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ABSTRACT OF THE DISSERTATION

Contributions toward Scalability of Correct-by-Construction Control Software Synthesis

by

Omar Abdellatif E A Hussien

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Paulo Tabuada, Chair

As cyber-physical systems (CPS) become more complex, the verification of CPS control

software becomes notoriously challenging. One way to alleviate the need for verification

is to adopt a correct-by-construction approach. By synthesizing the control software

along with a proof of correctness, the correct-by-construction approach eliminates, or

greatly reduces, the need for verification. A common correct-by-construction approach

is based on the computation of a finite-state abstraction of the control system. Given

a specification expressed in a formal language such as temporal logic, a controller that

enforces this specification on the abstraction is first synthesized and then refined to a

controller enforcing the same specification on the original system. Despite the promise

of correct-by-construction control software, this design methodology is not yet widely

applicable as the computation of abstractions scales exponentially with the number of

variables in the differential equation model of the system to be controlled. In this thesis,

we discuss two approaches to mitigate this problem: 1) exploiting system structure and 2)

lazy controller synthesis. In the first part of the thesis, we show how system structure can

be exploited by discussing the class of partially feedback linearizable control systems. We

show how the linearized part and the zero dynamics can be independently abstracted and

subsequently composed to obtain an abstraction of the original continuous system. We

also illustrate through examples how this compositional approach significantly reduces

the time required for the construction of abstractions. Moreover, we discuss how this

approach can be further generalized to a larger class of systems.
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In the second part of the thesis, we present a lazy controller synthesis approach to tackle

the lack of scalability of control software synthesis. Instead of synthesizing a controller

using a precomputed abstraction of the full system, fragments of the abstraction are

computed lazily, as needed, to synthesize a controller for various specifications in temporal

logic. We illustrate, through different examples, how this lazy approach significantly

reduces the total time required for the synthesis of correct-by-construction controllers.

In addition to exploiting structure and lazy synthesis, we also discuss possible future

extensions to these two approaches.
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CHAPTER 1

Introduction

In the recent years, the verification of control software for cyber-physical systems became

more challenging given the increased complexity of these systems. A recent approach

to handle the verification problem is to synthesize a control software using correct-by-

construction methods. These are techniques that synthesize both the control software

as well as a proof of its correctness so that a-posteriori verification is greatly reduced or

not even required. One of the widely used correct-by-construction techniques is based on

the construction of a finite-state abstraction for the given control system. A controller

enforcing the specification can then be synthesized for the abstraction and subsequently

lifted to a controller acting on the control system. Control software synthesis based

on abstractions has two advantages over more traditional control design techniques: 1)

it allows the use of more complex specifications such as those expressed in temporal

logic; 2) controller synthesis is completely automated and consists of computing a fixed-

point over the finite-state abstraction, which can always be done in finite time for finite-

state abstractions [Tab09]. Construction of abstractions for control systems that are

incrementally input-to-state stable was presented in [PGT08], [PT09] and [PPD10]. In

[ZPM12] the authors showed that finite-state abstractions can still be computed even if

incremental input-to-state stability fails to hold. Furthermore, various software tools for

correct-by-construction controller synthesis, using abstractions, have been developed and

include PESSOA [MDT10], CoSyMa [MGG13] and SCOTS [RZ16].

The main drawback of the abstraction based control software synthesis is that the compu-

tation of abstractions does not scale well with the number of states of the control system.

Hence, it becomes infeasible to compute abstractions for large systems.

The main contribution of this thesis is to alleviate this problem using two different ap-
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proaches: 1) exploiting system structure and 2) lazy controller synthesis.

In Chapter 2, we discuss a way to alleviate this problem that avoids computing the ab-

straction monolithically and, instead, computes it compositionally. Recent results for the

compositional construction of abstractions were presented for discrete control systems in

[PPD14]. The authors in [Rei10] computed abstractions compositionally for nonlinear

control systems that can be decoupled into smaller subsystems using the same inputs.

Similar results were introduced in [NO16] for a collection of identical decoupled switched

systems subject to counting constraints and in [MGW15] for nonlinear cooperative control

systems in which the interaction between subsystems is modeled as a disturbance. How-

ever, these assumptions address a limited class of systems. To the best of our knowledge,

the current literature, except [MGW15], does not address nonlinear continuous control

systems with coupling dynamics which is common in many concrete applications. Never-

theless, the approach in [MGW15] may be excessively specific as it treats the interactions

between systems as a cooperative disturbance based on small gain arguments.

In this thesis, we focus on control systems that are partially feedback linearizable. We

exploit this assumption to decompose such systems into its feedback linearizable part and

its zero dynamics. Such cascade decomposition is then exploited to compute abstractions

compositionally: abstractions of the feedback linearizable part and of the zero dynamics

are independently computed and then composed to obtain an abstraction of the original

system.

By focusing on a different class of systems, the proposed compositional approach com-

plements the compositional results reported in the literature. Moreover, since the class

of partially feedback linearizable systems is reasonably large, the proposed results are

quite useful in practice. To further substantiate this claim we show in Section 6 how the

proposed results enable us to compute abstractions faster than the monolithic approach.

It is worth mentioning that our results motivated work by other researchers. In [SJZ18]

our results were extended to cascade interconnections where different types of abstrac-

tions were used for the different subsystems. Moreover, they also presented results on

compositional controller synthesis.
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In Chapter 3, we discuss another way to tackle the lack of scalability of abstraction based

control software synthesis that adopts a lazy controller synthesis approach. Instead of syn-

thesizing a controller using a precomputed abstraction of the full system, the abstraction

is computed lazily as needed for various specifications. Results that are based on com-

puting an initial coarse abstraction which is gradually refined on-demand can be found in

[HJM03] and [DR07]. The authors in [HJM03] extended the method of counterexample-

guided refinement (CEGAR) [CGJ00] from verification to controller synthesis. In [DR07]

a specification-guided approach was introduced using three-valued abstraction refinement

where under- and over-approximations of the winning region are computed and denoted by

must-win and may-win states, respectively. If the controller synthesized for the abstrac-

tion that under-approximates the concrete system is not able to enforce the specification

from the initial states, refinement is done by splitting the may-win states. Similarily,

in [HMM18] the authors introduced a multi-layered abstraction approach where they si-

multaneously maintain several abstractions with different precisions. Controller synthesis

starts from the coarser abstraction and moves on to finer precision if needed depending

on the given control problem.

We present a novel, and orthogonal to previous work, way to improve the scalability

of abstraction-based synthesis by adopting a lazy approach. Instead of synthesizing a

controller using a precomputed abstraction of the full system, we lazily compute the frag-

ment of the abstraction that is required for controller synthesis. In Chapter 3, we discuss

how to synthesize a controller by lazily computing the abstraction as needed for various

specifications, namely, safety, reachability, persistence, and recurrence. Similarly to the

approach in [DR07], we use a three-valued abstraction refinement approach. However,

may-states in our approach denote the states for which the set of successors has not yet

been computed for all inputs. Instead of computing a coarse abstraction and gradually

refining it by splitting may-states, we refine the transitions stemming from may-states.

This is accomplished by computing new transitions from a may-state that may make it a

must-state if an input is found for which all its successors land on the desired set. Hence,

our approach refines transitions while the approach in [DR07] and [HMM18] refines states.

3



We present lazy controller synthesis algorithms for the aforementioned specifications and

we illustrate through different examples how the lazy approach is significantly faster as

compared to controller synthesis using a precomputed abstraction.

Finally, we conclude and discuss in Chapter 4 possible future extensions to the aforemen-

tioned approaches.
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CHAPTER 2

Abstracting partially feedback linearizable systems

compositionally

In this chapter, we discuss how to compute abstractions for control systems that are

partially feedback linearizable compositionally. We exploit this assumption to decompose

such systems into its feedback linearizable part and its zero dynamics. Such cascade

decomposition is then exploited to compute abstractions compositionally: abstractions of

the feedback linearizable part and of the zero dynamics are independently computed and

then composed to obtain an abstraction of the original system.

This chapter is organized as follows. Section 1 introduces the class of control systems

we consider in this chapter. In Section 2 we review the definition of different types

of approximate simulation relations. Our main contribution appears in Section 3. In

Section 4 we show that our approach is a generalization for the results introduced earlier

in [ZPM12]. We illustrate the benefits of our approach through examples in Section 6.

The chapter ends with several concluding remarks in Section 7

1 Control systems and cascade decompositions

1.1 Notation

We use Z, R, R+, R+
0 to denote the set of integer, real, positive and nonnegative real

numbers. Given a vector x ∈ Rn and a matrix A ∈ Rm×n, we denote by ‖x‖ and ‖A‖ the

infinity norm of x and A, respectively. We define the discretization of S ⊂ Rn by:

[S]α = {s ∈ S|si = kiα, ki ∈ Z, i = 1, · · · , n},

5



where α ∈ R+ is the discretization parameter. Given a measurable function f : R+
0→Rn,

we denote the (essential) supremum (ess) supt∈R+
0
‖f(t)‖ by ‖f‖∞. A continuous function

γ : R+
0→R+

0 belongs to class K if it is strictly increasing and γ(0) = 0; furthermore

γ belongs to class K∞ if γ ∈ K and γ(r)→∞ as r → ∞. A continuous function β :

R+
0 × R+

0→R+
0 belongs to class KL if for every fixed s, the function β (· , s) belongs to

class K∞ and for every fixed r, the function β (r, · ) is decreasing and β (r, s)→0 as s→∞.

1.2 Control Systems and Cascade Decompositions

We work with continuous time control systems defined as follows.

Definition 1.1 (Control System). A control system Σ = (Rn, U,U , f) consists of

· the state space Rn;

· the input set U ⊆ Rm;

· the admissible input curves U , a subset of all the piecewise continuous functions of

time from intervals of the form ]a, b[⊂ R to U with a < 0 < b;

· the Lipschitz continuous map f : Rn×U→Rn defining the dynamics of the system.

We say Σ is a single-input control system when m = 1. We denote the trajectory of a

control system Σ by ξxυ :]a, b[→ R if there exists υ ∈ U such that ξ̇xυ = f(ξxυ, υ). We

also use the notation ξxυ (τ) to denote the point reached by system Σ, at time τ , from the

initial state x while applying the input υ. Note that this point is uniquely determined

due to the Lipschitz continuity assumption on f [Kha96]. A control system Σ is said

to be forward complete if every trajectory is defined on an interval of the form ]a,∞[,

where a ∈ R. Necessary and sufficient conditions for forward completeness can be found

in [AS99]

The results presented in this work are proved for the class of control systems that can be

defined as a cascade composition of smaller subsystems. We now present a definition of

cascade decomposition tailored to the decompositions that arise from single-input partially

feedback linearizable systems.
6



Definition 1.2. Let Σ = (Rn, U,U , f) be a control system, let x = (z, w) ∈ Rn, where

z = (x1, . . . , xp) and w = (xp+1, . . . , xn) for some p ≤ n, and let v = (z, u) for u ∈ U ⊆ R.

