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Sharp Inequalities for Weyl Operators 
and Heisenberg Groups 

Abel Klein* and Bernard Russo** 

Department of Mathematics, University of California, Irvine, CA 92717, USA 

Introduction 

We study inequalities in harmonic analysis in the context of non-commutative 
non-compact locally compact groups. Our main result is the determination of the 
best constant in the Hausdorff-Young inequality for Heisenberg groups. We also 
obtain the somewhat surprising fact that the resulting sharp inequality does not 
admit any extremal functions. These results are obtained after a detailed study of 
the operators which occur in the Fourier decomposition of the regular repre- 
sentation of the Heisenberg groups. These are called Weyl operators and are of 
independent interest. We also obtain bounds for the best constants in the 
Hausdorff-Young inequality and in Young's inequality on semi-direct product 
groups, including non-unimodular groups. In particular, for real nilpotent groups 
of dimension n those best constants are shown to be dominated by the correspond- 
ing best constants for IR n. Although some of our preliminary lemmas are valid for 
all values ofp~(1, 2) the methods we use for our main results require that p belong 
to the sequence 4/3, 6/5, 8/7 ..... i.e. that p', the conjugate index, be an even integer. 

The contents of this paper are as follows. In Section 1 we discuss Weyl 
operators and determine, for p' even, the best constant in a Hausdorff-Young type 
inequality (Theorem 1). We also show the non-existence of extremal functions for 
this inequality. In Section 2 we prove some general results for locally compact 
groups which includes a form of Young's inequality for convolution appropriate 
for non-unimodular groups. This is applied to arbitrary semi-direct products. 
Then using a duality argument which relates the inequalities of Young and of 
Hausdorff-Young we obtain bounds for the Hausdorff-Young inequality 
(Theorem 2) on unimodular semi-direct product groups (for p' even). An interest- 
ing consequence of these results is that for a connected simply connected real 
nilpotent Lie group of dimension n, the best constants in the inequalities of Young 
and Hausdorff-Young are dominated by the corresponding best constants for IR n. 
In Section 3 we show (Theorem 3), using the theory of Weyl operators developed 
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in Section 1, that for the Heisenberg groups, the best constant for the Hausdorff- 
Young inequality is the same as the corresponding one for ~," (p' even) but that 
there are no extremal functions. This can be contrasted with the classical case IR" 
where Gaussian functions are extremal functions. In Section 4 we use the methods 
of the present paper to improve on a previous estimate for the "ax + b" group 
(Theorem 4). 

We now set down some of the notation which will be used throughout. If ~ is 
a complex Hilbert space, ~(~)f~) will denote the Banach space of bounded linear 
operators on ~ ,  with the operator norm. Our inequalities will be stated in terms of 
the Banach spaces Cr(5~), 1 < r < oo, consisting of elements T of ~(Jt  ~) for which 

II TII, = II Tllc,t~r) = [trace(T* T) r/z] 1 / r  < O0 . (0.1) 

We let j be the Fourier transform on IR" defined by 

i f ( y ) =  ~f(x)e2~iX'rdx, for feLl ( lR ") (0.2) 

where dx denotes n-dimensional Lebesgue measure and x , y  is the Euclidean inner 
product. We also denote by ¢¢ the extension of the Fourier transform to the 
Lebesgue spaces LP(lR"), 1 <p__<2, given by the Plancherel theorem and the 
Hausdorff-Young theorem. Thus by results of Babenko (for p' an even integer) 
[1] and Beckner (in general) [2], 

iijfllLp,(~,) <A.pllfllL,(~,) ' 1 l P + ~7 =l,l_<_p=<2. (0.3) 

Also, by results of Beckner [2] and Brascamp and Lieb [3], 

II f *  9 Jl cr(R,) < (Ar,AvAq)" II Nil L,(m-)II g II L,(,-), (0.4) 

1 1 1 
1 + -  = -  + - ,  r,p, qe(1, ~ )  . 

r p q 

In (0.3) and (0.4) and throughout this paper 

[ ml/m ~ ~ 1 1 
A,,= + = X.  (0 .5 )  

As we are concerned with the best possible constants in our inequalities, our 
methods, like those used in the proofs of (0.3) and (0.4) do not involve the Riesz 
Convexity theorem. 

Finally, if X is a locally compact topological space, o~(X) denotes the 
continuous complex valued functions on X with compact support. 

1. Wey| Operators 

For xelR", consider the unitary operators U(x) and V(x) on LZ(IR ") defined by 

(U(x) f ) ( z )=f (x+z) ,  f~LZ(IR"), zEIR", (t.1) 

(V(x)f)(z)=eZ"xZf(z), f ~LZ(IR"), zeal" .  (1.2) 
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It is well known and easy to verify that U and V are each n-parameter unitary 
groups which are unitarily equivalent (as groups) to each other via the Fourier 
Plancheret transform, i.e. 

J V ( x ) j -  1 = U(x), x~IR", (1.3) 

and 

J U ( x ) J  -1 = V ( -  x) ,  xelR" (1.4) 

and which satisfy the following commutation relation: 

U(x)V(y)=e2"ixrV(y)U(x), x, yelR" . (1.5) 

For a measurable function F on 11t 2", the Weyl operator corresponding to F is 
the operator on LE(IR ") 

K v = ~ ~ F(x ,y)U(x)V(y)dxdy.  (1.6) 
~n 1R~ 

The operator K v certainly exists as an element of ~(L2(IR")) if F~ L 1 (R2,) and in 
fact 

Jl KFIJ ~ ~L2~,~) < II F II L'~R~-) " (1.7) 

A routine calculation shows that K v is an integral operator 

(KFf)(z)= ~kF(z ,x) f (x)dx , f~L2(IR"), z 6 ~ " ,  (1.8) 

with kernel k v given by 

k F ( z , x ) = F ( x - z ,  Yc)= ~ F(x-z,y)eZ~iXYdy, z, x 6 ~ " .  (1.9) 
R ~ 

Therefore 

II g F I[ c ~ { a ~ - ) )  = [I kr, ll L ~ . ~ - ~  - 1[ El l  r.~R~-~ • (1 .  i0) 

If we apply standard interpolation theory (e.g. Reed and Simon [11, p. 44]) to 
(1.7) and (1.10) we obtain 

IIgFllCl,,(L~tre)) ~ IIFIIL,(~,), FGLV(IR2") , (1.11) 

1 1 
where p~(1,2) and P + ~7 =1. 

