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Sharp Inequalities for Weyl Operators
and Heisenberg Groups

Abel Klein* and Bernard Russo**

Department of Mathematics, University of California, Irvine, CA 92717, USA

Introeduction

We study inequalities in harmonic analysis in the context of non-commutative
non-compact locally compact groups. Qur main result is the determination of the
best constant in the Hausdorff-Young inequality for Heisenberg groups. We also
obtain the somewhat surprising fact that the resulting sharp inequality does not
admit any extremal functions. These results are obtained after a detailed study of
the operators which occur in the Fourier decomposition of the regular repre-
sentation of the Heisenberg groups. These are called Weyl operators and are of
independent interest. We also obtain bounds for the best constants in the
Hausdorff-Young inequality and in Young’s inequality on semi-direct product
groups, including non-unimodular groups. In particular, for real nilpotent groups
of dimension n those best constants are shown to be dominated by the correspond-
ing best constants for R". Although some of our preliminary lemmas are valid for
all values of pe(1, 2) the methods we use for our main results require that p belong
to the sequence 4/3, 6/5, 8/7,..., i.. that p’, the conjugate index, be an even integer.

The contents of this paper are as follows. In Section 1 we discuss Weyl
operators and determine, for p’ even, the best constant in a Hausdorff-Young type
inequality (Theorem 1). We also show the non-existence of extremal functions for
this inequality. In Section 2 we prove some general results for locally compact
groups which includes a form of Young’s inequality for convolution appropriate
for non-unimodular groups. This is applied to arbitrary semi-direct products.
Then using a duality argument which relates the inequalities of Young and of
Hausdorff-Young we obtain bounds for the Hausdorff-Young inequality
{Theorem 2) on unimodular semi-direct product groups (for p’ even). An interest-
ing consequence of these results is that for a connected simply connected real
nilpotent Lie group of dimension n, the best constants in the inequalities of Young
and Hausdorff-Young are dominated by the corresponding best constants for IR".
In Section 3 we show (Theorem 3), using the theory of Weyl operators developed
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in Section 1, that for the Heisenberg groups, the best constant for the Hausdorff-
Young inequality is the same as the corresponding one for R” (p’ even) but that
there are no extremal functions. This can be contrasted with the classical case R"
where Gaussian functions are extremal functions, In Section 4 we use the methods
of the present paper to improve on a previous estimate for the “ax+b” group
{Theorem 4).

We now set down some of the notation which will be used throughout. If 5 is
a complex Hilbert space, #(#°) will denote the Banach space of bounded linear
operators on ., with the operator norm. Qur inequalities will be stated in terms of
the Banach spaces C(#), 1 £r < w, consisting of elements T of #(#) for which

ITH, =0Tl ¢, = [trace(T*TY? ] < o0 . 0.1

We let ¢ be the Fourier transform on R" defined by

o= | f(x)e*™dx, for fel'(R") 0.2)
&

where dx denotes n-dimensional Lebesgue measure and x -y is the Euclidean inner
product. We also denote by # the extension of the Fourier transform to the
Lebesgue spaces IP(R"), 1<p=<2, given by the Plancherel theorem and the
Hausdorff-Young theorem. Thus by results of Babenko (for p’ an even integer)
[17 and Beckner (in general) [2],

11
17 o gy S AR oy » Sty 1,L15p=2. 0.3)

Also, by results of Beckner [2] and Brascamp and Lieb [3],

gl g S (A, A, A F 1 o 1 gy 5 (0.4)
1 1 1
14+ —-=—-—+—-,rp,qe(l,0).
F=p g b )
In (0.3) and (0.4) and throughout this paper
mim\t 1 1

As we are concerned with the best possible constants in our inequalities, our
methods, like those used in the proofs of (0.3) and (0.4) do not involve the Riesz
Convexity theorem.

Fmally, if X is a locally compact topological space, #(X) denotes the
continuous complex valued functions on X with compact support.

1. Weyl Operators

For xeR", consider the unitary operators U(x) and V(x) on I*(R") defined by
(U2 =flx+z), fel*(R"), zeR", (1.1
Vx)NG2)=e™*f(z), fel*(R", zeR". (1.2)



Weyl Operators and Heisenberg Groups 177

It is well known and easy to verify that U and V are each n-parameter unitary
groups which are unitarily equivalent (as groups) to each other via the Fourier
Plancherel transform, ie.