System Σ admits a cascade decomposition into Σ1 = (Rp, U,U1, f1) and Σ2 = (Rn−p,Rp+1,U2, g)

if:

f(x, u) = (f1(z, u), f2(w, v))

f1(z, u) = (x2, x3, ..., xp, u)

f2(w, v) = g(w, v).

Accordingly, system Σ can be seen as a cascade composition of Σ1, of the form ż = f1(z, u),

and Σ2, of the form ẇ = g(w, v), where the input of Σ2 is connected to the output of Σ1

defined by v = (z, u). Given a single input partially feedback linearizable system Σ

of relative degree p, we can always decompose it into its feedback linearized part and

the residual dynamics. The feedback linearized part corresponds to subsystem Σ1 while

the residual dynamics corresponds to Σ2. Note that although Definition 2.2 describes

a decomposition of Σ into two subsystems, Σ1 and Σ2, all the following results are still

valid when we have N subsystems, e.g., when we have more than one input in a partially

feedback linearizable system. We use ξxυ, ξzυ, and ξwν to denote the trajectories Σ, Σ1

and Σ2, respectively. Let π1 : Rn → Rp and π2 : Rn → Rn−p be the natural projections on

the first p and last n−p entries, respectively. Rather than writing π1 ◦ ξxυ and π2 ◦ ξxυ we

use the simpler notation ξ1xυ and ξ2xυ, respectively. Note that whenever the input curves

are assumed to be constant, we will use u and v instead of the Greek letters υ and ν,

respectively.

1.3 Divergence of trajectories

To prove the existence of different types of simulation relations between abstractions and

control systems, we need to define a bound on the divergence of trajectories. We introduce

the notion of incremental forward completeness [ZPM12].

Definition 1.3 (Incremental forward completeness). A control system Σ is incrementally

forward complete (δ-FC) if it is forward complete and there exist continuous functions

β : R+
0 × R+

0→R+
0 and γ : R+

0 × R+
0→R+

0 such that for every s ∈ R+, the functions β (· , s)
7



and γ (· , s) belong to class K∞ and for any x, x′ ∈ Rn, any τ ∈ R+ and any υ, υ′ : [0, τ [→R,

the following condition is satisfied for all t ∈ [0, τ ]:

‖ξxυ (t)− ξx′υ′ (t)‖ ≤ β (‖x− x′‖ , t) + γ (‖υ − υ′‖∞ , t) . (2.1)

In other words, a control system is incrementally forward complete if the distance between

any two trajectories starting from different initial states while applying different inputs

for the same duration of time can be bounded by the functions β and γ, appearing in

(2.1), that depend on the difference between the initial states and the difference between

the inputs, respectively.

Note that for a linear control system defined as

ẋ = Ax+Bu, (2.2)

the functions β and γ will be

β (r, t) =
∥∥eAt∥∥ r

γ (r, t) =

(∫ t

0

∥∥eAsB∥∥ ds) r, (2.3)

where
∥∥eAt∥∥ denotes the infinity norm of eAt.

2 Symbolic models and approximate simulation relations

2.1 Systems

We briefly introduce the notion of system which will be used later to model all the systems

of interest. Further details on the notion of system are provided in [Tab09].

Definition 2.1 (System). A system S is a quintuple S = (X,U,−→, Y,H) consisting of:

· A set of states X;

· A set of inputs U ;
8



· A transition relation −→ ⊆ X × U ×X;

· An output set Y ;

· An output map H : X−→Y .

A system S is metric, if there exist a metric d : Y ×Y→R+
0 . We call state x′ a u-successor

for state x if the transition x
u−→ x′ exists in the system. We also introduce the set of

u-successors of a state x, denoted by Postu (x), as well as the set of inputs u ∈ U , denoted

by U (x), such that Postu (x) is nonempty.

2.2 Simulation Relations

We now introduce different types of simulation relations which we use to relate the com-

puted abstractions to the control system of interest. We start with the notion of approx-

imate simulation relation [GP07].

Definition 2.2. Let Sa =
(
Xa, Ua,−→

a
, Ya, Ha

)
and Sb =

(
Xb, Ub,−→

b
, Yb, Hb

)
be metric

systems with the same output sets Ya = Yb and metric d, and consider a precision ε ∈ R+.

A relation R ⊆ Xa ×Xb is said to be an ε-approximate simulation relation from Sa to Sb

if the following three conditions are satisfied:

1. for every xa ∈ Xa, there exists xb ∈ Xb with (xa, xb) ∈ R;

2. for every (xa, xb) ∈ R we have d (Ha (xa) , Hb (xb)) ≤ ε;

3. for every (xa, xb) ∈ R we have that xa
ua−→ x′a in Sa implies the existence of xb

ub−→ x′b

in Sb satisfying (x′a, x
′
b) ∈ R.

We denote the existence of an ε-approximate simulation relation from Sa to Sb by Sa �εS
Sb.

While simulation relations are useful for verification purposes, when the objective is the

synthesis of controllers, the relevant notion is alternating simulation. See [Tab09] for a

comparison between these two different, but related, notions.

9



Definition 2.3. Let Sa =
(
Xa, Ua,−→

a
, Ya, Ha

)
and Sb =

(
Xb, Ub,−→

b
, Yb, Hb

)
be metric

systems with the same output sets Ya = Yb and metric d, and consider a precision ε ∈ R+.

A relation R ⊆ Xa × Xb is said to be an ε-approximate alternating simulation relation

from Sa to Sb if the following three conditions are satisfied:

1. for every xa ∈ Xa, there exists xb ∈ Xb with (xa, xb) ∈ R;

2. for every (xa, xb) ∈ R we have d (Ha (xa) , Hb (xb)) ≤ ε;

3. for every (xa, xb) ∈ R and for every ua ∈ Ua (xa) there exists ub ∈ Ub (xb) such that

for every x′b ∈ Postub (xb) there exists x′a ∈ Postua (xa) satisfying (x′a, x
′
b) ∈ R.

We denote the existence of an ε-approximate alternating simulation relation from Sa to

Sb by Sa �εAS Sb.

Note that the existence of these simulation relations enables the refinement of controllers

synthesized for the abstractions to controllers that act on the control system.

2.3 Symbolic Models

Since the introduced simulation relations are defined for discrete systems, we define the

discretization of a control system Σ denoted by Sτ (Σ), where τ ∈ R+ is the sampling

time, as follows

Sτ (Σ) =
(
Rn, Uτ ,−→

τ
,Rn, 1Rn

)
, (2.4)

where

· Uτ = {u : [0, τ [→R|u(t) = u(0), t ∈ [0, τ [};

· xτ
uτ−→ x′τ if ξxτuτ (τ) = x′τ ,

for xτ , x
′
τ ∈ Rn and uτ ∈ Uτ .

We compute an abstraction of a control system by discretization of state space, input

space and time.

10



Definition 2.4 (Abstraction). Given the control system Σ = (Rn, U,U , f), a map δ : R+×

R+ × R+ × R+ → R+, and the triple q = (τ, η, µ) of quantization parameters, where

τ ∈ R+ is the sampling time, η ∈ R+ is the state space quantization, and µ ∈ R+

is the input quantization, the abstraction of Σ associated with q and δ is the system

Sqδ (Σ) = (X,U,−→, Y,H) defined by:

· X = [Rn]η;

· U = [Rm]µ;

· x u−→ x′ if ‖ξx,u (τ)− x′‖ ≤ δ(ε, τ, η, µ);

· Y = Rn;

· H = ı : X ↪→ Y ,

where ε ∈ R+ and ı is the natural embedding of X into Y.

Note that, an abstraction is finite if it has a finite set of states and a finite set of inputs,

which can be achieved if the state space and the input space are restricted to bounded

sets.

Given a system Σ that admits a cascade decomposition into Σ1 and Σ2, as in Definition

1.2, instead of Σ2 we work with

Σ̃2 =
(
Rn−p,Rp+1,U2, g (w, ξzu, u)

)
(2.5)

where U2 is the set of constant curves, and we use trajectories of Σ1 as an input to Σ̃2.

Definition 2.5 (Composed Abstraction). Let the abstractions of Σ1 and Σ̃2 be Sq1δ1 (Σ1) =(
X1, U1,−→

1
, Y1, H1

)
and Sq2δ2(Σ̃2) =

(
X2, U2,−→

2
, Y2, H2

)
, respectively where:

q1 = (τ, η1, η1), q2 = (τ, η2, η1), τ, η1, η2 ∈ R+,

The composed abstraction of Σ denoted by Sq1δ1(Σ1) = Sq2δ2(Σ̃2) = (X,U,−→, Y,Hq1δ1q2δ2)

is defined by:
11



· X = X1 ×X2;

· U = U1;

· (x1, x2)
u−→ (x′1, x

′
2) if x1

u−→ x′1 in Sq1δ1 (Σ1), x2
u2−→ x′2 in Sq2δ2

(
Σ̃2

)
and u2 = (x1, u1);

· Y = Rn = Y1 × Y2;

· Hq1δ1q2δ2 = (ı1, ı2) : X1 ×X2 ↪→ Y1 × Y2,

3 Symbolic models for δ-FC cascade control systems

In this section we present our main result. Given a control system Σ that can be de-

composed into smaller subsystems as in Definition 1.2, we prove the existence of different

types of simulation relations between the control system and the computed abstraction

by composing abstractions of smaller subsystems as in Definition 2.5.

