in designing a system

to insure the reliability of the system once completed (in whatever

terms are appropriate for the case at hand). Robust structures

(i.e., ones that will not blow up when presented with en·oneous inputs)

should be used; safeguards against failure in one area spreading to

another should be used; correct operation should be carefully verified.

This is usually called designing for reliability.

Our main point in this paper, however, is that even if one designs

for reliability the very processes used to arrive at the design may

eventually introduce unreliability. Using design techniques that

increase the chance that the resulting system will be reliable,

independently of the software structures used, is what we term reliable design.

- 7 -

Peter Freeman

RATIONALIZED DESIGN AND ITS EFFECT ON RELIABILITY

We propose using.a technique we call design rationalization to

improve the reliability of the design process itself. This, in

turn, will improve the reliability of the resultant software.

Rationalized design [1,2] intuitively is straightforward

and obvious. Basically, it consists of nothing more than making a

design rational -- that is, explainable and based on logical reasoning

supported by facts. It proceeds from the assumption that rational

design decisions will lead to better designs.

In spite of the fact that no one sets out to design in

any other than a rational way, we frequently fall by the wayside

at some point. We believe the discipline and structure of a coherent

methodology can help significantly in such cases. The methodology

that we are developing is aimed at providing this structure and at

improving the rationality. of designs over and above what they might

be without its usage.

The Methodology

A rationalized design is one in which as many of the design

decisions as possible are explicitly recorded as a choice among

feasible alternatives and in which the reasoning that led to

the choice of one and rejection of the others is explicitly

recorded. Design goals and constraints are also laid out explicitly.

We have been experimenting with two different approaches to

the creation of rationalized designs. The first we call analysis

(or ex post facto) rationalization and the second we call synthesis

(or in-process) :rationalization.

- 8 -

Peter Freeman

Analysis Rationalization. In this approach we work from a piece

of software already designed (and probably implemented). The objective

is to reconstruct the design decisions and applicable information

logically necessary to obtain the given piece of software. We do not

try to recreate the precise decisions (or their sequence) taken by

the original designer. In effect, we redesign the object but constrain

ourselves to arrive at the same end result. Among other possibilities

this technique should be particularly useful in maintenance activities.

We have tried two variations on this basic theme. The first

is a top-down approach. We pose a sequence of design problems with

alternatives and a rational (justified) choice given for each. If

the sequence is followed, it should lead to the piece of software

under study. Reference [3] contains several examples of this approach.

The second variation concentrates on particular features found

in the software and attempts to provide rationalizations for them.

It is more of a bottom-up approach. It appears to be more useful as

a tool for critically analyzing a piece of software in a regular

manner. Reference [4] contains an example of this technique applied

to a small usage accounting program.

Synthesis Rationalization. In-process rationalization applies

the same idea of making explicit all the problem-solving aspects of

a design process (problem statements, space of alternatives,

justifications, decisions) as the design is being done initially.

The designer can use whatever design methodology seems appropriate,

the only constraint being to justify all decisions and record the

information as a choice among alternatives.

- 9 -

Peter Freeman

Synthesis rationalization in many instances can provide the

discipline necessary for reliable design. It assists in finding

feasible structures, assessing results of a proposed design

decision, and discovering inconsistencies. Thus, it appears to be

the more useful approach for the purposes of software reliability.

Producing a rationalized design is difficult (especially

1n the case of analysis rationalization). It is not easy to identify

the design decisions to be rationalized. There are obviously

thousands of them ranging from the overall organization of a

system to the choice of program variable names. Selecting the most

important is hard, but relation of design goals to decisions is one

useful way of focussing the rationalization. Likewise, the identifi­

cation and evaluation of alternatives is difficult, especially since

many evaluations should take into account more global considerations.

One aspect of our current experimentation is the development of better

ways of producing a rationalization.

Some of the tradeoffs of rationalization methodology and a

more complete description of it can be found in Reference [2]. A

short example is given in the Appendix to provide the flavor of this

techniqtfe.