JVx)f 1'=Ux), xeR", (1.3)
and

FUx)F 1=V(~x), xeR" (1.4)
and which satisfy the following commutation relation:

U)V(y)=e*"V(»U(x), xyeR". (1.5)

For a measurable function F on R?", the Weyl operator corresponding to F is
the operator on L*(IR")

Kp= [ | Fx, YUV (y)xdy . (1.6)

R" R"

The operator K certainly exists as an element of Z(L*(R")if Fe L'{R*")and in
fact

1K el g g2y S HFU s gam, - (L7

A routine calculation shows that K is an integral operator

(Kpf)2)= u!nk,,(z, x)f(x)dx, fel*R"), zeR", (1.8)
with kernel k, given by

kilz,x)=F(x—z,%)= | F(x—z,y)e*™dy, z,xeR". (1.9)
Therefore )

1K el zgm = Nl Loggam = 1l agan - (1.10)

If we apply standard interpolation theory (¢.g. Reed and Simon [11, p. 44]) to
(1.7) and (1.10) we obtain

1K e, ooy Sl ogan ,  FeLP(R™), (1.11)

where pe(1,2) and —:; + 57 =1.
Thus for each pe(1,2) and n=1,2,..., if we let
W, =sup{IKpllc agm : NFll ogam =1},

(1.11) states that w,,SLIt has been pointed out (Russo [14]) that w,, , <1 for all p
and n. The following theorem gives a complete analysis of the inequality

KN, <w, JFI,, (1.12)

for certain values of p.
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Theorem 1. Let pe(1,2) be of the form p=2k/(2k—1) for some integer k=2. Then
() 1Kele, g S ANl pgsn »  FeLP@R?);

(ii) A2" is the smallest constant in (i), ie. w, ,=A2";

(ii) A2" =as;1>po{||KFa’b“p,,”Fa_b”p} where E, ,(x, y)=exp { —all x> - bllyll2} forx,
yeR";

(iv) There are no extremal functions for (1), i.e. if equality holds in (i) for some

FeI?’(R?"), then F=0 ae.

Remark 1.1. If we think of the map F— K as an operator valued analog of the
Fourier transform on R?", then, in view of (0.3), (i) and (ii) are not surprising.
However in (0.3) equality holds for any Gaussian function so that extremal
functions exist for (0.3).

Before going into the proof of Theorem 1 we give some elementary properties
of Weyl operators. For z=(x, y)eIR?" let W(z)= U(x)¥(y). Then (1.5) implies that,
with z;=(x;, ), x, y,eR", i=1,2

Wiz, +2,)=>"2 " W(z)W(z,) (1.13)

and therefore W is a projective representation of the Abelian group R*"
corresponding to the 2-cocycle w:IR?" x IR*"— T defined by

oz, z,)=exp{2mix, -y},

1.14
z;=(x,y)eR*", i=12." ( )

We can turn L!(R?") into an involutive non-commutative Banach algebra by
introducing a product F xG and involution F* determined by the rules

KpKg=Kryg, (Kp)*=Kps. (1.15)

From (1.6) awnd (1.15) we obtain explicit formulae for these operations, namely

F¥(x,y)=F(—x, —y)e™ 27 (1.16)

FxG(x,y)= § { F(x—2z,y—w)G(z, w)e™ ™= 0 ~"dzdw . (1.17)
R" R"

In (1.17) we note that e ™= 0" "=z, z,) where z,=(z—x,w—y) and
z,=(z,w) and this explains our notation F *G since we could rewrite (1.17) as

FxGla)= IZnF(a~ﬂ)G(ﬁ)w(B~oc, prdp . (1.18)

From (1.17) we get
|F * G| < |F|*|G| (1.19)

where the * on the right side of (1.19) denotes the usual convolution for functions
on R?",
We proceed now to the proof of Theorem 1. Fix an integer k=2 and let

p and let Fe L'R*")nL*(R*"). For 1<j<k, let F,=F if j is odd and let

2
T (2k—1)
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F;=F* if j is even. Then let G¥=F,* F, _, x..xF,. We have p’=2k and thus
UK el = IK o3k = tr [((K p* K p] = tr [(K goo)* K 0]

K ol 2,12 = 1G9 2 om = 1 Fy x5 F 3

<UF .. | F | 2= F [ F, 1 AF, 12
SUF . HE )2 (since k--;—, = %)g(}i A2ll|F) H,,)Z

[by (0.3)]=A"lIFllZ*. Therefore Kl , < A2"IFIl  and (i) is proved. To prove (iii)
we begin by observing that by repeated use of (1.17) we can write

GP(z,, W)= f {n Flzj—z;_y,w;—w;_ 1)}

]Rn(Zk 2)

~exp{ 2mi Zz Wiy — }dzdw (1.20)

where z=(z,2,,...,2,_ 1)E]R"‘(" Yand w=(w,,...,w,_,)eR"™ 1 and we have set
2o =wo=0. Then using (1.20) we have

IG012= [ [ G¥(z,, w)G¥(z,, w)dz,dw, (.21

R™ R™

k-1
= Rn“j;( 2){ H F(Z _1 }’W WJ 1)}62&{){ 27”}2:1 ZJ(WJ-I-I_.W})}

i=

k
A1 iz owi=w- )
j=1

k_
exp{2m’ Y Wiy — w})} dzdwdz'dw'dz,dw,
i=1
where

= W =W, Z2=(2 s 2y )y W= Wy, Wi ), 2/ = (21,00, 24— y)
and w'=(w,...,w,_,). We now consider the Gaussian function F,, . defined by
F,, (0 y=exp{—alxl?=blyl?> +icx-y}, x,yeR", (1.22)
a>0,b>0. celR. We note that F, =F,, (.., Wethenuse F,, for our Fin

