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Abstract

Black defendants are assigned systematically greater bail levels than whites accused
of similar offenses and, partly as a result, have systematically lower probabilities of
pre-trial release. We construct a simple model of optimal bail setting that allows us to
measure how much of the bail difference is due to judicial bias against blacks, holding
constant defendant heterogeneity that judges observe, regardless of whether we also
observe it. We show how to use nonparametric methods to consistently estimate the
model’s key parameter by using the judge’s first-order condition to form an auxiliary
projection relationship involving defendants’ conditional choice probabilities. While
the behavioral model requires parametric assumptions, they have a substantial payoff:
under these assumptions, we need not make any assumptions at all on the conditional
distribution of heterogeneity observed by judges but not researchers. We implement
the model using 2000 and 2002 data for five counties, from the State Courts Processing
Statistics. While our point estimates are somewhat imprecise, they suggest that in
several counties, judges value blacks’ lost freedom from a typical pre-trial jail stay by
thousands of dollars less than they value whites’ lost freedom.

∗We thank participants at the 2010 Institute for Research on Poverty Summer Research Workshop and
seminar participants at the University of South Florida, George Mason University Law School, Syracuse
University, and the Florida State University College of Law. We are also grateful for financial support
through NSF award number SES0718955.

1



[M]ore than a half-million inmates sit[] in America’s jails not because they’re
dangerous or a threat to society or because a judge thinks they will run. It’s not
even because they are guilty; they haven’t been tried yet.

They are here because they can’t make bail – sometimes as little as $50. Some
will wait behind bars for as long as a year before their cases make it to court.
And it will cost taxpayers $9 billion this year to house them....

[P]eople with money get out. They go back to their jobs and their families, pay
their bills and fight their cases. And according to the Justice Department and
national studies, those with money face far fewer consequences for their crimes.

–Sullivan (2010)

1 Introduction

In this paper, we construct a simple model of judges’ optimal bail setting that allows us

to test for racial discrimination in bail levels. We develop a novel, two-step econometric

method. The first step involves nonparametric estimation of certain conditional choice prob-

abilities. In the second step, we estimate an auxiliary projection equation whose variables

are generated using the first step’s nonparametric estimates. Appropriate estimation of this

equation then yields a consistent estimate of the models key parameter, which we call R. Our

method allows for the model’s systematic unobserved heterogeneity component to have an

arbitrary distribution, even conditional on observables. The price we pay for this generality

is that we must assume that defendants behavior is described by a multinomial logit model,

conditional on all heterogeneity that judges observe.

A judge who follows the objective function we assume will balance two kinds of social

costs against each other: the expected social costs of holding a defendant until trial, and the

expected social costs that the defendant would impose on society if he is instead released

pending trial. The social costs of jailing a defendant include two components: the pecuniary

costs related to the physical jailing itself, and the value the judge places on the defendant’s

lost freedom. A judge who is biased against blacks will value their freedom less than whites’

freedom, so the defendant’s value of lost freedom is the variable through which any taste-

based discrimination operates in our model.
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We use the form of the judge’s first-order condition to construct an auxiliary projection

equation. This equation allows us to estimate, via least-squres estimation, the parameter R.

This parameter is a function of the social costs of jailing a defendant conditional on his not

making bail, as well as the expected social costs imposed by defendants who are released

pending trial. Under certain homogeneity assumptions concerning (i) the pecuniary costs

of jailing the defendant, and (ii) the expected social costs imposed by a released defendant,

black-white differences in R will be due only to differences in the value of lost freedom judges

accord to blacks and whites.1

To implement our auxiliary-equation approach, we require the information that enters

the judge’s first-order condition. According to the model, this information includes both the

levels and partial derivatives, with respect to bail, of two conditional choice probabilities:

the probability that the defendant makes bail, and the probability that he fails to appear in

court as ordered, given that he has made bail. The conditioning in these probabilities involves

two types of defendant characteristics. The first type, x, includes those characteristics that

both we and the judge observe. Examples of these characteristics include a host of criminal

history variables, as well as the defendant’s age and the most serious offense with which he is

charged. The second type, u, includes any defendant characteristics that judges can observe,

but we cannot. We refer to such characteristics collectively as unobserved heterogeneity

(though we emphasize again that they are observable to the judge).

The existence of u complicates our task, because a judge who sets bail optimally uses

information on defendants’ choice probabilities conditional on the bail level, x, and u. Es-

timating choice probabilities conditional on unobservable information would seem to be

impossible. However, we show that when judges set bail optimally according to our model,

conditioning on x and the optimal bail level is sufficient to also condition on u. Intuitively,

if defendants A and B facing the same charge have the same x, but a judge sets higher bail

for A than B, then A must have unobservable characteristics that signal a higher probability

of FTA. At the optimum, then conditional choice probabilities that we can estimate must

equal those that we could not generally estimate.2

1In our preferred specifications below, we allow the pecuniary costs of jailing defendants and the expected
social costs imposed by released defendants to vary by county and major offense category.

2More formally, there are two sets of conditional choice probability functions. The first set involves
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This informational equivalence result is useful once we add the additional structure pro-

vided by a standard Type I Extreme Value assumption on the heterogeneity in defendants’

latent utilities that neither we nor judges observe. Realization of such “totally unobservable”

heterogeneity helps determine which of three options a defendant selects: (i) not making bail,

(ii) making bail and appearing in court as ordered, or (iii) making bail and failing to appear.

Judges must set bail when they know only the probability of each defendant’s choice. Given

the Type I Extreme Value assumption, choice probabilities have the usual multinomial logit

form conditional on bail, observed characteristics x, and u. That is important because par-

tial derivatives of choice probabilities that have the multinomial logit form can be written

are simple functions of the probabilities themselves. All of the data needed for the auxiliary

regression described above thus involve conditional choice probabilities that can be estimated

nonparametrically based on the one-to-one relationship between u and the optimal bail level.

A nice feature of the econometric framework is that the judge’s preference parameters

enter the auxiliary projection equation nonlinearly and reduntantly. As a result, these pa-

rameters are overidentified. This allows us to test for model mis-specification. We believe

that our econometric approach is novel for an empirical paper, at least for one on discrim-

ination, though it does have the flavor of estimators developed by Olley and Pakes (1996)

and Newey, Powell and Vella (1999); additionally, the monotonicity result recalls Hotz and

Miller (1993).

To estimate the model, we use data on five large counties for 2000 and 2002 from the State

Courts Processing Statistics (SCPS) data set, which we discuss below. Our empirical results

suggest that the model performs quite well in describing the data, in the sense that simple

overidentification tests do not come close to rejecting the model’s composite predictions. We

find that there is consistent, though often imprecisely estimated, evidence of discrimination

against blacks in bail setting, especially for Dallas county; Los Angeles pretty clearly can

be absolved of any charge of discriminatory bail setting. Using figures from Abrams and

Rohlfs (2006) to put our estimates in practical context, we find that the magnitude of

discrimination against blacks implied by our point estimates is substantial. Back-of-the-

conditioning on the level of bail and x, while the second set involves conditioning as well on u. Our approach
is based on the fact that the two sets of functions intersect at the optimal bail level, even though they are
not otherwise generally equal.
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envelope calculations based on our point estimates suggest that 82 days of black defendants’

lost freedom is typically valued several thousand dollars less than white defendants’ in several

counties.

The remainder of the paper proceeds as follows. In section 2, we discuss existing literature

and provide some institutional detail concerning bail policy. In section 3, we describe the

SCPS data we use. In section 4, we present the basic theoretical model of judge and defendant

behavior. We put some econometric structure on this model and discuss our estimation

approach in section 5, and we report estimates in section 6. In section 7, we discuss the

relationship of our model both to Ayres and Waldfogel’s (1994) and the recent literature

on racial profiling and outcome tests in the context of roadside motorist searches. We

also discuss briefly the importance of having an economic model to test for discrimination.

Finally, we conclude in section 8.

2 Bail Policy and Previous Literature

Historically, the sole purpose of pretrial detention was to ensure future court appearances.

Judges decided bail levels primarily as a function of the offense charge, rather than the

characteristics of individual defendants. Such a system causes poor defendants to be much

less likely than wealthier ones to make bail.

In 1961, the Manhattan Bail Project was created in New York City to establish con-

sistency in pretrial decisions while making pretrial outcomes less dependent on economic

status. The results led to legislation that increased pre-trial release (Ares, Rankin and Sturz

(1963)). The federal Bail Reform Act of 1966 laid out a set of standards for federal judges

to follow when making pretrial release decisions for defendants in federal court. For the first

time, this act established a prioritized list of options that a judge must follow, starting with

release on recognizance.

In 1968, the American Bar Association published a set of standards elaborating on the

Federal Bail Reform Act and adding two additional guidelines. First, potential danger to

the community was established as a factor that should be considered by judges. Second, the

ABA recommended eliminating surety bail, in which a third party assumes responsibility for
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the defendant’s bail in return for a fee, due to a long history of perceived abuses. In 1970,

the District of Columbia was the first jurisdiction to require judges to take into account the

potential threat to the community along with flight risk when making their pretrial release

decisions. Almost twenty years later, in 1984, the Federal Bail Reform Act was amended

for the first time to allow judges to consider danger to the community and preventative

detention when making pretrial release decisions (Clark and Henry (1997)). There is now

virtual consensus that preventing flight and protecting the public are the primary goals of

judges making pre-trial release decisions (Demuth (2003)).

The pretrial process has received relatively little research attention. Criminological re-

search that does exist suggests that pretrial detention may have substantive welfare effects

on defendants. Work by Goldkamp (1979) suggests that jailed defendants he studied were

less able to build an adequate defense and therefore received more severe punishments. Gold-

kamp also found that the stigma of being in jail affected a case’s outcome, especially if a

jury trial was involved. Irwin (1985) determined that any incarceration had negative effects

on family and community ties, including employment, and ultimately stigmatized the de-

fendant further. Clark and Henry (1997) state that defendants who were detained before

trial were more likely to plead guilty, were convicted more often, and were more likely to

receive a prison sentence than defendants who were released before trial. These concerns

have recently received widespread media attention as part of the series on bail produced by

National Public Radio, from which we quote above.

Recent social science evidence suggests that bail burdens may weigh more heavily on

disadvantaged racial and ethnic groups than on whites. Using administrative data from the

State Courts Processing Statistics, Demuth (2003) finds that black and Hispanic defendants

are about 20 percent more likely to be denied bail than whites. Black and Hispanic defendants

are also more than twice as likely to be held on bail than are whites, even after adjusting

for case characteristics.

Of course, these racial differences by themselves do not prove the existence of racial dis-

crimination. Administrative data do not usually have information on drug use, employment

or ties to community which may be considered relevant by the bail-setting judge (Smith,

Wish and Jarjoura (1989)). Moreover, judges can observe defendants’ in-court demeanor,
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whereas researchers usually cannot. Such unobserved factors may be associated with race,

helping to explain the observed differences, and perhaps even totally explaining them.3

Bail has also received relatively little attention from economists. Perhaps its earliest

treatment in the economics literature was by Landes (1973), who models bail setting as an

optimizing procedure. More recently, Abrams and Rohlfs (2006) use data from the 1981

Philadelphia Bail Experiment to estimate key parameters and calibrate a model of optimal

bail setting.4 These parameters include the costs of jailing a defendant until trial, the defen-

dant’s value of lost freedom when jailed, and the social costs of any bad acts the defendant

would commit while on release. Abrams and Rohlfs find that increasing a defendant’s bail

level reduces his probabilities of pre-trial release and of failing to appear or being rearrested

while on release.

To our knowledge, Ayres and Waldfogel (1994) are the only other authors to study racial

discrimination in bail setting through the lens of an economic model. Because Ayres and

Waldfogel lack data on FTA, they develop a clever, market-based test for racial discrimina-

tion. They assume that judges seek to ensure appearance at trial with a minimum probability

and show that this objective function implies equal failure to appear rates across defendants.

