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Automated 4p radiotherapy treatment planning with evolving knowledge-base
Angelia Landers, Daniel O’Connor, Dan Ruan, and Ke Shenga)
Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA

(Received 10 October 2018; revised 31 May 2019; accepted for publication 18 June 2019;
published 26 July 2019)

Purpose: Non-coplanar 4p radiotherapy generalizes intensity modulated radiation therapy (IMRT)
to automate beam geometry selection but requires complicated hyperparameter tuning to attain supe-
rior plan quality, which can be tedious and inconsistent. In this study, a fully automated 4p treatment
planning was developed using evolving knowledge-base (EKB) planning guided by dose prediction.
Methods: Twenty 4p lung and twenty 4p head and neck (HN) cases were included. A statistical voxel
dose learning model was initially trained on low-quality plans created using generic hyperparameter
templates without manual tuning. To improve the automated plan quality without being limited by the
training data quality, a new 4p optimization problem was formulated to include a one-sided penalty on
the organ-at-risk (OAR) dose deviation from the predicted dose. This directional OAR penalty encour-
ages superior OAR sparing. The fast iterative shrinkage-thresholding algorithm (FISTA) was used to
solve the large-scale beam orientation optimization problem. With the improved plans, new predictions
were created to guide the next loop of EKB planning for a total of 10 loops. Plan quality was evaluated
using a plan quality metric (PQM) points system based on clinical dose constraints and compared with
automated planning approaches guided by manual high-quality plans using all non-coplanar beams,
automated plans using individually evolved targeted dose, and manually created 4p plans.
Results: For the lung cases, the final EKB plans had significantly higher PQM than manually cre-
ated 4p (+2.60%). The improvements plateaued after the third loop. The final HN EKB plans and
manually created 4p plans had comparable PQMs, but had lower PQM compared to automated plans
using a high-quality training set (�3.00% and �4.44%, respectively). The PQM consistently
increased up to the sixth loop. Individually evolved plans were able to improve the plan quality from
initial condition due to the one-sided cost function but the 60% of them were trapped in undesired
local minima that were substantially worse than their corresponding EKB plans.
Conclusion: Evolving knowledge-base planning is a novel automated planning technique guided by
the predicted three-dimensional dose distribution, which can evolve from low-quality plans. EKB
allows new beams to be used in the automated planning workflow for superior plan quality. © 2019
American Association of Physicists in Medicine [https://doi.org/10.1002/mp.13682]
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1. INTRODUCTION

Intensity modulated radiation therapy (IMRT) treatment
planning involves complex optimizations that not only
require numerous hours of tedious work, but can also
potentially create suboptimal and inconsistent plans.1–4

Delivering the prescription dose to the tumor while mini-
mizing dose to all normal tissue is not a simple problem.
Critical structures have different radiobiological properties
and priorities that each need to be considered when creat-
ing a treatment plan. Furthermore, anatomical geometry
limits the possible extent of dose sparing when prioritizing
delivery of the full prescription dose to the tumor. Because
of these factors, the treatment planning process involves
laborious tuning of parameters to satisfy clinical con-
straints, often taking hours or longer to plan each case.
Moreover, manual treatment plan quality is dependent on
the planner experience and the oncologist’s expectation,
leading to inconsistent planning quality.

To address this problem, researchers developed knowl-
edge-based planning (KBP) dose prediction to provide

patient-specific guidance for treatment planning.5–11 Typical
KBP methods use geometrical features of prior cases to cre-
ate a model that can predict dose using the geometrical fea-
tures of a new patient. Therefore, it not only individualizes
the prediction but also propagates the implicit planning prior-
ities from previously accepted plans to the new plan.
Reported implementations of KBP have successfully used
dose–volume constraints taken from predicted dose–volume
histograms to create plans.12,13 Automated planning is also
actively being developed that utilize KBP dose predictions to
reduce the need for tedious manual planning.12–15 To maxi-
mize the efficacy of KBP, accurate dose predictions require
numerous plans of high-quality for training.