’

2. w. Z.
(1.21), make the change of variables z,— —4, w,—»—=% for 1Zj<k and z/,— —4,
& i 1/; i I/E i 1/5

A {(1-2kyn
W~ ;;Jl; for 1 €j<k Then |G®I2=(aby 2z 2I(a,b,c)where I(a,b,c)is an integral

J

which by dominated convergence will approach I(1,1,0)=1lF, , o*...xF, | (I2 (k
fold convolution) as ab— oo with ¢ fixed. As pointed out by Beckner [2] and
Brascamp and Lieb [3] or as can be seen by an explicit calculation

IF, g% v Fyy l2=(42IF, , 2.
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Now

IF, .M, = (E)",z,, / (ab)"'4p (1.23)

P kn/p
so in particular UFM,O*...*FM,ON%:Af;""(;) . Thus

p'n/2p
1Ky, , NE/IF, , 2 =1G®12 (%) (abyée

-~ 2kin o'n
”(ab)( }7 Ia,b, c)(%) /Zp(ab)p'nw

=](a, b, ¢) <B>p "

. pn (1-2k) 2_0
4p 2 2

T knjp p p'nilp .
- A:k"(~) (_) =A:kn=A§np .

p 7
This completes the proof of (iii) and hence of (ii).
Remark 1.2. For later use let us note that we have proved the following lemma:

Lemma 1.3. Let F,, (x,y)=exp{—allx|>=bliyl? +icxy}, and let p=2k/(2k—1).
Then for any € >0, there exists a positive number M such that

kg, , N, 242" —e)lF,, |

a,b,c’'p

whenever abz M, and ¢ is fixed.

Remark 1.4. To give an example of what the integral (1.21) looks like an explicit

calculation shows that
1

”KFab0”4 ={A2 ( ab )8} —»Ai;% as ab— oo .
Fonolas 43\n?+ab

We now compilete the proof of Theorem 1 by proving (iv). For convenience we
use the notation Y[ for the best constant in Young’s inequality for R?", Thus,

1 1 .
-+ 1 =1+ - and according to (0.4)
P 4 r

Y = (4, 4,4 . (1.24)

Suppose now that Fe [P(R*"), with p= ———— and that equality holds in (i).

2k
(2k—-1)
We shall call F an extremal function and show that F =0 a.e. The formula [[K 2
=[G®12, used previously for Fe L}(R*")~ L*(IR?"), is valid for Fe I*(R*") because
the integral defining G is dominated by |F,j*...#|F,| which is in L*(R*") by
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Young’s inequality since F jeL"(IRZ"), 1 £jgk. We now apply (1.19) and (0.4) to
obtain

IG®I, I F x1G* 1, < Y2 NN IGH* I (1.25)
1 1 1 2k
where;+a=1+§so that q1=m.
Similarly
IG&=ll, < F,_,1+1G* || < Y@ IF,_, I IG*=2] (1.26)
11 1 2k
where — + — =1+ — so that ¢, = ——.
rp 4, a 4 k+2
Continuing in this way we are led to
IG®I, < Yao v .y [FIE=2F*  Fll, (1.27)
where q,=2, q;,= -k—zf-— for 1 £j<k—1. In particular ¢,_, =p and
lF* «Fll, _ <l iF*«|F|l,, < Y@-2F|2 (L.28)
Combining (1.27) and (1.28) we have
k—1
le®i, < (H} Y- ﬂ) ILFiE. (1.29)
o

k-1

But ﬂ Y-P= 42 [by applying (1.24) the product telescopes].

Smce F is extremal we have equality in (1.25)—(1.29). In particular | F* xFl,
=Il{F*|«|F| 1, _, and by (1.19) we have

|F $F|=|F#|*|Fia.e. (1.30)
If we write out the integrals in (1.30) we see that we can apply Hewitt and

Stromberg [6, (12.29)] to obtain a null set N CIR?*" and for each (x, y)eR*"—N a
null set N, , and a real number 0(x, y) such that

F*(x~z,y=w)F(z, w)e™ 70~
=¥V F*(x — 2, y—w)F(z, w)|
for au (Z W)E]R2 __N (131)

Our aim is to show that F =0 a.c. For this purpose let S;. be the set where F is
not zero. We shall show that Sy is a null set. We can write F =|F|U where |U|=
and then cancel all non-zero terms in (1.31). The result is

U(z—x, w—y)U(z, w) = e~ 2mxtw=n) +i8(x.») (1.32)

for (x, »)e R*>"— N, and (z, w)e (R*"— N )nSe((x, )+ Sg)-

Consider now the function F(x, y)=F(y, —x), x, ye R". Using the properties of
Weyl operators it is easily seen that (FKp#~ 1y* = K ;. This shows that if F is an
extremal function, then so is F. We note that ©(S ) =Sy where 1(x, y)=(y, — x) and
that we can write F =|F|V where |V]=1 and V can be chosen such that

Vix,y)=0(y, —x) forall (x,y)eR*>". (1.33)

(x,3) *
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Since (1.32) is valid for any extremal function we apply it to our F to get null
sets N" and N{, , such that
V(z—x,w—y)V(z, w) =~ 2Hxw=9+ivixy (1.34)

for (x, y)eR*"—N’ and (z, w)e (R*" — N, ,)NSpn((x, y)+ Sp).

