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 Plug-in electric vehicles (PEVs) are considered one of the leading solutions in reducing 

greenhouse gas emissions since they remove carbon emissions from the tailpipe. However, as their 

penetration in the vehicle market increases, so will their impact on the electric grid. To minimize 

the impact that PEVs have on the electric grid, “smart” charging protocols are necessary to manage 

PEV charging. This study evaluates how two smart charging architectures, a centralized and 

decentralized architecture, impact both small and large-scale electric grids through real 

deployment of the algorithms as well as MATLAB simulations. 

 The “field-deployable” decentralized charging algorithm uses a telematics-based approach 

to create charging schedules for 10 PEVs deployed on the University of California, Irvine’s (UCI) 

microgrid. The results reveal that a barrier associated with this approach is the need to retrieve the 

vehicles’ status, referred to as “polling.” Polling affects how the algorithm creates charging 

schedules. To determine the effect of polling, simulations are performed on different buildings on 

the UCI campus using National Household Travel Survey data to simulate vehicle travel patterns. 

The results show that, if polling occurs frequently (e.g., once every 10 minutes), the charging 

schedules are not significantly altered. To determine whether or not the decentralized algorithm 



xiv 

 

can provide the same emissions benefits as an ideal centralized algorithm on large-scale systems, 

both algorithms are simulated on the California electric grid for the year 2030. The results reveal 

that the decentralized algorithm provides the same emissions benefits as the centralized algorithm, 

but only if communication between the grid and vehicles is sufficiently frequent (e.g., 60 minutes 

or less). 
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1. INTRODUCTION 

1.1 Overview 

 Since the 1900s, global carbon emissions have continued to rise, increasing by 90% from 

year 1970 levels by 2014, as shown in Figure 1 [1]. The United States (U.S.) is considered one of 

the largest producers of greenhouse gas (GHG) emissions, contributing to 14% of global GHG 

emissions [2]. In 2015, the transportation economic sector was the second largest producer of GHG 

emissions in the United States, and the largest in California (CA). Transportation accounted for 

27% of total U.S. GHG emissions (Figure 2), with the primary source of GHG emissions coming 

from the burning of fossil fuels. Over 90% of transportation is fueled by petroleum [3] and in 

California, transportation accounted for 39% of GHG emissions (Figure 3) [4].  

 

Figure 1. Global Carbon Emissions from Fossil Fuels (Adapted from Ref. [1] ) 
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Figure 2. U.S. GHG Emissions by Economic Sector in 2015 (Adapted from Ref. [3]) 

 

Figure 3. CA GHG Emissions by Economic Sector in 2015 (Adapted from Ref. [4]) 
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 As GHG emissions continue to increase yearly, California has become one of the leading 

states in the fight against climate change, issuing a series of bills in an attempt to reduce emissions. 

Assembly Bill 32 (AB32), the California Global Warming Solutions Act of 2006, mandates that 

California reduces its GHG emissions to 1990 levels by 2020 [5]. Senate Bill 32 (SB32), which 

was passed in 2015, expands on AB32 and requires that California reduces GHG emissions to 40% 

below 1990 levels by 2030, and 80% below 1990 levels by 2050, making this the most stringent 

standard set by any government in North America [6]. The transportation sector requires major 

changes in order to meet these goals. To reduce the dependence on fossil fuels in the transportation 

sector, alternative forms of transportation are necessary. 

1.2 Goals 

 The goals of this thesis are to establish and evaluate a smart charging algorithm on a fleet 

of plug-in electric vehicles (PEVs) on a microgrid platform, and to project the impacts of PEV 

smart charging on the California electric grid. 

1.3 Objectives 

 The following objectives are achieved to fulfill the goals: 

1. Identify different smart charging algorithms to serve for analysis. 

2. Modify the decentralized smart charging algorithm in order to deploy it on a fleet of PEVs. 

3. Develop and simulate smart charging scenarios within a microgrid. 

4. Integrate smart charging algorithms into the Holistic Grid Resource Integration and 

Deployment (HiGRID) model to determine California electric grid emissions.  
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2. BACKGROUND 

2.1 Electric Vehicles 

 In order to reduce GHG emissions in the transportation sector, alternative forms of 

transportation such as electric vehicles (EVs) are necessary. Three types of EVs are battery electric 

vehicles (BEVs), fuel cell electric vehicles (FCEVs), and plug-in hybrid electric vehicles (PHEVs). 