As an advanced type of IMRT, 4p radiotherapy utilizes
optimized non-coplanar beam orientations to improve dose
conformity and organ-at-risk (OAR) sparing.16–21 However,
to achieve the dosimetric benefit, 4p planning still requires
the tedious and inconsistent process of manually tuning
hyperparameters, hampering its wide clinical adoption. The
unconventional planning process also precludes the availabil-
ity of a large dataset of high-quality 4p plans. Therefore,

3833 Med. Phys. 46 (9), September 2019 0094-2405/2019/46(9)/3833/11 © 2019 American Association of Physicists in Medicine 3833

https://doi.org/10.1002/mp.13682


there is a clear benefit to fully automate 4p planning guided
by KBP. To further reduce the dependence on a set of high-
quality manually created plans, the fully automated method
should be able to evolve a knowledge base that initially con-
sists of lower quality plans.

4p radiotherapy is still in the early stages of clinical adop-
tion, with the majority of 4p plans planned retrospectively for
dosimetric studies of limited treatment sites as opposed to
clinical plans. The purpose of this study is to automate 4p
planning using KBP dose prediction methods while overcom-
ing the lack of large, high-quality training sets for many sites.

Although automated planning methods have been reported
to result in plans at least equivalent in quality to manual plan-
ning, the process of mimicking dose-volume-histogram
(DVH) parameter tuning limits the search space, which leaves
room for improvement.22 In this study, to overcome this chal-
lenge, our approach utilizes predicted three-dimensional (3D)
voxel doses to guide the automated planning optimization
with a novel objective function free of the structure DVH
optimization parameters. This study aims to demonstrate the
feasibility of not only automated 4p treatment planning but
also KBP-based automated planning when high-quality
training sets are available.

2. MATERIALS AND METHODS

In total, 20 patients with lung cancer and 20 patients with
head and neck (HN) patients were enrolled for the automated
planning study under an Institutional Review Board approved
protocol. Centrally located lung plans and oropharyngeal HN
cases were selected for more consistent OAR constraints in
each cohort. The cohort size was chosen based on the practi-
cal consideration of computational time to demonstrate feasi-
bility. Evolving knowledge-base (EKB) planning requires
automated plan generation of each case before proceeding to
the next loop, so cohorts that are too large would be computa-
tionally difficult. Although larger datasets can improve the
prediction accuracy, and subsequently plan quality, the

current training size is shown adequate for achieving accept-
able prediction quality to guide the treatment planning.11

The EKB planning workflow is shown in Fig. 1. The pro-
cess begins with an initial set of 20 plans generated from a
generic template where all OAR weightings are set equally,
with a desired dose of zero for all OAR voxels. For each of
the 20 cases, training sets are made on a leave-one-out basis
that is training set size of 19 patients for prediction of each
patient, for predictions generated using statistical voxel dose
learning (SVDL), a KBP method11 (Section 2.A.). The pre-
dictions are used in one loop of the automated 4p planning
process (Section 2.C.). After automatically creating plans for
the 20 patients, they are evaluated using a plan quality metric
(Section 2.D.) to determine if there is any improvement on
the initial set of plans. The next loop’s training set is then
comprised of the plans with highest plan quality metric for
each of the 20 patients. This method requires that the auto-
mated plans for the whole cohort be completed before begin-
ning the next loop. A total of 10 loops were performed.

2.A. Knowledge-based dose prediction

In each loop of this EKB framework, a leave-one-out
scheme was used to predict the dose of each of the 20 lung or
HN patients, resulting in training set sizes of 19 patients. Pre-
dictions were performed using SVDL, a KBP method that
has been demonstrated to be fast and accurate with small
training sets.7,11 SVDL sorts each OAR voxel from the train-
ing set into bins according to their Euclidean distance to the
planning target volume (PTV). The median for each distance
bin is taken as the predicted value for new OAR voxels of the
same PTV distance.

SVDL was chosen after a 3D dose prediction accuracy
comparison study with supervised machine learning regres-
sions, spectral regression (SR), and support vector regression
(SVR). The lung and HN patients used in Landers et al use
the same patient data.11 For predictions using the lung and
HN cohorts in k-fold cross-validation, with k = 4, the root

FIG. 1. Flowchart of the evolving knowledge-base framework for automated planning. The initial plans use a generic hyperparameter template to jump-start the
EKB planning. In this study, this process was performed for 10 loops (shown in blue). FISTA iterations within each automated planning optimization are shown
in orange. FISTA, fast iterative shrinkage-thresholding algorithm. [Color figure can be viewed at wileyonlinelibrary.com]
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mean squared error for voxel dose prediction was lowest with
SVDL (2.49 Gy lung and 3.91 Gy HN).