Theorem 3.1. Let Σ be a control system that can be decomposed into Σ1 and Σ2, as in

Definition 1.2, and let Σ̃2 be the system defined in (2.5). Let Sq1δ1(Σ1) =Sq2δ2(Σ̃2) be the

composed abstraction given in Definition 2.5 and consider any precision ε ∈ R+. Under

the following assumptions:

· max {η1, η2} ≤ ε;

· Σ1 and Σ̃2 are δ-FC control systems;

· δ1(q1) = β1(ε, τ) + η1;

· δ2(q2) = β2(ε, τ) + γ2(ε, τ) + η2,

where βi and γi for i = 1, 2 are the functions in Definition 1.3, we have:

Sq1δ1(Σ1) = Sq2δ2(Σ̃2) �εAS Sτ (Σ) . (2.6)

12



Moreover, if δ1 is defined by

δ1(q1) = β1(ε, τ) + γ1(η1, τ) + η1,

we also have:

Sτ (Σ) �εS Sq1δ1(Σ1) = Sq2δ2(Σ̃2). (2.7)

Note that if (2.6) holds, a controller synthesized for the abstraction can be refined to

a controller for the original control system. However, non existence of a controller for

the abstraction does not imply non existence of a controller for the original control sys-

tem. If (2.7) holds, the abstraction is rich (e.g., every trajectory of Sτ (Σ) is also a

trajectory of Sq1δ1(Σ1) = Sq2δ2(Σ̃2)) and finding a controller is relatively easier. Also, it

is worth mentioning that although (2.6) and (2.7) are the same inequalities that appear

in [ZPM12], our approach results in a more conservative abstraction. Accordingly, there

might be controllers for a monolithic abstraction that cannot be found when working with

Sq1δ1(Σ1) = Sq2δ2(Σ̃2). We return to this point in Section 6 in the context of a specific

example.

Proof. First we prove (2.6). Consider the relationR ⊆ X×Rn defined by ((x1, x2) , (z, w)) ∈

R iff

d(Hq1δ1q2δ2 (x1, x2) , H (z, w)) = ‖(x1, x2)− (z, w)‖

≤ ε.

By choosing z = x1 and w = x2, ((x1, x2) , (z, w)) ∈ R and conditions (1-2) in Definition

2.3 are satisfied. Now we show that condition (3) in Definition 2.3 is satisfied for every

((x1, x2) , (z, w)) ∈ R. Consider any u1 ∈ U1 and let u ∈ Uτ be equal to u1. Consider

the unique transition (z, w)
u−→ (z′, w′) = ξxu (τ) ∈ Postu (z, w) in Sτ (Σ). To prove the

existence of a transition in Sq1δ1(Σ1) = Sq2δ2(Σ̃2) we need to show that: (i) x1
u1−→ x′1 in

Sq1δ1 (Σ1), (ii) x2
u2−→ x′2 in Sq2δ2

(
Σ̃2

)
, and (iii) u2 = (x1, u1) hold.

Since for all ((x1, x2), (z, w)) ∈ R, ‖(x1, x2)− (z, w)‖ ≤ ε and as we are using the infinity

13



norm, we obtain

max {‖x1 − z‖ , ‖x2 − w‖} = ‖(x1, x2)− (z, w)‖ ≤ ε. (2.8)

We start by proving (i) as follows. Consider x′1 = [ξzu]η1 , we have

∥∥ξ1xu (τ)− x′1
∥∥ =

∥∥∥ξ1xu (τ)− [ξzu]η1

∥∥∥ ≤ η1. (2.9)

Given that Σ1 is δ-FC, u = u1 and using (2.8) and (2.9), we have

‖ξx1u1 (τ)− x′1‖ ≤ ‖ξx1u1 (τ)− ξxu (τ)‖+ ‖ξxu (τ)− x′1‖

≤ β1 (‖x1 − z‖ , τ) +
∥∥ξ1xu (τ)− x′1

∥∥
≤ β1 (ε, τ) +

∥∥ξ1xu (τ)− x′1
∥∥

≤ β1 (ε, τ) + η1,

(2.10)

which implies the existence of x1
u1−→ x′1 in Sq1δ1 (Σ1).

Now we show that (ii) and (iii) hold. Consider x′2 = [ξwv(τ)]η2 , we obtain

∥∥ξ2xu(τ)− x′2
∥∥ =

∥∥∥ξ2xu(τ)− [ξwv(τ)]η2

∥∥∥ ≤ η2. (2.11)

Given that Σ̃2 is δ-FC, u2 = (x1, u1) = (x1, u) and using (2.8) and (2.11), we have

‖ξx2u2 (τ)− x′2‖ ≤
∥∥ξx2u2 (τ)− ξ2xu(τ)

∥∥+
∥∥ξ2xu(τ)− x′2

∥∥
≤β2 (‖w − x2‖ , τ) + γ2 (‖u2 − v‖ , τ) +

∥∥ξ2xu(τ)− x′2
∥∥

≤β2 (ε, τ) + γ2 (‖u2 − v‖ , τ) +
∥∥ξ2xu(τ)− x′2

∥∥
≤β2 (ε, τ) + γ2 (‖x1 − z‖ , τ) +

∥∥ξ2xu(τ)− x′2
∥∥

≤β2 (ε, τ) + γ2 (ε, τ) +
∥∥ξ2xu(τ)− x′2

∥∥
≤β2 (ε, τ) + γ2 (ε, τ) + η2,

(2.12)
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which implies the existence of x2
u2−→ x′2 in Sq2δ2

(
Σ̃2

)
.

From (2.10), (2.12) and u2 = (x1, u1), we conclude the existence of (x1, x2)
u−→ (x′1, x

′
2)

in the composed system Sq1δ1(Σ1) = Sq2δ2(Σ̃2). Using (2.9) and (2.11), we obtain

‖(x′1, x′2)− (z′, w′)‖ = max {‖x′1 − z′‖ , ‖x′2 − w′‖}

= max {η1, η2} ≤ ε,
(2.13)

which implies that ((x′1, x
′
2) , (z

′, w′)) belongs to R, hence Sq1δ1(Σ1)=Sq2δ2(Σ̃2) �εAS Sτ (Σ).

Second we prove (2.7). Consider the relation R ⊆ Rn×X defined by ((z, w) , (x1, x2)) ∈ R

iff

d(H (z, w) , Hq1δ1q2δ2 (x1, x2)) = ‖(z, w)− (x1, x2)‖

≤ ε.

Since for all (z, w) ∈ Rn, there exist a (x1, x2) ∈ X satisfying

‖(z, w)− (x1, x2)‖ = max {‖z − x1‖ , ‖w − x2‖}

= max {η1, η2} ≤ ε,
(2.14)

as we are using the infinity norm, hence ((z, w) , (x1, x2)) ∈ R and conditions (1-2) in

Definition 2.2 are satisfied. Now we show that condition (3) in Definition 2.2 is satisfied

for every ((z, w) , (x1, x2)) ∈ R. Consider any u ∈ Uτ we pick u1 such that

‖u− u1‖ ≤ η1. (2.15)

Consider the transition (z, w)
u−→ (z′, w′) = ξxu (τ) in Sτ (Σ). To prove the existence of a

transition in Sq1δ1(Σ1) = Sq2δ2(Σ̃2) we need to show that: (i) x1
u1−→ x′1 in Sq1δ1 (Σ1), (ii)

x2
u2−→ x′2 in Sq2δ2

(
Σ̃2

)
, and (iii) u2 = (x1, u1) hold.

We start by proving (i) as follows. Consider x′1 = [ξzu]η1 , we obtain

∥∥ξ1xu (τ)− x′1
∥∥ =

∥∥∥ξ1xu (τ)− [ξzu]η1

∥∥∥ ≤ η1. (2.16)
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Given that Σ1 is δ-FC, and using (2.14), (2.15), and (2.16), we have

‖ξx1u1 (τ)− x′1‖ ≤
∥∥ξx1u1 (τ)− ξ1xu (τ)

∥∥+
∥∥ξ1xu (τ)− x′1

∥∥
≤β1 (‖x1 − z‖ , τ) + γ1 (‖u1 − u‖ , τ) +

∥∥ξ1xu (τ)− x′1
∥∥

≤β1 (ε, τ) + γ1 (‖u1 − u‖ , τ) +
∥∥ξ1xu (τ)− x′1

∥∥
≤β1 (ε, τ) + γ1 (η1, τ) +

∥∥ξ1xu (τ)− x′1
∥∥

≤β1 (ε, τ) + γ1 (η1, τ) + η1,

(2.17)

which implies the existence of x1
u1−→ x′1 in Sq1δ1 (Σ1).

Now we show that (ii) and (iii) hold. Consider x′2 =
[
ξ2x,u(τ)

]
η2

, we obtain

∥∥ξ2xu(τ)− x′2
∥∥ =

∥∥∥ξ2xu(τ)− [ξwv(τ)]η2

∥∥∥ ≤ η2. (2.18)

Given that Σ̃2 is δ-FC, u2 = (x1, u1) and using (2.14), (2.15) and (2.18), we have

‖ξx2u2 (τ)− x′2‖ ≤
∥∥ξx2u2 (τ)− ξ2xu(τ)

∥∥+
∥∥ξ2xu(τ)− x′2

∥∥
≤β2 (‖w − x2‖ , τ) + γ2 (‖u2 − v‖ , τ) +

∥∥ξ2xu(τ)− x′2
∥∥

≤β2 (ε, τ) + γ2 (‖u2 − v‖ , τ) +
∥∥ξ2xu(τ)− x′2

∥∥
≤β2 (ε, τ) + γ2 (‖(x1, u1)− v‖ , τ) +

∥∥ξ2xu(τ)− x′2
∥∥

≤β2 (ε, τ) + γ2 (max{ε, η1}, τ) +
∥∥ξ2xu(τ)− x′2

∥∥
≤β2 (ε, τ) + γ2 (ε, τ) +

∥∥ξ2xu(τ)− x′2
∥∥

≤β2 (ε, τ) + γ2 (ε, τ) + η2,

(2.19)

which implies the existence of x2
u2−→ x′2 in Sq2δ2

(
Σ̃2

)
.

From (2.17), (2.28) and u2 = (x1, u1), we conclude the existence of (x1, x2)
u−→ (x′1, x

′
2)
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in the composed system Sq1δ1(Σ1) = Sq2δ2(Σ̃2). Using (2.16) and (2.18) we obtain

‖(z′, w′)− (x′1, x
′
2)‖ = max {‖z′ − x′1‖ , ‖w′ − x′2‖}

= max {η1, η2} ≤ ε,
(2.20)

which implies that ((z′, w′) , (x′1, x
′
2)) ∈ R, hence Sτ (Σ) �εS Sq1δ1(Σ1) = Sq2δ2(Σ̃2).

4 Symbolic models for δ-FC control systems

In this section, we show that results presented in Section 3 are generalization for the

results introduced earlier in [ZPM12]. This can be shown by comparing results when:

1) cascade control system is reduced to subsystem Σ1 and 2) cascade control system is

reduced to subsystem Σ̃2 defined in (2.5).

When the cascade control system is reduced to subsystem Σ1, our results exactly match the

results from the literature. This conclusion follows from the straightforward observation

that Σ1 is not affected by Σ̃2. However, this is not the case when the cascade control

system is reduced to subsystem Σ̃2. It suffices to show that using an abstraction similar

to the abstraction used in [ZPM12] we have Sq2δ2

(
Σ̃2

)
�εAS Sτ

(
Σ̃2

)
�εS Sq2δ2

(
Σ̃2

)
.