Two of the three, BEVs and PHEVs, are plug-in electric vehicles (PEVs). The adoption of PEVs 

is a forefront solution in reducing GHG emissions since they offset vehicle tailpipe emissions [7]. 

2.1.1 History of Electric Vehicles 

 Electric vehicles have been in existence as early as the 1830s, with the first one debuting 

in the U.S. in 1890. By the early 20th century, EVs became one of the leading forms of 

transportation, with one-third of all vehicles being EVs. However, in 1908 when the Ford Model 

T became mass produced and widely available and gas became more affordable and available in 

the 1920s, the sale of EVs began to decline. By the 1930s, EVs had essentially disappeared. When 

the 1990 Clean Air Act, 1992 Energy Policy Act, and new emission regulations issued by the 

California Air Resources Board (CARB) passed, interest in EVs started to rise again [8]. 

2.1.2 Battery Electric Vehicles vs. Plug-in Hybrid Electric Vehicles 

 Battery electric vehicles and plug-in hybrid electric vehicles are the two major types of 

PEVs. BEVs solely rely on the electricity stored in the on-board battery as the source of power 

and use an electric drivetrain as their source of propulsion. Since they do not use gas, no tailpipe 

emissions exist. On the other hand, PHEVs have an internal-combustion engine (ICE) that work 

in conjunction with an on-board battery. The combination of the ICE and the on-board battery 

provides a longer range than the range of a BEV; however, since PHEVs have ICEs, this leads to 

tailpipe emissions. What the BEV and PHEV have in common is that they can both plug in to the 
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electric grid to charge. Since BEVs only rely on the on-board battery, their battery capacities are 

much larger than PHEV battery capacities [9]. Table 1 lists advantages and disadvantages of PEVs 

when compared to standard ICE vehicles. 

Table 1. PEV Advantages and Disadvantages (From Ref. [9]) 

PEV Advantages and Disadvantages 

Advantages Disadvantages 

Low Operating Cost Higher upfront costs 

No tailpipe emissions (battery only operation) Limited electric range 

Convenient refueling at home Need to install charging infrastructure 

Reduction in petroleum consumption High battery cost 

Improvements in urban air quality Long recharging time 

 

2.1.3 PEV Classifications 

 PEVs can be classified into four different categories based off of their all electric range 

(AER): long-range BEVs, limited-range BEVs, range-extended PHEVs, and minimal PHEVs. 

Long-range BEVs are BEVs that have large batteries and can travel over 100 miles per charge. 

Limited-range BEVs are BEVs that can travel shorter distances, usually under 100 miles per 

charge. While they cannot travel as far, limited-range BEVs are more affordable than long-range 

BEVs. Range-extended PHEVs are PHEVs that operate using the battery only, and then switch to 

the ICE once the battery is fully depleted. Minimal PHEVs are similar to range-extended PHEVs, 

except that their AER is much smaller; however, their total range is larger. Table 2 lists examples 

of the four classes of PEVs and their corresponding range [9].  

Table 2. PEV Classes (From Ref. [9]) 

PEV Classes 

PEV Class Vehicle Model Range (Miles) 

Long-Range BEV Tesla Model S 265 AER 

Limited-Range BEV Nissan Leaf 84 AER 

Ranged-Extended PHEV Chevrolet Volt 38 AER/380 total range 

Minimal PHEV Toyota Plug-in Prius 6-11 AER/540 total range 
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2.2 Charging Infrastructure 

 While gasoline stations are readily available, the same cannot be said for PEV charging 

stations. As stated in Table 1, one of the major disadvantages of PEVs is the need to install PEV 

charging infrastructure, or electric vehicle supply equipment (EVSE). To charge PEVs safely, 

consumers need access to EVSEs [9], [10]. EVSEs are designed to connect the vehicle and charger, 

and to determine any safety issues that could occur when charging [9]. Currently, three different 

charging levels exist: Alternating Current (AC) Level 1, AC Level 2, and Direct Current (DC) 

Level 3 Fast Charging. Each charging level has their own type of EVSE and charging rate. 