We now combine (1.32), (1.33) and (1.34). The result is

o 2mix(w = y)HIBXY) o o 2miv(z X}~ in(= y,%) (1.35)
for (x, y)e (R?*" — N)n1(R?>"— N’) and

(27 W)E (IR2n - N(x y))mt(lkzn - Nz— y,x))mSFm((x’ y) + SF) = M(x,y) N

We claim that M, is a null set for ae (x,y). To see this fix
(, y)e (R?* — N)n1(R?" — N YR — {(0,0)}). Then (1.35) implies that

M ,C U {zw:x-wty-z=k+C, }
k==

with C, elR Since (x,y) is a non-zero vector in IR2" each set in the union has
2n-dimensional measure zero and the same holds for M, . The fact that S is a
null set is now a simple consequence of the following lemma.

Lemma 1.5. Let B be a Lebesgue measurable set in R such that BA(v+ B) is a null
set for a.e. veR’. Then B is a null set.

Proof. We can reduce to the case that B is bounded. Then yze L'(RY) and the
assumption is equivalent to y_p* x5 =0 a.e. Since (x_ )" =(xz)" we have |(yz)]*=0
and therefore y;=0, so B is a null set.

This completes the proof of Theorem 1.

2. Inequalities on Locally Compact Groups

Let G be a locally compact group and denote a right Haar measure on G by dx or
dpx. Convolution and norms are defined with respect to dgx as follows:

frg(x)= (f; flxy™Ng(n)dgy (VY]

1
= {5 IS (X)k“’dRX}"‘, 1Sp<aw. 22
G
The symbol 4, or 4; when necessary, denotes the modular function of G. It
follows from a careful application of Holder’s inequality that
lra=1wugl <lfl,lgl,, 1<g<co, 23)
lfa-"agl, <lifl Mgl,, 1=q50 (2.4)

1 .
where as usual 5+ 7 =1. Thus for fixed ge LXG), the map f—f4 17 xg on

simple functions is of type (1,¢) with norm =llgll, and of type (¢, o0) of norm
<ligll,. By the Riesz-Thorin Theorem this map is “of type (p,q,) where 0<t<1,
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I 1-t t 1 1-t

— = 4 —, —=——4 —. If we set r=g, and p=p, we obtain a generaliza-
po 1 T d’q ©

tion of Young's inequality which we state as a lemma.

1 1
Lemma 2.1. Let G be a locally compact group with modular function 4. If ’ +§

1
=1+ " and p,q,rell, 0] and if norms and convolution are defined relative to a

right Haar measure, then

I P, 25)
Remark 2.2. There is a corresponding inequality which uses left Haar measure and
which takes the form Il f+g4*7'll <1 71 I vy + & =1 +- ! . This can be proved in
the same way and in this case the convoiutlon is given by fxg(x)
= (f; Sg(y~*x)d.y where d, x is a left Haar measure. In this paper we shall always

use right Haar measures.
For any locally compact group G and p,q,re[1, 0] we define (using right

Haar measure) when 1 + 1 =1+ l,
P 4 r
[ f47 " +g|
y{r) G)= e Y 2.6
= A VI RPN o

Thus Y{")(G), which we shall sometimes write as Y, , is the best constant in (2.5)
and is £ 1. By repeated application of (2.5) we can obtain

Corollary 2.3. Let G be a locally compact group. If (k—1)+ 1 = [31: + p12 +...+ Plk
for some kz2 and r,p,,-,p,el1, 0] then
" f}A-Piﬂf’i} s ka f; Q.7
i=1 =3
We then define YX ’ oa-.p{G) to be the best constant in (2.7). The special case of
(27)in whichp, =p,=...=p,=p= «2%—1, and thus p’ =2k, will be used in Section

4. 1t states that

-1y _k—2) k
“fl T Y S Y. 2 SYR (G TIAL, (2.8)
i=1
2k
h -
where p k1)

We shall now consider Young’s inequality (Lemma 2.1) for semi-direct
products. For direct products, the inequality we obtain in Lemma 2.4 in easily seen
to be an equality. We conjecture this to be also the case for semi-direct products.
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For certain indices and certain groups this is a consequence of Lemma 2.6 and
Theorem 3.