Corollary 4.1. Let Σ, Σ1 and Σ̃2 be the systems defined in Theorem 3.1. Consider that

Σ can be reduced to Σ̃2. Let Sq2δ2

(
Σ̃2

)
be an abstraction of Σ̃2 where:

q2 = (τ, η2, η1), τ, η1, η2 ∈ R+,

and consider any precision ε ∈ R+. Under the following assumptions:

· η2 ≤ ε;

· Σ̃2 is δ-FC control systems;

· δ2(q2) = β2(ε, τ) + η2,
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where β2 and γ2 are the functions in Definition 1.3, we have:

Sq2δ2

(
Σ̃2

)
�εAS Sτ

(
Σ̃2

)
. (2.21)

Furthermore, consider δ2(q2) = β2(ε, τ) + γ2(η1, τ) + η1, we have:

Sτ

(
Σ̃2

)
�εS Sq2δ2

(
Σ̃2

)
. (2.22)

Proof. First we prove that Sq2δ2

(
Σ̃2

)
�εAS Sτ

(
Σ̃2

)
. Consider the relation R ⊆ X2×Rn−p

defined by (x2, w) ∈ R iff

d(Hq2δ2 (x2) , H (w)) = ‖x2 − w‖

≤ ε.

By choosing w = x2, (x2, w) ∈ R and conditions (1-2) in Definition 2.3 are satisfied. Now

we show that condition (3) in Definition 2.3 is satisfied for every (x2, w) ∈ R. Consider

any u3 ∈ U2 and let v ∈ Uτ be equal to u2. Note that, since Σ is reduced to Σ̃2, states of

Σ1 are treated as external input to Σ̃2.

Consider the unique transition w
v−→ w′ = ξ2xu (τ) ∈ Postv (w) in Sτ

(
Σ̃2

)
. To prove the

existence of a transition in Sq2δ2

(
Σ̃2

)
we need to show that x2

u2−→ x′2 in Sq2δ2

(
Σ̃2

)
.

Consider x′2 = [ξwv(τ)]η2 , we obtain

∥∥ξ2xu(τ)− x′2
∥∥ =

∥∥∥ξ2xu(τ)− [ξwv(τ)]η2

∥∥∥ ≤ η2. (2.23)

Given that Σ̃2 is δ-FC, u2 = v, ‖x2 − w‖ ≤ ε for all (x2, w) ∈ R, and (2.23), we have

18



‖ξx2u2 (τ)− x′2‖ ≤
∥∥ξx2u2 (τ)− ξ2xu (τ)

∥∥+
∥∥ξ2xu (τ)− x′2

∥∥
≤β2 (‖w − x2‖ , τ) +

∥∥ξ2xu (τ)− x′2
∥∥

≤β2 (ε, τ) +
∥∥ξ2xu (τ)− x′2

∥∥
≤β2 (ε, τ) + η2,

(2.24)

which implies the existence of x2
u2−→ x′2 in Sq2δ2

(
Σ̃2

)
. From (2.23),we conclude that

(x′2, w
′) belongs to R, hence Sq2δ2

(
Σ̃2

)
�εAS Sτ

(
Σ̃2

)
.

Second we prove that Sτ

(
Σ̃2

)
�εS Sq2δ2

(
Σ̃2

)
. Consider the relation R ⊆ Rn−p × X2

defined by (w, x2) ∈ R iff

d(H (w) , Hq2δ2 (x2)) = ‖w − x2‖ ≤ ε.

Since for all w ∈ Rn−p, there exists x2 ∈ X2 satisfying

‖w − x2‖ ≤ η2 ≤ ε, (2.25)

hence (w, x2) ∈ R and conditions (1-2) in Definition 2.2 are satisfied. Now we show that

condition (3) in Definition 2.2 is satisfied for every (w, x2) ∈ R. Consider any v ∈ Uτ we

pick u2 such that

‖v − u2‖ ≤ η1. (2.26)

Consider the transition w
v−→ w′ = ξ2xu (τ) in Sτ

(
Σ̃2

)
. To prove the existence of a

transition in Sq2δ2

(
Σ̃2

)
we need to show that x2

u2−→ x′2 in Sq2δ2

(
Σ̃2

)
.

Consider x′2 = [ξwv(τ)]η2 , we obtain

∥∥ξ2xu(τ)− x′2
∥∥ =

∥∥∥ξ2xu(τ)− [ξwv(τ)]η2

∥∥∥ ≤ η2. (2.27)

Given that Σ̃2 is δ-FC, and using (2.25), (2.26) and (2.27), we have
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‖ξx2u2 (τ)− x′2‖ ≤
∥∥ξx2u2 (τ)− ξ2xu (τ)

∥∥+
∥∥ξ2xu (τ)− x′2

∥∥
≤β2 (‖w − x2‖ , τ) + γ2 (‖u2 − v‖ , τ)

+
∥∥ξ2xu (τ)− x′2

∥∥
≤β2 (ε, τ) + γ2 (η1, τ) +

∥∥ξ2xu (τ)− x′2
∥∥

≤β2 (ε, τ) + γ2 (η1, τ) + η2,

(2.28)

which implies the existence of x2
u2−→ x′2 in Sq2δ2

(
Σ̃2

)
. From (2.27), we conclude that

(w′, x′2) ∈ R, hence Sτ

(
Σ̃2

)
�εS Sq2δ2

(
Σ̃2

)
.

5 Experimental Results

In this section we illustrate our results on two examples. First, we compare our results to

the monolithic approach using a truck and trailer system, similar to the example consid-

ered in [RMT13]. We show how the proposed compositional abstraction technique scales

better, as the number of trailers increases, than the monolithic approach. In the second

example we synthesize a controller, using an abstraction computed with the proposed

compositional approach, for the two-link biped robot, also known as the compass biped,

which appeared in Section 3.4.6 in [WGC07]. All the computations were done on a 3.4

GHz iMac with 32GB of RAM.
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Figure 2.1: Truck and trailers system.

5.1 Truck and trailer example

Consider a truck connected to n trailers by a spring-damper system, shown in Fig. 2.1,

which can be modeled by:

ḋ1 = v2 − v1,

v̇1 =
Ks

m
d1 +

Kd

m
(v2 − v1),

ḋ2 = v3 − v2,

v̇2 =
Ks

m
d2 +

Kd

m
(v3 − v2),

...

v̇n+1 = u,

(2.29)

where di is the distance between trailers i and i+ 1, and vi is the velocity of trailer i, for

i = 1, · · · , n. The spring-damper constants are denoted by Ks and Kd, m is the mass of

the trailer, u is the external acceleration input acting on the truck and vn+1 is the velocity

of the truck, respectively.

We can regard the system described by (2.29) as a cascade composition of system Σ1

given by:

ḋ2 = v3 − v2,

v̇2 = Ks
m
d2 + Kd

m
(v3 − v2),

...

v̇n+1 = u,

(2.30)

and system Σ2:

ḋ = v2 − v1,

v̇1 = Ks
m
d+ Kd

m
(v2 − v1).

(2.31)

Note that Σ is partially feedback linearizable since it is a linear system. However, our
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Number of trailers 1 2 3

Compositional approach 10[sec] 700[sec] 6[hr]
Monolithic approach 25[sec] 2000[sec] >24[hr]

Table 2.1: Time spent to compute abstractions, for different number of trailers, using the
compositional approach and the monolithic approach.

approach only relies on the ability of rendering the partially feedback linearizable part

linear which is already the case in (2.30). Hence, we directly abstract (2.30) without

designing a preliminary feedback rendering it a chain of integrators. This illustrates that

our results are more general than the specific technical statement in Theorem 3.1.

We computed abstractions of system Σ1 and Σ2, using the MATLAB toolbox PESSOA

[MDT10], for different numbers of trailers. The state space and input space discretization

parameters used were η = 1 and µ = 1, respectively, whereas we used τ = 0.5 for

the sampling time. A comparison of the time spent to construct the abstraction of the

full system, for 1, 2, and 3 trailers, using the proposed compositional approach and the

traditional monolithic approach is listed in Tab.2.1. Note that the addition of each trailer

increases the number of continuous states by 2. As the number of trailers increases,

we observe in Tab. 2.1 a speedup by a factor of 4 in the time required to compute the

abstraction when we have 3 trailers. Note also that only the relative time is of significance

since the implementation of PESSOA is now several years old and can be optimized in

several different ways.

5.2 Compass biped robot example

Consider the compass biped robot model [WGC07], shown in Fig. 3.2, and given by:

q̈1 =v,

q̇2 =
σ2

D2,2(q1)
− D2,1(q1)

D2,2(q1)
q̇1,

σ̇2 =−G2(q1, q2, α),

(2.32)

where q1 is the angle between the two legs, q2 is the angle between the stance leg and

the vertical to the ground, σ2 is the momentum conjugate to q2, v is the actuator torque

applied at the joint between the two legs of the robot, α is the ground slope, and D(q1)
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α

q1
q2

Figure 2.2: Illustration of a compass bipedal robot over sloped ground.

and G(q1, q2, α) are the inertia matrix and the gravity vector obtained from (3.58) and

(3.60) in [WGC07], respectively. The parameters for this model were taken from Table

3.1 in [WGC07].

Equation (3.12) describes the motion of a biped while one of the feet is above ground. To

complete the model we need to describe what happens when a foot strikes the ground.

We model this phenomenon by reset map in a hybrid automaton with a single mode. The

foot strikes the ground whenever:

q1 = 2q2. (2.33)

Upon this event, the role of the stance and swing legs is reversed and this is captured by

an instantaneous change in the states described by the reset maps:

q+1
q+2

 = ∆q

q−1
q−2

 and

q̇+1
σ+
2

 = ∆q̇(q)

q̇−1
σ−2

 (2.34)

defined by (3.54) and (3.56) in [WGC07].

Although Theorem 3.1 is not stated for hybrid systems, it can be applied to the hybrid

system modeling a bipedal robot by first (compositionally) computing an abstraction of

the continuous dynamics on its domain and then changing the abstraction to account for

the effect of the reset map. We can regard the system described by (3.12) as a cascade

composition of system Σ1 given by:

q̈1 = v, (2.35)
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and system Σ2:

q̇2 = σ2
D2,2(q1)

− D2,1(q1)

D2,2(q1)
q̇1,

σ̇2 = −G2(q1, q2, α).
(2.36)

We computed abstractions of system Σ1 and Σ̃2 using the MATLAB toolbox PESSOA

[MDT10]. For a desired precision ε = 0.05, the used state space and input space discretiza-

tion parameters were η = 0.05 and µ = 0.05, respectively, whereas we used τ = 0.05 for

the sampling time. The abstractions of Σ1 and Σ2 were computed in 20 seconds and

100 minutes, respectively, while composing them took 20 minutes. This resulted in 120

minutes to compute an abstraction compositionally. Constructing an abstraction for the

full model monolithically, using the same discretization parameters, took 350 minutes.