Thus for each pc(l ,  2) and n = 1, 2,..., if we let 

we," = sup { II K F[ICv,(I:(R.)) : [I FI[ L~(~2.) = 1} , 

(1.11) states that we," ~ 1. It has been pointed out (Russo [ 14]) that wv, . < 1 for all p 
and n. The following theorem gives a complete analysis of the inequality 

11KF]I v, < wv,,]l Flip, (1.12) 

for certain values of p. 
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Theorem 1. Let pe(1,2)  be of the form p = 2 k / ( 2 k -  1) for some integer k > 2. Then 

2n 
(i) ] ] K F [ I C p , ( L 2 ( F . . ) ) ~ A p  ][V[[Lp(R2n) , F~LP(IR2n) ; 

- -  211. (ii) A 2" is the smallest constant in (i), i.e. wv, . - A p  , 

(iii) A 2 " =  sup {llK~o,~llp,/llva,bllp } whereF, ,b(x,y)=exp{-al]x[12-bl[yl[e}forx,  
a,b>O 

ye  lR" ; 

(iv) There are no extremal functions for (i), i.e. if  equality holds in (i) for some 
FeLP(~-,2"), then F - - 0  a.e. 

Remark 1.1. If we think of the map F ~ K  r as an opera tor  valued analog of the 
Fourier  t ransform on IR z", then, in view of (0.3), (i) and (ii) are not  surprising. 
However  in (0.3) equality holds for any Gaussian function so that extremal 
functions exist for (0.3). 

Before going into the proof  of Theorem 1 we give some elementary properties 
of Weyl operators.  For  z = (x, y)~ ]R 2" let W(z)= U(x)V(y). Then (1.5) implies that, 
with zi=(xl,  Yi), xi, yiEIR", i= 1, 2 

W ( z  I -.b z 2 ) - ~ e  2nix2 Y' W ( z 1 ) W ( z 2 )  (1.13) 

and therefore W is a projective representat ion of the Abelian group IR 2" 
corresponding to the 2-cocycle ~ :IR2" × IR2"~jl  " defined by 

o~(z l, z2) = exp { 2nix2. Y 1 } , (1.14) 

zi=(xi, Yi)6lR 2", i = 1 , 2  . - 

We can turn LI(IR 2") into an involutive non-commutat ive  Banach algebra by 
introducing a product  F ,  G and involut ion F*  determined by the rules O9 

K r K o = K v . o ,  (KF)*=Kr . .  (1.15) 

F r o m  (1.6) and (1.15) we obtain explicit formulae for these operations, namely 

F*(x,  y )= F ( -  x, - y)e - 2"ix'y , (1.16) 

F *G(x ,y )=  S ~ F ( x - z , Y - w ) G ( z , w )  e-  2~i~'ty-w)dzdw. (1.17) 
It. ~ ~." 

In (1.17) we note  that  e-2"i~(r-~)=oo(zl,z2) where z l = ( z - x , w - y  ) and 
z 2 =(z,  w) and this explains our nota t ion F ,  G since we could rewrite (1.17) as ¢D 

F * G(ct) = ~ F(a - fl)G(fl)~(fl - ~, fl)dfl. (1.18) 
!(2. 

F r o m  (1.17) we get 

IF * G[ < IF{, 16[ (1.19) 

where the * on the right side of (1.19) denotes the usual convolut ion for functions 
o n  IR 2n. 

We proceed now to the proof  of Theorem 1. Fix an integer k > 2  and let 
2k 

- -  and let FeLt(IR2n)nL2(IR2"). For  1 < j < k ,  let F j = F  i f j  is odd and let 
P = ( 2 k -  I) 
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F~=F ~ i f j  is even. Then  let G(k)=Fk*Fk_l . . . . . F  r We have p '=2k  and thus 

11Kv[[~', = 1[ Kvll 2k--2k _ tr [((KF)*KF) k] = tr [(KG(~)*Kw~) ] 
= 2 _ ~(k)2 _ [ [ F k . . . . . F I I [ 2  [[K~(~)I[C~(L2(~.))- I[,, e~(.~-)- 

< tl IFkI , . . . . IFl t  1t22 = 11 t F f l F  k_ f . . . I F l t ' l l  2 

<(]11Fkrll p .... II IFarllp,) 2 since k - 1  = < ApZ"H IFj[ [I 
= P '  = 1 

4kn 2k [by (0.3)] = A  v IIFl[p . Therefore IIKFII p, <A2"I[FItp and (i) is proved. To prove (iii) 
we begin by observing that  by repeated use of (1.17) we can write 

G(k)(Zk, Wk) = S { ~I F j ( z j - z ;_~ ,w j -w j_~) }  
]~n(2k - 2) j = 1 

( 1 • exp - 2~zi ~, zj(w;+ 1 - w)  dzdw (1.20) 
j = l  

where z =(z~, zz, . . . ,  Zk _ xm ax'-'~'"(k- 1) and w = ( % ,  ..., w k _ ~)elR ~k- ~) and we have set 
z o = w  o =0.  Then  using (1.20) we have 

[IG (k)ll ~ = ~ ~ G(k)(zk, Wk)G(k)(Zk, Wk)dZkdW k (1.21) 
R n ~R ~ 

= ~ ~ F ~ ( z j - - z j _ ~ , w j - w j _ I )  exp - 2 h i  2 zJ(w.i+l--w) 
lR'~(4k- 2) I.j = 1 j -  1 

• ; -  ; - w ,  
j= 

• exp 2~i 2 z}(w}+l - w dzdwdz'dw'dzkdWk 
t j = l  

where 

Z k = Z k ,  W k = W k ,  Z = ( Z l ,  .." Z k - 1 ) ,  t t ' = ( W 1  . . . . .  W k - 1 ) ,  Z t = ( Z 1  . . . . .  k - l )  

and w'=(w' 1 .... .  W'k_l). We now consider the Gaussian function F.,b. c defined by 

F~,b,¢(x,y)=exp{-altxl12-bl[yl[Z+icx.y},  x,y~IR",  (1.22) 