2.2.1 AC Level 1 and 2 Charging 

 AC level 1 and 2 charging are the most common forms of PEV charging. Most drivers who 

drive BEVs and PHEVs use AC level 1 and 2 chargers to charge their vehicles overnight [11]. 

Most PEVs will come with an AC level 1 charger, which plugs into a standard 120-volt outlet [9], 

[10]. The end of the EVSE cable that plugs into the PEV is an SAE J1772 charging plug, and the 

end of the EVSE cable that plugs into the 120-volt outlet is a NEMA connector (e.g., NEMA 5-15 

three-prong connector) [10]. AC level 1 charging provides 4 to 5 miles per hour charged, which 

allows for most PEV owners to meet their daily commute requirement [9], [11]. However, due to 

the charging rate, AC level 1 charging mainly suits BEVs with smaller battery sizes and PHEVs. 

 For owners with larger battery sizes, AC level 2 charging is frequently used; however, this 

requires additional equipment to be installed at the user’s residence. Similar to AC level 1 chargers, 

AC level 2 chargers also use an EVSE cable that has the SAE J1772 charging plug [9]. However, 

AC level 2 chargers are plugged into 240-volt outlets, which are typically mounted on a garage 

wall. These are the same outlets that electric dryers and large air conditions use [9]. AC level 2 
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charging provides 10 to 20 miles of range per hour charged, providing a longer range and higher 

efficiency than AC level 1 charging [10].  

2.2.2 DC Level 3 Fast Charging 

 DC level 3 charging is the most efficient charging level out of the three levels that are 

currently available on the market. DC level 3 charging provides 50 to 70 miles of range per 20 

minutes charged [10]. While AC level 1 and level 2 chargers convert the AC electricity to DC 

electricity in the car, level 3 chargers convert the AC electricity to DC electricity in the EVSE. 

Currently, three different types of DC fast chargers exist on the market: the J1772 combination 

charger, the Charge de Move charger, and the Tesla supercharger [10]. However, level 3 chargers 

are too expensive to implement in residential areas. Therefore, vehicle manufacturers and the 

government are the main entities that have incentives to install level 3 chargers [9]. 

2.3 Microgrids 

 As defined by the U.S. government Department of Energy (DOE), microgrids are “a local 

energy grid with control capability, [meaning] it can disconnect from the traditional grid and 

operate autonomously” [12]. When microgrids are in grid-isolation mode, they need a source of 

power generation. For remote microgrids, diesel generators are a typical source of electricity since 

they are relatively cheap and simple to install. However, this leads to the burning of fossil fuels, 

resulting in GHG emissions [13]. One way to reduce fossil fuel consumption is to integrate 

different sources of renewable energy into the microgrid. Two of the fastest growing forms of 

renewable energy are solar and wind [14], which were also the two largest sources of renewable 

energy in California in 2014 [15]. Integrating renewable forms of power generation into microgrids 

has the potential to reduce GHG emissions. As vehicles become more and more electrified, PEVs 
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will likely be plugged-in at work “microgrids” or shopping center “microgrids”. As a result, 

vehicle charging is expected to be an anchor component of the modern microgrid. 

2.4 Charging Strategies 

 As PEVs become more commonplace, the demand for PEV charging infrastructure will 

increase, which will lead to an increase in the electric demand [7]. It has previously been shown 

that home charging infrastructure ranks as the most important for PEV deployment, and work place 

charging infrastructure ranks as the second most important [9]. Typically, the overnight dwell 

period exceeds the time needed to charge PEVs; therefore, overnight charging has become a 

common time to charge PEVs. If most PEVs charge at the same time however, this has the potential 

to shift the overall demand curve [7]. As shown in the 2009 National Household Travel Survey 