Using market data on bail bonds prices in New Haven, Connecticut, they find that blacks

pay lower bond prices per dollar of bail. Under the assumption that the bail bonds market is

competitive, this suggests the bail bonds market undoes judicial bias in bail setting: judges

in the Ayres & Waldfogel sample hold blacks to a higher appearance-probability standard,

which makes it cheaper to provide supply a dollar of bail-bond protection to blacks than to

whites.5

3For example, some prior research using databases with richer measures of community ties and employ-
ment has found no race effects on pretrial release decisions (e.g., see Albonetti, Hauser, Hagan and Nagel
(1989)).

4See Abrams and Rohlfs (2006) or Goldkamp and Gottfredson (1985) for details on this experiment.
Colbert, Paternoster and Bushway (2002) conduct another experiment, involving representation by counsel
in Baltimore. They find that being represented by counsel reduces bail levels, with no resulting impact on
failure to appear.

5Helland and Tabarrok (2004) also consider issues related to bail. Their paper concerns the relative
efficacy of public and private methods for finding those who have already failed to appear, which is a
different topic from ours. Miles (2005) also considers re-capture of fugitives.
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3 Data

3.1 Basic data facts

The State Courts Processing Statistics (SCPS) dataset has been assembled biennially by the

Bureau of Justice Statistics (BJS) since 1990. It is intended to represent the population of all

felony cases brought in May in the 75 largest counties in the United States. The SCPS dataset

follows cases from filing to disposition, or for one year—whichever occurs first.6 It contains

detailed information on the pretrial processing of felony defendants, including whether they

are rearrested or fail to appear for a court hearing. It also contains important information

on demographic, case, and contextual factors which may affect pretrial outcomes. In the

analysis below, we use information on age at indictment, the offense category of the charge,

previous criminal history (including arrest and incarceration), and whether the person was

under criminal justice supervision (on bail, probation, or parole) at the time of arrest.

SCPS sampling is done in two stages. In the first stage, the 75 largest counties in the U.S.

are divided into four strata based on population size, and 40 counties are chosen from these

strata. In the second stage, the BJS chooses days in May, with more days chosen for smaller

counties than larger ones. For the smallest counties, the BJS selects 20 business days, and

for the largest counties, it selects only 5, at random. For each day in each selected county,

the sample includes all felony defendants indicted on that day, and data are collected over

the succeeding 12 months or until the case is disposed of.

The SCPS dataset includes weights that can be used to account for representativeness

and inference issues that arise due to this multi-stage sampling process. However, we do

not use these weights, for reasons we explain momentarily. We wish to estimate separate

parameters of interest for each county we consider. After detailed work with the data, we

found that many county-year cells in the SCPS had very small samples. Since parameter

estimates for small counties would be very noisy, we exclude them. The five counties we

do use are: Broward, Florida (including Ft. Lauderdale); Cook, Illinois (Chicago); Dallas,

Texas; Harris, Texas (Houston); and Los Angeles, California. All are in the largest stratum,

which means that they were selected with certainty each year of the survey, and had cases

6Murder cases are followed for up to two years, but we do not include any of these cases in our analysis.
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from five days during May selected.7

Pretrial policies vary widely across these counties. Illinois is one of four states that ban

commercial bail bonds companies, so bail is handled directly by the court in Cook County.

Prior to 2009, Texas was the only state that required increased reporting of pretrial release

information and encouraged the use of commercial bail bondsmen. Harris County was the

focus of considerable attention in the mid 1990s as groups backed by bail bonds groups tried

to get rid of non-bail pretrial release programs; these efforts were ultimately unsuccessful. A

similar attempt was successful in Broward County, but not until 2009, after our data were

collected (Sullivan (2010)).

To select our sample, we used the following algorithm. We first dropped all observations

involving a pre-2000 indictment. Next, we kept only cases in which the defendant’s race was

recorded as either black or white, and we dropped all cases with a defendant reported to be

of Hispanic background. We then kept only those cases in which the defendant was assigned

positive bail. We dropped all cases in which the most serious charge was murder, since

bail amounts for murders might be set very differently from other violent crimes. For the

remainder of the paper, we refer to the most serious charged offense as simply the charged

offense. Note, though, that defendants can be charged with multiple offenses. We divide

defendants into those charged with violent, property, drug, and public order offenses. These

categories have the following constituent offenses:

• Violent crimes: rape, robbery, assault, “other violent.”

• Property crimes: burglary, larceny-theft, motor vehicle, theft, forgery, fraud, and

“other property.”

• Drug crimes: drug sales, “other drug.”

• Public order crimes: weapons, driving-related, “other public order.”

7Prior to 2000, Broward was in the second largest stratum, which means it had had .55 chance of being
selected for the survey, and cases from 10 days were selected. This is one reason we do not use data from 1998
or earlier. Another involves data issues with Los Angeles and Cook counties for 1998. Many observations
from Los Angeles have missing data on race for 1998, so that our present estimation sample includes almost
no 1998 Los Angeles observations. Cook county contributes a substantially lower share of total observations
in 1998, by comparison to Dallas and Harris, than it does for 2000 and 2002, which raises questions about
sample comparability across these years. These issues, together with Broward’s change in stratum, have
convinced us to drop 1998 altogether.
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Table 1 reports some basic summary statistics for the data we use in the analysis below.

The first two columns of the table report descriptive statistics for blacks and whites charged

with a violent crime. Average bail for blacks charged with violent crimes is just under

$36,000, about $7,000 above the average bail assigned to whites charged with these crimes.

One consequence of the higher average bail facing blacks charged with violent offenses is that

only 40% of them made bail, by comparison to 53% of whites charged with violent offenses.

A naive approach to testing for discrimination would take this difference as evidence of

anti-black bias. However, blacks and whites accused of violent crimes differ in many ways.

For example, the “Any prior FTA” row shows that 32% of the blacks in the sample have

previously failed to appear in court, by comparison to only 21% of whites. Among blacks

charged with violent offenses, 26% could not have previously failed to appear, meaning that

they were not previously ordered to appear in court; among whites, this figure is 33%.

Blacks charged with violent crimes also were more likely than whites to have been arrested

previously (74% versus 67%), and more of them had been arrested at least ten times (22%

versus 16%). Blacks were also more likely to have previously served time in prison (24%

versus 18%, though roughly the same share of blacks and whites had previously served time

in jail—44% versus 41%), and they were also more likely to have an active criminal justice

status at the time of charging.

As with violent offenses, blacks charged in the other three offense-type categories face

higher bail levels than do whites. These differences are especially large for drug crimes

(about $13,000) and public order crimes (more than $10,000). Blacks charged in these three

categories are also much less likely than whites to make bail. As with those charged with

violent crimes, blacks in the other three categories uniformly have more extensive criminal-

justice backgrounds than whites, as measured by the variables considered in Table 1.

3.2 Regression-adjusted differences

These differences in criminal background suggest that simple differences in average bail

by racial group are problematic measures of discrimination. It is at least possible that

whites with the same characteristics as blacks in the sample would receive the same bail. A

conventional approach to adjusting for characteristics is to estimate the black-white difference
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in average bail by estimating a linear regression model in which background characteristics

enter as covariates. We report the coefficient on a dummy variable indicating that the

defendant is black in the second row of Table 1. For violent crimes, this coefficient is roughly

-$140, suggesting that blacks’ bail is slightly lower than whites after regression adjustment,

which obviously does not support the hypothesis of discrimination against blacks.8,, 9

Such a simple approach to controlling for defendant differences is of limited use, for two

reasons. First, even if the coefficient on the race dummy could otherwise be interpreted

as the causal difference in average bail due to being black rather than white, there is the

problem of unobserved heterogeneity. If judges observe heterogeneity in defendants that

researchers cannot, and if this heterogeneity varies systematically with race conditional on

the other covariates, then the race-dummy coefficient cannot be interpreted as the causal

effect of defendant’s race on bail.10 Second, without unobserved heterogeneity, plausible

behavioral models might not yield a simple linear regression model for bail. The simple

behavioral model we analyze below generally does not, for example.11 Another approach

would be to use more flexible matching methods. However, under our behavioral model,

this method fails if blacks and whites with the same observable characteristics do not fail

to appear with the same probability.12 For these reasons, we do not pursue either simple

regression estimators or matching estimators further.

8There is no support for the hypothesis that blacks are favored, either, as the estimate’s p-value against
the two-sided null of no effect is 0.95.

9In general, regression-adjusted differences are much smaller than raw differences. The conditional black-
white difference in average bail amounts is significantly different from zero only in the case of drug crimes.
While these findings make for interesting summary statistics, as argued above, they are not dispositive of
the discrimination issue.

10This problem could be solved in principle via random assignment of defendant’s race, but this solution
seems impractical. Defendant’s demeanor in court is one important source of heterogeneity observed by
judges but not researchers. How would one assign race randomly conditional on such behavior? Audit
studies based on written case files would have the related problem of lacking the realism of in-court events.
Heckman and Siegelman (1993) discuss other issues related to audit studies.

11Interestingly, it can be shown that the approach in Ayres and Waldfogel (1994), when married to our
reduced form model of defendant’s behavior, leads to the result that optimal bail for a given defendant is affine
in the unobserved heterogeneity term and a potentially nonlinear function, g2, of background characteristics
observed by both judges and researchers. If g2 either has no constant term or is known to have the same
constant term for both races, then a partial regression coefficient approach does identify a measure of
discrimination in bail setting. This method breaks down in the presence of heterogeneity observed by judges
but not researchers, as we allow for here.

12Note that differences in the FTA probability could be due either to unobserved heterogeneity or to racial
differences in the function mapping characteristics into FTA probabilities. Both these sources of difference in
the FTA regression function violate the conditional independence function required by matching estimators.
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3.3 Conventional outcome tests

The “FTA, given made bail” row of Table 1 reports the fraction of defendants who failed

to appear as ordered, given that they made bail (notice that this means the risk set is

endogenous to whether a defendant makes bail). Because we have data on this variable, we

can use Ayres and Waldfogel (1994) outcome test without requiring any of the bail-bond

information they use. Table 1 shows that 11% of blacks who make bail fail to appear,

by comparison to 14% of whites. While this difference is in the direction of anti-black

bias according to AW’s test, it is not statistically significant: the standard error of the 3

percentage-point difference is 4.9 percentage points. Thus, among those charged with violent

offenses, we would fail to reject the null hypothesis of no discrimination against blacks using

AW’s outcome test. Interestingly, among those charged with drug offenses, blacks actually

FTA more often than whites—25% by comparison to 21%. The AW outcome test would thus

conclude that for those accused of drug crimes, blacks are favored in bail-setting relative to

whites. However, this difference is again statistically insignificant. 13

4 Model

4.1 Basic setup

We assume the judge’s objective is to minimize social costs, defined momentarily, and we

consider the stage of the case when her only choice variable is b, the amount of bail that she

sets. Let θ = (x, u) be a possibly vector-valued signal concerning the defendant. We assume

that the judge can observe this entire signal, while researchers generally can observe only x.

We define the conditional probability that the defendant makes bail, given the bail amount

b, as M(b, θ). For each θ, we assume there exists some bmax such that this probability is

strictly decreasing for all b ∈ [0, bmax], with M(0, θ) = 1, M(b, θ) ∈ (0, 1) for all b ∈ (0, bmax)

and M(b, θ) = 0 for all b ≥ bmax. Since defendant’s wealth is finite, the judge can always

choose a bail level sufficiently great that the defendant cannot make bail.

13Even accepting this method for testing discrimination, though, the results just described are for a sample
of defendants pooled across several different counties. Judges in different counties might be differently
prejudiced, so we do our main analysis separately by county below.
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If the defendant does not make bail, then the state will incur pecuniary jailing cost P ;

this cost does not vary with the amount of bail the judge chooses. In addition, the defendant

will lose his freedom. We denote with V the value the judge places on the defendant’s lost

freedom.14 We define J = T + V as the judge’s perceived total jailing cost, and we assume

that P and V each are (1) unaffected by the level of bail the judge sets, and (2) constant

within race-county-offense-type cells.15 In addition, we assume that P does not vary across

race given the county and offense category. Thus while Cook and Dallas counties might face

different pecuniary jailing costs for defendants charged with a given offense, and while Cook

might face different jailing costs for defendants charged with violent and property crimes,

no county’s pecuniary jailing cost varies across defendants charged with the same type of

crime.