# __ a > 0 ,  b > 0 .  cellL We note that Fa,b,c--Fa,b_(c+2~). We then use F.,b, c for our  F in 

Z, Wj  i (1.21), make the change of variables z . ~  _z.z_~_ _ ~ ,  for 1 < j < k  and z~--* z~ 
; v - l'/a vsJ--~[/b 

t ~ b b  ( l - 2 k )  n w ~  for l < j<k .  Then lIG(k)l12=(ab)~T---iI(a,b,c)where I(a,b,c)isanintegral 

which by dominated convergence will approach I(1, 1, 0) = [[Fx, 1,o*-. .*FL 1,0 ][ 2 2 (k 
fold convolution) as ab~oo with c fixed. As pointed out by Beckner [2]  and 
Brascamp and Lieb [3] or as can be seen by an explicit calculation 

, , 2 _  2kn k 2 tiE1 x o* '"*FLI,OlI2--(Ap Irvl,l,ollp) " 
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N o w  

so in particular {IF1, o*. . .*Fl . , .o t l i=A'k ' {~- I  k"/p Thus 
, ,  ~ ~p] 

(1.23) 

/p\p'n/2p 

(~-2k t. /p\p'./2p 

( n p'n (1 -2k )  ._n =0)  
\si ce~-p 4 2 2 1 

p \ p }  - - p  - _ ~  . 

This completes the proof of (iii) and hence of (ii). 

Remark 1.2. For later use let us note that we have proved the following lemma: 

Lemma 1.3. Let Fa, b,c(X, y) = exp { -- a 11 x II 2 _ b II y II 2 + icxy}, and let p = 2k/(2k - 1). 
Then for any e > O, there exists a positive number M such that 

II/ro,b,,ll p, >__ (A~"- s)llf.,b,cll p 

whenever ab > M, and c is fixed. 

Remark 1.4. To give an example of what the integral (1.21) looks like an explicit 
calculation shows that 

1 

[ (  ;1 ab __, 2, ]]KF-b o 114 = AZ4/3 A4/3 as a b ~ o e  

We now complete the proof of Theorem t by proving (iv). For convenience we 
use the notation ~,~ for the best constant in Young's inequality for IR 2", Thus, 
1 1 1 

- + - = 1 + - and according to (0.4) 
p q r 

I/(p~,)q =(Ar, ApA,) 2" . (1.24) 

2k 
Suppose now that FeLP(IRa'), with p =  (2k-1----~ and that equality holds in (i). 

We shall call F an extremal function and show that F = 0  a.e. The formula IIgrll~i 
= I1 a¢k)l[ 22, used previously for F e  LI(IRE')c~La(IR2"), is valid for F~LP(IR 2") because 
the integral defining G ¢k) is dominated by tFkI....*IFI] which is in L2(1R z') by 



Weyl Operators and Heisenberg Groups 181 

Young's inequality since Fj~_.ZP(~-~2n), i < j < k .  We now apply (1.19) and (0.4) to 
obtain 

IJ ark)l[ 2 < II [Fkl * Iatk-  1) III 2 < ~zq)I[Fkl[pH a t k -  x)llq~ (1.25) 

1 1 1 2k 
w h e r e -  + - -  = I +  ~ so that  q l =  k + l "  

P ql 
Similarly 

[tGtg-a)Hql =< [I IF k_ 11.1Gtk-2) 1 [[ql = < ~ql)p,~2 [[Fk- x [tp[t G~k- z)[tq2 (1.26) 

where 1 1 1 2k - + - -  = 1 + - -  so that  q2= 
P q2 ql k+2"  

Continuing in this way we are led to 
qk-  3) k -  2 # llG~k~ll2 <_ V~qo~y~q,)_p,ql -p,qz"" ~,q~_ Itfllp HF .FIl0~_2 (1.27) 

2k 
where q0=2,  q j=  ~ for 1 5 j < k -  1. In particular q k - l  = P  and 

ItF ~ * Fllq~_ < II tF*I*IFI IIq~ < ~,q~,-z~llfll~. (1.28) 

Combining (1.27) and (1.28) we have 

l[ G ~k) tl 2 < Y(pq,~; 

k--1 

But ~ Y~qJ- ' ) -A  2k" [by applying (1.24) the product telescopes]. -p ,q j  - - ' ~ p  
j = l  

Since F is extremal we have equality in (t.25)-(1.29). In particular ][ F ~ * F[tq~_ 
= II IF~ t , IFI  [lq~_~ and by (1.19) we have 

IF ~ * FI = I F ~ I . I F I  a.e. (1.30) 

If we write out the integrals in (1.30) we see that  we can apply Hewitt  and 
Stromberg [6, (12.29)] to obtain a null set N c IR 2~ and for each (x, y)~IR 2~-  N a 
null set Nt~,r ) and a real number O(x, y) such that  

F *~ (x - z, y - w)F(z,  w ) e -  2,~i~y- w) 

= ei°~x'~')lF ~ (x - z, y - w)F(z,  w) I 

for all (z,w)@~.2n-N(x,y). (1.31) 

Our aim is to show that F = 0 a.e. For  this purpose let S v be the set where F is 
not zero. We shall show that  S v is a null set. We can write F = IFI U where I UI = 1 
and then cancel all non-zero terms in (1,31). The result is 

O(z - x,  w - y)U(z ,  w) = e -  2,,xtw-r)+ iotx.r) (1.32) 

for (x, y)s IR 2n - N, and (z, w)~ (IR 2n - N<x.y))c~Svn((x, y) + St).  

Consider now the function/~(x, y ) =  F ( y , -  x), x, ye  IR ". Using the properties of 
Weyl operators it is easily seen that ( J K F J - 1 ) . =  K:.  This shows that  if F is an 
extremal function, then so is/~. We note that z ( S : ) =  Sv where z(x,  y ) =  (y, - x )  and 
that we can wr i t e /~=  [FIV where IV[ = 1 and V can be chosen such that  

V ( x , y ) = U ( y , - x )  for all ( x , y ) ~ l R  2n . (1.33) 
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Since (1.32) is valid for any extremal function we apply it to our/~ to get null 
sets N' and Nix, s ) such that 

V(z - x ,  w - y )V(z ,  w) = e -  2nix(w - y)+ iv(x,y) (1.34) 

for (x, y ) e  IR 2 " -  N '  and 2, , , (z, w ) e  (IR - N<x,r))c~Spc~((x , 3) + S f). 
We now combine (1.32), (1.33) and (1.34). The result is 

e -  z,~i,,t~,- y) + iot x,y) = e -  2,iy(z - x) - itJ( - y,x) (1.35) 

for (x, y)~ (IR 2" - N)c~z(lR 2" - N') and 

(z, w)~ (lR 2" - N(x,y))~z(IR z" - N I_ r,x))n SFc~((x, y) + SF)-- m(~,y) . 