Hence, the proposed compositional approach was three times faster in this example.

In order to force the robot to move forward, q̇2 needs to be always greater than zero. Hence,

we synthesized a controller that enforces q̇2 to be always greater than ε, i.e., greater than

zero plus the precision of the abstraction. Fig. 2.3 shows the closed-loop simulation results

and the phase portrait for the compass bipedal robot. The phase portrait indicates that

non-periodic walking is achieved thereby illustrating the difference with existing design

methods [McG90], [WGC07] that produce periodic gaits.

We also synthesized a controller for the same specification using the monolithic abstrac-

tion. In order to illustrate that compositional abstractions can be conservative, we com-

pare in Figure 2.4 the number of inputs available to enforce the specification for a wide

range of values of q̇1 and σ2 when q1 = 0.4 and q2 = 0.2 rad. We can observe in Figure 2.4

that the controller synthesized using the monolithic abstraction is more permissive than

the controller synthesized using our approach. However, the reduction in the available

inputs is not substantial and thus only has a marginal effect in the ability to control the

robot.
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Figure 2.3: Closed-loop simulation using the synthesized controller.
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Figure 2.4: Number of inputs available to enforce the specification at the cross section q1 =
0.4 rad and q2 = 0.2 rad using the monolithic abstraction (top) and using the compositional
abstraction (bottom).
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6 Conclusion

In this chapter, we presented a compositional approach to compute abstractions of con-

tinuous time control systems that admit cascade decompositions into smaller subsystems

arising from partially feedback linearizability. Although the compositional approach is

more conservative than the monolithic approach, it leads to considerable speedups. Using

the ball and hoop system, we illustrated that using our approach we had a 3x speedup

compared to the traditional monolithic approach while being able to synthesize a con-

troller.
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CHAPTER 3

Lazy Controller Synthesis

In this chapter, we present a lazy approach to improve the scalability of abstraction-based

synthesis. Instead of synthesizing a controller using a precomputed abstraction of the full

system, we lazily compute the fragment of the abstraction that is required for controller

synthesis. We use a three-valued abstraction refinement approach, similarly to the ap-

proach in [DR07]. However, may-states in our approach denote the states for which the

set of successors has not yet been computed for all inputs. Instead of computing a coarse

abstraction and gradually refining it by splitting may-states, we refine the transitions

stemming from may-states. This is accomplished by computing new transitions from a

may-state that may make it a must-state if an input is found for which all its succes-

sors land on the desired set. We present lazy controller synthesis algorithms for safety,

reachability, persistence, and recurrence specifications and we illustrate through different

examples how the lazy approach is significantly faster as compared to controller synthesis

using a precomputed abstraction.

The remainder of the chapter is organized as follows. Section 1 introduces notation and

the definitions of control systems and abstractions that we consider in this chapter. Our

proposed algorithms for different specifications appear in Sections 2-5. We illustrate the

benefits of our approach through examples in Section 6. Conclusions follow in Section 7.

1 Control systems and Abstractions

1.1 Notation

We use N, Z, R, R+, R+
0 to denote the set of natural integer, real, positive and nonnegative

real numbers. Given a vector x ∈ Rn and a matrix A ∈ Rm×n, we denote by ‖x‖ and ‖A‖
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the infinity norm of x and A, respectively. The discretization of S ⊂ Rn is defined by:

[S]α = {s ∈ S|si = kiα, ki ∈ Z, i = 1, · · · , n},

where α ∈ R+ is the discretization parameter. Given a measurable function f : R+
0→Rn,

we denote the (essential) supremum (ess) supt∈R+
0
‖f(t)‖ by ‖f‖∞. We use ∧, ∨, and ¬

to denote the logical conjunction, disjunction, and negation respectively. The temporal

operators always and eventually are denoted by � and ♦, respectively. Given sets A and

B, we use A−B to denote the set of all elements in A and not in B. We use the notation

x :∈ X to represent the assignment to x of an element of X.

1.2 Abstraction

We compute an abstraction of a given control system by discretizing the states, the inputs,

and time.

Definition 1.1. Given the control system Σ = (Rn, U,U , f) and the discretization parame-

ters (τ, η, µ), where τ ∈ R+ is the sampling time, η ∈ R+ is the state space discretization,

and µ ∈ R+ is the input discretization, the abstraction S (Σ) of Σ is the triple (X,U, T )

consisting of:

· X = [Rn]η;

· U = [Rm]µ;

· T : X × U ×X → {0, 1/2, 1},

where the map T describes the transition relation in the abstraction. Note that the set of

states X and the set of inputs U in Def. 1.1 have infinitely many elements. However, states

and inputs of most CPS hold physical meaning and can not exceed certain values under

normal operation, i.e., they are always restricted to compact sets. Hence, the abstraction

presented in Def. 1.1 becomes finite once we replace Rn and Rm with a compact set of

states and inputs, respectively.
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The proposed lazy algorithms for different specifications in the following Sections start

with an empty transition relation, i.e., an abstraction without transitions, and compute

the transitions lazily as needed for controller synthesis. For the purpose of analyzing

the algorithms, we assume that all the relevant states have already been computed. In

practice, however, we store the abstractions on efficient data structures, e.g., Binary

Decision Diagrams, and states for which no transitions have been computed are not stored

in memory. The existence of a transition from a state x to another state x′ using an input

u, is recorded by having T map (x, u, x′) to 1. The absence of a transition from a state

x to another state x′ using an input u, is recorded by having T map (x, u, x′) to 0. In

addition to these two cases, we use 1/2 to record that transitions from state x under input

u have not yet been computed. This means that every state x′ is a potential successor of

x under u and is recorded as T (x, u, x′) = 1/2 for every x′.

We denote the set of u-successors of a state x by Postu (x) and we assume that Postu (x)

is always nonempty. Note that, if an abstraction is precomputed, then T (x, u, x′) ∈ {0, 1}

for all x ∈ X, u ∈ U and x′ ∈ X.

2 Controller Synthesis for Safety Specifications

In this section we present two algorithms to synthesize controller for safety specifications,

i.e., always stay in a desired set for all time. The first algorithm is classical and assumes

the existence of an abstraction. The second algorithm is the first contribution of this

chapter and rather than requiring an existing abstraction, it lazily computes the fragment

of the abstraction that is needed for controller synthesis. We show that the lazy algorithm

terminates and upon termination returns the largest set of states for which there exists

a control input that enforces the state to stay in K. This set is also known as the

largest controlled invariant set in K. Once this set is computed, controller synthesis is

straightforward as it amounts to choosing an input that forces the system to remain in

the controlled invariant set. Existence of such input is guaranteed by notion of controlled

invariant set. Accordingly, we present algorithms that compute this set.
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2.1 Classical Algorithm

Let S (Σ) be an abstraction of a control system Σ. Given an “always K” specification

for a set K ⊆ X, denoted by �K, Algorithm 1 returns the set of states for which there

exists a control input that enforces the specification, denoted by J�KK. The computation

of J�KK makes use of the set PreT(Q) defined by:

PreT(Q) = {x ∈ X|∃u ∈ U,∀x′ ∈ X,T (x, u, x′) = 1⇒ x′ ∈ Q}.

In Algorithm 1, the set Q is updated until a fixed-point is reached. Upon termination,

the set Q identifies the set J�KK.

2.2 Lazy Algorithm

Let S (Σ) be an abstraction of a control system Σ. Given the specification �K, we propose

Algorithm 2 to lazily compute J�KK. Algorithm 2 starts with a transition relation T ′ for

which no transition has yet been computed, i.e., T ′(x, u, x′) = 1/2 for all x ∈ X, u ∈ U

and x′ ∈ X. Given that T is a precomputed transition relation for S (Σ), we define the

sets PreT(V ) and PreT(V ) to be an under- and over-approximation of the set PreT(V ),

respectively, as follows:

PreT(V ) =PreT′(V ),

PreT(V ) ={x ∈ X|∃u ∈ U,∀x′ ∈ X,T ′(x, u, x′) = 1/2}

∪ PreT′(V ),

where T ′ is any over-approximation of the transition relation T . By an over-approximation

of T we mean any transition relation T ′ for which T (x, u, x′) = 1⇒ T ′(x, u, x′) ≥ 1/2.

PreT is an under-approximation of PreT since every transition mapped by T ′ to 1 is also

mapped by T to 1 although there might be transitions mapped to 1 by T that are mapped

to 1/2 by T ′. Conversely, PreT is an over-approximation of PreT since every transition

mapped by T to 1 is mapped by T ′ to 1 or 1/2 and all such transitions are used in
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computing PreT.

Algorithm 1 Computation of J�KK.

1: function Stay(T , K)

2: Q← K

3: repeat

4: Q′ ← PreT(Q)

5: Q← Q′ ∩Q
6: until fixed point on Q is reached

7: return Q

8: end function

Algorithm 2 Lazy Computation of J�KK.

1: function LazyStay(T ′, K)

2: V ← K

3: repeat

4: V ← PreT(V )

5: V ← PreT(V )

6: V ← V ∩ V
7: T ′ ← RefineN (T ′, V − V )

8: until fixed point on V is reached and V = V

9: return V

10: end function

We define the RefineN function in Algorithm 3, where N denotes the number of states that

will be refined. The proof of correctness and termination of Algorithm 2 does not depend

on the value of N . However, the choice of N can affect the performance significantly. We

return to this point in Section 6 in the context of different examples.

Now we show that Algorithm 2 always terminates and upon termination it returns the

largest controlled invariant set in K. We use Lemma 4.1 to prove termination and Lemma

4.2 to show that Algorithm 2 computes the largest controlled invariant set in K, i.e., the

set J�KK.

Lemma 2.1. If the set of states X and the set of inputs U are finite, Algorithm 2 terminates

in finite time.

Proof. Let X be the maximal set of states in the abstraction, i.e., the set of sates in an

abstraction where all the transitions have been computed. This set is finite and since
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V ⊆ X and V ⊆ X, the sets V and V are also finite. This implies that there are finitely

many sets V − V . Since, the function Refine monotonically decreases the number of

transitions mapped to 1/2, and since the set of inputs U is finite, after finitely many steps

all the transitions will be mapped to 0 or 1, even if, in the worst case, all the sets of the

form V − V are generated by the algorithm. Once all the transitions are mapped to 0 or

1, the algorithm is reduced to lines 4 and 6 and is thus equivalent to algorithm 1 (simply

map line 4 in Alg. 2 to line 4 in Alg. 1 and line 6 in Alg. 2 to line 5 in Alg. 1). Since

algorithm 1 terminates in finitely many steps [MPS95], so does algorithm 2.