We model race-based discrimination as occurring when a judge values defendants’ lost

freedom differently as a direct function of defendants’ races. This means that a judge who

values blacks’ lost freedom less than whites’ has V blacks < V whites, and vice-versa. Given

the definitions and assumptions above, racially unbiased judges will have the same J for

defendants charged with the same type of offense, regardless of race. By contrast, racially

biased judges will have lower J for the type of defendants against whom they are biased.

Intuitively, a judge who discriminates against blacks in bail setting treats them as if the

costs of jailing them are lower than the costs of jailing whites, other things equal.

We define S(b, θ) as the expected social costs due to bad acts that a type-θ defendant will

commit if released on bail. We assume that the conditional-on-release social costs function

can be written

S(b, θ) = c1F (b, θ) + c0[1− F (b, θ)]

= c0 + (c1 − c0)F (b, θ), (1)

where F (b, θ) is the probability that a type-θ defendant fails to appear given bail level b, c1

14For an excellent model and estimation of the value of freedom, see Abrams and Rohlfs (2006).
15A more complex and ambitious model would allow the costs of lost freedom to include the opportunity

cost of defendants’ lost earnings, which would vary across defendants. We ignore this issue for tractability.
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is the expected social cost of bad acts for a released defendant who fails to appear and c0 is

the corresponding expected social cost for a defendant who does appear.

The expected cost c0 will be positive if some defendants would both show up for trial and

also commit crimes while awaiting trial. In our sample, the fraction of released defendants

who are ever rearrested pending trial is roughly 6 percent among those who do not fail to

appear, which suggests that c0 is nonzero. By comparison, roughly 20 percent of those who

do fail to appear are ever arrested.16 Thus, it is reasonable to believe that c1 is considerably

greater than c0.

In the econometric model below, we will see that J , c0, and c1 are not separately iden-

tified. However, we will be able to identify R ≡ J−c0
c1−c0

. This is sufficient to test for racial

discrimination provided that c0 and c1 do not vary across race within county-offense type

cells. In this case, given the homogeneity assumption on P , the black-white difference in R

satisfies

∆R =
1

c1 − c0

(
V blacks − V whites

)
,

which will be negative when judges value blacks’ freedom less than whites. If we also know

c1 and c0, then we can estimate the black-white difference ∆V using (c1 − c0)∆R. Finally,

if we know P , c0, and c1, then we can also estimate the levels of V blacks and V whites. Below

we use rough estimates of these three parameters to estimate the V parameters. We stress

that even if one does not accept our specific estimates of P , c0, and c1, we can estimate

the sign of ∆R, which is a meaningful test of discrimination, as long as P , c0, and c1 are

constant across race. To make palatable the various assumptions necessary to interpret R

meaningfully, we estimate separate values of R for each county-offense category cell. Since

we have two racial groups, five counties, and four offense categories, this means we estimate

40 values of R in total.

16For whites in our sample, the shares ever rearrested are 5.48 percent (out of 347 who do not FTA) and
19.75 percent (out of 81 who do FTA). For blacks in our sample, the shares are 6.59 percent (out of 516 who
do not FTA) and 22.22 percent (out of 117 who do FTA).
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4.2 The optimal level of bail

The judge has three options: (i) release the defendant on his own recognizance, i.e., set

bail equal to zero, (ii) set bail at or above bmax so as to prevent release,17 and (iii) set bail

somewhere in the middle, allowing the defendant probability M(b, θ) ∈ (0, 1) of obtaining

his release. For exposition, and because these are the only cases we study empirically, we

focus only on interior-optimum cases. This focus poses no selection problems, provided that

our econometric model is otherwise specified correctly.

Suppressing the θ parameter, the judge’s decision problem is to

min Q(b) ≡ M(b){F (b)c1 + [1− F (b)]c0}+ [1−M(b)]J (2)

= M(b)[(c1 − c0)F (b)− (J − c0)] + J, (3)

which yields the first-order condition

Mb(b
∗)[(c1 − c0)F (b∗)− (J − c0)] + M(b∗)(c1 − c0)Fb(b

∗) = 0. (4)

We assumed above that Mb < 0. Because the defendant will lose his bail when he fails

to appear, we also assume that Fb < 0 for all b. Given that M(•) is interior to [0, 1] for an

interior solution, the second term in (5) must be negative. Therefore, the first term must be

positive, so F (b∗) < (J− c0)/(c1− c0) = R at the optimal bail level. Finally, we observe that

the sign of (5) is unchanged if we divide both sides by (c1− c0), which will not be separately

identified in any case. Thus, we work below with the condition

Mb(b
∗)[F (b∗)−R] + M(b∗)Fb(b

∗) = 0. (5)

We now turn to our econometric specification.

17We think of denying bail as setting b = ∞.
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5 Econometric Specification

5.1 The basic econometric model

Let 1(•) be the indicator function, and let Dm = 1(defendant makes bail) and Df =

1(defendant fails to appear). Because the defendant cannot fail to appear if he does not

make bail, there are only three possible outcomes to consider:

1. A defendant does not make bail: Dm = 0.

2. He makes bail and does not fail to appear: Dm = 1 and Df = 0.

3. He makes bail and fails to appear: Dm = 1 and Df = 1.

Where appropriate, we will use subscripts “0” to refer to the first event, “1” to refer to

the second, and “2” to refer to the third. One can think of a discrete dependent variable D

taking on values in {0, 1, 2} given each outcome, so that

1. Pr(D = 0) = Pr(Dm = 0)

2. Pr(D = 1) = Pr(Dm = 1 and Df = 0)

3. Pr(D = 2) = Pr(Dm = 1 and Df = 1)

We assume that for a defendant with bail level b and characteristics (x, u), latent utility

in each of the three states just defined can be written as

V0 = γ0 ln b + g0(x) + ε0

V1 = ε1 (6)

V2 = γ2b + g2(x) + u + ε2.

Thus, the event that D = 0 is the event that V0 > max[V1, V2]; the event that D = 1

is the event that V1 > max[V0, V2]; and the event that D = 2 is the event that V2 >

max[V0, V1]. In (6), we have normalized to zero the systematic part of utility in the D = 1
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case (defendant makes bail and doesn’t FTA). As usual, such a normalization is required

since only the difference of parameters across equations is generally identified in multinomial

choice settings. We have also used general notation to allow maximum flexibility in the way

the covariate vector x enters V0 and V2. Conventional approaches involve intrinsically linear

parameterizations of the functions g0 and g2. Given that we estimate choice probabilities

nonparametrically, however, we do not need to impose functional forms on g0 and g2.

Since higher bail levels increase the probability of not making bail, γ0 > 0. The bail level

enters V0 in log form in order to satisfy the intuitive requirement that defendants should

make bail with probability one when b = 0, in which case the latent utility of not making

bail is −∞. Defendants will not always fail to appear when bail is 0, though so we assume

that bail enters linearly into V2, the made-bail/didn’t-FTA choice’s utility. Since higher bail

should serve as a deterrent to FTA among those who do make bail, we expect γ2 < 0. We

assume that u has mean zero in the population, which is innocuous given the presence of

the nonparametric function g2,

Finally, consider ε0, ε1, and ε2, which are the components of indirect utility that are

“totally unobserved,” in that neither we nor the judge can observe them. We assume that

these terms are distributed jointly as Type-I extreme value. Under this assumption, the

model has the usual multinomial logit (MNL) structure, conditional on b, x and u. As we

discuss below, this MNL assumption is critical to our approach, even when we estimate choice

probabilities nonparametrically. Note though, that from the perspective of researchers, the

presence of heterogeneity in u means that the model does not have a multinomial logit form.

5.2 Estimation

The only unconventional aspect of (6) is the presence of the term u in the specification

of V2. This term represents any defendant-specific heterogeneity that can be observed by

bail-setting judges but not by us. For example, judges can observe a defendant’s behavior in

the courtroom during the hearing, which we cannot. Observable unruliness in court might

be a good signal that a defendant is unlikely to appear in court except when he faces a

high bail level. Good behavior plausibly has the opposite signal value. Other aspects of

the defendant’s background that we cannot observe might also be observable to the judge;
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examples include community ties, having a job, and so on.

Given that judges choose bail according to the first order condition (5), observed bail will

be a function of all the other elements of the model: (γ0, γ2), the vector x, the functions g0

and g2, and the unobservable heterogeneity term u. First consider the case when u = 0 for

all observations, so that judges observe nothing more than we do. Then optimal bail may be

written as b = b∗(x; γ0, γ2, g0, g2). The fact that judges choose the level of bail to minimize

expected social costs would have no bearing on estimation via maximum likelihood in this

case, provided that we and the judge both know g0 and g2. Intuitively, in this case we can

account for all features of the problem that judges do. More formally, when we conditioned

on x in forming the likelihood function, we would implicitly also be conditioning on bail, since

optimal bail depends only on x and fixed parameters of the model given Variance(u) = 0.

Conditioning on observed bail thus would add no further information and so could not cause

any problems for estimation.

With heterogeneity in u, the optimal bail function now depends on both x and u, i.e.,

b = b∗(u, x; γ0, γ2, g0, g2). So conditioning on x is no longer sufficient to condition on b.

If we observed u, we could condition on it as well in forming the likelihood, and we could

use maximum likelihood estimation, given parameterizations of g0 and g2. This avenue is

blocked since we cannot observe u, though, and the likelihood function will be mis-specified

if we ignore u. Moreover, since bail is chosen optimally as a function of x and u, there will be

dependence in the joint distribution of b, x and u. The structure of this dependence will be

functionally unknown even given knowledge of g0 and g2. This makes otherwise attractive

methods like Mroz’s (1999) discrete-factor approach problematic, and possibly intractable.

An alternative approach would be to specify a distribution for u and use numerical meth-

ods to simulate the likelihood function. One might then be able to estimate the parameters

of interest. An advantage of this approach is that it would allow us to drop the Type I

extreme value assumption on the joint distribution of (ε0, ε1, ε2) given (x, u). However, this

approach would also require us to specify a specific conditional distribution of u, given x,

and we regard mis-specification of this latter distribution as the greater concern.

Our approach is motivated by the fact that the level of optimal bail is monotonically in-

creasing in the heterogeneity term u under the Type I extreme value assumption. Intuitively,
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a defendant with higher u has higher utility of failing to appear and is thus more likely to

FTA at a given bail level. A rational judge might therefore respond to a ceteris paribus

increase in u by increasing the level of bail. This result must be proved, though, because

when the judge increases the bail level, probability shifts from the event that a defendant

makes bail and does not FTA, to the event that he does not make bail in the first place.

This increase in the probability of not making bail brings higher expected jailing costs along

with the increase in bail. The judge’s optimal response to an increase in u thus involves

balancing costs on both sides of the ledger.

Given the multinomial logit functional form that we assume, it can be shown that, given

x, every optimal bail level maps to a unique value of u. More precisely, let b∗(u; x) be the

optimal bail level given (x, u). Then there exists a function h such that u = h(b∗(u; x); x).

We state and prove this unique-mapping result formally as Lemma 1 in Appendix A.

If we could find a closed form represenation of the function h known up to a finite param-

eter vector, then we could use a standard control-function approach, substituting h(b; x) for

u and then estimating the parameters of the defendant’s multinomial choice decision using

maximum likelihood.18 However, inspection of the first order condition, as well as some

fruitless attempts on our part, suggests that this approach is unlikely to work in general.