We claim that Mx,y is a null set for a.e. (x ,y) .  To see this fix 
(X, y)E (IR 2n - -  N ) ~ z ( ~  2n  - N')c3( IR 2n - {(0, 0)}). Then (1.35) implies that 

M(x.r)C 0 { ( z , w ) : x . w + y . z = k + C ~ , . y }  
k = -  c~ 

with C~,y~lR. Since (x,y) is a non-zero vector in IR 2~, each set in the union has 
2 n-dimensional measure zero and the same holds for M(~,r). The fact that S r is a 
null set is now a simple consequence of the following lemma. 

Lemma 1.5. L e t  B be a Lebesgue  measurable  set  in ~¢  such that  Bc~(v + B) is a null 
set  f o r  a.e. v~IR  ¢. Then  B is a null set. 

Proof. We can reduce to the case that B is bounded. Then zB~LI(IR ~) and the 
assumption is equivalent to ;(-'B*Z~--0 a.e. Since (Z_ B)" = (;(B) ~ we have I(ZB)'I 2 =0  
and therefore X~--0, so B is a null set. 

This completes the proof of Theorem 1. 

2. Inequalities on Locally Compact Groups 

Let G be a locally compact group and denote a right Haar measure on G by dx  or 
dgx.  Convolution and norms are defined with respect to dRx as follows: 

f . g(x)  = i f ( x y -  1)g(y)dRy " (2.1) 
G 

1 

The symbol A, or A~ when necessary, denotes the modular function of G. It 
follows from a careful application of HOlder's inequality that 

tlfA-1fq',gltq<tlflllllgllq, l < q < o o  , (2.3) 

I I f A  - x/q', gll oo N I l f l l¢ Ilgll,~, 1 --<q N oo (2.4) 

where as usual 1 1 - +  =1. Thus for fixed gELq(G), the map f - - , f A - 1 1 q ' ,  O on 
q 

simple functions is of type (1,q) with norm ~llgll~ and of type (q', ~ )  of norm 
__< Ilgll~. By the Riesz-Thorin Theorem this map is of type (Pt, q,) where 0 <  t <  1, 
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1 1 - t  t 1 1 - t  t 
P t -  1 + q " q t -  q +--'oo If  we s e t r = q t a n d p = p t w e o b t a i n a g e n e r a l i z a -  

t ion of  Young 's  inequali ty which we state as a lemma.  
1 1 

L e m m a  2.1. Let G be a locally compact group with modular function A. I f  - + - 
P q 

= 1 + _1 and p, q, re [1, oo] and if  norms and convolution are defined relative to a 
r 

right Haar measure, then 

f A - ~ * g  r < Il ftlpllg [Iq . (2.5) 

Remark 2.2. There  is a cor responding  inequali ty which uses left H a a r  measure  and  

which takes the form t l f ,  gA t/p' ti, < llfllplIgllq, + - = t + 1. This can be proved  in 
q r 

the same way and in this case the convolut ion  is given by f*g(x)  

= ~f (y)g(y-  lx)dLy where dLx is a left H a a r  measure.  In this paper  we shall always 
G 

use right H a a r  measures.  
Fo r  any locally compac t  g roup  G and p,q, r e [1 ,  oo] we define (using right 

1 1 1 
H a a r  measure)  when - + - = 1 + - ,  

p q r 

(o  _ I l f  z t  - I / q ' * g l l ,  
Y;,q(G)- sup (2.6) 

:*o  Hf[[figIIq 
g:~ O 

Thus y(O(~p,q,_j, which we shall somet imes write as Y,,q is the best constant  in (2.5) 
and is =< 1. By repeated appl icat ion of (2.5) we can obtain 

1 1 1 1 
Corollary 2.3. Let G be a locally compact group. I f ( k -  1)+ . . . .  + - - + . . .  + - -  

1" Pl P2 Pk 
for some k > 2 and r, pl, . ,pkS[1, o0] then 

We then define Y(~) (G) to be the best constant  in (2.7). The special case of  
p l , p 2 , . , p k ~  z 

2k 
(2.7) in which p~ = P2 = " ' = P k  = P = 2 k -  1' and thus p ' =  2k, will be used in Section 

4. It states that  

(k- 1) (k- 2) 
f l  A 2* , f2d ] 2k (2.8) - - -  - ) * L  2 -  -< (2) .(G) * . . . * A - , A  ...... 1-I Irj;tJ. 

i = 1  

2k 
where p = (2k - 1)" 

We shall now consider Young 's  inequality (Lemma 2.1) for semi-direct  
products.  For  direct products,  the inequality we obtain in L e m m a  2.4 in easily seen 
to be an equality. We conjecture this to be also the case for semi-direct products .  
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For certain indices and certain groups this is a consequence of Lemma 2.6 and 
Theorem 3. 

Consider now a pairX, A of locally compact groups together with a homomor- 
phism a-~% of A into the group of automorphisms of X. We suppose that 
(x, a)-~%(x) is continuous from X × A to X so that the semi-direct product group 
G =X ® A becomes a locally compact topological group with the product topology 
and multiplication (x, a)(y, b)=(x%(y), ab). We shall write a(x) instead of %(x). We 
recall (Hewitt and Ross [5, (15.29)]) that a right Haar measure on G is the product 
of the right Haar measures dRX on X and dRa on A and that the modular functions 
of the groups X,A, and G=X®A are related by 

A6(x, a) = 6(a)AA(a)Ax(X), (x, a)e G, (2.9) 

where 6 is (a homomorphism of A) defined by 

S f(a(x))dRx =6(a) ~ f(x)dRx, f e  ~ (X) .  (2.10) 
X X 

In particular, Ax(a(x))= Ax(x ) and 

[If(a(. ))llp=3(a)ltpllfllp, 1 < p <  ~ . (2.11) 

Lemma 2.4. If  G =X ®A is a semi-direct product of locally compact groups X, A, 
then 

yL.(x)qq(A) (2.12) 

whenever r,p, qe[1, ~]  and 1 1_ 1 - +  = 1 + - .  
p q r 

Proof. 