Lemma 2.2. If Algorithms 1 and 2 run on the same input, we have Q = V upon termina-

tion of each Algorithm.

Proof. As shown in the proof of Lemma 4.1, after finitely many steps (say j) Algorithm 2

becomes identical to Algorithm 1. Therefore, the output of Algorithm 2 can be produced

by running algorithm 1 on the input Vj, i.e., on the set Vj computed by Algorithm 2 at

iteration j, once we have V = V . If Vj contains the largest controlled invariant set in

K, then algorithm 2 produces the same output on K or Vj (since the largest controlled

invariant set in K and Vj is the same). Hence, to finish the proof we only need to

establish that Vj contains the largest controlled invariant set in K and it is sufficient to

establish that Qi ⊆ Vi where Qi and Vi are the sets Q and V computed at iteration i

of Algorithms 1 and 2, respectively. For i = 0 we have Q0 = K ⊆ K = V0. Assume now

that Qi−1 ⊆ Vi−1. We observe that it follows from the definition of Pre that Qi−1 ⊆ Vi−1

implies PreT(Qi−1) ⊆ PreT(Vi−1). Accordingly, we have:

Q′i = PreT(Qi−1) ⊆ PreT(Vi−1). (3.1)

Let T be a transition relation where all the transitions are mapped to 0 or 1 only and

let T ′ be a lazy over-approximation of T , i.e., all the transitions that T maps to 1 are

mapped by T ′ to 1 or 1/2. Since a transition that is mapped to 1 in T will be either
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mapped to 1/2 or 1 in T ′, we have:

PreT(Vi−1) ⊆ PreT(Vi−1) = Vi. (3.2)

From (3.5) and (3.6), we obtain:

Qi = Q′i ∩Qi−1 ⊆ Vi ∩ Vi−1 = Vi.

The next result summarizes the consequences of Lemmas 2.1 and 2.2.

Theorem 2.3. Given that the set of states X and the set of inputs U are finite, Algorithm

2 terminates in finite time and upon termination returns the largest controlled invariant

subset of K.

Algorithm 3 Abstraction Refinement.

1: function RefineN (T ′,V )

2: for i := 1, · · · , N do

3: x :∈ V
4: V ← V \ {x}
5: u :∈ {u ∈ U | ∀x′ ∈ X, T ′(x, u, x′) = 1/2}
6: for each x′ ∈ X do

7: T ′(x, u, x′)← 1 if x′ ∈ Postu(x)

8: T ′(x, u, x′)← 0 if x′ /∈ Postu(x)

9: end for

10: end for

11: return T ′

12: end function

3 Controller Synthesis for Reachability Specifications

In this section we present two algorithms to synthesize a controller for reachability spec-

ifications, i.e., eventually reach a desired set. The first algorithm is classical and uses

a precomputed abstraction. The second algorithm is another contribution of this chap-

ter which lazily computes fragment of the abstraction on the fly as needed for controller
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synthesis.

3.1 Classical Algorithm

Let S (Σ) be an abstraction of a control system Σ. Given an “eventually K” specification,

denoted by 3K, Algorithm 4 returns J3KK.

3.2 Lazy Algorithm

Let S (Σ) be an abstraction of a control system Σ for which no transition has yet been

computed, i.e., T ′(x, u, x′) = 1/2 for all x ∈ X, u ∈ U and x′ ∈ X. Given the specification

3K, we propose Algorithm 5 to compute J3KK. Note that we use the same RefineN

function defined by Algorithm 3.

Lemma 3.1. If the set of states X and the set of inputs U are finite, Algorithm 5 terminates

in finite time.

Proof. Let X be the maximal set of states in the abstraction, i.e., the set of sates in an

abstraction where all the transitions have been computed. This set is finite and since

V ⊆ X and V ⊆ X, the sets V and V are also finite. This implies that there are finitely

many sets V − V . Since, the function Refine monotonically decreases the number of

transitions mapped to 1/2, and since the set of inputs U is finite, after finitely many steps

all the transitions will be mapped to 0 or 1, even if, in the worst case, all the sets of the

form V − V are generated by the algorithm. Once all the transitions are mapped to 0 or

1, the algorithm is reduced to lines 4 and 6 and is thus equivalent to algorithm 4 (simply

map line 4 in Alg. 5 to line 4 in Alg. 4 and line 6 in Alg. 5 to line 5 in Alg. 4). Since

algorithm 4 terminates in finitely many steps [MPS95], so does algorithm 5.

Lemma 3.2. If Algorithms 4 and 5 run on the same input, we have Q = V upon termina-

tion of each Algorithm.

Proof. As shown in the proof of Lemma 3.1, after finitely many steps (say j) Algorithm 5
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becomes identical to Algorithm 4. Therefore, the output of Algorithm 5 can be produced

by running algorithm 4 on the input Vj, i.e., on the set Vj computed by Algorithm 5 at

iteration j, once we have V = V . If Vj contains the largest reachable set towards K,

then algorithm 5 produces the same output on K or Vj (since the largest reachable set

towards K and Vj is the same). Hence, to finish the proof we only need to establish that

Vj is a subset of the largest reachable set towards K and it is sufficient to establish that

Vi ⊆ Qi where Qi and Vi are the sets Q and V computed at iteration i of Algorithms

4 and 5, respectively. For i = 0 we have V0 = K ⊆ K = Q0. Assume now that Vi−1 ⊆

Qi−1. We observe that it follows from the definition of Pre that Vi−1 ⊆ Qi−1 implies

PreT(Vi−1) ⊆ PreT(Qi−1). Accordingly, we have:

Q′i = PreT(Qi−1) ⊇ PreT(Vi−1). (3.3)

Let T be a transition relation where all the transitions are mapped to 0 or 1 only and

let T ′ be a lazy over-approximation of T , i.e., all the transitions that T maps to 1 are

mapped by T ′ to 1 or 1/2. Since a transition that is mapped to 1 in T will be either

mapped to 1/2 or 1 in T ′, we have:

PreT(Vi−1) ⊇ PreT(Vi−1) = Vi. (3.4)

From (3.5) and (3.6), we obtain:

Qi = Q′i ∪Qi−1 ⊇ Vi ∪ Vi−1 = Vi.

The next result summarizes the consequences of Lemmas 3.1 and 3.2.

Theorem 3.3. Algorithm 5 terminates in finite time and upon termination returns the

largest reachable set towards K.
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Algorithm 4 Computation of J3KK.

1: function Reach(T , K)

2: Q← K

3: repeat

4: Q′ ← PreT(Q)

5: Q← Q′ ∪Q
6: until fixed point on Q is reached

7: return Q

8: end function

Algorithm 5 Lazy Computation of J3KK.

1: function LazyReach(T ′, K)

2: V ← K

3: repeat

4: V ← PreT(V )

5: V ← PreT(V )

6: V ← V ∪ V
7: T ′ ← RefineN (T ′, V − V )

8: until fixed point on V is reached and V = V

9: return V

10: end function

4 Controller Synthesis for Persistence Specifications

In this section we present two algorithms to synthesize a controller for persistence speci-

fication, i.e., eventually reach a desired set and stay therein for all future time. The first

algorithm is classical and assumes the existence of an abstraction. The second algorithm

is another contribution of this chapter and rather than requiring an existing abstraction,

it lazily computes the fragment of the abstraction that is needed for controller synthe-

sis. We show that the lazy algorithm terminates and upon termination returns the same

controlled invariant set as the classical algorithm.

4.1 Classical Algorithm

Let S (Σ) be an abstraction of a control system Σ. Given an “eventually always K”

specification, denoted by 3�K, Algorithm 6 returns the set of states for which there

exists a control input that enforces the specification, denoted by J3�KK. Algorithm 6
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consists of an inner loop, where the set Q is updated until a fixed-point is reached, and

an outer loop updating R until a fixed point is reached.

4.2 Lazy Algorithm

Let S (Σ) be an abstraction of a control system Σ for which no transition has yet been

computed, i.e., T (x, u, x′) = 1/2 for all x ∈ X, u ∈ U and x′ ∈ X. Given the specification

3�K, we propose Algorithm 7 to compute J3�KK.

Algorithm 6 Computation of J3�KK.

1: function ReachStay(T , K)
2: R← ∅
3: repeat
4: Q← K
5: repeat
6: R′ ← PreT(R)
7: Q′ ← PreT(Q)
8: Q← (Q′ ∩Q) ∪R′
9: until fixed point on Q is reached

10: R← Q
11: until fixed point on R is reached
12: return R
13: end function
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Algorithm 7 Lazy Computation of J3�KK.

1: function ReachStay(T ′, K)
2: W ← ∅
3: repeat
4: V ← K
5: repeat
6: repeat
7: W ← PreT(W )
8: W ← PreT(W )
9: W ′ ←W ∪W

10: T ′ ← RefineN (T ′,W −W )
11: until W = W
12: V ← PreT(V )
13: V ← PreT(V )
14: V ← (V ∩ V ) ∪W ′
15: T ′ ← RefineN (T ′, V − V )
16: until fixed point on V is reached and V = V
17: W ← V
18: until fixed point on W is reached
19: return W
20: end function

We prove that Algorithm 7 terminates in finite time and upon termination it returns

the largest invariant set in Theorem 4.5, by showing termination conditions as well as

the relation between the sets it computes and those from the classical algorithm in the

following Lemmas. We refer to lines {5−9} in Algorithm 6 and lines {5−16} in Algorithm

7 as the inner loop. Also, we refer to lines {3− 11} in Algorithm 6 and lines {3− 18} in

Algorithm 7 as the outer loop.

Lemma 4.1. If the set of states X and the set of inputs U are finite, the inner loop in

Algorithm 7 terminates in finite time.

Proof. First, we show that the loop defined by the lines {6−11} in Algorithm 7 terminates

in finite time. Let X be the maximal set of states in the abstraction, i.e., the set of sates

in an abstraction where all the transitions have been computed. This set is finite and

since W ⊆ X and W ⊆ X, the sets W and W are also finite. This implies that there are

finitely many sets W −W . Since, the function Refine monotonically decreases the number

of transitions mapped to 1/2, and since the set of inputs U is finite, after finitely many

steps all the transitions will be mapped to 0 or 1, even if, in the worst case, all the sets
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of the form W −W are generated by the algorithm. Once all the transitions are mapped

to 0 or 1, the loop defined by the lines {6− 11} is reduced to lines {7} and {9} which is

equivalent to line {6} in algorithm 6.