The Effect of Rationalization on Reliability

Rationalization techniques applied to the preceding examples

would have increased the chance of catching design flaws

prior to implementation. In the first four examples, let us assume

that either the designer is producing a rationalization a·s he goes

along or that the design he produces is rationalized before

- 10 -

Peter Freeman

implementation (perhaps at the design review stage). In general, this

means that multiple alternatives for each design decision will be

explicitly stated and evaluated, design goals and constraints will

be stated in operational terms and each decision will be explicitly

evaluated in light of them.

In Example 1 the designer would have been required to inspect

each design specification to determine its relation to the design of

the output module. In evaluating the decision to treat all output

the same and let the operating system handle the device dependence,

the designer will be forced to consider the alternative of taking

care of device dependence in his module. This should be sufficient

to trigger recognition of the different handling of control-characters.

Example 2 portrays a case suffering drom the misplaced goals of

the designer. Had he been required to do a rationalization of the

design (or had one been done ex post facto) the decision concerning

disposition of the file after printing would have been more evident.

Had the designer been forced to think through this particular decision,

he might have chosen another alternative on his own. At any rate,

the decision and its alternatives would have been accessible

so that it could have been caught in a design review and/or documented

properly.

In Example 3 let us see what would have happened had the designer

been forced to seek alternatives. Instead of just choosing

a particular scheduling strategy, the designer would have been

required to justify this choice and compare it to alternatives. The

- 11 -

Peter Freeman

search for altern~tives might have turned up a more general possibility

and the evaluations (if done properly) would have included consideration

of the policy's characteristics. In this event, its inflexibility

would likely have been evident.

Example 4 involved not seeing the consequences of a decision.

If a rationalization had been forced, the logic of the module would

have been scrutinized more closely. In particular, the decision to

accept input without checking for log-in after the call was answered

might have been discovered.

Example 5 could have benefited from rationalization as part of

its documentation. If such a rationalization had existed, then it

would have been more obvious to the person making the change that

one of the functions of the order-entry system was to initialize

elements of a file. It then would have been easier to see that the

change was bypassing that function.

This is the heart of our argument: Explicit rationalization of

a design can reduce the tendency of a design process to intro-

duce unreliability into the systems being designed. Pulling out and

making explicit the design decisions that are made, forcing a search

for multiple alternatives, and exploring their strengths and weaknesses

with respect to the goals and constraints of the design should reduce

the chance of design-induced unreliability.

We must emphasize that design rationalization is more than just

the obvious use of sound reasoning. One of the premises of design

rationalization is that even when the soundest design reasoning is

- 12 -

Peter Freeman

used, it can be improved by recording it in an accessible format.

There are several reasons why this seems to improve the design process.

Requiring the designer to seek out alternatives for purposes of

comparison may force the discovery of ones that might otherwise be

overlooked (this is consistent with psychological work qn functional

fixity [5]). It provides a record of decisions and rejected alterna­

tives readily available for independent review. Finally,

it provides a working record (when done in-process) that the designer

can use to keep from losing track of alternatives (an important function,

considering the small working memory of the human mind [6])~

Design rationalization is also more than the typical design review

that is performed in many multi-person design situations (although

a rationalized design should be a great aid to those responsible for

formally reviewing the designs of others). While design reviews have

the same goal as design rationalization -- providing some assurance

that a design is complete and correct -- they typically are too

ill-structured and have too little information about design

alternatives.

- 13 -

Peter Freeman

DOES IT WORK?

Evaluation of any methodology, especially one for a complex

and expensive task such as software design, is difficult. We do,

however, have two types of evidence to present.

Empirical Investigations

In addition to several small designs and design fragments involving

synthesis rationalization, we have carried out a major design using

a form of in-process rationalization [7]. While it is difficult to

measure in any experimentally convincing way, the forced rationalization

appears to have led the designe~ to discover improved solutions to

several of the design problems he faced in a nev; qon~ent area.