( f  A~ tiq',g)(y, b)= ~ ~ f A~ 1/q" ((y, b)(x, a)- 1)g(x, a)dxda 
X A  

= ~ ~fA~ llq'(yba- l(x- 1), ha- 1)g(x, a)dxda 
= ~ ~fA~ IIq'(yb(x- t), ba- X)g(a(x), a)dx6(a)- ida. 

Therefore 

IlfA~ l:¢,gl]~ 

= ! !  ! x~fA~X/~'(b(b-l(Y)X-1)'ba-l)ff(a(x)'a)dxb(a)-Xdalrdydb 

= ! !  !~x fAal/"(b(yx-'),ha-l)o(a(x),a)dx($(a)-idardy6(b)-Idb 

<= ! f {! j iAa"(b(yx-'),ba-')g(a(x),a)d.la(a)-'da}'dy6(b)-'db 
1 

slslsis } - - }  < fd~  liq'(b(yx- 1). ba- 1)g(a(x). a)dx "dy "3(a) 1 da "6(b)- ldb 
BtAtYIX 

1 

= ![! {f f f(b(yx-')'ba-i)Ax(b(yx-X))-liq'9(a(x)'a)dx'dy~ 

• aA(b a- i)- l/,'6(ba- 1)- 11¢6(a)- ldai.6(b)- ldb . 
I 
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Now 
1 

= II ( f (b( .) ,  ba-  1)z~  X(" ) - 1 tq'), g(a(. ), a)II, [since A x(a(x)) = A x(X)] 

<= Y~y~(x) ll f (b(.  ), ba-1)11~ tlg(a(. ), a)ll~ 
= Y~)q(X)6(b) lip If f (  -, b a -  ~)llp6(a)llqtl0( -, a)ltq. 

Thus 

I l fz l -  li'~',011 ~ 

-_ Y~,q(X)llf( .,ba-~)Npllg(.,a)llqdA(ba-~) -1/¢ 

• 3(ba- 1)- ltq'6(a)-,l,~(b)- Xdb 
J 

= [ YP~(X)]" B ~I~llt., f (  .,ba-1)II pAA(ba-~)-~l~'Ng(.,a)II~da]'db 

( 1 1  r p) 
since q + ~; - 1 = 0 = - 1 - ~ ;  + 
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[where q~(a) = llf( -, a)Np and g,(a) = Ilg(., a)leq] 

<= [ Y~p~(X ) YJ7~( A ) ti (p lip II tp II q]' 

= [gtpT~(X)Y~(A)Ilfll~llollq]', as required. 

Corollary 2.5. I f  G = X @ A  is a semi-direct product and 

1 1 1 1 
( k - l ) + -  = - -  + - -  + . . . + - -  

r Pl P2 Pk 

for some k >=2 and r, ppp2 .... ,pkE[1, o0], then 

Y;:),,2 ..... p~(G) < YJ:)...,pk(X) YJ:' p~(A) . 

Corollary 2.5'. Let F be a connected simply connected real nilpotent Lie group of  
dimension n. Then 

rJ:'....,~(r) <__ ~:' ,~0R"). 
It will result from Theorem 3 (in Section 3) that equality holds in Corollary 2.5' 

if F is a Heisenberg group and if Pl =P2 . . . .  =pk=2k/(2k  - 1) for some k_>_2. 
We turn now to a discussion of the Hausdorff Young theorem for a locally 

compact group. The generalization to all locally compact Abelian groups of the 
inequality (0.3) with constant 1 is well known [5, (31.20)]. So is the corresponding 
inequality for compact non-Abelian groups [5,(31.22)]. In 1958 Kunze [9] 
extended the Riesz-Thorin Theorem to the setting of operator algebras and 
thereby was able to prove a Hausdorff-Young theorem for any locally compact 
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unimodular group G. This theorem took the form 

IIz~llp,<llfll v, l < p < 2 , - + 1  1-7=1 , yeLP(G), (2.13) 
P P 

where L I is the operator of convolution by f on the left in the Hilbert space L2(G) 
and the norm llLfllp, is defined by using a generalized trace cononically con- 
structed from the group. This result was new even for compact groups and 
subsumed the usual Hausdorff-Young theorem in case G was Abelian. A concrete 
realization of (2.13) can be given if the unimodular group G is separable and of 
Type I (Lipsman [10, Theorem 22]). In this case letting G denote the space of 
unitary equivalence classes of continuous irreducible unitary representations of G, 
there is a measure/L~ on G such that 

lf(x)t2dx= ~ IJU),(f)lI2d#o(2), f eL'(G)c'~L2(G) , (2.14) 
8 

where U z is an element of 2e G, 

U~(f)= ~f(x)Ux(x)dx, for f e L I ( O ) ,  
G 

and tl U a(f)ll ~ = tr[U a(f)* U z(f) ] . 
The Hausdorff-Young inequality (2,13) now asserts 

' 1 / #  < 

We shall identify L I with the family { U~(f)}2~ 6 and consider it to be the Fourier 
transform of f. We define Ae(G ), for 1 < p < 2 to be the best constant in inequality 
(2.13) or in case G is separable and of Type I in inequality (2.15).Thus 

IIL~ll., 
Ap(G)= s u p - -  and (2.13) implies Ap(G)_< 1 always. 

f*o If/lip 

Lemma 2.6. Let G be a locally compact unimodular group and let p = 2k/(2k-  1) for 
some integer k>=2. Let Ye(G)= Y~v2,~p~ ..... vk(G) if p, =P2 . . . . .  pk=p. Then 

Ap(G) = Y p ( G )  1/k . 

Proof Since p = 2k/(2k-  1) we have p '=  2k and thus if 

2 k 2  f lL*. . .*L tt 2 < (Vp(6)lf flt~) 

where f = f l  = fa . . . .  and f *  = f2 = f4 . . . . .  