(NHTS), the majority of vehicles arrive home from work around 5 PM [16]. In California, this is 

typically when renewable generation ramps down and the net load ramps up, as seen in the 

California “duck curve” (Figure 4). To avoid shifting the overall demand curve, charging schedules 

will need to be shifted to align as much as possible with renewable generation [7]. 
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Figure 4. California Duck Curve (Adapted from. Ref [17]) 

 One of the main challenges associated with PEVs is determining the optimal charging 

strategy. While PEVs can reduce tailpipe GHG emissions dramatically, they cause an increase in 

power plant produced GHG emissions since they need to plug in to the electric grid. Therefore, 

various charging algorithms have been examined and studied in an attempt to reduce GHG 

emissions. 

2.4.1 Immediate Charging 

 One of the most common ways to charge PEVs is through the immediate charging strategy 

or “uncontrolled charging” strategy. Immediate charging is simply when the vehicle charges as 

soon as it is plugged in. While this is very convenient for the user, major issues such as the overload 

of transformers and lines, voltage deviations, peak power increases, and the increase of electricity 

CO2 intensity can occur [18]. Figure 5 shows an example of uncontrolled charging. 
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Figure 5. Uncontrolled Charging Normalized to Peak Load (Adapted from Ref. [18]) 

2.4.2 Off-Peak Charging 

 Another commonly used charging schedule is off-peak charging. Off-peak charging is the 

same as immediate charging where the vehicle charges as soon as it is plugged in. However, users 

charge their vehicles overnight rather than during the day, as shown in Figure 6. This has several 

advantages such as flattening the demand profile and integrating wind energy at off-peak hours; 

however, some major issues that occur from off-peak charging are the possible overload of 

transformers and lines, possible voltage deviations, and sudden power demand increases [18]. 
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Figure 6. Off-peak Charging Normalized to Peak Load (Adapted from Ref. [18]) 

2.4.3 Smart Charging 

 With the current PEV penetration, immediate and off-peak charging are the most frequently 

used charging strategies. However, as PEV penetration increases, “smart” or controlled charging 

protocols will be necessary to manage PEV charging [7], [18]. The main goal of smart charging is 

to flatten the overall net load when the PEV charging profile is added so that the variation over a 

certain time period is minimized. By shifting the charging demand of PEVs to a time when the 

demand is the lowest, this can reduce the need to shut down and restart power plants, as shown in 

Figure 7. This is known as the “valley filling” approach [7]. While the valley filling approach is 

the most optimal charging strategy, it has many complexities associated with it. Valley filling has 

very complex implementation, it requires information and communications technology (ICT), and 

the willingness of the customer is required [18]. 
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Figure 7. Valley Filling Normalized to Peak Load (Adapted from. Ref [18]) 

 The smart charging strategy can be classified into two architectures: a centralized or global 

energy control strategy, and a decentralized or local energy control strategy [18], [19].  

2.4.3.1 Centralized Control Architecture 

 In the centralized control architecture, a central aggregator controls the charging of all of 

the vehicles within its region. The aggregator takes in the PEV information and optimizes the 

charging schedule of all vehicles in order to minimize system-wide electricity costs. The 

centralized architecture allows the aggregator to smooth the aggregated electric load profile (global 

load) in its region. This architecture makes PEV charging easier, since all of the vehicle data are 

available to a single entity. While this is a very well-known control architecture, many issues and 

concerns surround it. While the global load may be smooth, individual vehicles may have peaks 

in their charging profiles, which could incur high costs for the owner. Since a single entity is 

managing a large amount of vehicle data, a backup system is required in case of any failures. As 
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the number of vehicles increase, the complexity increases, which means that significant 

computational power is required in order to accommodate the large volume of information being 

transferred and perform the optimization necessary to provide individual PEV charging schedules. 

One of the biggest issues with this control architecture are privacy concerns. Since an aggregator 

controls the information and charging schedule, it will be able to access information such as travel 

patterns of the user. Therefore, unless the users are willing to provide the aggregator with this type 

of information, a centralized control architecture will be difficult to implement [18], [19]. 