Instead, we use the unique-mapping lemma. This result implies that at the optimal bail

level b∗, conditioning on (x, b∗) alone is equivalent to conditioning on (x, b∗, u). To see this,

observe that the information set {x, b∗} is sufficient for the information set {x, b∗, h(b∗; x)},

given (γ0, γ2, g0, g2). Therefore, knowing {x, b∗} is as good as knowing {x, b∗, u}.19 Define

m(b, x) ≡ Pr[Dm = 1|x, b] and f(b, x) ≡ Pr[Dm = 1, Df = 1|x, b]. These functions differ from

their capital-letter counterparts in that the lower-case functions do not involve conditioning

on u. By the unique-mapping lemma, however, for each d ∈ {0, 1, 2}, the conditional prob-

ability that the defendant chooses D = d at the judge’s optimum, given (x, b∗), satisfies the

following ignorability condition:

18For example, if we happened to know that h(x, b; γ0, γ2, g0, g2) were a quadratic function of x and b, then
we could simply enter a fully interacted second-order polynomial in these variables as regressors and then
estimate the model by maximum likelihood. The resulting reduced form parameter estimates could then be
used to back out estimates of (γ0, γ0, g0, g2).

19Note that this result does not generally hold for non-optimal levels of bail: if b′ is not the optimal bail
level given (x, u), then u 6= h(b′;x), so {x, b′, u} contains more information than {x, b′}.
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Pr [D = d|x, b∗] = Pr [D = d|x, b∗, h(b∗; x)]

= Pr [D = d|x, b∗, u] , (7)

so it follows that

m(b∗, x) = M(b∗(u; x), x, u) and f(b∗, x) = F (b∗(u; x), x, u). (8)

Given knowledge of the joint distribution of (b, x), the functions m(b, x) and f(b, x) are

nonparametrically identified, even without knowing anything about u or its distribution.

Under the assumption that judges choose bail optimally, the relevant joint distribution in-

volves the optimal bail level, i.e., (b∗, x). From observable information, then, we can identify

m(b∗, x) and f(b∗, x). Thus, under the assumption that the judge chooses bail optimally,

M(b∗(u; x), x, u) and F (b∗(u; x), x, u) are nonparametrically identified without any knowl-

edge of u or its distribution. We establish this fact formally in Theorem 1, stated and

proved in Appendix A.20

The next step in demonstrating identification of R is to show how to rewrite the judge’s

first-order condition entirely in terms of the optimal bail level and the conditional choice

probabilities m(b∗, x) and f(b∗, x). This is possible using the well known fact that deriva-

tives of multinomial logit conditional choice probabilities are fully determined by the choice

probabilities themselves. Observe that for any (b, x, u) the conditional probability of not

making bail is

M(b, x, u) = Pr[Dm = 1|x, b, u] =
1 + exp[γ2b + g2(x) + u]

1 + exp[γ0 ln b + g0(x)] + exp[γ2b + g2(x) + u]
. (9)

The probability of failing to appear given that a defendant makes bail, Pr[Df = 1|x, b, u, Dm =

20We also establish identification of (γ0, γ2), as well as point identification of the function g0(x). The
function g2(x) is not identified, although the sum g2(x)+u is. In addition, it is possible to identify differences
in u Acacross two observations having the same value of x.
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1], may be written

F (b, x, u) = Pr[Df = 1|x, b, u, Dm = 1]

=
Pr[Dm = 1 and Df = 1|x, b, u]

Pr[Dm = 1 and Df = 0|x, b, u] + Pr[Dm = 1 and Df = 1|x, b, u]

=
exp[γ2b + g2(x) + u]

1 + exp[γ2b + g2(x) + u]
. (10)

Differentiating (9) and (10) partially with respect to the bail level and engaging in a large

amount of tedious algebra, it can be shown that for any (b, x, u),

Mb(x, b, u) =
[
γ2F (b, x, u)− γ0

b

]
[1−M(b, x, u)] M(b, x, u), (11)

and

Fb(b, x, u) = γ2F (b, x, u) [1− F (b, x, u)] . (12)

By the ignorability condition (7), all conditioning on u is extraneous in the probabilities

on the left hand side of (9) and (10) at the optimal bail level b∗(u; x). Thus, we can replace

the probabilities M(b∗, x, u) and F (b∗, x, u) in (9), (10), (11) and (12) with m(b∗, x) and

f(b∗, x, u). Fixing x and u and writing m∗ = m(b∗, x) and f ∗ = f(b∗, x), it follows that (11)

and (12) can be re-written at their optimal values as21

Mb(b
∗, x, u) =

(
γ2f

∗ − γ0

b∗

)
(1−m∗) m∗ (13)

Fb(b
∗, x, u) = γ2f

∗(1− f∗), (14)

Plugging these first derivatives’ values into the first-order condition (5), we now have as

21For notational ease, we leave it implicit that m∗ and f∗ vary with x, but this fact is empirically important.
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the necessary condition for optimality that

m∗γ2f
∗(1− f ∗) +

[
γ2f

∗ − γ0

b∗

]
(1−m∗) m∗ {f ∗ −R} = 0. (15)

This form shows that for given values of γ0, γ2, and R, the first-order condition can be

written in closed form as a function of the optimal bail level and the observable conditional

choice probabilities m∗ and f ∗. Dividing (15) by γ2, moving terms to the right-hand side,

and regrouping then yields

m∗f ∗ (1−mf ∗) = [
(1−m∗) m∗f ∗

b∗

]
γ0

γ2

+
[
(1−m∗) m∗f ∗

]
R

+

[
(1−m∗) m∗

b∗

](
−γ0

γ2

×R

)
. (16)

Equation (16) can be rewritten as the auxiliary relationship

L = W1δ1 + W2δ2 + W3δ3, (17)

where the auxiliary variables L, W1, W2, and W3 are given by

L = m∗f ∗ (1−mf ∗) (18)

W1 =

[
(1−m∗) m∗f ∗

b∗

]
, (19)

W2 = [(1−m∗) m∗f ∗] (20)

W3 =

[
(1−m∗) m∗

b∗

]
, (21)

and the auxiliary coefficients are given by
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δ1 =
γ0

γ2

, δ2 = R, δ3 = −γ0

γ2

×R. (22)

Assume momentarily that for observed (bi, xi) and unobserved ui, we observe the true

probabilities Fi = F (bi, xi, ui) and Mi = M(bi, xi, ui) for each observation i, regardless of

whether bail is set optimally. Since each of these probabilities depends only on defendant

behavior, knowing these values does not itself tell us anything about whether judges do

choose bail in the way we have assumed. In other words, there is no guarantee that the

observed bail level bi is the solution to (5). If it isn’t, then (16) won’t generally hold when

we replace the optimal values given (xi, ui), f ∗i and m∗
i , with their observed counterparts Fi

and Mi. Given that judges actually do choose bail optimally, though, Fi = f ∗i and Mi = m∗
i .

In that case, R could be estimated by calculating δ2, the coefficient on W2, via least-squares

estimation of equation (17).

In addition, from (22) we see that we when the model is correctly specified, so that the

probabilities Fi and Mi are optimal, we have three functions of the two unknowns R and

−γ0/γ2. Thus with knowledge of the true probabilities Fi and Mi, we could test whether

judge behavior is consistent with optimal bail setting given the objective function we have

assumed. To test the null hypothesis of correct specification, we would use estimates of the

delta coefficients to evaluate whether H0 : δ1×δ2+δ3 = 0 can be rejected given the estimated

coefficients δ̂1, δ̂2, and δ̂3, together with their estimated sampling distributions.

In practice, we do not know the true values of Fi and Mi. Provided that we can estimate

them consistently, though, we can still estimate the sample analog of (17),

L̂ = Ŵ1δ1 + Ŵ2δ2 + Ŵ3δ3 + v, (23)

where hats denote estimated quantities, e.g., Ŵ1i = b−1
i [1 − M̂i]M̂iF̂i, and the residual v is

due to estimation error of F̂i and M̂i.
22

22Estimates of the δ parameters based on (23) are consistent provided that F̂i and M̂i are consistent. Note
that this is true even though functions of bi, Fi, and Mi appear on both sides of equation (17). We make
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To estimate the conditional choice probabilities Mi and Fi, we use non-parametric, gen-

eralized product kernel regression methods proposed by Hall, Racine and Li (2004) and

implemented in the R software environment via the np package by Hayfield and Racine

(2008). We discuss relevant details of the nonparametric estimation in Appendix C. For

the main text, we simply take as given that we have consistent estimates M̂i and F̂i of the

conditional probabilities Mi and Fi for each observation i. To account for sampling variation

due to the estimated nature of the variables in auxiliary equation (23), we use the bootstrap,

using nonparametric Monte Carlo re-sampling.23

6 Econometric Results

We first report results computed while pooling over offense categories, within counties. This

is not our main focus, as we want to allow separate values of c by county-offense type cells.

However, these results allow us to explain the main features of the empirical results with

only ten race-by-county cells, simplifying the exposition. We then turn to our main focus

and discuss results for county-by-offense type cells.

6.1 Results pooled within county

The top three rows of Table 2 report estimates of the three δ parameters by county and

race. These estimates come from OLS estimation of (23), with the estimates of the auxiliary

variables constructed using nonparametric estimates of the choice probabilities discussed

above. Estimates of δ1 are negative in seven of the ten county-race cells, as predicted by the

model, though most are not significant using conventional critical values.24

no claim to estimating any type of partial or causal effect of (W1,W2,W3) on L, whatever that would even
mean in this context. We are simply using the fact that, at the optimum under correct model specification,
these variables must be related as discussed above. Only the linear projection relationship between these
functions of the data are needed, and this relationship is precisely what can be estimated consistently using
least-squares estimation of (23).

23On each resample, we recalculate the estimated conditional choice probabilities and use these new esti-
mates to re-estimate (23). We do not re-estimate the bandwidths used to generate kernel density estimates,
due to the associated computational burden of re-doing cross-validation for bandwidth selection many times.

24While the scale of δ1 is difficult to interpret, we note that the estimates display relatively great variation
across county-race cells. Thus it appears that the lack of statistical significance in these estimates is due to
large sampling variance, rather than to persistent small estimates.
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Under correct specification of the model, δ2 equals R, defined above. Estimates of this

parameter are positive in all ten cases, as predicted, and are highly significantly different

from zero in all cases.25 Even though our main focus is on black-white differences in R, we

defer substantive discussion of these estimates, because R is overidentified in (23), which

we discuss in detail below. The third row of Table 2 reports our estimates of δ3 from OLS

estimation of (23). Nine of these ten estimates are positive, as expected, and most are

significantly different from zero using conventional critical values.

The fourth row in Table 2 reports estimates of the statistic T ≡ δ1δ2 + δ3. If the model

is correctly specified and judges determine bail optimally given their preferences concerning

value of defendants’ freedom and the social cost of an FTA, then T should equal zero up

to sampling error. The county- and race-specific estimates of T show that in general, this

statistic is imprecisely estimated and is by itself generally insignificantly different from zero.

The following two rows of the table report estimated p-values testing the null hypothesis

that T equals zero for the given county-race combination. The first set of p-values, labeled

“Conventional,” are computed in the usual way, ignoring the fact that we have multiple

estimates. The lowest of these estimated p-values is 0.023, for blacks in Broward county.

Taken by itself, this estimate suggests that the model’s restrictions are rejected.

However, because we have 10 county-race cells, it is important to use a test that accounts

for multiple comparisons. One common and simple approach to adjusting test size to account

for multiplicity of comparisons is to use the Bonferroni correction. In our context, this means

dividing the desired familywise significance level by 10. The lowest p-value in the table is

0.023, for blacks in Broward county. These results suggest that any significance level below

0.23, we should not reject the null hypothesis for any county-race combination.