Thus IILfllp, <= Yp(G) 2/p" tl flIp = Yp(G)t/kll ftlp and this proves Av(G)<= Yp(G) ~/g. On 
the other hand if f p  f2 ..... fke~ff(G), then 

[I f~ * . . . *  fkl[ 2 = Ii Lf, *.. *.rk H z = it Lf ,Lf: . . .  L f, [i 2 

<IILII I , t lL~I t  p .... Ilgslt p, since ~ =  

k k 

< I-I Ap(G)tlffip=(Ap(G)) k 1-I llf~llx, 
j = l  j = l  

and this shows that Yp(G)<= Ap(G) k. 
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Remark 2.7. In the proof of Lemma 2.6 we have used the following facts from 
Kunze [9]: 

(i) equality holds in (2.13) for p = 2. 
(ii) flLillr= ma((L~Li)r/2), 1 < r < Go, where ma is the generalized trace referred 

to above. 
(iii) H61der's inequality for operators. 

Theorem 2. I f  G =X@ A is a semi-direct product of locally compact unimodular 
2k 

groups X and A and if G is unimodular, then for p= (2k -  1)' k an integer >2, we 

have 

Ap(G) < Ap(X)Ap(A) . 

Proof By Lemma 2.6 and Corollary 2.5 

Ap(G) k = Yp(G) <= Yp(X) Yp(A)= Ap(X)kAp(A) k . 

We now give some examples to which Theorem 2 applies. First let G = IR x H 
be a direct product where H is an arbitrary unimodular group. By Theorem 2 we 
have Ap(IR x H)< Ap(IR)Ap(H) for p' an even integer. As noted previously, since this 
is a direct product we have equality. On the other hand it is proved in Russo [12, 
Theorem 2] that equality holds here for all pc(l ,  2). Next consider a semi-direct 
product IR"@ K where K is compact. By Theorem 2, for p' even Ap(IR"@ K) 
NAp(N") since Ap(K)= 1. For this example the proof of [12, Theorem 4] shows 
that equality holds for p' an even integer. Therefore Theorem 2 gives no new 
information for these examples. Consider next a connected simply connected real 
nilpotent Lie group F. A consequence of [14, Proposition 12] is that for all 
p~(1,2), Ap(F)<Atp where f is the dimension of the center of F. This can be 
improved using Theorem 2. 

Corollary 2.8. Let F be a connected simply connected real nilpotent Lie group of 
dimension n. Then if p=2k / (2k -1 )  for some integer k > 2, Ap(F)< A~. 

Proof If n =  1 (or 2) F is the Abelian group IR (or IR 2) and Ap(IR)=Ap (and Ap(IR 2) 
= A2). If n > 2, write F = F 'Q A where F' has dimension n - 1  and A-~IK Then 
Theorem 2 and the induction hypothesis gives the corollary. 

We shall show in the next section that if for example, n = 3, then equality holds 
in Corollary 2.8. 

Two other interesting groups for which Theorem 2 gives a specific bound less 
than 1 are the inhomogeneous Lorentz groups and the Oscillator group (see 
Kleppner and Lipsman [8]). Other examples of important semi-direct products 
can be found in Wolf [15]. We note that, according to Fournier [4], Ap(G)< 1 if G 
has no compact open subgroups. 

3. Helsenberg Groups 

In this section F will denote the Heisenberg group of dimension 2n + 1, n > 1. Thus 
the points of F are triples 7=(x,y,t) with x,y~lR" and t~lR and the group 
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multiplication is 

(x, y, t)(x', y', t') = (x + x', y + y', t + t' - xy'). (3. I) 

It is known that for each 24:0 in IR there is an irreducible unitary repre- 
sentation Ux of F on L2(IR n) given by 

(Ux(x, y, t)f)(O) = exp [i2(t - y. O)]f(O + x) (3.2) 

for (x,y, t)eF, feL2(IR"), and 0~IR"; and that 

S Iq~(~')[2d?=(21t) -~ - t  ~ HU~(cp)[1212l"d2 (3.3) 
F 2 : ~ 0  

for cp~LI(F)c~L2(F). Here d7 is Lebesgue measure on ~.2,+ 1 

Uz(q~)= ~ q~(v)Uz(~:)dT, and l[Uz(q~)[12 2 =tr(Uz(q~)*Uz(q~)). 
F 

The Hausdorff-Young theorem for F, which can be obtained from (3.3) by 
1 1 

Riesz convexity, is the statement, for 1 ~ p ~ 2  and P + ~7 = 1, that 

((2re)-"-la! 0 [] U~(q~)[l~:12l~d2)'/P'< (! Iq~(~)lPdT) '/p (3.4) 

for q~LI(F)nL2(F) [cf. (2.15)]. The inequality (3.4) then extends to all qg~L p and 
we shall write it as 

IIL~llp,__<llq~llp, qgELP(F), l < p < 2 .  (3.5) 

By using (3.2) to determine the kernel of the integral operator Uz(q~ ) one can 
verify (3.3) directly. Also by using this kernel it was shown in [13] that 

lltJp,<h~+Xllq~llp, ~o~tP(r), l < p < 2 ,  (3.6) 

and in particular that Ap(F)< 1. 
Using the theory of Weyl operators developed in Section 1 we will prove, for p' 

an even integer, the best possible inequality of the type (3.5). 

Theorem 3. Let pc(t ,  2) be of  the form p = 2 k / ( 2 k -  t) for some integer k >2 and let 
F be the Heisenberg group of  dimension 2n + 1. Then 

(i) IIL~II~ - f o r  ~ L , ( r ) ,  
(ii) A,  is the smallest constant in (i), or in the notation of  Section 2, 

A , ( r )  = A~ ~ + 1 

(iii) Ap2~+l = sup {llLq~,,btlp,/[[~p,,bltp}, where 
a ,b  > 0 

tp,,b(x, y, t)= exp{ - att xH 2 - bl[ yll 2 -~zt 2 } , 

(iv) there are no extremal functions in (i), i.e. if equality holds in (i) for some 
tpe LP(F) then ~o=0 a.e. 