2.B. Manual 4p planning

Manual 4p planning is performed by tuning the OAR
weighting hyperparameter b and solving.

minimize
x
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2
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subject to x� 0;

(1)

where:

- The vector xb contains the beamlet intensity values for
candidate beam b. The optimization variable x is the con-
catenation of the vectors xb for the candidate pool of B
beams.

- The matrices Ai are the dose calculation matrices for the
PTV (i ¼ 0) and OARs (i ¼ 1; . . .;N) at
2.5 9 2.5 9 2.5 mm3 resolution. The 5-mm beamlet
dose is calculated with convolution/superposition using a
6-MV kernel.23

- l is the prescription dose vector, with an element for each
PTV voxel.

- The vector d stores the maximum dose for each voxel in
the PTV.

- The matrix D is a discrete gradient operator, such that Dx
represents the intensity differences between adjacent
beamlets.

- c and xb weight the respective smoothness and group
sparsity terms.

- �k k2 represents the l2-norm.
- The function �k k lð Þ

1 is the Huber penalty, and l controls
the level of smoothing on the l1-norm.

The PTV and OAR terms encourage sufficient PTV cover-
age while minimizing OAR dose. The smoothness term pro-
motes smooth fluence maps to reinforce deliverability by
multileaf collimators. The group sparsity term performs the
actual beam angle selection by encouraging most candidate
beams to be zero. The group sparsity weighting parameter xb

was set to allow approximately 20 remaining beams to be
selected. The optimization can converge before the number of
beams is reduced to 20. If there are over 20 selected beams, k-
means clustering of the gantry and couch angles is used to iden-
tify 20 clusters of beams. If a cluster has more than one beam,
we select the beam that is closest to the mean of the cluster,
breaking ties arbitrarily. This ensures that each plan results in
20 beams. The deliverability of 4p plans using 20 non-coplanar
beams has been demonstrated in a prospective clinical study.24

The 4p optimization problem is solved using the fast itera-
tive shrinkage-thresholding algorithm (FISTA), which can

handle nondifferentiable penalty terms and nonnegativity
constraints efficiently.25 FISTA is an accelerated proximal
gradient method, which utilizes proximal operators (prox-op-
erators) to solve the optimization problem as described by
Beck and Teboulle.25

2.C. Automated 4p planning

To remove the need for hyperparameter tuning, the vectors
of predicted voxel dose for the ith OAR, d̂i, are used in one
loop of automated 4p planning, which is performed by using
FISTA to solve.
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subject to x� 0:

(2)

This objective automatically encourages the PTV voxel
dose to be within 100%–105% of the prescription dose, l,
rather than a user-defined maximum dose, d. The OAR term
in equation (1) penalized OAR voxels based on their entire
received dose and weighed them based on the user-defined
hyperparameter b. For the revised automated planning objec-
tive, b was set to 1 for all OARs so that there is no depen-
dence on manually tuned hyperparameters. The new one-
sided OAR penalty only penalizes voxels if the dose is over
the predicted voxel dose, which allows OARs to neutrally
weigh themselves based on their proximity to the predicted
dose. This enables automated plans to systematically attain
better or equivalent dosimetry compared to the training set.
The superior plans will be used to provide predictions in the
next loop to evolve the knowledge base. c was set to 1 and xb

was set to 16 and 30 for lung and HN, respectively. These val-
ues were chosen empirically when manually planning but
fixed for all EKB plans to attain similar fluence map smooth-
ness and number of beams.

2.D. Plan quality metric

For EKB planning to automatically select a superior plan,
it is necessary to quickly quantify the plan quality. The plan
quality metric, introduced by Nelms et al,3 scores the plan
quality based on a list of dosimetric criteria. The scoring cri-
teria for our lung and HN PQM are shown in Table I, using
the clinical dose constraints from our institution as well as
additional PTV and conformity constraints. Scores are lin-
early interpolated between the minimum and maximum dosi-
metric value of each criterion, while zero and the maximum
are given to scores that are below and above the range,
respectively. Minimum and maximum dosimetric values were
chosen such that a realistic plan would not attain 100% in all
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criteria, allowing for a larger dynamic range and plan quality
differentiation. PQM is unitless, not normalized, and only
meant to compare plans of the same disease site. It is impor-
tant to note that PQM itself is non-convex and incompatible
with the FISTA optimization framework that makes fast auto-
mated 4p planning possible. Directly using PQM in the cost
function will require the structure weight tuning that we aim
to eliminate in automated planning. In this way, PQM is only
used as an evaluation tool to select the highest quality plans
at each loop.