Consider now a pair X, 4 of locally compact groups together with a homomor-
phism a—1, of 4 into the group of automorphisms of X. We suppose that
(x, @)—=1,(x) is continuous from X x A to X so that the semi-direct product group
G =X(® A becomes a locally compact topological group with the product topology
and multiplication (x, a)(y, by=(x1,(y), ab). We shall write a(x) instead of 7,(x). We
recall (Hewitt and Ross [5, (15.29)]) that a right Haar measure on G is the product
of the right Haar measures dpx on X and dpa on A and that the modular functions
of the groups X, 4, and G=X ® 4 are related by

dglx, a)=d(a)d [(a)dx(x), (x,a)eG, 29
where 6 is (a homomorphism of A4) defined by
}f{ Sla(x))dgx =0(a) )f( fX)dgx, feH(X). (2.10)

In particular, 4,(a(x))=4,(x) and
If(a(- N, =6(a) 7l fll,, 1<p<oo. (2.11)

Lemma 2.4. If G=X® A is a semi-direct product of locally compact groups X, A,
then

YEG) < YO YENA) (2.12)
whenever r,p,qe[1, 07 and ! + ! =1+ E
r 4q r
Proof.
(f4G " g}y, by= [ [ f45 "V ((,b)(x, )™ )g(x, a)dxda
X 4

=[[f45" (yba™*(x"1),ba” *)g(x, a)dxda

=[§f45"(yb(x™ 1), ba™ )gla(x), a)dxd(a)” *da .
Therefore

lfag e gl
= Ilj' [ 451 (bb~ 2 (y)x™ 1), ba” gla(x), a)dxd(a)” *da|"dydb
BYjA

§ § 745 Y7 (b(yx~1), ba™ Y)gla(x), a)dxd(a)™ *dal’ dys(b)~ 'db

=14
<{f { f l [ f45 Y (b(yx™1),ba™ Yigla(x), a)dxlé(a)’ 1da}”dy5(b)“ 'db
BY 41X

’dy}%é(a)“ 1 da}'é(b)“ b

1

§ {5 }ﬁ f4GY9 (b(yx 1), ba™ Ngla(x), a)dx

g iU

A ba™ Yy V§(ba™ )" 8(a)” lda]’é(b)‘ 'db .

"1, ba” YAy (b(yx™ 1)~ Y g(a(x), a)dx

rdy}
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Now

1
{Y X rdy}r
=l(f(b(-),ba™Ay(-)" Y Yxgla( - ),a)ll, [since Ay (a(x))=4,(x)]
S YOO fb(-), ba™ ) lgla( -), a)ll,
= YO X)) 71 £+, ba~ Yl s(a)allg( -, a)l, .

Thus
flfa-14 xgllr

j“ YOOI, ba™ Yl lig(-, al 4 (ba™ 1)~ 1

TN, ba” ) Ayblyx™ 1)V glalx), aydx

d(ba™ 1)y~ §(a)” 1}'5(1})' 'db

=[YneOT | { JIAC- ba Bl 4 (ba™ 1)~ 1 lig(-, a)ll daldb
Bl4

(since 1+l,-1=03...1__r7+l>
q9 (4 qg p

=YY lea; @ syl
[where p(a)=Ilf(-,a)l, and w@=lg(-,a)l]
Sy lel Iyl 1
=[YEX)YIA 11 lgl 1, as required.
Corollary 2.5. If G=XG)A is a semi-direct product and
(k—1)+1=i+i+...+i
r p P P

for some kz2 and r,p,,p,,..., p€[1, 0], then

Y (G) Y® (X) Y(r)

P1,P2ss-s Py - Pl ,,,,,,,,,, Pk(

A) .

Corollary 2.5'. Let I be a connected simply connected real nilpotent Lie group of
dimension n. Then

Y(r),””pk(‘{‘)< Y{r)’m, (}R") .
It will result from Theorem 3 (in Section 3) that equality holds in Corollary 2.5’
if I' is a Heisenberg group and if p, =p,=...=p, =2k/(2k— 1) for some k=2.

We turn now to a discussion of the Hausdorff Young theorem for a locally
compact group. The generalization to all locally compact Abelian groups of the
inequality (0.3) with constant 1 is well known [5, (31.20)]. So is the corresponding
inequality for compact non-Abelian groups [5,(31.22)]. In 1958 Kunze [9]
extended the Riesz-Thorin Theorem to the setting of operator algebras and
thereby was able to prove a Hausdorff-Young theorem for any locally compact
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unimodular group G. This theorem took the form
1 1
L, <lfl,, 1=p=2, ;+—I-)~==1 fel’G), (2.13)

where L, is the operator of convolution by f on the left in the Hilbert space L*(G)
and the norm “L il is defined by using a generalized trace cononically con-
structed from the group. This result was new even for compact groups and
subsumed the usual Hausdorff-Young theorem in case G was Abelian. A concrete
realization of (2.13) can be given if the unimodular group G is separable and of
Type I (Lipsman [10, Theorem 2.27]). In this case letting G denote the space of
unitary equivalence classes of continuous irreducible unitary representations of G,
there 13 a measure y; on G such that

FIfPdx= [ 1U(NI3dueh),  feLMGINLXG), (2.14)
G G
where U, is an element of 1€ G,

U= if(X)Ua (x)dx, for feL'(G)

and 1U (N3 =t [UN*U(N].
The Hausdorff-Young inequality (2.13) now asserts

{ g o, (N ziduaw}”f" g{;} If(x)l”dx}”" : (2.15)

We shall identify L, with the family {U,(f)},.¢ and consider it to be the Fourier
transform of f. We define A4 (G), for 1 £p <2 to be the best constant in inequality
(2.13) or in case G is separable and of Type | in inequality (2.15).Thus

A (G)= sup ”“ff[:"’ and (2.13) implies 4,(G)£1 always.