2.4.3.2 Decentralized Control Architecture 

 In the decentralized control architecture, each individual PEV creates its own charge 

schedule based on the local load. Unlike the centralized control architecture, an aggregator is not 

needed, and this allows each individual vehicle to minimize its charging cost. In this case, the 

charging schedule is optimized on a local scale rather than on a global scale. Using the 

decentralized control architecture, privacy concerns are no longer an issue, since the charging 

schedule resides solely within the user. This leads to a higher user acceptance than the centralized 

control architecture. Since each vehicle decides on its charge schedule individually, not as much 

data processing needs to be done. The main issue with the decentralized control architecture is that 

the charging algorithm does not take into account the global loads. While the charging for each 

individual PEV may be optimized, this could lead to sudden increases and peaks in the global load, 

resulting in an aggregated electric load profile that is not as smooth. This is known as the avalanche 

effect. Due to the scalability and higher user acceptance, the decentralized control architecture is 

more likely to be utilized and more feasible than the centralized control architecture in real world 

implementation [18], [19].  
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2.5 Smart Charging Algorithms Explored in Literature 

 Many studies have analyzed utilizing smart charging strategies to control PEV charging, 

on both small and large-scale systems. Studies [19]–[23] evaluated smart charging on residential 

scales. Mets et al. compared both architectures and benchmarks them against a business-as-usual 

(BAU) scenario where no smart charging approaches are used, by conducting a simulation on a 

residential scale of 150 homes. This study found that a local approach reduces the peak load by 

26% for a 30% PHEV penetration and that a global approach reduces the peak load by 30% [19]. 

Mets et al. also examined smart charging on a residential scale of 63 homes and found that peak 

reductions can range anywhere from 29% to 70% compared to a BAU case [20]. Chen et al. utilized 

a valley filling approach and evaluates a decentralized algorithm on the valley filling profile on 

residential load profiles [21]. Alonso et al. focused on applying a genetic algorithm on a residential 

low-voltage system and found that the smart charging schedule can flatten the overall load profile 

[22]. Gan et al. used a decentralized charging algorithm on a residential load profile served by 

Southern California Edison (SCE). This study examined 20 PEVs in 100 homes and found that the 

decentralized algorithm is able to provide optimal charging profiles [23]. Studies [24]–[28] 

examined utilizing smart charging on larger scales. Qian et al. analyzed a system consisting of 

2840 vehicles on a United Kingdom (U.K.) distribution network and examined how smart charging 

can reduce the peak load when a 10% and 20% PEV penetration is used. This study found that 

when charging is not controlled, the peak load increases by 17.9% and 35.8% when a 10% and 

20% PEV penetration is used respectively, and that smart charging does not create a new peak load 

[24]. Kara et al. examined how a centralized smart charging algorithm can decrease the overall 

peak load for over 2000 PEV chargers, under the assumption that for all PEVs, the arrival and 

departure time is known, as well as the energy demand profile and determined that smart charging 
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can decrease the peak load by 37% [25]. Karfopoulos et al. evaluated a decentralized, multi-agent 

PEV charging strategy on an urban distribution network in Northern Greece with 1200 EVs. This 

study found that the decentralized approach can perform valley filling functions adequately and 

also showed that a decentralized approach can achieve results similar to a centralized approach 

without the use of intense communication requirements and computational resources [26]. Ma et 

al. used a decentralized charging control strategy to charge large populations of PEVs, showing 

that the decentralized approach can solve a local problem and converge to a global Nash 

equilibrium without the use of significant computational resources and communication 

infrastructure [27]. Ma et al. also showed that a decentralized charging strategy can allow users to 

optimize their charging schedule locally, while also optimizing the global load [28]. Studies [29]–

[31] evaluated smart charging algorithms on state-wide scales and their effects on large-scale GHG 

emissions. Forrest et al. evaluated how switching from immediate to centralized smart charging 

affects renewable penetration on the California grid in the year 2050. Using the centralized smart 

charging algorithm developed by Li et al. [32], this study found that switching to smart charging 

can increase renewable penetration from 56.7% to 73% since PEV charging is shifted to daytime 

charging and matches with peak solar production [29]. Tarroja et al. analyzed how the centralized 

smart charging algorithm developed by Li et al. [32] affects California GHG emissions in the year 