The Bonferroni correction does come with a loss of power. As an alternative, we use the

bootstrap distribution of our coefficient estimates to estimate uniform critical values that

can be used directly in place of the Bonferroni tests. Let s = minc,r(T
cr) be the minimum

estimated value of the 10 test statistics, indexed by c for county and r for race. Similarly,

let S = maxc,r(T
cr) be the maximum estimated value of the 10 test statistics. For a two-

sided level-α test, equal-tailed uniform critical values sα and Sα have the property that

25All these point estimates are also greater than one, which implies F (b∗) < R, as the model predicts.
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Pr(s < sα) = α/2 and Pr(S > Sα) = α/2. Similarly, given an estimate T cr, a uniform,

equal-tailed p-value for testing the null hypothesis T cr = 0 against the two-sided alternative

T cr 6= 0 is the level p that solves Pr(T cr ≤ sp/2 or T cr > Sp/2) = p. For each estimate

of T cr in Table 2, we estimate such uniform p-values using the bootstrap distribution. For

each bootstrap replication, we calculate the replication’s value of s and S just defined. Our

estimate of the uniform p-value is then min(1, 2[1−πcr]), where πcr is the fraction of bootstrap

replications for which T cr > S or T cr < s.26 Estimated uniform p-values appear in the final

row of Table 2. The lowest such estimate, again for Broward blacks, is 0.19. This result

indicates that there is little reason for concern that the model is inconsistent with the data.

Next we consider black-white differences in estimated R values. As noted above, we could

simply use our estimates of δ2, since this parameter equals R under correct specification.

Because δ1δ2 + δ3 = 0 under correct specification, though, we also have δ3/δ1 = R under

correct specification. Thus, two distinct estimates of R will be implied by any set of estimates

of (23) from a finite sample.

Given that the specification tests reported in Table 2 do not reject our model’s constraint

that T = δ1δ2+δ3 = 0, it is reasonable to re-estimate the auxiliary regression model with this

constraint imposed. This allows us to obtain a unique estimate of R for each county-race

group. We impose the constraint by using nonlinear least squares (NLS) to estimate the

model

L̂ = Ŵ1R + Ŵ2
γ0

γ2

+ Ŵ3

(
−γ0

γ2

×R

)
+ v, (24)

where the parameters to be estimated are R and γ0

γ2
.

We report these constrained NLS estimates in Table 3. All 20 estimates reported in the

table have the expected sign. Of the ten estimates of γ0/γ2, eight are statistically significantly

different from zero. All ten county-by-race estimates of R are statistically significant using

uniform tests; we do not report estimated p-values because they are all lower than 0.01.

26It is important to impose the null hypothesis where possible in using bootstrap tests. To do so, we
simply subtract, from each bootstrap replication of T cr, the mean of the bootstrapped value of this statistic.
The s and S statistics are actually calculated using these de-meaned values.
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These results suggest that the model’s predictions given optimal bail setting are largely

borne out by the data.

Of course, our primary interest is in testing for racial animus on the part of judges, via

estimates of R. Consider ? estimates for R of 1.27 and 2.30 for blacks and whites in Broward

county, respectively. Interpreted through our model’s lens, this estimate tells us that Broward

judges set bail as if (J − c0)/(c1 − c0) = 1.27 for blacks, and (J − c0)/(c1 − c0) = 2.30 for

whites.

While there are obvious problems with these estimates, most notably that they ignore

variation in c0 and c1 by offense type, we continue to discuss them for expositional reasons.

To put these numbers in perspective, we adopt figures used in Abrams and Rohlfs (2006,

henceforth, AR) to measure components of R; doing so lets us back out an implied estimate

of the value of lost freedom, V . Recalling that J = P + V , solving for V yields

V = (c1 − c0)R + c0 − P. (25)

AR use a figure of $106 per day as the pecuniary cost of incarcerating a prisoner;27 this

figure corresponds to the daily value of our parameter P . We use an estimate of 82 days to

estimate the number of days a defendant would spend incarcerated as a result of not making

bail.28 Thus for our parameter P , we use $106 per day × 82 days, or a total of $8,692.

27AR report a figure of $9,500 for 90 days as the midpoint of those reviewed by Levitt (1996). Like the
other dollar amounts Abrams and Rohlfs use, this figure is expressed in 2003 dollars.

28The SCPS reports the number of days from arrest to adjudication. We found very large differences in
this variable’s distribution according to whether a defendant makes bail. For example, among those who
do not make bail, the median number of days between arrest and adjudication was 40, while it was 133
among the 1,497 defendants in our sample who do make bail. We use only those who did not make bail to
approximate the expected number of days a defendant would spend incarcerated while awaiting trial if he did
not make bail. To estimate the mean number of days between arrest and adjudication for these defendants,
we need to account for the fact that the SCPS contains follow-up information for only about a year. Four
observations in our sample of those who are held over for trial have a duration listed as “more than one year,”
while an additional 47 observations have arrest-to-adjudication duration listed as pending. If we assume that
these 51 right-censored cases closed at 366 days, the average number of days from arrest to adjudication
would be 78.8. If we instead account for right-censoring by assuming that arrest-to-adjudication duration
is distributed exponentially and use maximum likelihood estimation to estimate the exponential parameter,
the result is -4.40. An exponential distribution with this parameter has mean exp(4.40) = 81.5, so we use
a mean duration of 82 days. This calculation ignores the fact that a small amount of time elapses between
arrest and bail hearings, while a larger amount of time may pass before a defendant is able to gather bail or
bond money. However, the average time between arrest (not bail hearing) and pre-trial release among those
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Next we estimate c0 and c1.
29 Following the discussion in AR’s section VI.D, we assume

that the average social cost associated with each rearrest is $45,000.30 As noted in footnote 16

on page 13 above, the frequency of rearrest among defendants in our sample who do not FTA

is roughly 6 percent, while the frequency of rearrest among those who do FTA is roughly 20

percent. Thus, we use estimates c0 = 0.06 × $45, 000 = $2, 700 and c1 = 0.20 × $45, 000 =

$9, 000. As a result, we have V = $6, 300R + ($2, 700 − $8, 692) = $6, 300R − $5, 992. Our

estimated R value of 1.27 for Broward blacks thus implies V = $2, 009. By contrast, our

estimated R value of 2.30 for Broward whites implies V = $8, 498. Taken at face value, these

point estimates would suggest that judges in Broward value 82 days of white defendants’

freedom $6,489 more than they value 82 days of black defendants’ freedom, or roughly $80

more per day.31

Next, we consider estimates for the black-white difference in R for all five counties. We

report these estimates in the top row of Table 4. The difference for Broward is -1.03, reflecting

the just-discussed Broward R estimates of 1.27 for blacks and 2.30 for whites. The estimated

standard error of 0.48 yields an asymptotic z-ratio of 2.15. The associated conventional p-

value is 0.016 for testing the null hypothesis of zero difference in R relative to the one-sided

alternative of anti-black discrimination. However, we again must adust p-values to account

for the fact that we have estimated the black-white difference in R for five counties. To do so,

we repeated the uniform p-value procedure described above, this time calculating the max

and min of ∆Rc over the five counties, indexed by c. Because we are interested in testing the

who do make bail is only about 9 days. Since only a bit more than 40 percent of our sample makes bail, the
net effect of these biases is likely only a few days on average, so we ignore these issues.

29In estimating c1, we ignore any social costs related to finding the defendant. We also ignore the fact
that defiance of a valid judicial order to appear for trial is costly in the sense that it demonstrates disrespect
for the criminal justice system and the courts. We ignore these aspects of c1 partly because they would be
difficult to measure. In addition, ignoring such costs is conservative in estimating the black-white difference
in implied value of freedom.

30This calculation has two components. First, AR calculate using others’ cost estimates that in their
sample, the average social cost of a crime that results in a rearrest is $5,790. Second, AR note that results
in the literature imply that “crimes resulting in arrest account for roughly 13% of the total cost of criminal
victimizations.” Dividing $5,790 by 0.13 yields $44,538, which we round up to $45,000.

31The estimate of V = $2, 009 for blacks is roughly twice AR’s estimated average value of freedom of
V = $1, 050. The estimate for whites is much higher than their point estimate. This difference may stem
from the very different estimation approach AR take. In addition, AR’s estimates of social costs of releasing
a defendant pending trial are Imprecise, as are some of their estimates of V when AR allow them to differ
by recommended bail level, which should map roughly into offense type category. Thus, the usefulness of
comparing our results to theirs may be limited.
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null of no discrimination against the alternative of discrimination specifically against blacks,

our p-value estimate is given by min(1, 1 − πr), i.e., we do not multiply (1 − πc) by two.32

The resulting p-value for Broward county is 0.10, considerably higher than the conventional

level, but still marginally significant.

Black-white differences in R estimates are negative for all other counties but Los Angeles.

For Cook and Harris counties, we cannot reject the null hypothesis of zero difference. For

Dallas, though, the estimated black-white difference in R of -0.75 has an asymptotic z-ratio

of 2.34. This corresponds to a uniform p-value of 0.08, suggesting marginally significant

evidence of discrimination against blacks in Dallas.

In generating the estimates just discussed, we assumed that R is constant across all

offense types. This assumption might be plausible for J alone, if jailing-security costs do

not vary with offense type. But, as we discussed above, we wish to allow judges’ perceived

social costs of FTA, c0 and c1, to vary with the type of offenses with which a defendant is

charged. We now turn to estimates that allow R to vary with offense type.

6.2 Estimating R separately by county and offense type

In this section, we re-calculate our estimates allowing R to vary by category of most serious

offense, while holding constant δ2 = γ0/γ2.
33 To do so without imposing the constraint that

δ1δ2+δ3 = 0, we simply re-estimate (23) allowing separate values of δ1 and δ3 for each offense

category. That is, we interact Ŵ1 and Ŵ3 from (24) with a full set of dummies indicating

offense category. With no constant included in the estimation, the resulting coefficients

represent offense category-specific δ1 and δ3 estimates for each county-race cell. We can

use these category-specific estimates together with the category-invariant estimate of δ2 to

construct category-specific test statistics analogous to T for each of the four categories we

consider: drug, violent, property, and public order offenses.

Table 6 reports a series of conventional p-values for model specification testing. Each

32In this case, πc is the fraction of bootstrap replications for which the county-c actual estimate, ∆Rc,
satisfies ∆Rc < s∗, where s∗ is the minimum value over the five counties of the ∆Rc estimates for a generic
bootstrap replication.

33The ratio γ0/γ2 involves defendant preferences rather than judicial ones. While we do not allow this
ratio to differ by offense type, we do allow it to vary by race and county.
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p-value is for a χ2 test that T black = 0 and Twhite = 0, against the two-sided alternative that

these equalities do not hold. Figures in the first four rows of the table are for county-by-

offense cells. Since there are twenty county-offense cells, the conventional p-values are surely

downward-biased. Again estimating uniform p-values using the bootstrap distribution of χ2

statistics based on re-centered values of T black = 0 and Twhite = 0, we found that all p-values

were above 0.6. Thus, there is little reason for concern that the model is mis-specified.

The foregoing results suggest that the data are quite consistent with optimal bail setting

given our model. Thus, we now consider offense category-specific estimates of the black-

white difference in R calculated when we impose the correct-specification constraint that

δ1δ2 + δ3 = 0. As above, we impose this constraint by re-estimating a version of (24) with

nonlinear least squares. We estimate separate R and γ0/γ2 values for each offense category

by interacting Ŵ1 and Ŵ3 with four offense category dummies, as in the unconstrained

interaction just described; we estimate five versions of this model, one for each county.

We report the black-white differences in the resulting category-specific R estimates in

Table 6. We will discuss the point estimates first, deferring momentarily our discussion of

statistically significance. Of the 20 estimates, 18 are negative. Only for Los Angeles are

judges’ estimated levels of R substantially similar across race, with two being positive, two

negative, and none exceeding 0.17 in magnitude.

Our point estimates for Dallas county indicate that judges there set bail levels for blacks

in such a way as to systematically and substantially undervalue the costs of holding them over

relative to the costs for whites. The estimated differences in R are -0.79 for drug offenses,

-0.81 for violent offenses, -0.66 for property offenses, and -1.22 for public order offenses.

These are substantial differences, whether measured relative to the costs of incarceration

discussed above, or relative to the baseline estimated R values for Dallas blacks reported in

Table 3 (1.53 for drug offenses, 1.55 for violent offenses, 1.69 for property offenses, and 1.33

for public order offenses).