Lemma 2.6. Let G be a locally compact unimodular group and let p=2k/(2k—1) for
some integer k2 2. Let Y(G)=Y? ~  (G)if py=p,=...=p,=p. Then

A, (G)=Y,(G)*.
Proof. Since p=2k/(2k—1}) we have p'=2k and thus if

fex G, L n=NL 5=, . .. .1

=l fix. .2 f, 122G 115

where f=f,=fi=...and f*=fo=f,=....

Thus L, S Y(G)*7li fll,= ¥,(G)' ™Il 1l , and this proves 4,(G) < Y,(G)"~. On
the other hand if f,, f,,..., £, #(G), then

Wfpex il =lL,, l=lL, Ly Ly 0y

. k1
TR R (smce ‘- 5)

A

< ﬁA GNfl, =4 (G»"H I,

and this shows that Y,(G) < 4,(G)\.
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Remark 2.7. In the proof of Lemma 2.6 we have used the following facts from
Kunze [9]:
(1) equality holds in (2.13) for p=2.
(i) 1L, =mg(L%L,)"), 1<r< oo, where mg is the generalized trace referred
to above.
(i1)) Holder’s inequality for operators.

Theorem 2. If G=XQ® A is a semi-direct product of locally compact unimodular

groups X and A and if G is unimodular, then for p= (Z%T)’ k an integer =2, we
have
A(G)=A4,X)A,(4) .

Proof. By Lemma 2.6 and Corollary 2.5
A,(GF =Y (G) S Y, (X)V,(A) = A, (X} 4,(A) .

We now give some examples to which Theorem 2 applies. First let G=R x H
be a direct product where H is an arbitrary unimodular group. By Theorem 2 we
have 4 (R x H)< 4, (R)A,(H) for p" an even integer. As noted previously, since this
isa dlrect product we have equality. On the other hand it is proved in Russo [12,
Theorem 2] that equality holds here for all pe(1,2). Next consider a semi-direct
product R"® K where K is compact. By Theorem 2, for p’ even A (R"®K)
<A4,(R") since 4,(K)=1. For this example the proof of [12, Theorem 4] shows
that equality holds for p' an even integer. Therefore Theorem 2 gives no new
information for these examples. Consider next a connected simply connected real
nilpotent Lie group I'. A consequence of [14, Proposition 12] is that for all
pe(1,2), A, )gAi where ¢ is the dimension of the center of I'. This can be
improved using Theorem 2.

Corollary 2.8. Let I" be a connected simply connected real nilpotent Lie group of
dimension n. Then if p=2k/(2k—1) for some integer k=2, A ') < A},

Proof. If n=1 (or 2) I is the Abelian group R (or R?) and A4 ,(R)= 4, (and 4 (IRZ)
=A2). If n>2, write I'=I"® 4 where I'"" has dimension n-1 and A~R. Then
Theorem 2 and the induction hypothesis gives the corollary.

We shall show in the next section that if for example, n=3, then equality holds
in Corollary 2.8,

Two other interesting groups for which Theorem 2 gives a specific bound less
than 1 are the inhomogeneous Lorentz groups and the Oscillator group (see
Kleppner and Lipsman [8]). Other examples of important semi-direct products
can be found in Wolf [15]. We note that, according to Fournier [4], 4,(G)<1if G
has no compact open subgroups.

3. Heisenberg Groups

In this section I" will denote the Heisenberg group of dimension 2n+1,n21. Thus
the points of I" are triples y=(x,y,t) with x,yeR" and teR and the group
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multiplication is
(X, ¥, {)(X’, )”, t,)=(x+x’s y"“}”, t+t "'Xy,) . (3'1)

It is known that for each 1#0 in R there is an irreducible unitary repre-
sentation U, of I on I*(IR") given by

(Ux, 3, 0)f)O)=explid(t— y-6)] f(6 +x) (3.2)
for (x,y,t)el’, fe I*(R"), and H#<R"; and that
; lo()Pdy=02m)~""* , i . lU (@)l31a17dA (3.3)

for oe LMI')NL*(I'). Here dy is Lebesgue measure on R2"*1
Ui@)= [ o0U,(ndy, and U (@)} =tr(U(0)*U(e)) .
r

The Hausdorff-Young theorem for I', which can be obtained from (3.3) by

. . 1 1
Riesz convexity, is the statement, for 1 £p<2 and ; + ;’ =1, that

((27t)“"’1 [ 1U0) ”53I/1|”d/1>”"' = (f pr(v)l”dv)”” (34)
A*0 r

for pe LN(T)NLX(I) [cf. (2.15)]. The inequality (3.4) then extends to all e L” and
we shall write it as

IL ), sloll,, @el?n), 15p<g2. (3.5)

¢o'p =
By using (3.2) to determine the kernel of the integral operator U,(¢) one can
verify (3.3) directly. Also by using this kernel it was shown in [13] that
IL 0, sAnttol,, eelXI), 1<p<2, (3.6)

and in particular that 4 (') <1.
Using the theory of Weyl operators developed in Section 1 we will prove, for p’
an even integer, the best possible inequality of the type (3.5).