2050. This study used 2009 NHTS travel data to represent vehicle travel behavior and scale up the 

vehicle miles traveled (VMT) based off the projected population in the year 2050. This study found 

that smart charging can achieve up to 55% GHG emission reductions compared to immediate 

charging when PEVs are allowed to charge both at home and at work, due to the synchronization 

of PEV charging with renewable generation [30]. Tarroja et al. also analyzed how the centralized 

smart charging algorithm developed by Li et al. [32] affects GHG emissions in the year 2050 for 
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different percentages of PEV penetration combined with different charger powers, specifically two 

different PEV penetrations (50% and 90%) and with three different charger powers (6.6 kW, 10 

kW, and 20 kW). This study found that on average between the three charger powers, 75 MMT 

CO2e per year was emitted when a 90% PEV penetration was used, and 96 MMT CO2e per year 

was emitted was a 50% PEV penetration was used [31]. 

 Projects have also deployed smart charging algorithms on real vehicles. In 2015, BMW 

and Pacific Gas and Electric (PG&E) conducted a project called the BMW i ChargeForward 

Project, with the goal of determining if PEVs could be used as a flexible grid resource to operate 

and maintain the grid. The project was conducted in the San Francisco Bay Area, with BMW 

providing PG&E with 100 kW of grid resources and 100 BMW i3’s. The vehicles were used for 

dispatch in 209 demand response events totaling 19.5 MWh [33]. In Toronto, ChargeTO, an 

electric vehicle smart-charging project, deployed a residential smart charging pilot program. The 

program was conducted over an 11-month period, where the first six months was baseline vehicle 

monitoring, and the last five months was paired smart charging. The program included five 

different PEV models, Tesla Model S, Nissan Leaf, Chevrolet Volt, BMW i3, and Smart Fortwo 

ED, with 30 PEV owners. During the course of the five months, this project found that 85% of the 

charging load could be shed at peak load times, or more than 50% of the peak load could be 

reduced, while still ensuring full customer satisfaction [34]. 

2.6 Simulation Tools 

 The models are simulated through the use of Matrix Laboratory (MATLAB) models. The 

charging algorithms used to produce PEV loads were written by Li Zhang [7], [32]. These PEV 

load profiles are then used in the HiGRID model written by Fabian Mueller, Josh Eichman, and 

Brian Tarroja [35]. 
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2.7 Summary 

 In California, the leading economic sector of GHG emissions is the transportation sector. 

In order to reduce GHG emissions in the transportation sector, different forms of alternative 

transportation such as PEVs are necessary. PEVs are a viable form of alternative transportation 

since they can be refueled at home and can meet most consumers travel demands. As automakers 

continue to make more vehicle models, PHEV and BEV sales have continued to increase each year 

[36]. However, as the number of PEVs increase, they are bound to have a significant impact on 

the electric load. In order to make sure that PEV charging will not cause electrical issues, different 

charging algorithms are analyzed. As seen in the literature, decentralized smart charging 

architectures have been mainly been applied to small-scale, residential systems, and studies that 

focus on large-scale implementation mainly focus on utilizing centralized smart charging 

architectures. However, in order to meet the climate change goals, decentralized algorithms will 

need to be applied on larger, state-wide scales. This thesis analyzes the effects of implementing 

deployable smart charging algorithms on a fleet of PEVs on a small-scale microgrid platform, as 

well as the effects that PEV smart charging has on the California electric grid.  
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3. APPROACH 

 The goals of this thesis are to establish and evaluate a smart charging algorithm on a fleet 

of plug-in electric vehicles (PEVs) on a microgrid platform, and to project the impacts of PEV 

smart charging on the California electric grid. 

Objective 1. Identify different smart charging algorithms to serve for analysis 

 Objective 1 will determine which smart charging algorithms will be used in the analysis. 