Once we have W = W , the inner loop in Algorithm 7 is reduced to the lines {7}, {9}

and {12 − 16}. By following the same argument we used for W and W , on V and V ,

after finitely many steps we will have V = V . Once V = V , the inner loop is reduced

once more to the lines {7}, {9}, {12} and {14} and is thus equivalent to the inner loop in

Algorithm 6 (simply map line {7} and {9} in Alg. 7 to line {6} in Alg. 6 and lines {12}

and {14} in Alg. 7 to lines {7} and {8} in Alg. 6). Since the inner loop in Algorithm 6

terminates in finitely many steps, so does algorithm 7.

Lemma 4.2. If Algorithms 6 and 7 run on the same input, we have Q = V upon termina-

tion of the inner loop of each algorithm.

Proof. Given that both algorithms run on the same input, we have W = R. From the

proof of Lemma 4.1, we know that after finite number of steps the loop in Algorithm

7 defined by the lines {6 − 11} is reduced to lines {7} and {9} which is equivalent to

line {6} in algorithm 6. Since neither W nor R are updated inside the inner loop in the

two algorithms, we conclude that after finite number of steps, we have W ′ = R′. Also,

as shown in the proof of Lemma 4.1, after finitely many steps (say j) the inner loop in

Algorithm 7 becomes identical to the inner loop in Algorithm 6. Therefore, the output of

the inner loop in Algorithm 7 can be produced by running the inner loop in algorithm 6

on the input Vj, i.e., on the set Vj computed by the inner loop in Algorithm 7 at iteration

j, once we have V = V . If Vj contains the largest controlled invariant set in K, then

the inner loop in algorithm 7 produces the same output on K or Vj (since the largest

controlled invariant set in K and Vj is the same). Hence, to finish the proof we only need

to establish that Vj contains the largest controlled invariant set in K and it is sufficient

to establish that Qi ⊆ Vi where Qi and Vi are the sets Q and V computed at iteration i of

the inner loops in Algorithms 6 and 7, respectively. For i = 0 we have Q0 = K ⊆ K = V0.

Assume now that Qi−1 ⊆ Vi−1. We observe that it follows from the definition of Pre that
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Qi−1 ⊆ Vi−1 implies PreT(Qi−1) ⊆ PreT(Vi−1). Accordingly, we have:

Q′i = PreT(Qi−1) ⊆ PreT(Vi−1). (3.5)

Let T be a transition relation where all the transitions are mapped to 0 or 1 only and

let T ′ be a lazy over-approximation of T , i.e., all the transitions that T maps to 1 are

mapped by T ′ to 1 or 1/2. Since a transition that is mapped to 1 in T will be either

mapped to 1/2 or 1 in T ′, we have:

PreT(Vi−1) ⊆ PreT(Vi−1) = Vi. (3.6)

From (3.5) and (3.6) and W ′ = R′, we obtain:

Qi = (Q′i ∩Qi−1) ∪R′ ⊆ (Vi ∩ Vi−1) ∪W ′ = Vi.

Lemma 4.3. Given that Algorithm 6 and Algorithm 7 are starting from the same initial

conditions, the sets R and W computed at each iteration of the outer loop in Algorithm

6 and Algorithm 7 are equivalent.

Proof. Using Lemma 4.1 and Lemma 4.2, we know that the inner loop in Algorithm 7

terminates in finite time and upon termination the fixed point on V is equal to the fixed

point on Q, obtained from running the inner loop in Algorithm 6, starting from the same

initial conditions. Since, at each iteration of the outer loop in Algorithm 6 and Algorithm

7, R and W are updated with the value of Q and V , respectively, and since V = Q, we

deduce that W = R.

Lemma 4.4. Given that the set of states X and the set of inputs U are finite, the outer

loop in Algorithm 7 terminates in finite time.

Proof. Using Lemmas 4.1, 4.2, 4.3, we know that the inner loop in Algorithm 7 terminates

in finite time and at each iteration of the outer loop we have Q = V and R = W . Since
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the outer loop in Algorithm 6 terminates in finite time if X and U are finite and since

Q = V and R = W at each iteration of the outer loop in Algorithm 7, a fixed point on W

is reached in finite time. Accordingly, the outer loop in Algorithm 7 terminates in finite

time.

The next result summarizes the consequences of the previous Lemmas.

Theorem 4.5. Given that the set of states X and the set of inputs U are finite, Algorithm

7 terminates in finite time and upon termination returns the largest controlled invariant

subset of K as Algorithm 6.

5 Controller Synthesis for Recurrence Specifications

In this section we present two algorithms to synthesize a controller for recurrence specifi-

cation, i.e., reach a desired set infinitely often. The first algorithm is classical and assumes

the existence of an abstraction. The second algorithm is last contribution of this chapter

and rather than requiring an existing abstraction, it lazily computes the fragment of the

abstraction that is needed for controller synthesis. We show that the lazy algorithm ter-

minates and upon termination returns the same controlled invariant set as the classical

algorithm.

5.1 Classical Algorithm

Let S (Σ) be an abstraction of a control system Σ. Given an “always eventually K”

specification, denoted by �3K, Algorithm 8 returns the set of states for which there

exists a control input that enforces the specification, denoted by J�3KK. Algorithm 8

consists of an inner loop, where the set Q is updated until a fixed-point is reached, and

an outer loop updating R until a fixed point is reached.
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5.2 Lazy Algorithm

Let S (Σ) be an abstraction of a control system Σ for which no transition has yet been

computed, i.e., T (x, u, x′) = 1/2 for all x ∈ X, u ∈ U and x′ ∈ X. Given the specification

�3K, we propose Algorithm 9 to compute J�3KK.

Algorithm 8 Computation of J�3KK.

1: function AlwaysReach(T , K)
2: R← ∅
3: repeat
4: Q← K
5: repeat
6: R′ ← PreT(R)
7: Q′ ← PreT(Q)
8: Q← (Q′ ∪Q) ∩R′
9: until fixed point on Q is reached

10: R← Q
11: until fixed point on R is reached
12: return R
13: end function

Algorithm 9 Lazy Computation of J�3KK.

1: function AlwaysReach(T ′, K)
2: W ← ∅
3: repeat
4: V ← K
5: repeat
6: repeat
7: W ← PreT(W )
8: W ← PreT(W )
9: W ′ ←W ∪W

10: T ′ ← RefineN (T ′,W −W )
11: until W = W
12: V ← PreT(V )
13: V ← PreT(V )
14: V ← (V ∪ V ) ∩W ′
15: T ′ ← RefineN (T ′, V − V )
16: until fixed point on V is reached and V = V
17: W ← V
18: until fixed point on W is reached
19: return W
20: end function

We prove that Algorithm 9 terminates in finite time and upon termination it returns
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the largest invariant set in Theorem 5.5, by showing termination conditions as well as

the relation between the sets it computes and those from the classical algorithm in the

following Lemmas. We refer to lines {5−9} in Algorithm 8 and lines {5−16} in Algorithm

9 as the inner loop. Also, we refer to lines {3− 11} in Algorithm 8 and lines {3− 18} in

Algorithm 9 as the outer loop.

Lemma 5.1. If the set of states X and the set of inputs U are finite, the inner loop in

Algorithm 7 terminates in finite time.

Proof. First, we show that the loop defined by the lines {6−11} in Algorithm 9 terminates

in finite time. Let X be the maximal set of states in the abstraction, i.e., the set of sates

in an abstraction where all the transitions have been computed. This set is finite and

since W ⊆ X and W ⊆ X, the sets W and W are also finite. This implies that there are

finitely many sets W −W . Since, the function Refine monotonically decreases the number

of transitions mapped to 1/2, and since the set of inputs U is finite, after finitely many

steps all the transitions will be mapped to 0 or 1, even if, in the worst case, all the sets

of the form W −W are generated by the algorithm. Once all the transitions are mapped

to 0 or 1, the loop defined by the lines {6− 11} is reduced to lines {7} and {9} which is

equivalent to line {6} in algorithm 8.

Once we have W = W , the inner loop in Algorithm 9 is reduced to the lines {7}, {9}

and {12 − 16}. By following the same argument we used for W and W , on V and V ,

after finitely many steps we will have V = V . Once V = V , the inner loop is reduced

once more to the lines {7}, {9}, {12} and {14} and is thus equivalent to the inner loop in

Algorithm 8 (simply map line {7} and {9} in Alg. 9 to line {6} in Alg. 8 and lines {12}

and {14} in Alg. 9 to lines {7} and {8} in Alg. 8). Since the inner loop in Algorithm 8

terminates in finitely many steps, so does algorithm 9.

Lemma 5.2. If Algorithms 6 and 7 run on the same input, we have Q = V upon termina-

tion of the inner loop of each algorithm.

Proof. Given that both algorithms run on the same input, we have W = R. From the

proof of Lemma 5.1, we know that after finite number of steps the loop in Algorithm
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9 defined by the lines {6 − 11} is reduced to lines {7} and {9} which is equivalent to

line {6} in algorithm 8. Since neither W nor R are updated inside the inner loop in the

two algorithms, we conclude that after finite number of steps, we have W ′ = R′. Also,

as shown in the proof of Lemma 5.1, after finitely many steps (say j) the inner loop in

Algorithm 9 becomes identical to the inner loop in Algorithm 8. Therefore, the output of

the inner loop in Algorithm 9 can be produced by running the inner loop in algorithm 8

on the input Vj, i.e., on the set Vj computed by the inner loop in Algorithm 9 at iteration

j, once we have V = V . If Vj is a subset of the largest reachable set towards K, then

the inner loop in algorithm 9 produces the same output on K or Vj (since the largest

reachable set towards K and Vj is the same). Hence, to finish the proof we only need to

establish that Vj is a subset of the largest reachable set towards K and it is sufficient to

establish that Vi ⊆ Qi where Qi and Vi are the sets Q and V computed at iteration i of

the inner loops in Algorithms 8 and 9, respectively. For i = 0 we have V0 = K ⊆ K = Q0.