Theorem 3. Let pe(l,2) be of the form p=2k/(2k — 1) for some integer k 22 and let
I be the Heisenberg group of dimension 2n+1. Then

W 1L, <42 Hol,, for eelI),

(i) A"+ is the smallest constant in (i), or in the notation of Section 2,
A=A

(i) 42" = sup {ILo, 0, /o, I}, where
a,b>0

@a 4%y, )=exp{—al x>~ bl yli2 —ns2}

(iv) there are no extremal functions in (i), i.e. if equality holds in (i) for some
@eIX(I') then 9 =0 a.e.

Proof. A comparison of (3.2) with (1.1) and (1.2) shows that

U, (x,, t)=e"”‘+"'”U(x)V(-— «{12%), for (x,y,t)el’ 3.7
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and therefore that

Uo-(i5) § je"z""’"y[fqo(x, -y e"“dt}

-U(x)V(y)dxdy
2r
~ (/% -
where G, is defined by
. 2
Gi(x,y)=e ™7 (x’ Y E) ’ (3.9
for (x, y)eR?",
Therefore, for every pe(1,2),
ILE=@m~""" [ 1U(@lZ]AIdA
A%0
=Qm)7 e K MBI - Pda (3.10)
A0

’

Now assume that p’ is an even integer. Then by Theorem |1,
IKg Il <A42"1G,ll, and thus by (3.10)

L, lIe <@my=n=temaZee § |G, 12 |AM ~P0d), (3.11)
PE

By (3.9) ’

1G, 12" = (§ [IG (x, y)|Pdxdyy'?

(o2
A (e

Thus by (3.11)
IL, 7 < (@m)=n=t+ov 4200
S|l (x Y ) (w>d dy} AR =242
= A2 [ [{ [ lo(x, y, D)Pdxdy]* ?d
éA;”p, (5 f < 5 lo(x, y, Z)!P’d,‘l)m’dxdy)p'/p
A% 0

<AV ([ (A2 [ |g(x, y, t)Pdt)dxdyy?
=Ag gy (3.13)

rlp
dxdy)

and (i) is proved.
Suppose now that L [, =A2""llpl, for some e LP(I'). By (3.11) and (3.13)

we must have [|Kg Il = A "G, ﬂ for ae. 1. By Theorem 1 G, =0 ae,, for ae. 1 so

p
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from (3.12)
loh2={{{lo(x,y, t)Izdxdydt—- (§{1o(x, y, 1) >dxdyd

=@ 1f]o . )

To prove (iii) and therefore (ii) let ¢>0 and choose N so that

dxdydA= so @=0 ae

RZ} @ r p'lz 27
exp|—p —ldi> | ex {—ﬁ}dz-sz--—fws, (3.14)
R Bt R = @)
and let M be given by Lemma 1.3 with ¢= — 2. Then {ix a and b such that
ab> MN*® (3.15)
42
Write ¢ for ¢, ,. By (3.9)
~2mix- 27'[ j"
Gl(xsy)ze ? y¢(xa*7y,g)
B Lo LY s
=e MHrH (x,y) (3.16)
where we have put
Hl(x, y)ze—2m'x-ye—a||x||2e-4bn2]ly||2/).Z . (317)
By (3.16)
Kg,=e "1*Ky,
and thus
1K g 2 =e v #ite g, 2 (3.18)
By computation from (3.17)
) 1A np'lp _rne
HH P = (ﬂ (4ab) ?» (3.19)
and by Lemma 1.3
2 , . abdn’?
1Ky 122 (42— ey [H, ]2 provided =M. (3.20)
Thus
1Lz =@yt | U (p)E]Arda
A0
22n)" "t | U e)E)Arda
0<[A|=N
=m0 K Izt - da (3.21)
0<|Al=N

{by 3.8)].
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By (3.18), (3.20), and (3.19) we have

) I N

. (1] np'lp )
=g * "”‘“‘(Aﬁ"ws)" (?) (dab)~r' 2P (3.22)
2
provided “b>M By (3.15) 4nab>MN? so if |4=N we have %f—b
MN?
> - FEm =M. Thus (3.22) holds for any 0<|4| < N and using (3.22) in (3.21) yields
IL N2 2 @r) "~ (40— )
s
,(4ab)‘np’/2p j e 4t dlp_””//”
0<|A|EN
>(2n)~n 1+np (AZn g)p (4ab)~np ‘12p ((12;;% _8) p~np'!p (3.23)
[by (3.14)].
But
_mw
{lfpﬂg'z(n)""'“’(ab) 2pp =t VPP (3.24)

Putting (3.24) in (3.23) we get

T U
VLl o, 227) 1 (m—8> pHAY" )