2.E. Plan quality comparison

A final plan quality comparison was performed between:

1. EKB — Final EKB 4p plans after 10 loops.
2. autHQ — Automated 20-beam 4p plans created with

a single loop of automated 4p planning using a training
set of unrealistic “ultimate” plans. This training set
consisted of high-quality, individually tuned 4p plans

with manual parameter tuning using all non-colliding
non-coplanar beams, which can range from 300 to 700
beams, depending on the treatment site. The “ultimate”
plans were only used as training sets and not in the
final analysis.

3. Individually Evolving (IE) — Automated 20-beam
4p plans created by performing the EKB process for a
single patient at a time, where the desired dose, d̂i in
equation (2), is simply the patient’s dose from which-
ever previous loop scored the highest PQM. In this
approach, knowledge-based dose prediction is com-
pletely bypassed so that a 20-patient cohort is not
required and a single IE plan can be created without
the need for data from other patients.

4. Manual 4p — Manually created 4p plans using the
method described in Section 2.B. It is important to note
that these plans are different from the manually created
plans used for the training set in autHQ plans. These
plans select 20 non-coplanar beams, whereas the

TABLE I. Plan quality metric (PQM) criteria for HN and lung plans.

Head and Neck 0 score Perfect score Points Lung 0 score Perfect score Points

D95/ presDose 0.95 1 15 D98 42.5 50 10

D98/ presDose 0.925 0.975 HI (D95/D5) 0.85 0.95 3

D99/ presDose 0.9 0.95 Esophagus V10 10 0 3

HI (D95/D5) 0.85 0.95 5 Esophagus V5 13 0 3

Cord max 45 10 3 Trachea V10 13 0 3

Cord V40 20 0 3 Trachea V5 18 0 3

Brainstem max 50 5 3 Bronchus V20 10 0 3

Brainstem mean 20 1 3 Bronchus V15 15 0 3

Parotids mean 26 1 3 Heart V20 18 0 3

Parotids V30 50 0 3 Heart V15 33 0 3

Pharynx mean 54 5 3 Lung V20 20 0 3

Pharynx V45 33 0 3 Lung V10 30 0 3

Larynx mean 35 1 3 Lung V5 40 0 3

Larynx V66% 50 0 3 Skin V20 30 0 3

Oral cavity mean 40 5 3 Skin V15 20 0 3

SMG max 50 15 3 Cord V10 1 0 3

SMG mean 35 1 3 Cord V5 8 0 3

Mandible max 70 40 3 R50 3.5 1.8 10

Mandible V66 1 0 3 R10 50 20 5

Lips mean 30 1 3 D0.1cc 60 53 5

CPI mean 45 1 3

TMJ max 70 5 3

Cochleas mean 35 1 3

Esophagus mean 35 1 3

Orbits mean 25 1 3

Lens max 10 1 3

Opap max 52 1 3

R50 2 1.4 4

R10 10 4 4

D0.1cc/ presDose 1.2 1.05 3

The second and third columns specify the min or max dosimetric value required to get a zero or perfect score. The full points allowed for each criterion is listed in the fourth
column. SMG: submandibular glands, CPI: cricoid pharyngeal inlet, TMJ: temporomandibular joints, Opap: optical apparatus; HN, head and neck.
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autHQ training set plans unrealistically use hundreds
of non-coplanar beams.

All plans in the comparison used 20 non-coplanar beams
and were normalized to deliver 100% of the prescription dose
to 95% of the PTV volume. For HN cases with multiple pre-
scription dose levels, the normalization used the PTV with
the highest prescription dose. The PQM and the actual clini-
cal dosimetric constraint values were evaluated to compare

the four plan types. Wilcoxon signed-rank tests were per-
formed between the plans for the PQM and also each of the
dosimetric values in Table I.