Assume now that Vi−1 ⊆ Qi−1. We observe that it follows from the definition of Pre that

Vi−1 ⊆ Qi−1 implies PreT(Vi−1) ⊆ PreT(Qi−1). Accordingly, we have:

Q′i = PreT(Qi−1) ⊇ PreT(Vi−1). (3.7)

Let T be a transition relation where all the transitions are mapped to 0 or 1 only and

let T ′ be a lazy over-approximation of T , i.e., all the transitions that T maps to 1 are

mapped by T ′ to 1 or 1/2. Since a transition that is mapped to 1 in T will be either

mapped to 1/2 or 1 in T ′, we have:

PreT(Vi−1) ⊇ PreT(Vi−1) = Vi. (3.8)

From (3.7) and (3.8) and W ′ = R′, we obtain:

Qi = (Q′i ∪Qi−1) ∩R′ ⊇ (Vi ∪ Vi−1) ∩W ′ = Vi.
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Lemma 5.3. Given that Algorithm 8 and Algorithm 9 are starting from the same initial

conditions, the sets R and W computed at each iteration of the outer loop in Algorithm

8 and Algorithm 9 are equivalent.

Proof. Using Lemma 5.1 and Lemma 5.2, we know that the inner loop in Algorithm 7

terminates in finite time and upon termination the fixed point on V is equal to the fixed

point on Q, obtained from running the inner loop in Algorithm 6, starting from the same

initial conditions. Since, at each iteration of the outer loop in Algorithm 8 and Algorithm

9, R and W are updated with the value of Q and V , respectively, and since V = Q, we

deduce that W = R.

Lemma 5.4. Given that the set of states X and the set of inputs U are finite, the outer

loop in Algorithm 9 terminates in finite time.

Proof. Using Lemmas 5.1, 5.2, 5.3, we know that the inner loop in Algorithm 9 terminates

in finite time and at each iteration of the outer loop we have Q = V and R = W . Since

the outer loop in Algorithm 8 terminates in finite time if X and U are finite and since

Q = V and R = W at each iteration of the outer loop in Algorithm 9, a fixed point on W

is reached in finite time. Accordingly, the outer loop in Algorithm 9 terminates in finite

time.

The next result summarizes the consequences of the previous Lemmas.

Theorem 5.5. Given that the set of states X and the set of inputs U are finite, Algorithm

9 terminates in finite time and upon termination returns the largest controlled invariant

subset of K as Algorithm 8.

6 Experimental Results

In this section we illustrate our results on two different examples. We synthesize controllers

for each example using the lazy algorithms and compare them with controllers that we
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obtain using PESSOA [MDT10] and SCOTS [RZ16]. In the first example, we compare

our results using a unicycle system for safety and reachability specifications. In the second

example we synthesize a controller for a kneed biped robot which appeared in [Ame11]

for safety specifications. The lazy algorithms were implemented in C++ and all the

computations were done on a 3.4 GHz iMac with 32GB of RAM.

6.1 Unicycle navigation example

Consider the unicycle vehicle, which can be modeled by:

ẋ = v cos(θ) (3.9)

ẏ = v sin(θ) (3.10)

θ̇ = ω, (3.11)

where (x, y) denotes the position of the vehicle, θ denotes its orientation, and the control

inputs v, ω denote the linear and angular velocities, respectively. We used Algorithms 2

and 5 to synthesize a controller that should always avoid the red obstacles and eventually

reach a desired green area shown in Fig. 3.1. This was performed in 2 steps. In the first

step we synthesized a controller that avoids collisions with the obstacles using Alg. 2. In

the second step we used the controlled invariant set computed in step 1 as the domain over

which we solved the reachability problem for the green area using Alg. 5. The state space

and input space discretization parameters used were η = 0.1 and µ = 0.1, respectively,

whereas we used τ = 0.5 for the sampling time. Fig. 3.1 shows the closed loop simulation

results for the unicycle model using the synthesized controller for “eventually”, reach

the desired area, while “always”, avoid the obstacles, specifications. We also computed

abstractions of this model, with the same parameters, and synthesized a controller for the

same specifications, using the MATLAB toolbox PESSOA [MDT10] as well as SCOTS

[RZ16]. Tables 3.1 and 3.2 list a comparison of PESSOA, SCOTS and our lazy safety and

reachability algorithms, respectively, using different values of N , where N determines how

many states are refined each time the RefineN function is executed, tabs and tsyn are the
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Figure 3.1: Closed loop simulation result using the controller synthesized with lazy Algorithms
2 and 5.

time to compute the abstraction and synthesize the controller, respectively, in seconds.

We observe in Tab. 3.1 that when N = 2000, we can achieve a speedup of up to 4 and

85 times compared to SCOTS and PESSOA, respectively. In Tab. 3.2, when N = 1000,

we can achieve a speedup of up to 3 and 63 times compared to SCOTS and PESSOA,

respectively. Also, we observe that the choice of N greatly affects the performance of

the lazy algorithms. Note that tabs has the same value for Algorithm 1 and Algorithm 4

for PESSOA, and SCOTS, because they synthesize a controller by computing the same

abstraction for different specifications.

N tabs tsyn

Algorithm 1 (PESSOA) - 12105 60

Algorithm 1 (SCOTS) - 530 20

Algorithm 2

100 - 505
200 - 380
500 - 290
1000 - 230
2000 - 140
5000 - 200

Table 3.1: Comparison of Algorithm 1 in PESSOA and SCOTS and Algorithm 2.

N tabs tsyn

Algorithm 4 (PESSOA) - 12105 40

Algorithm 4 (SCOTS) - 530 50

Algorithm 5

100 - 540
200 - 400
500 - 330
1000 - 190
2000 - 250
5000 - 260

Table 3.2: Comparison of Algorithm 4 in PESSOA and SCOTS and Algorithm 5.
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Figure 3.2: A kneed biped over horizontal ground.
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Figure 3.3: Closed-loop simulation results, showing the evolution of q̇1 over time, using the
controller synthesized with Algorithm 2.

6.2 Biped robot example

Consider the kneed biped robot model, shown in Fig. 3.2, and given by:

M(θ)θ̈ + C(θ̇, θ)θ̇ +G(θ) = Bu, (3.12)

where θ = (θ1, θ2, θ3) ∈ S3, M(θ) is the inertia matrix, C(θ̇, θ) is the Coriolis matrix, G(θ)

is the gravity vector, and the matrix B maps the torques vector u to generalized forces.

Note that a kneed biped is a hybrid system with two phases: 1) The unlocked knee phase

starts at the beginning of a new step where the knee can bend and the system dynamics is

modeled by (3.12) and lasts until the swing leg goes forward and straightens the knee; 2)

The locked knee phase starts as soon as the knee straightens out and lasts until the swing

leg hits the ground. The locked knee dynamics is modeled using different configurations

of masses with the same dynamics of the unlocked knee phase. Switching between the

two phases is governed by different guards based on the angles of the robot. Reset maps

are applied to angles and angular velocities whenever one of the guards is reached. For

further details on the model, we refer interested readers to [Ame11].

We synthesized a controller that forces the robot to always move forward, which is cap-
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Figure 3.4: Tiles of two steps by the robot generated using the synthesized controller. Each row
represents the tiles of a single step.

Figure 3.5: A walking gait generated using the synthesized controller. The stance leg is shown
as a solid line, whereas the swing leg is shown as a dashed line.

tured by having θ̇1 always greater than zero, and avoid obstacles on the ground. The

state space and input space discretization parameters used were η = 0.01 and µ = 0.01,

respectively, whereas we used τ = 0.01 for the sampling time. Controller synthesis using

Algorithm 2 took 10 hours, while PESSOA crashed after running for 5 consecutive days.

It is worth mentioning that we were not able to try SCOTS on this example as it uses the

notion of growth bound [RWR17] to compute the reachable sets from each state x using

input u, denoted by Postu (x) in RefineN , that does not handle the presence of guard

and reset maps for hybrid systems as the kneed biped. Fig. 3.3 shows the closed-loop

simulation results whereas Fig. 3.4 and 3.5 show tiles of two steps and one of the resulting

walking gaits using the controller synthesized for the kneed biped model, respectively.

7 Conclusion

In this chapter we presented a lazy approach for controller synthesis. Instead of using

a precomputed abstraction, we lazily compute the fragments of the abstraction that are

needed to synthesize a controller. We presented algorithms for safety, reachability, persis-

tence, and recurrence specifications which are guaranteed to terminate in finite time and

upon termination return the same output as the classical algorithms. Using the unicycle
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example, we illustrated that we can achieve a speedup of up to 4 and 85 times for safety

and 3 and 63 for reachability specifications compared to SCOTS and PESSOA, respec-

tively. Moreover, we illustrated the novel lazy algorithm, for safety specifications, on a

kneed biped robot example by synthesizing a controller that enforces the biped to move

forward and avoid obstacles on the ground.
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CHAPTER 4

Future work

As discussed in Chapter 1, the main drawback of abstraction based control software

synthesis is the lack of scalability in the computation of the abstractions. Consequently, it

becomes infeasible to compute abstractions for large systems. We presented two different

approaches to enhance the scalability of correct-by-construction control software synthesis:

1) exploiting system structure and 2) lazy controller synthesis. In this chapter, future

directions in each of these approaches are proposed.

1 Abstracting partially feedback linearizable systems compositionally

We presented an approach that exploits the system structure to compute abstractions

compositionally for control systems that are partially feedback linearizable. While a

controller synthesized for the composed abstraction can be refined to a controller for the

original control system, non existence of a controller for the abstraction does not imply

the non existence of a controller for the original system. Given that our compositional

approach is more conservative than the monolithic approach, we might not be able to find

a controller. It is then important to investigate similar results under the more stringent

assumption of incrementally input-to-state stability since in this case we can guarantee

the existence of an alternating approximate bisimulation between the original control

system and its compositional abstraction. The existence of an alternating approximate

bisimulation relation provides guarantees that the non existence of a controller for the

abstraction implies the non existence of a controller for the original system. Such results

would reduce conservatism in the composed abstractions at the expense of having more

restrictive assumptions on control systems.
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2 Lazy controller synthesis

All the lazy algorithms in Chapter 3 use Algorithm 3 to compute a fragment of the

abstraction for N states. As can be seen from the presented unicycle example, the choice

of how many states are refined in the refinement block decreases the execution time

drastically. Therefore, it would be important to investigate how to optimize performance

based on the choice of the parameter N .

It is also important to develop similar results for mode-target [BVT15], and GR(1) [BJP12]

specifications by following the same approach. We start with an abstraction having may-

states that are refined incrementally as needed. At each iteration, we would expect to

have over- and under-approximation sets of states satisfying the specifications where a

fixed point is reached when they are equal.

Finally, the results presented in Chapter 3 can be integrated with other specification-

guided approaches, such as those presented in [HMM18] by lazily computing several ab-

stractions with different precisions. Controller synthesis would start by lazily computing

the abstraction with coarsest precision and move to finer precision if needed. Hence, it

will enable the controller synthesis for larger control systems.
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