Proof. A comparison of (3.2) with (1.1) and (1.2) shows that 

U~(x,y , t )=e 'Z"+~'r)U(x)V(-~l ,  for (x ,y , t )eF (3.7) 
\ zn/  
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and therefore that 

(2rc]" . t) Ua(~o)=\12lj**e-2 .... , [ 5 ~ o ( x , - ~ - ~ ,  eia'dt] 

• U(x)V(y)dxdy 

= KG~, (3.8) 

where Gz is defined by 

G~.(x, y) = e- 2 =ix.,q~ (x, 2r~ i - ~ -  y, ~ - ) ,  (3.9) 

for (x, y)eIR z". 
Therefore, for every pc(l,2), 

p' - n -  1 It t~oll., --- (2rt) .~ It U~(q~) II ~', I,ll"d,~ 
2 # 0  

=(2r0 -"-I+p'" 5 IIK~JI~;t21""-P')d2. (3.10) 
a,o 

Now assume that p' is an even integer. Then by Theorem t, 
IIK~ lip, <hZ"llGallp and thus by (3.10) 

tl Le I1 pP; < (27z) -" - ~ + p'"azp "p" f I1 a z II 2' I'tl "~a - P')d2. (3.11) 
2 # 0  

By (3.9) 

II aa II ~' -- (j" ff Ia&,  y)lPdxdy) p'/p 
2re ~. \t p \"/P 

-27) ~ ) d x d y )  . (3.12) 

Thus by (3.11) 

IIL~II~; <(2~) - " -  1 +"p' _ hp 2,p' 

.5[5,1~(x,y, ~. \lP/,2l\" I "'/p 

= Ap z"p' 5 [5 5 lq~(x, y, 2)lPdxdy]r'/Pd2 

<AZ"P' (SS(a !o Iq°(x' Y, ~.)lP'd2)P/V'dxdy) ,'/p 

< A~.p" (~ ~ (APp ~ 19( x, y, t)lPdt)dxdy) p'/u 
- - Z p  ~2"+ a)P'llq~l{~,', (3.13) 

and (i) is proved. 
Suppose now that IIL..Lf.,=A.Z"+ t f]~oll, for some ~oeLP(F). By (3.11) and (3.13) 

we must have II/a II p, =/)#tlG~II~ for a.e.~. By Theorem 1 Gz=0 a.e., for a.e. 2 so 
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from (3.12) 

!l (p ]J ~ = ~ ko(x, y, t)12dxdydt = j ~  ]q~(x, y, 2)[2dxdyd2 

= ( 2 r c ) - l f f l  ¢p x , y , ~  dxdyd2=O, so ¢p=0 a.e. 

To prove (iii) and therefore (it) let e > 0 and choose N so that 

S exp - p '  d 2 >  exp - d 2 - ¢ =  i P~: - e ,  (3.14) 
I.tl<N 

and let M be given by Lemma 1.3 with c =  - 2 m  Then fix a and b such that 
MN 2 ab > - -  (3.15) 
4re 2 

Write ~o for ~o,, b. By (3.9) 

Ga(x'y)=e-2"'XXq~( x'-2rty'L]2 2rt] 

- 2rdx.r -allxll 2 4n2 22 
= e  e -b~-Ilrlla e ,~n 

= e- "tz/4nHa(x, y) (3.16) 

where we have put 

H ;~(x, y ) = e -  2~iX'Ye-allxNZe-4b~ZllrllZ/X2 . (3.17) 

By (3.16) 

KG~ e- Z214'~K Hx 

and thus 

rlK~.]l~i =e-P'a~14'~IIKu tf~; (3.18) 

By computa t ion  from (3.17) 

ll,~l\,.p'i~, . ;  IIH tI "= [p 7 (4ab) 2" (3.19) 

and by Lemma 1.3 

ab4rc 2 
11Ku~ll ~7 >= (A J" - e) < 11 Hall ~' provided - ~  ~ M .  (3.20) 

Thus 

Ilt~,ll~;=(2n) - " -1  j llUa(qDll~;121"d2 
2:~0 

>(2rt) - " - ~  .J' II U~(~)II~;I~I"d,,I 
o<lxl_-<u 

= ( 2 r 0 - " - l + " " '  j IIK~ll~;121""-P')d2 (3.21) 
O<I~.I=<N 

[by (3.8)]. 
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By (3.18), (3.20), and (3.19) we have 

p . -~p ' /4~l l z  lip' ~-~p'/4"~A2~ ~:F'IIH21[ ;' 

-~ e -22P'/4rt (Ap2n /,/~,\np'/p (4ab) -np'/2p (3.22) 

4x2ab > 4z2ab 
provided ~ - - = M .  By (3.15) 4rc2ab>MN 2 so if [21>N we have 22 

M N  2 
> --~?-- > M. Thus (3.22) holds for any 0 < I,~1 _-< N and using (3.22) in (3.21) yields 

tt L,,,t[ ~: > (2~)- " - '  +"P' (Ap a ' -  ~)P' 
)2p" 

• (4ab) -'p'/zp ~ e 4nd,,~p-nP'/P 
0<IXI<N 

>_ (270- , -  1 + ,p" (,t2, ~P' ~a,Th~- ,p,/2p ( 2r~ _ e) p-  "P'/P 
/ 

[by (3.14)]. 
But 

rip' 
11 q~ 11 ~' = (rO"P'/~'(ab) 2p p - ( ,  + -~)p'/p . 

Putting (3.24) in (3.23) we get 

~>(9"rr'l-- 1/p'[ 2~ __17,) 1/p' IIg~llp'/ll~u,---,~'°, \ ( ~  N~P(AZp " - ~ )  

and this completes the proof since Ap= ~ . 

(3.23) 

(3.24) 

4. The a x + b Group 

Let G be the group of matrices (~ ~ ) w i t h  a > 0  and b~IR, under matrix 
\ -  

D e n o t e  the group element ( ;  ~ ) b y  (b,a). If we set multiplication. 
\ - -  

N = {(b, t): be IR} and K = {(0, a) : a t  IR * } then G = N K  is a semi-direct product 
with N normal in G. The product in G is (b, a)(b', a')= (b + ab', aa') and the Haar 

dadb dadb 
measures are - - ~ -  (left) and a (right). The modular function is A(b, a) = a-  1. 