3. RESULTS

The PQM results for the 10 loops of EKB planning for 20
lung and 20 HN patients are shown in [Fig. 2(a) and 2(c)].
The lung PQM typically had negligible PQM improvements
after the third loop (<0.2%). EKB planning for the HN cases
took around six loops to plateau. The average PQM improve-
ment from the initial plan with a generic template to the final
EKB plan were 5.2% and 11.1% for lung and HN, respec-
tively. A DVH comparison of the initial and final EKB plans
of an example patient is shown in Fig. 3. While the initial
plan has better OAR sparing in some cases (esophagus, lar-
ynx, pharynx, oral cavity, and mandible), it has substantial
cold and hot spots for the PTVs. The final EKB plan was able
to find a balance between PTV coverage and OAR sparing to
create a high-quality plan.

The IE PQMs reached within 3% of the PQM of the final
EKB plans for 16 of the 40 lung and HN patients. However,
for the other 24 plans, the PQM stagnated after 3 or less
loops at quality substantially lower than their EKB counter-
parts, a 13.4% PQM difference on average. This was an aver-
age of 4.51 HN PQM points and 6.94 lung PQM points.

Figures 2(b) and 2(d) shows the boxplot comparison of
the PQM between the four planning methods. Their average
values are shown in Table II, which includes the PQM data
for the clinically treated VMAT plans for reference. Not sur-
prisingly, all 4p plans were superior to the VMAT plans due

FIG. 2. (a,b) Lung and (c,d) head and neck plan quality metric (PQM) results. (a,c) PQM for each evolving knowledge-base (EKB) planning loop for 20 patients.
(b,d) Boxplots of the PQM of 20 patients for the final EKB plans, automated planning using high-quality plans in the training set (autHQ), the final individually
evolving (IE) plans, and manually created 4p plans. Significant (P < 0.05) differences between pairs of plans are labeled by the horizontal black lines. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

FIG. 3. Dose–volume histogram comparison between the initial EKB plan,
made with a generic template, and the final EKB plan for an example HN
case. Only representative OARs are shown to reduce clutter. EKB, evolving
knowledge-base. [Color figure can be viewed at wileyonlinelibrary.com]
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mainly to the non-coplanar beam angles, consistent with pre-
vious observation and the greater planning geometrical free-
dom. Differences between plans that were found significant
(P < 0.05) by the Wilcoxon signed-rank test are marked on
boxplots by the horizontal black lines on top. Among the 4p
plans, for the lung cases, both automated planning methods
had significantly higher lung PQM score compared with the

TABLE II. Mean PQM scores for the final EKB plans, automated planning
using high-quality plans in the training set (autHQ), the final IE plans, and
the manually created 4p plans. The manually created clinical VMAT plans
are provided as a reference. Significant differences between these groups are
shown in [Fig. 2(b) and 2(d)].

Final EKB autHQ Final IE Manual Cln VMAT

Lung 59.48 59.08 52.91 57.72 41.22

HN 64.50 66.31 62.10 63.49 53.78

EKB, evolving knowledge-base; HN, head and neck; PQM, plan quality metric.

FIG. 5. Dose–volume histogram comparison between final EKB, autHQ,
final IE, and manual plans of an example lung case. EKB, evolving
knowledge-base; IE, individually evolving. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 4. Beam orientation evolution for representative EKB loops, autHQ, and manual 4p for an example HN case. EKB, evolving knowledge-base; HN, head
and neck. [Color figure can be viewed at wileyonlinelibrary.com]
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manually created 4p plans, 2.7% (EKB) and 2.3% (autHQ).
The overall highest PQM for HN planning was achieved with
the autHQ 4p plans, which was significantly higher than all
other plans. The EKB and manually created 4p plans were
found statistically comparable, with PQM scores just slightly
less than autHQ, by 2.8% and 4.4%, respectively.

The evolution of the 20 optimized non-coplanar beam ori-
entation through 10 loops is shown for an example case in
Fig. 4. The beams are plotted based on their couch and gantry
angles. AutHQ and manual 4p beam orientations are also
included for comparison. For this case, the highest PQM was
achieved at loop 8. Although the selected beams are from the
same quadrants, the flexibility of the 4p beam orientation
optimization resulted in slight differences between the beam
angles for loop 1, loop 8, autHQ, and manual plans.

Each lung 4p plan took around 6 min on average. This
includes SVDL training and prediction, loading the dose cal-
culation matrix, beam angle selection, fluence map optimiza-
tion, final dose calculation, and PQM calculation. Running
10 loops of lung EKB planning with 20 cases, took just over
17 h. HN planning can take considerably longer, averaging
17 min for each plan, resulting in just under 2.5 days to run
10 EKB loops. The longer computational time for HN plan-
ning is due to the considerably larger dose matrix.