The continued use of rationalization by several of us whenever

we design, as well as its use in some experimental design situations

constructed to study other aspects of the design process, are accumulating

additional evidence that the regimen of rationalizatio.n, while costly

in time, pays for itself in the increased quality and reliability of

the design.

Finally, a more controlled investigation involving approximately

20 computer science seniors designing various text-handling systems

is currently underway. While not an experiment that will prove or

disprove the worth of rationalization, it should give us a good deal

of valuable data in the same way that other software investigations

have shed light on the design process [8, 9, 10].

- 14 -

Peter Freeman

Theoretical Argunrents

While there is no well-developed theory of design to use for

the analysis of proposed methodologies, we can abstract enough from

what is known informally about design to provide some additional

illumination on the role of rationalization. Various models of

design have been proposed and are useful for differe~t purposes:

functional reasoning [11], stepwise refinement [12], the standard

analysis;specification-prograIIlllling-coding paradigm, formulating

assertions and filling in code to satisfy them [15] and others.

When any of these approaches to design are actually used, we

generally find behavior involving refinement (iteration), generation

of alternatives, and exploration of the effect of alternatives. If

we view design as a process carrying us through a space of alternatives

till we reach a system satisfying our design goals, then we can

portray these three activities as shown in Figure 3.

SPECIFICATIONS

BACKTRACKING

DESIGN DECISIONS SPACE OF DESIGNS APPROXIMATELY
SATISFYING SPECIFICATIONS

Figure 3: Search for a Reliable Design

- 15 -

Peter Freeman

When considering reliability, we want our design process to

take us to a system S that completely matches our specifications,

not a system S' which is similar but which will give unreliable

performance because it does not meet the specifications in some (perhaps)

subtle ways. When we look at refinement (or iteration) we see we

must backtrack; synthesis rationalization, by recording decisions

and alternatives, will make it easier to see how far we must go back

in order to take an appropriately different path. In the case of

alternative generation, the explicit record may provide us with

alternatives generated in other parts of the design (but which we

might otherwise forget). Likewise, exploration of alternatives is

aided by our improved ability to draw on previous evaluations recorded

in other parts of the design or in other designs. Further, the

explicitness makes it easier to relate specific design goals and

constraints to specific alternatives, a necessary operation for

evaluation.

CONCLUSION

We have illustrated by examples our thesis that one form of un­

reliability is due to the unreliability of design ·processes independent

of the content of the design. We have proposed a technique, design

rationalization, for improving the reliability of design and hence

of the systems produced. Some initial experience with rationalization

and some theoretical arguments were presented to support the value of

design rationalization as an aid in achieving reliability.

-16-

Peter Freeman

Design rationalization is still largely an experimental technique.

Even with work now underway, it will be difficult to "prove" convincingly

its value. As with almost any construct or methodology in program

creation (e.g., use of goto's, structured programming) counter examples

exist and other factors can be found that may partially explain whatever

differences in performance are observed.

Nonetheless, we feel that design rationalization shows sufficient

promise to warrant further investigation by us and others as a tool

to improve design reliability.

ACKNOWLEDGEMENT

The comments of T.A. Standish and Larry Yelowitz are gratefully

acknowledged.

-17-

Pet~r Freeman

REFERENCES

1. Freeman, Peter. "Software Design Rationalization" (abstract).
2nd Computer Science Conference, Detroit, 1974.

2. Freeman, Peter. "Rational Design," in preparation, October, 1974.

3. Ells, T.D. and Peter Freeman. "Design Rationalization of Three
BASIC Systems," ICS Tech Report #38, University of California,
Irvine, November, 1973.

4. Freeman, Pete1:, Richard Marino, and Wil Plouffe. "Design Rationalization
of Usage Accounting Program," Tech Report, in preparation, October, 1974.

5. Duncker, K. "On Problem-Solving," Psychology Monographs, 58, 5, 1945.

6. Newell, A. and H.A. Simon, Human Problem Solving, Prentice Hall, 1971.

7. Levin, Steven. "The Distributed BASIC Interpreter System," !CS
Tech Report #33, University of California, Irvine, June, 1973.