For each 2elR there is a one-dimensional unitary representation ~ of G given 
by ~ ( b , a ) = a  ia. Two infinite dimensional irreducible continuous unitary repre- 

sentations of G are given by ~z_+ defined on ~ = L 2 \  +, t ] by 

(Tt ± (b, a)~)(t) = e ~2,1b, ~(at), i s  af, te IR* . (4.1) 

Every continuous unitary irreducible representation of G is unitarity equiva- 
lent to one of rc ±, x a. For questions of harmonic analysis on G only the two infinite 
dimensional representations x± enter. 
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Consider the unbounded densely defined operator f in ocY given by 
= {~ e ~ug : t ~ ( t ) e  3¢V} and 6~(t) = t ½ ~(t), for ¢ e N. 

For f e D (G) let J ±  (f) = n ± (f) = ~ f (b ,  a)n ± (b, a) dbda (right Haar measure). 
a 

Finally set ~± ( f ) =  6~¢± ( f )  and ~ ( f ) =  (~'+ (f),  ~_  (f)) for f locally integrable. 
The Plancherel theorem for G is the assertion that f ~ ( f ) ,  defined initially for 

locally integrable f, extends to an isometric mapping of L2(G) onto the space L2( ___ ) 
of pairs of Hilbert-Schmidt operators on ~ ,  i.e. 

l[~(f)l[L~(±)-- ([t~+(f)lt2 ~ + I[~_(f)tl2) ½ = [IfllL~(a ) . (4.2) 

This is proved by Khalil [7] using left Haar measure. 
Now let re  [2, or) and define, for locally integrable f, 

J , ,  + (f) = 6 2/,n ± ( f ) .  (4.3) 

Note that formally J®,  ± = J ±  and J2,  ± = ~±. The Hausdorff-Young inequality 
for G is the assertion 

1 

N~Cv,(f)ltLV,(± ) =-- ( l[,,,~p, + (f)[l~; + [[Jp, _(f)l]~;)~ < l l f H L p ( a  ) . (4.4) 

This can be proved by using the extension of the Riesz-Thorin interpolation 
theorem in which the linear operator varies analytically on a complex parameter. 
However, by using the Hausdorff-Young theorem for integral operators one of us 
has shown [14] that Ilyp,(f)l[L~,~±)~Apllfl]Lp~G ) for f eLV(G)  where 
Ap=[pl/P/(p')l/¢] ½. By using our results on Young's inequality for non- 
unimodular groups we can obtain the following theorem: 

T h e o r e m  4. Let p = 2 k / ( 2 k -  t) for  some k = 2, 3, 4,... and let G be the ax + b group. 
Then 

I[Jp,(f)llv, < AZell fllLp(O~ for f eLP(G) . 

We first establish some properties of the transform J , ,± .  We note first that by 
(4.1) 

(re ± (f)~)(t) = [, [, f (b ,  a)e ~ 2~ib, ((at)dba- l da 

= ~(~ f (b ,  a t -  ')e ~ 2"ibtdb)~(a)a- ida 

so that the kernel of n ± ( f ) = J ± ( f ) i s  

k±, f ( t ,a)=f(-T- t ,  a t -  ) for t, a e I R * .  (4.5) 

A similar calculation shows that the kernel of ~, ,±(f)  is 

k,,±,f(t,a)=tl/,f(T_J'~,at -1) ,  for t, ae]R* . (4.6) 

Using (4.6) it is easy to check that 

I 1 
• _ - + = 1 ( 4 . 7 )  (J" ± ( f ) ) *=~"÷( fA 'J " ) '  r r; 
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[where generally f ( x )= f (x -1 ) ] ,  and that (1 )  
J,,± 9 A - r . f  =rt±(O)J,.+(f ) . (4.8) 

Then using (4.8) and an induction argument one can show that for k > 2 

J , .±(f , ) - . .  J,,_+(L) 
(k-l) (k--2) -7-, 

=J,/k,± d ~ *fE A " *...*fk_iA . (4.9) 

We omit the proofs of (4.7) and (4.8) except to remind the reader that the 
convolution is given by (2.1) and thus 

f .o(b, a)= S ~ f(b -agdfl, c~i)g(fl, ~)dfl~*d~. (4.10) 
~t* R 

The inductive step for (4.9) is the following: 

J,,±(fO.-- J,,±(f~+ I) 

= J,,±(fO[J,,±(fE)'" J~, +(fk+ i)] 
( '~-" ) 

=J~,+(fl)o¢~_ _,±(9k) where gk=fE A ~ *...*fkA-1/'*fk+l 

= 6 2i'r~ ± (f,)J~._+ (Ok) = 6 2i,j~,_+ ( f ,  A - ki , ,  gk) 

= (} 2Ira 2klrTg ++. (fl A - k i , ,  9t) 
( ,k-X, ) 

=J,/tk+,),± flA-kl'*fE A " *'"*fkA-il'*fk+l 

as required. Finally we note that 

lifAll'it,=ltftl, for l < r < Q o .  (4.11) 

We can now prove Theorem 4. Fix k such that p = 2k/(2k- 1). Then p' = 2k and 

II J v ' ( f )  tl ~; = ~, II ~¢v,,_+ (f)II ~; = Z It ~¢2k, ± ( f )  ll ~ .  (4.12) 
_+ ± 

For any operator T, II T[12k2k---- list 112 where S k is either T*T...T*T or TT*.. .T*T (k 
factors) according as k is even or odd. Applying this to T = flr2k ' ± (f) and using (4.7) 
and (4.9) we see that, setting 

( ( k - 1 )  (k-1 _ l/2k.A) (4.13) 9k= f,A 2k .J2A Tk . . . . . fk_iA 

where L y f 3  . . . .  L = f ,  fE=L . . . . .  L _ , = f a t / v  (k odd), and L = f 3  . . . .  
=fk_~=fA 1/p, f E = f 4 = . . . = f ~ = f  (k even) we have Sk=~12,±(gk). Thus from 
(4.12) 

I1 j . , ( f ) t l . . ;  = F. Ilstll ~ = F, I l ia ,+ %)11 ~ = t1¢2%)11 ~ = lloklt ~ 
± ± 

j= 

by (2.8) and Corollary 2.5. Since Yv(N)= Yp(K)= Yp(IR)=A k and p'=2k we have 
IlJ~(f)lIp. <A211fNv and the proof is complete. 
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