()
pllp )%

pd/p’

and this completes the proof since A Pz(

4. The a x+b Group

Let G be the group of matrices (g E;) with a>0 and belR, under matrix

e b
multiplication. Denote the group element <g 1) by (b,a). If we set

N={(b,1):beR} and K ={(0,a):acR*} then G=NK is a semi-direct product
with N normal in G. The product in G is (b,a)(V',a)=(b+ab’,aa’) and the Haar

measures are %g—b (left) and dadb (right). The modular function is 4(b,a)=a"".
a

For each AcRR there is a one-dimensional unitary representation n, of G given
by m,(b,a)=a'*. Two infinite dimensional irreducible continuous unitary repre-

dt
sentations of G are given by m, defined on # = L2< ) by

(n1(b, a)E)(t)=e F2""¢(at), Ee o, teRY, . (4.1)

Every continuous unitary irreducible representation of G is unitarily equiva-
lent to one of 7, 7,. For questions of harmonic analysis on G only the two infinite
dimensional representations n, enter.
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Consider the unbounded densely defined operator § in # given by
D={EcH T E()e #} and SE() =12 E(Y), for e D.
dbd
For feING) let #,(f)=mn,(f)={[f(b,a)n (b, a)Ta (right Haar measure).

Finally set 2, (f)=62.(f)and Z(f)=(2,(f), Z_(f)) for f locally integrable.

The Plancherel theorem for G is the assertion that f—2(/), defined initially for
locally integrable f, extends to an isometric mapping of I*(G) onto the space L*(+)
of pairs of Hilbert-Schmidt operators on ] i.e.

12 s, =2 N+ 2 (D12 =111 g, - (4.2)

This is proved by Khalil [7] using left Haar measure.
Now let re[2, o) and define, for locally integrable f,

f:,i(f)zézlrni(f) . (4.3)
Note that formally ¢, . =#, and ¢, , =2 ,. The Hausdorff-Young inequality
for G is the assertion

L
L2, Doy =2 D47y (N7 S Sl - (44)

This can be proved by using the extension of the Riesz-Thorin interpolation
theorem in which the linear operator varies analytically on a complex parameter.
However, by using the Hausdorfi-Young theorem for integral operators one of us
has shown [14] that ij,(f)”u,/(i)gApr”L,,(G) for felI’(G) where
A,=[p"?/(p)""""]*. By using our results on Young’s inequality for non-
unimodular groups we can obtain the following theorem:

Theorem 4. Let p=2k/(2k—1) for some k=2,3,4,... and let G be the ax + b group.
Then

g, N, 4201l .6 for feIX(G).

We first establish some properties of the transform ¢, ,. We note first that by
4.1

@ (NEOW® =[] f(b,a)e™ > &(at)dba™ *da
= [( f(b,at™ e *"db)(a)a™ da

so that the kernel of n.(f)=2.(f)is
ke fta)=f(Fhat™") for raeR%. (4.5)
A similar calculation shows that the kernel of #, ,(f) is
ko @)=t f(Fhat™"), for taeR%. (4.6)
Using (4.6) it is easy to check that

: 2o b1
(Fr =1, (f4), o=l (4.7)



Weyl Operators and Heisenberg Groups 193
[where generally f(x)=f(x~1)], and that

7,087 1) =m0, 0. (48)

Then using (4.8) and an induction argument one can show that for k=2

Fr () I ()

(k= 1) Ck-2)

= ,/k’i(flA' roafyd T *...*fk_lA"%*fk). 4.9)

We omit the proofs of (4.7) and {4.8) except to remind the reader that the
convolution is given by (2.1} and thus

frgb,ay= | [ f(b—aa'B,aa')g(B, 0)dpi do. (4.10)

R% R

The inductive step for (4.9) is the following:
Fr s F (v )
=2+ JILA () S (e )]
~ 7, 1072 () (where G fid T e fid )
=8 ()0 @) =041 (47 eg)
— 82§ (f, 474 xg,)

k-1)

=L+ 1)+ (flA“"/’*fZA_”rq*...*ka Ui 1)
as required. Finally we note that
Ifarvrl <lfl, for 1<r<oo. (4.11)
We can now prove Theorem 4. Fix k such that p=2k/(2k—1). Then p' =2k and
Iz, (Nl = }; 12, (Nl = ; 170 NI3E 4.12)

For any operator T, | Tl12k = IS, [1Z where S, is either T*T...T*T or TT*...T*T (k
factors) according as k is even or odd. Applying this to T = F i +(f) and using (4.7)
and (4.9) we see that, setting
_k=) -1

gk=(f1A 2% xf,4 2 *...*fk_lzl*”z"*fk) (4.13)
where fi=f,..=f=f, fi=fi=.. =fio1=f4"" (k odd), and f,=f;=...
(=f,(_,=fz:1””, fo=f,=...=f,=f (k even) we have S,=#,..(g,). Thus from
4.12)

Lz (DlE =TS, 15 =217, @3 =1520013=lg,]13
+ +

< (Y,,(G) [kI I fjtlp)2 S(Y(N) YK fI%)?

by (2.8) and Corollary 2.5. Since Y,(N)=Y,(K)= Y,(R)=A% and p'=2k we have
Lz, (Nl »SAZIfll, and the proof is complete.
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