Representative examples of the DVH comparison between
the four plans are shown in Figs. 5 and 6 for lung and HN,
respectively. Boxplot comparisons between plans of the dosi-
metric values used for lung PQM calculation are shown in
Fig. 7. EKB plans had significantly better high- and low-dose
spillage compared with the other plans as indicated by the
lower R50 and R10 values. The EKB and IE plans have
slightly worse D98 than the other 4p planning methods.

The HN dosimetric comparisons are shown in Fig. 8.
Again, there were significant differences in PTV coverage
between the 4p plans. For the D98 and D99, EKB was gener-
ally outperformed in PTV coverage by the other 4p plans. IE

plans were significantly more homogeneous, but at the cost
of higher OAR doses and high dose spillage. The EKB plans
yielded the lowest R50 and R10, indicating superior high and
low dose spillage. Using unrealistically high-quality training
sets for dose prediction, the autHQ plans were superior in
most PTV and OAR metrics except at the PTV hot spot as
indicated by the higher D0.1cc.

Both Figs. 7 and 8 display the small range in OAR metrics
for the 4p plans. For the lung OAR metrics, average standard
deviations were 1.22 (EKB), 1.70 (autHQ), 1.74 (IE), and
1.63 (manual 4p). For the HN OAR metrics, average standard
deviations were 7.14 (EKB), 7.42 (autHQ), 7.31 (IE) and 8.75
(manual 4p).

4. DISCUSSION

Advances in hyperparameter tuning for machine learning
could be applied to automate DVH and OAR constraints.26–
29 However, these methods have limited search space and are
unable to control 3D voxel dose distribution, which often
requires additional tuning structures to achieve and inevitably
complicates the automated treatment planning workflow. As
the first innovation of this study, we removed the hyperpa-
rameters from our problem and directly applied predicted
doses in the optimization objective. This allows a treatment
plan to be automatically created based on the predicted 3D
dose distribution. The simple SVDL dose prediction tool
used in this study only depends on the Euclidian distance,
resulting in dose predictions that can be collapsed into a 1D
representation, similar to DVH. We selected this method
because it has been to be shown more robust on small train-
ing sets than methods relying on more geometrical features.11

However, the EKB framework is compatible with any tool
that is capable of predicting 3D voxel dose distributions when
additional geometrical features can be more robustly incorpo-
rated. The autHQ plans generated with unrealistically high-
quality plans also highlight the benefit of using accurate pre-
dictions of high-quality plans, if available.

The value of the one-sided cost function was separately
studied in the IE plans, where the targeted dose is derived
from the individual plan alone. The results show that the
majority (60%) of the IE plans stopped improving prema-
turely without the predicted dose guidance. The study high-
lights the necessity of collectively updating the predicted
dose based on KBP in automated treatment planning.

The second innovation of this study is the incorporation of
fast beam orientation optimization in automated treatment
planning. Previous automated treatment planning studies
used fixed beam or arc selections. The higher degree of free-
dom by including beam angle selection ensures that the auto-
mated plan quality is not restricted due to predefined beam
orientations. A previous obstacle for this approach was the
relatively slow 4p optimization speed using a greedy opti-
mizer. Breedveld et al implemented a similar greedy algo-
rithm for noncoplanar beam angle selection for Pareto
optimal planning, which they reported to take several hours
for each optimization. To overcome the challenges of greedy

FIG. 6. Dose–volume histogram comparison between final EKB, autHQ,
final IE, and manual plans of an example head and neck case. Only represen-
tative OARs are shown to reduce clutter. EKB, evolving knowledge-base; IE,
individually evolving. [Color figure can be viewed at wileyonlinelibrary.com]
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optimizers, we adopted a group sparsity algorithm for beam
orientation optimization that reduced the 4p planning time to
a few minutes,30 making EKB 4p planning feasible. With the
two innovations, we have demonstrated not only automated
treatment planning, but also retrospective interrogation of
previous plans for continuously improving the plan quality.