8. Parnas, D.L. "Some Conclusions from an Experiment in Software
Engineering Techniques," Proc AFIPS 1972 FJCC, 1972.

9. Naur, Peter. "An Experiment on Program Development," BIT, Vol.
12, pp. 347-365, 1972.

10. Newell, Allen. private communication.

11. Freeman, Peter and Allen Newell. "A Model for Functional Reasoning
in Design," Proc 2nd Int. Jt. Conf. on AI, London, 1971.

12. Wirth, Nicklaus. "Program Development by Stepwise Refinement,"
Corrnn ACM 14, 4, 1971.

13. Kling, Rob. "User-Centered Design," Proc ACM National Conf., 1973.

14. Randell, B. "Operating Systems: The Problems of Performance and
Reliability," Proc IFIPS 71, pp. !100 ff, 1971.

15. Yelowitz, L. "A Symmetric, Top-down Structured Approach to Computer
Program/Proof Development,"(Bethesda, Maryland: IBM Report,
July 1973) FSC 73-5001.

- 18 ~-

Peter Freeman

* APPENDIX

NOTE: This example is ln rough form, but it wi I I be cleaned up ln the
next draft. The design rationalizations are boxed.

Design Problem

Design a grading system to keep track of test scores for
a class. The system should be capable of printing a class
list that includes students names, id numbers, text scores
and some summary test statistics (minimum and maximum scores,
the mean, median and standard deviation).

Example Design Specification with Rationalization

This is an example of a program specified in an informal
design language with embedded design rationalization information. It
should provide some idea of what rationalization information looks like
and how to incorporate it into a design.

Data file specification

The test data file will be stored on disk. Records will be
fixed length with the following format:

chars 1 - 25 student name
chars 26 - 30 student id number
chars 31 - 33 score for test 1
chars 34 - 36 score for test 2
chars 37 - 39 score for test 3
chars 40 - 42 score for test 4
chars 43 - 45 score for test 5

Missing test scores will be recorded as O.

Problem/issue: format of test data file
Alts: 1) fixed length fixed format records

2) fixed length variable format (free) records
3) variable length free format records

Choice: 1
Rat: Fixed format is chosen over free format because the amount of

effort necessary to put the data into the right columns is not
significant enough to justify the programming effort needed to
interpret a free. format data record. Fixed 1 ength is chosen over
variable length because the storage savin9s of variable length
would be insignificant in this application.

*Prepared by Steven Levin.
-19-

Peter Freeman

Program specification

proc GRAD~R

/* top level procedure */

fi 1 ename ~ GETFI LENAME
numberoftests ~ GETNUMBEROFTESTS

Problem/issue: how should the test data be represented in-core
Alts: 1) some fonn of linked list

2) an array
Choice: 2
Rat: Processing will require tabular access both across by student

and down by test. Arrays would provide the easiest accessing
for this type·of processing.

Problem/issue: how to determine how many students are in the class
Alts: 1) have the user input this information

2) have the procedure GETTESTDATA return the information
3) use a special data value in the data array that flags the

1 ast entry
Choice: 2
Rat: Eliminate alt 1 because the information is available directly

from the data. Alt 3 is a poor choice because it would require
putting a special test (the same one) into several other
procedures.

array,numberofstudents ~ GETTESTDATA(filename)
PRINTSCORES(array,numberoftests,numberofstudents)
PRINTSTATS(array,numberoftests,numberofstudents)

endproc

proc GETFILENAME

/* prompts user, gets file name, checks its le9ality */

\'Jh i 1 e TRUE do

endproc

(prompt user by printing 'input the filename';
get the filename;
if the filename is legal then exit returning the filename

else print 'not a legal filename')

This design is not complete but it should illustrate the format and
content of rationalization data. Even in the section of design given
above there are several problems/issues that were encountered but simply
left unrecorded. This was done here to simplify the example . .

-20-