Thus, the racial difference in R ranges from roughly 40% of the R level in the case

of property offenses to more than 90% for public order offenses. To put these differences

in dollar terms using the calculations from section 6.1, recall that our calibration implies

approximately V = $6, 300R − $5, 992 over a period of 82 days. A black-white difference
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in R of roughly -0.8 thus implies that judges value 82 days of blacks’ freedom $5,100 less

than they value whites, or roughly $62 per day. The most plausible non-discriminatory

justification for a race differential in what we call V is that blacks typically would earn

less than whites in the legal labor market, so that their opportunity cost of being in jail is

lower. Even for a full-time worker, though, $62 per day is nearly $8 per hour, which surely

exceeds the difference in hourly earnings that white defendants could earn relative to blacks.

We thus view point estimates of these magnitudes as suggesting the presence of substantial

discrimination against black defendants.

Finally, we consider statistical significance of the county-by-offense type R estimates in

Table 6. Several of these estimates have t-ratios that would be considered significant using

conventional critical values. For example, three of the four Dallas estimates have t-ratios

above 2; two of the Broward t-ratios exceed 1.7, as does one of the Harris t-ratios. While

any one of these results would usually be considered significant, we must again take account

of the fact that we have 20 estimates of R.

To do so, we again use the bootstrap distribution to calculate uniform critical values for

testing the null hypothesis that any one estimate is zero against the one-sided alternative

of discrimination against blacks. The estimated critical value for a level-0.10 version of

this test is -2.73. In other words, given that we are taking 20 draws, under the null we

cannot consider an individual estimate of R significant at the 10% level unless its t-ratio is

negative and exceeds 2.73 in magnitude. The t-ratio with the largest magnitude in Table 6

is Dallas’s estimate for public order crimes, which has an estimate of -2.51. This corresponds

to a uniform p-value of roughly 0.15, based on our bootstrap distribution. Thus, we cannot

conclude that any estimate is individually significant.

The estimates in Table 6 all involve some generated-variable information in common.

Thus, it is possible that they are jointly significantly different from zero, even if no esti-

mate is individually significant. A simple χ2 test of the null that the estimates are jointly

zero yielded a p-value of 0.48, far from significant. However, this test relies heavily on the

appropriateness of the normality approximation for our estimates. The auxiliary-projection

estimator we use is in fact asymptotically normal, and given its parametric second step, we

conjecture that it converges at rate n−1/2. However, the estimator is based on underlying
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nonparametric estimators involving many variables, so it would be unsurprising for the es-

timator’s convergence to occur slowly in practice. Indeed, casual inspection of the marginal

distributions of our county-by-offense type estimates of R suggests that a number of them

are skewed and heavy-tailed.

To address the role of non-normality, we again used the bootstrap. To construct a test of

the null hypothesis that all estimates of R are zero, we first impose this null on the bootstrap

distribution by centering each bootstrap estimate of Rcr around the mean of the bootstrap

distribution for that estimate. Next, we tabulated the number of the 20 re-centered estimates

that are negative. Our result using the real data is that 18 of the estimates are negative.

This result lies far in the tail of the bootstrap distribution of tabulated re-centered estimates:

in the bootstrap distribution, we see 15 or fewer negative estimates 95 percent of the time,

and we see more than 17 negative estimates only 1.3 percent of the time.

On this latter basis, then, there is strong evidence against the null hypothesis that there

is no discrimination against blacks based on our county-by-offense type estimates. Clearly,

though, these estimates are relatively imprecise, which one should keep in mind in interpret-

ing our results.

6.3 Summary of results

We can sum up our econometric results with three key conclusions. First, specification tests

from our auxiliary projection relationships provide little evidence against the composite null

hypothesis that each of the following simultaneously holds:

1. our model captures defendant behavior;

2. choice probabilities have a multinomial logit structure;

3. judges know (x, u, γ0, γ2, g0(x), g2(x)) for each defendant;

4. judges set bail optimally given this knowledge.

Of course, an alternative interpretation is that judges behave in some other way, but this

way is statistically indistinguishable from the way a judge would behave under this composite

null hypothesis. We have no way to rule out this possibility, so we will not comment further.
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Our second conclusion is that estimates of γ0/γ2 and R from constrained auxiliary speci-

fications have the signs predicted by our model. Third, given the model, the point estimates

suggest that there is substantial evidence of bias against blacks in bail setting. Point es-

timates are generally largest in Broward and Dallas counties. This conclusion hold both

when we pool across offense types and when we allow R to differ across offense type within

county. On the other hand, Los Angeles appears to treat blacks and whites very similarly in

terms of the summary measure R. Finally, our estimates are somewhat imprecise, especially

those that allow variation in R by both county and offense type. We emphasize that this

conclusion arises in large part because of our use of inference methods that take into account

the multiple-testing that is typically ignored in econometric research.

7 Our Model and the Outcome-Test Literature

The idea of using outcomes to test for discrimination in other contexts has a long history. For

example, Becker (1957) discusses the fact that wage discrimination requires paying different

wages for given marginal product, which means that cross-group wage differences are not

sufficient information to conclude that there is discrimination. In this context, the group-

level average of workers’ individual ratios of marginal productivity-to-wage would serve as

an outcome measure.34 Another application is to use mortgage profitability as an outcome

measure to test for discrimination in credit markets, as Becker (1993, page 389) discusses.35

More recently, Knowles, Persico and Todd (2001, henceforth, KPT) have used the out-

come test idea to test for whether police discriminate against racial minorities when deciding

whether to search motorists stopped on the highway. KPT assume that police seek to max-

imize the number of “hits,” i.e., searches that turn up contraband. Under this assumption,

white and black “marginal searchees” must have the same probability of carrying contraband.

We now link this result to the idea behind Ayres and Waldfogel’s (1994, henceforth, AW)

paper on bail and racial discrimination. AW assume that a judge chooses a defendant’s bail

34Data on marginal productivity are quite difficult to collect; see Hellerstein and Neumark (1998) for an
attempt to use plant-level productivity measures to assess labor market discrimination.

35Berkovec, Canner, Gabriel and Hannan (1994) use data on mortgage default rates among minority and
non-minority borrowers for this purpose. For critiques of such work, see Yinger (1996) and Ayres (2005).
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level in order to ensure that the conditional probability of FTA is no greater than some

pre-specified constant, p, given that the defendant is released. Before we analyze bail levels,

though, we will consider what happens when AW judges must either release a defendant

or hold him until trial. Such judges will release a defendant if and only if F (0, u) ≤ p.36

Thus, if judges use the same value of p for blacks and whites, black and white “marginal

releasees” will each have probability p of FTA. If judges discriminate against, say, blacks,

then pblack < pwhites, so that the marginal black defendant faces a lower FTA probability.

In both the motorist-search and binary pretrial release-detain situations, however, there

is an inframarginality problem. Marginal searchees and marginal releasees have the same

outcome value–contraband hit rates or FTA probability–when there is no racial discrimi-

nation. But the average values of these outcomes still need not be equal across race. For

example, suppose that either the structure of the function F or the distribution of u differs

across race in the binary release-or-detain case. Then the integral, over the distribution of u,

of F (0, u) will generally differ across race, even though all marginal releasees have the same

FTA probability, regardless of race. Thus, equal FTA probabilities for marginal releasees is

insufficient for equal average FTA probabilities. In general, only the average FTA probability

is identified, so the inframarginality problem wrecks the usefulness of comparing FTA rates

across race.

There are different routes to solving the inframarginality problem. KPT do so by hy-

pothesizing that motorists optimally choose whether to carry contraband, taking as given

the probability that police will search them when they are stopped. KPT show that in Nash

equilibrium, contraband-carry rates will be equal across all motorists who are searched with

probability interior to (0, 1). As a result, the inframarginality problem does not exist in

Nash equilibrium.37

36We assume away variation in x for purposes of the discussion in this section.
37Several papers have suggested plausible violations of KPT’s assumptions, under which the inframarginal-

ity problem reappears. For example, Antonovics and Knight (2004) show that if there is trooper heterogeneity
in search costs, then “the test that KPT employ no longer distinguishes between preference-based discrimi-
nation and statistical discrimination” (page 10). Additionally, both Anwar and Fang (2006) and Antonovics
and Knight (2004) have pointed out that the inframarginality problem reappears if there is systematic het-
erogeneity in how troopers behave as a function of troopers’ own race. Antonovics and Knight, Anwar and
Fang, and Bjerk (forthcoming) all note that the same problem arises when, as Antonovics and Knight put
it, “officers can observe some characteristic . . . that is correlated with the likelihood that the motorist is
guilty, but that . . . is unknown to the motorist at the time that he or she decides to traffic drugs” (page 10).
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The inframarginality problem also disappears in the bail context under AW’s assumption

on the judicial objective function. An AW judge’ optimal choice of bail bAW(u) for a defendant

with heterogeneity term u must satisfy F (b, u) ≤ p. For some defendants, F (0, u) < p, and

an AW judge will release these defendants with zero bail. For others, limb→∞ F (b, u) > p,

so that no finite bail will convince such defendants to show up for trial with the desired

probability. An AW judge will deny bail to such defendants. For all other defendants, there

must be a positive and finite value bAW(u) such that F (bAW(u), u) = p. Thus, given AW’s

assumption on judge behavior, all defendants who receive a positive and finite bail level have

the same probability of FTA at the optimal bail level, except to the extent that there is

groupwise discrimination, in which case FTA probabilities will be equal within group.

As a result, there is no inframarginality problem when judges can choose bail continuously

and behave according to the objective function AW assume. This fact helped motivate

Ayres’s (2001) argument that the inframarginality problem may generally be surmountable

when the decision variable is continuous, because then “every defendant [is] marginal” Ayres

(2001, pp. 409-10). This claim can be read in either of two ways.

The first reading of Ayres’s conjecture is that outcome tests based on easily observed

level variables like FTA are generally appropriate in any case with a continuous decision

variable. Such a result would open up a wide array of settings to more robust testing for the

presence discrimination. By rewriting the version of the judge’s first-order condition in (5),

we see that at the optimal bail level,

F (b∗, x, u) = R− M(b∗, x, u)Fb(b
∗, x, u)

Mb(b∗, x, u)
, (26)

where we suppress the (x, u) argument of the function b∗. Since R is a constant parameter

within racial groups, the FTA probability at the optimal bail level can be constant across

Dharmapala and Ross (2004) provide examples in which limits on troopers’ ability to monitor motorists, as
well as differences in offense severity, can lead to equilibria in which some types of motorists always carry
contraband, and they show that the link between average and marginal hit rates breaks down in such cases.
All of these authors, and Close and Mason (forthcoming) as well, propose alternative tests of discrimination.
Finally, Brock, Cooley, Durlauf and Navarro (2010) nest KPT’s assumed preference structure in a broader
class for which KPT’s outcome test is generally uninformative.
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u only if the second term on the right hand side of (26) is constant across u. We prove in

appendix B that in general, this term will not be constant across u. Thus, the first version

of the Ayres conjecture does not hold when judges have the objective function we assume.

Consider now a second reading of Ayres’s conjecture. As with the first one, the sec-

ond reading holds that continuous decision variables eliminate the inframarginality problem.

However, the second reading accepts that using outcome analysis to test for discrimination

generally involves complicated outcomes whose estimation may require functional form as-

sumptions. For example, our approach in this paper can be seen as a generalized form of

outcome analysis. We estimate the probability of making bail and of FTA non-parametrically

and then use assumptions concerning (i) functional form and (ii) optimal behavior to jus-

tify (iii) regarding these probabilities as M(b∗, x, u) and F (b∗, x, u) and (iv) expressing the

derivatives Mb(b
∗, x, u) and Fb(b

∗, x, u) in terms only of the non-parametric conditional prob-

ability estimates. As a consequence, we are able to estimate all elements of (26), including

R, up to a finite-dimensional parameter vector.38

Thus, like the simple approach in AW or KPT, our approach uses outcome information

together with behavioral assumptions to identify a parameter of interest. The only point of

difference between our approach and AW’s, besides the fact that we assume different judicial

objective functions, is that we must estimate outcome information, whereas AW (and KPT)

can use raw data. Thus, the second reading gives broad credence to the Ayres conjecture. If

one is willing to both assume the form of a decision-maker’s objective function and willing

to assume enough behavioral structure, then the presence of continuous decision variables

seems likely to eliminate inframarginality problems.