This study successfully created high-quality complex
IMRT plans without user supervision or prior plans for train-
ing. Starting from an initial training set of plans created using
a generic template, EKB planning created high-quality plans
by iteratively improving the plans and training set. This is
valuable for initiation of a new treatment technique where

there is a scarcity of existing high-quality plans for training.
EKB provides a means to automatically generate high-quality
plans by iteratively improving the plan quality, resulting in a
set of clinically viable plans without requiring a large high-
quality training dataset. In contrast, this automated planning
framework also allows the inclusion of existing high-quality
plans to warm start the training for faster convergence. DVH
analysis of the EKB loops showed that initial plans favored
OAR sparing too heavily, whereas the final plans struck the
proper balance between PTV coverage and OAR sparing.
The final EKB plans were found to be of similar or higher
quality compared to manually created 4p plans. The plan

FIG. 7. Dosimetric results for 20 lung plans each of (in order from left to right) the final EKB, autHQ, final IE, and manual plans. Significant (P < 0.05) differ-
ences between pairs of plans are labeled by the horizontal black lines. EKB, evolving knowledge-base; IE, individually evolving.
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quality improvement is quantitatively evaluated by PQM,
whose improvement plateaus after three and six loops for the
lung and HN EKB plans, respectively. Although HN EKB
required more loops to converge, we observed larger total
PQM improvement with these cases due to the higher plan
complexity.

Among the lung 4p plans, both EKB and autHQ automated
plans scored higher PQM than manual 4p. OAR sparing was
generally similar between the 4p plans, but R50, R10, and
D0.1cc were lowest with EKB planning. R50 is especially
important in lung SBRTcases as it has been linked to toxicities
to central organs,31,32 so it is promising that the EKB plans can
succeed in this aspect given no planner influence. Aside from
the PTV cold spots, it is compelling that EKB planning for
lung cases surpasses the plan quality of 4p plans.

Among the HN plans, despite similar OAR sparing,
autHQ produced better PTV coverage than the final EKB

plans. The D98 and D99 were highest with autHQ planning.
This highlights the details on how autHQ outperformed all
other plans in PQM. PTV coverage can be challenging in HN
planning due to multiple dose prescription levels. The manu-
ally influenced training set combined with the automated
planning process allowed autHQ plans to achieve higher
quality than either fully and independently automated plan-
ning (EKB) or manual planning.

An important motivation for automated planning is to cre-
ate more consistent plans by removing any inter- and intra-
planner variabilities. Among the 4p plans, EKB plans
showed the smallest standard deviation in OAR metrics
between the 20 plans in both the lung and HN cohorts.
AutHQ had more consistent OAR dosimetry in HN cases
compared to the manually created 4p plans, but not in the
lung cases. This is also likely due to the vastly different plan-
ning challenges in lung and HN planning. There is an

FIG. 8. Dosimetric results for 20 head and neck plans each of (in order from left to right) the final EKB, autHQ, final IE, and manual 4p plans. Significant
(P < 0.05) differences between pairs of plans are labeled by the horizontal black lines. EKB, evolving knowledge-base; IE, individually evolving. [Color figure
can be viewed at wileyonlinelibrary.com]
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abundance of considerations in HN planning that planners
must keep track of, and relatively fewer in lung planning lead-
ing to greater variabilities when manually planning HN cases.
Automated planning excels in cases where the complexity
can lead to greater variability in manually created plans.

EKB planning takes 5 h for 20 lung plans while the HN
EKB takes 1.5 days. The time may appear to be long but is
still substantially more efficient than the sum of individual
planning times. More importantly, the process is unsuper-
vised and can be run overnight. It may be possible to only
perform beam orientation in the first one or two loops to
reduce the total planning time by order of magnitude. Fur-
thermore, with increasing size and stabilization of the knowl-
edge base, it is possible that the evolution needs to happen
less frequently and the time to create a new plan for a new
patient would decrease to a few minutes, which is the time to
optimize a plan using FISTA.

5. CONCLUSION

EKB planning is a novel automated planning technique
that creates plans of equivalent or superior quality compared
to manually created plans by iteratively and collectively
evolving the quality of the training set, which is then used to
improve the individual plan quality. With the capability to
automatically select optimal non-coplanar beam orientations
and create competitive plans without being hindered by the
initial training set quality, EKB planning facilitates the adop-
tion of 4p into the clinic. At the same time, the automated
planning framework can be more specifically guided where a
high-quality training set already exists. This guidance can
steer the automated plans for a site’s specific preference.
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