An additional question concerns which objective function is more appropriate in the

present context, AW’s or ours. Of course, this is at least partly an empirical question. There

is some empirical support for our model in that it passes the overidentification tests we use

above. AW’s objective function is also testable in principle, because it requires FTA rates

to be the same for all defendants of a given race, even when there is racial discrimination.

To test this assumption, we estimated an ordinary least squares model relating actual

38Indeed, it is not difficult to write our judge’s problem in notation that represents a (slight) extension of
Persico’s (2009) model, in which simple outcome tests generally exist.
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FTA among defendants who made bail to the same covariates that enter our nonparametric

estimators discussed in appendix C. Each model included a race dummy and a full set

of county-by-offense type dummies to allow AW judges to set different levels of FTA by

county-offense type cells, and we allowed the covariates to have separate coefficients for

blacks and whites. We also estimated standard errors robust to heteroskedasticity to allow.

Under the null hypothesis that judges follow the AW objective function, the coefficients on

all covariates, other than the ones involving county, race, and offense type dummies, should

be zero.39 The F -statistic testing that all the relevant coefficients are zero has a p-value of

0.0359.

Thus, empirical evidence suggests that in our sample, judges are not choosing bail to

equalize FTA across defendants, even within race. Given that our own model is not rejected

by the data, we think the evidence favors our approach, at least for our data. In other samples

representing other judges, AW’s objective function might be the right one; of course, some

third objective function might also. On this point, we note that Brock et al. (2010) have

shown persuasively that any method to testing for discrimination using observational data

will require substantive assumptions on decision makers’ objectives.

8 Summary

We consider a model of optimal bail setting in which judges choose bail levels to trade off

various costs. On one side are the costs of jailing defendants who do not make bail. These

costs include both the pecuniary costs of running jails and the like, and the value judges place

on freedom lost by (potentially innocent) defendants. On the other side are the social costs

expected to be imposed by those defendants who make bail and are released pending trial.

The optimal bail level is an implicit function of the defendant’s characteristics, including x,

which both we and the judge observe, and u, which only the judge observes. The presence

of heterogeneity that we cannot observe invalidates conventional cross-race comparisons of

39Even though the dependent variable is binary, this model is correctly specified under the null hypothesis
that judges follow AW’s objective function. This is true because (a) the conditional FTA probability given
the optimal bail level and x must be unrelated to either b or x under the null, and thus (b) the dummy
variables that appear in this linear model saturate it fully.
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average bail levels, even conditional on x.

We develop an approach to testing for discrimination based on estimation of the judge’s

first-order condition in an auxiliary regression. There are two key steps in making this

estimation method practical. First, when there is a one-to-one mapping between optimal bail

and the unobserved heterogeneity term u, conditional on x, one need not know a defendant’s

u value to consistently estimate his conditional choice probabilities at the optimal bail level,

given (b, x, u). This result allows us to leave the distribution of u entirely unrestricted, even

conditional on x.

Second, we show that partial derivatives of defendants’ conditional choice probabilities

can be written in terms of the levels of these probabilities under a multinomial logit structure

on totally unobservable defendant heterogeneity. As a result, we do not need to directly esti-

mate the partial derivatives of conditional choice probabilities with respect to bail. Instead,

we are able to estimate these partial derivatives using nonparametric estimates of the levels

of the conditional probabilities.

We then recover the key parameter of interest, R. We do so by estimating the first-order

condition after re-writing it in terms of auxiliary variables that depend only on the level of

bail and the conditional choice probabilities. We believe this estimation approach is novel in

the discrimination literature, though it has a flavor similar to that of Olley and Pakes (1996)

and Newey et al. (1999).

Our point estimates suggest that judges value freedom less for blacks than whites in

Broward, Cook, Dallas, and Harris counties. Statistical significance of the estimates that

yield this conclusion depends somewhat on the specification and approach to inference we

use. As a general matter, the point estimates are substantial but imprecise given that we

account for multiple testing. Focusing only on the estimates’ magnitudes, we find that judges

value lost freedom substantially less for blacks than whites, with $60-$80 per day being a

reasonable estimate. For a defendant held until trial for a typical period of nearly three

months, this range amounts to several thousand dollars difference. These findings suggest

the possibility of substantial bias against blacks in bail setting. This result is important

for multiple reasons. First, it is evidence of substantial judicial bias against blacks, which

is of per se concern. Second, bail affects utility directly by affecting the probability that a
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defendant will lose his freedom for the potentially lengthy pre-trial period. Discriminatorily

higher bails thus will make black defendants worse off in this sense. Finally, being held over

might also affect the probability of conviction. Our results are therefore of substantial legal

policy interest.

A Identifcation of Parameters

In this appendix, we provide a formal proof of sufficient conditions for identification of γ0,
γ2, and R.

A 1 (Partially Linear Multinomial Choice Structure). The indirect utilities received by a
defendant who chooses (Dm, Df ) ∈ {(0, 0), (0, 1), (1, 1)} are given by (6).

A 2 (Multinomial Logit Structure). The residuals (ε0, ε1, ε2) are jointly distributed according
to a Type I extreme value distribution.

A 3 (Gamma Signs). γ0 > 0 > γ2.

A 4 (Judge Information). For any given defendant, judges know x, γ0, γ2, g0, g2, and u.

A 5 (Optimal Bail Setting). Given the information in Assumption 4, judges set bail to
minimize the social cost function Q(b, x, u).

A 6 (Interior Optimum). The optimal level of bail given (x, u) is positive and finite.

Theorem 1 (Identification). Suppose assumptions 1-6 hold. Then:

1. the parameters γ0, γ2, and R = J−c0
c1−c0

are identified given knowledge of the joint popu-
lation distribution of (Dm, Df , b

∗, x), where b∗ is the optimal bail level given (x, u);

2. the value g0(x) is point-identified at any x in the support of the population;

3. the sum g2(x) + u is identified at any (x, u) in the support of the population;

4. for given x, differences in u are identified.

Proof of Theorem 1. We begin by stating and proving a lemma concerning the relationship
between b and (x, u, γ0, γ2, g0, g2) under the assumptions listed in the hypothesis of this
theorem; we will suppress the notation concerning (γ0, γ2, g0, g2) for exposition. Define e0 =
exp[γ0 ln b+g0(x)] and e2 = exp[γ2b+g2(x)], so that the probability of not making bail given
(b∗, x, u) is 1−M(b, x, u) = Pr(Dm = 0|b, x, u) = e0/(1 + e0 + e2); the probability of making
bail and appearing is M(b, x, u)[1−F (b, x, u)] = Pr(Dm = 1, Df = 0|b, x, u) = 1/(1+e0+e2),
and the probability of making bail and failing to appear is M(b, x, u)F (b, x, u) = Pr(Dm =
1, Df = 1|b, x, u) = e2/(1 + e0 + e2). We now state Lemma 1.

Lemma 1. Suppose that assumptions 1-6 all hold. Then for given (x, u),
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1. there exists a continuously differentiable function b∗ on some neighborhood of (x, u)
such that b∗(u; x) = b;

2. u is the unique value of u such that b = b∗(u; x) is optimal.

Proof of Lemma 1. To establish item 1, it is enough to observe that all functions involved
in the first-order condition for optimal bail are continuous, and that for a positive and finite
optimal bail level, the first-order condition holds with equality.

To establish item 2, we begin by showing that if Qb(b, x, u) = 0, then Qbu(b, x, u) < 0.
Suppressing the (b, x, u) argument of Q, M , and F , we redefine Q = M(F − R), which is
without loss of generality since this is an increasing transformation of Q from (2). Thus we
have Qu = Mu(F − R) + MFu. Using the multinomial logit functional forms for M and F
conditional on (b, x, u), it can be shown that Mu = (1−M)MF and Fu = F (1− F ). Thus,
Qu = MF [(1−M)(F −R) + 1−F ], or Qu = MF [1−R−M(F −R)]. Differentiating with
respect to b, we have

Qbu = {MbF + FMb} [(1−M)(F −R) + 1− F ]−MF
∂M(F −R)

∂b
(27)

= {MbF + FMb} [1−R−M(F −R)]−MFQb. (28)

The factor in braces is always negative, since Mb and Fb are each negative while F and
M are each positive. When Qb = 0, the second term on the right hand side of (28) is zero.
Thus, Qbu is negative when Qb = 0 if and only if the factor in square brackets is positive,
which we now establish is always true when Qb = 0. To do so, we use the fact that since
Qb = Mb(F − R) + MFb, Qb = 0 implies that F − R = −MFb/Mb. It can be shown that
Fb = γ2F (1 − F ) and Mb = M(1 − M)[γ2F − γ0/b]. Plugging these functions into the
bracketed term in (28) yields

(1−M)(F −R) + 1− F = (1−M)× Mγ2F (1− F )

M(1−M)[γ2F − γ0/b]
+ 1− F (29)

= (1− F )

[
γ2F

γ2F − γ0

b

− 1

]
(30)

=
1− F

γ2F − γ0

b

[γ0

b

]
, (31)

which is negative since the denominator of the leading factor is negative and the other two
terms are positive. This establishes that if Qb = 0, we must have Qub < 0. By symmetry of
differentiation, this establishes Qbu < 0.

Next we establish that there can be at most one value of u for which a given bail level is
optimal, given x. One reasonable approach to do so would be to observe that by the implicit
function theorem, it is locally true at any minimum of Q that ∂b∗/∂u = −Qbu/Qbb. Since
Qbb < 0 at any local minimum, and since we have just shown that Qbu < 0 at any stationarity
point, it follows that ∂b∗/∂u > 0 holds locally. Again using the implicit function theorem,
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there must exist a continuously differentiable function h such that, local to (b∗(u; x); x), we
have that u = h(b∗(u; x); x), with ∂h/∂b = (∂b∗/∂u)−1. Thus, h is increasing wherever b∗ is.

This argument does not suffice, however, because we cannot establish general conditions
for the global convexity of Q in b (in fact, we have been able to find parameter values for
which it is non-convex and even has both an interior local minimum and an interior local
maximum). Without further results, it would be theoretically possible for the optimal bail
level to jump discretely between small changes in u. If the jump were downward, then item
2 of the lemma would not hold, i.e., each optimal bail level would not map to a unique u.

To establish uniqueness, we proceed by contradiction. First, suppose that for ū > u we
have b = b∗(u; x) = b∗(ū; x), so that the same bail level is locally optimal for both u and
ū. Assume without loss of generality that ū is the smallest such value of u. For b to be an
interior optimum given (x, ū), we must have Qb(b, x, ū) = 0. From above, this implies that
Qbu(b, x, ū) < 0. Therefore, there exists a small enough ε̄ > 0 such that Qb(b, x, ū − ε̄) > 0.
In addition, since Qb(b, x, b) = 0, we have Qbu(b, x, b) < 0, so there must exist small enough
ε > 0 such that (i) Qb(b, x, u + ε) < 0, and (ii) u + ε < ū − ε̄. By the intermediate value
theorem, there must then exist a umid ∈ (u + ε, ū − ε̄) such that Qb(b, x, umid) = 0. But
this contradicts the assumption that ū is the smallest u > b for which Qb = 0. Thus, there
cannot be any u > b with Qb = 0. An analogous argument establishes that there cannot be
any u < b with Qb = 0. Therefore, u is the unique value of u for which b = b∗(u; x), i.e., for
which b is optimal. We have thus established item 2 of the lemma.

We next state and prove another lemma, which makes Lemma 1 useful for identification
purposes.

Lemma 2. Suppose that 1-4 and 6 all hold, and suppose that the joint distribution of
(Dm, Df , b

∗, x) is known, where b∗ is the optimal bail level given (x, u). Then for fixed
(γ0, γ2, g0, g2), at the optimal bail level, Pr[Dm = dm, Df = df |b∗, x, u] = Pr[Dm = dm, Df =
df |b∗, x]. Furthermore, Pr[Dm = dm, Df = df |b∗, x, u] is identified.

Proof of Lemma 2. By Lemma 1, there exists a unique function h such that u = h(b∗; x).
Thus Pr[Dm = dm, Df = df |b∗, x, u] = Pr[Dm = dm, Df = df |b∗, x, h(b∗; x)]. For fixed
(γ0, γ2, g0, g2), the latter conditional probability involves no more information than (b∗, x).
Identification of Pr[Dm = dm, Df = df |b∗, x, u] follows because the joint population distri-
bution function for (Dm, Df , b

∗, x) is known by hypothesis, proving the lemma.

We now prove the theorem. Writing (17) as L = W ′δ, where W = (W1, W2, W3)
′, it is

clear that

δ = (E[WW ′])
−1

E(WL), (32)

so δ is identified if the expectations on the right hand side of (32) are. Each element of the
auxiliary data (L, W1, W2, W3) involves only functions of b∗, m∗, and f ∗. The expectation
of any function involving these objects is identified, by Lemma 2 and the fact that the joint
population distribution of (Dm, Df , b

∗, x) is known by hypothesis. Therefore, the vector δ is
identified. This immediately establishes identification of γ0/γ2, and R, since they equal δ1

and δ2, respectively. Because δ3 = −δ1δ2 under the assumptions of the theorem, it provides
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no further identifying information, and we must look elsewhere to separately identify γ0 and
γ2.

Next, observe that the multinomial logit structure implies that at b∗,

ρ(b∗, x) ≡ ln

(
Pr[Dm = 0|b∗, x]

Pr[Dm = 1, Df = 0|b∗, x]

)
= γ0 ln b∗ + g0(x), (33)

with ρ(b∗, x) being identified since each conditional probability in the parenthetical is iden-
tified, by Lemma 2. The conditional expectation given x of both sides of (33) is

E[ρ(b∗, x)|x] = γ0E[ln b∗|x] + g0(x), (34)

since g0(x) depends only on x. Observe that both expectations are identified, by Lemma 2.
Now eliminate g0(x) by subtracting (34) from (33):

ρ(b∗, x)− E[ρ(b∗, x)|x] = γ0(ln b∗ − E[ln b∗|x]), (35)

which eliminates g0(x). Multiplying both sides of (35) by (ln b∗ − E[ln b∗|x]), taking expec-
tations over the joint distribution of (b∗, x), and rearranging then yields

γ0 =
E{b∗,x} [(ρ(b∗, x)− E[ρ(b∗, x)|x]) (ln b∗ − E[ln b∗|x])]

E{b∗,x}
[
(ln b∗ − E[ln b∗|x])2] , (36)

proving that γ0 is identified, since the expectations on the right hand side of (36) are iden-
tified, by Lemma 2. Since we have previously shown identification of the ratio γ0/γ2, identi-
fication of γ0 is also sufficient for identification of γ2. This establishes item 1 of Theorem 1.
Given γ0, it is trivial to see from (34) that g0(x) is point-wise identified for given x, which
establishes item 2 of the theorem.

Finally, to prove identification of g2(x) + u for given (x, u), again use the model’s multi-
nomial logit structure to see that

ln

(
F ∗

1− F ∗

)
− γ2b

∗ = g2(x) + u. (37)

Since all elements of the left hand side are identified, the sum g2(x)+u is as well, establishing
item 3 of the theorem.

To establish item 4, consider data (b∗(x, u1), x, u1) and (b∗(x, u2), x, u2). Taking the
difference of (37) across the two data vectors, g2(x) drops out, and we have

u1 − u2 =

[
ln

(
F ∗

1

1− F ∗
1

)
− γ2b

∗
1

]
−

[
ln

(
F ∗

2

1− F ∗
2

)
− γ2b

∗
2

]
,

41



whose right hand side is identified by Lemma 2 and the identification of γ2.

B A Counterexample to the Ayres Conjecture

If Ayres’s conjecture were correct, then judges’ optimal bail function b∗(θ) would vary with
(x, u) in such a way to ensure that F (b∗(u; x), x, u) were constant across defendants within
racial groups. Using (??) and suppressing the (b∗, x, u) argument, we have that at the
optimum,

F = R +
γ2F (1− F )

(1−M)
[
γ2F − γ0

b

] . (38)

Under the Ayres conjecture, the FTA probability must be constant, so the right hand
side of (38) constant as well. Since R and γ2 are constant parameters, the conjecture can
be correct only if the denominator of (38) is also constant. Next, observe that when the
conjecture is correct, we have φ ≡ ln[F/(1− F )] = b∗γ2 + g2(x) + u, with φ being constant.
The optimal bail level is then b∗ = (φ − g2(x) − u)/γ2. For some fixed λ, denote D(λ) as
that set of defendants for whom u = λ − g2(x). For these defendants, optimal bail is the
constant value (φ− λ)/γ2. For these defendants, then, the second term in the denominator
of (38) equals γ2F − γ0γ2/(φ − λ), which is constant, since γ2 and γ0 are fixed parameters
and F , φ, and λ all are constant by hypothesis. Thus, for the Ayres conjecture to hold in
our model, (1 − M) must be constant for all defendants in the set D(λ). In our model,
M = (1+e2)/(1+e0 +e2). Since e2 must be constant for defendants in D(λ) when the Ayres
conjecture holds, (1 − M) is constant if and only if e0 = γ0 ln b∗ + g0(x) is also constant.
Since all defendants in D(λ) have the same optimal bail level, this requires that all such
defendants have the same g0(x). But this last requirement does not generally hold for fixed
λ. For example, consider two defendants, i and j, with

1. g2i 6= g2j;

2. uj = ui + g2(xi)− g2(xj);

3. ui = λ− g2(xi).

Conditions 2 and 3 imply that uj = λ − g2(xj), so both defendants are in D(λ). However,
since g2(xi) 6= g2(xj), we must have xi 6= xj. Since the functions g0 and g2 are unrestricted in
our model, this means that g0(xi) 6= g0(xj) is generally possible for two defendants in D(λ),
which would entail a contradiction.

This establishes that the Ayres conjecture cannot generally hold in our model, which it
means it cannot hold in general.

C Nonparametric Kernel Estimation

In this appendix we briefly give an overview of the kernel nonparametric estimators of
m(b, x) = Pr(Dm = 1| b, x) and f(b, x) = Pr(Df = 1|Dm = 1, b, x) that we use to es-
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timate the probabilities use in the auxiliary projection equation discussed in section 5.40

Recall that Dm ≡ 1(defendant makes bail), while Df ≡ 1(defendant FTAs|Dm = 1), so that
D = Dm + Df provided that we set Df = 0 when Dm = 0.

We follow the convention of using capital letters to indicate random variables and lower
case letters to indicate specific values they take on; we also use p as generic notation for
densities. We observe that if p is the joint density of (D, B, X), then the conditional density
of D given (B = b, X = x) can be written

p(d|b, x) =
p(d, b, x)

p(b, x)
. (39)

Thus we can consistently estimate the conditional density of D given (B, X) if we consis-
tently estimate both the joint density of (D, B, X) and the marginal density of (B, X). The
theory needed to estimate these functions nonparametrically is well developed. We follow
the approach of using generalized product kernels suggested by Li and Racine (2007). Using
general notation, let Z be a q×1 random column vector, from whose probability distribution
P an i.i.d. sample {Zi ∈ Rq}n

i=1 is sampled. Let Zij be the jth row element of Zi, and let
zj be the jth row element of a fixed q × 1 column vector z that lies in the support of P . A
generalized product kernel estimator for the associated density p(z) can be written

p̂(z) =
1

n× h1h2 . . . hq

n∑
i=1

q∏
j=1

kj

(
Zij − zj

hj

)
, (40)

where hj is a bandwidth parameter for the jth element of the random vector Z and kj

is a kernel function for that element. Li and Racine (2007) provide conditions on h ≡
(h1, h2, . . . , hq)

′ and the set of kernel functions K ≡ {k1, k2, . . . , kq} under which p̂(z) is
consistent for p(z). A key issue is that the bandwidth parameters and kernel functions must
be adapted to the types of random variables in Z. We can divide these variables into four
groups:

• the dependent variable D, which is an unordered categorical variable equal to 0 for
defendants who do not make bail, equal to 1 for those who make bail and do not FTA,
and equal to 2 for those who make bail and do FTA;

• the bail level and the defendant’s age, which we treat as continuous variables;

• a set of unordered categorical variables in x: offense category, county, year, and a
variable indicating summarizing the defendant’s history of of prior FTAs (any, none,

40In this discussion, we use b rather than b∗ to refer to the observed bail level. We do so because the
non-parametric estimators of m(b, x) and f(b, x) are consistent regardless of whether judges choose bail
optimally within the model we have specified. That is, optimal judge behavior is not necessary to estimate
Pr(Dm = 1| b, x) and Pr(Df = 1|Dm = 1, b, x) consistently. We emphasize, though, that these estimates
are useful as deployed in the auxiliary projection equation only when bail is in fact chosen optimally, because
only when bail is chosen optimally is u deterministically related to the observed (and thus optimal) bail level,
given x.
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or inapplicable);

• a set of ordered categorical variables in x: the number of prior arrests, the number of
prior prison terms, the number of prior jail terms, and whether the defendant had an
active criminal case at the time of the current indictment.

The kernel function used for each type of random variable must be appropriate to that
type. For each random variable type just described, we use the default kernel types im-
plemented in Hayfield and Racine’s (2008) npcdensbw command. When the jth variable
is discrete and unordered, with C values in its support, we use the Aitchinson and Aitken
kernel:

kj(Zij, zj, hj) =

{
1− hj, if Zij = zj,(

hj

C−1

)
, if not.

(41)

When the jth variable is discrete and ordered, we use the Wang and van Ryzin kernel with
bandwidth hj:

kj(Zij, zj, hj) =

{
1− hj, if Zij = zj,
1
2
(1− hj)h

|Zij−zj |
j , if not.

(42)

Finally, when the jth variable is continuous, we use the Gaussian kernel with bandwidth hj:

kj(Zij, zj, hj) =
1√
2π

exp

[
−1

2

(
Zij − zj

hj

)2
]

. (43)

Given the set of kernel functions K, we choose the bandwidth vector h optimally via
maximum-likelihood cross-validation with the npcdensbw command implemented as part
of Hayfield and Racine’s np package (Hayfield and Racine (2008)). We refer readers to Li
and Racine (2007) for further details on product kernel estimation.

We estimate separate bandwidth parameters for blacks and whites (estimates appear in
Appendix Table 1). We calculate the associated estimates of m(bi, xi) and f(bi, xi) by using
these bandwidth estimates to evaluate (40) separately for z = (d, bi, xi), d ∈ {0, 1, 2}. We
then use (39) for the appropriate choice of d to determine the implied estimates of m(bi, xi)
and f(bi, xi). The resulting estimates are what we use to form the generated variables Li,
W1i, W2i, and W3i that we use in the auxiliary projection equation.

Finally, note that while we estimate separate bandwidths by race, we pool observations
across county and offense type when estimating the bandwidths and implied estimates of
m(bi, xi) and f(bi, xi). We do so to avoid excessive variability in bandwidth estimation.
Because we use data-driven bandwidths, we do not believe that our data pooling will be
problematic; if, for example, two counties have very different densities of other variables,
then the resulting bandwidth estimates should account for that fact, up to sampling error.
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Appendix Table 1: Bandwidth results

Black Sample White Sample

Unordered categorical variables:
Dependent variable 0.0181 0.0245
Most serious offense 0.7372 0.8656
County 0.2418 0.4984
Year 0.2745 0.1365
Prior FTAs 0.6667 0.2740

Ordered categorical variables:
Prior arrests 0.8386 1.0000
Prior prison terms 0.4647 0.3056
Prior jail terms 0.8016 0.7863
Criminal justice status 0.9471 0.1252

Continuous variables:
Bail 8820.0080 9873.5570
Age 21.5056 6674493.0000

See appendix on non-parametric estimation for more details.