Many different smart charging algorithms have been developed. For this study, the smart charging 

algorithms used were developed by a previous graduate student in the Advanced Power and Energy 

Program (APEP), Li Zhang. This research utilizes his centralized and decentralized smart charging 

algorithms. 

Objective 2. Modify the decentralized smart charging algorithm in order to deploy it on a 

fleet of PEVs 

 Objective 2 will modify the decentralized smart charging algorithm identified in objective 

1 in order to deploy it on a small fleet of PEVs. The PEVs used in this study are Kia Souls. This 

study will utilize a telematics-based approach to deploy the smart charging algorithm. Any barriers 

associated with the telematics-based approach will also be addressed in objective 2. 

Objective 3. Develop and simulate smart charging scenarios within a microgrid 

 Objective 3 will use the decentralized smart charging algorithm identified in objective 1 to 

create different scenarios to simulate within a microgrid. To achieve this goal, different cost loads 

are used to determine how the decentralized smart charging approach affects different building 

loads within the microgrid. The cost to charge incurred on PEV owners as well as electric grid 

CO2 emissions will be analyzed. 
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Objective 4. Integrate smart charging algorithms into the Holistic Grid Resource Integration 

and Deployment (HiGRID) model to determine California electric grid emissions. 

 Objective 4 will determine how centralized and decentralized smart charging approaches 

affect California’s electric grid CO2 and NOx emissions. The algorithms will be implemented into 

the HiGRID model and different scenarios will be simulated to determine California CO2 and NOx 

emissions in the year 2030. The centralized charging scenario will be used as the base scenario, 

and the decentralized scenarios will be compared to the base scenario.  
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4. OBJECTIVE 1 RESULTS 

Identify different smart charging algorithms to serve for analysis 

 As seen in the literature, two smart charging architectures have been explored: centralized 

and decentralized. For this thesis, the main algorithm utilized is the decentralized charging 

algorithm developed by Li et al. [7]. The centralized charging algorithm developed by Li et al. is 

explored in objective 4 [32]. Chapter 4 analyzes the two charging algorithms. 

4.1 Decentralized Smart Charging Algorithm 

 The first model used for this thesis is the decentralized smart charging algorithm. In the 

decentralized charging approach, each vehicle optimizes its own charging schedule based on a cost 

function. A unique cost function is sent to a PEV each time it plugs in, in order to determine the 

optimal time to charge based off its dwell period. In this application, the cost function is the net 

load demand profile, which is the electric load minus renewable generation at each minute. The 

cost load provided to a vehicle includes any previous loads imposed on the grid by prior vehicles 

that have plugged in. When the vehicle receives the cost load, it will solve a constrained linear 

program to determine the optimal time to charge based on its dwell period. The algorithm 

prioritizes time slots when the net load demand is the lowest, referred to as valley filling. Once the 

PEV charging schedule has been determined, it is sent to the grid operator, who will add it onto 

the existing net load profile. Two options to update the cost function are at fixed time intervals or 

at a fixed number of vehicles in order to minimize the amount of data being transferred between 

the vehicles and the grid. For example, if the cost function update time is set to 60 minutes, vehicles 

that plug in between t = 0 and t = 60 minutes will receive a certain cost function. Vehicles that 

plug in subsequently will receive a different cost function that consists of the net load with the 
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addition of the PEV charging profiles from the vehicles that plugged in between t = 0 and t = 60 

minutes. This process is repeated for an entire year [7]. 

 The decentralized smart charging algorithm is governed by equations 1 through 10. For 

grid level valley filling, the goal is to minimize the following: 

𝑚𝑖𝑛 ∑(𝐷(𝑡𝑖) + 𝑋(𝑡𝑖))
2

𝑖

 (1) 

where D(ti) is the electric net load at ti and X(ti) is the overall charging power at ti. Equation 1 is 

subject to the following constraint:  

∆𝑡 × ∑ 𝑋(𝑡𝑖)

𝑖

= 𝐵 = ∑ 𝑏𝑛

𝑛

 (2) 

where B is the total charging energy of all PEVs for a day and bn is the charging energy for an 

individual PEV. Equation 2 states that the total charging energy of all vehicles (B) is equal to the 

sum of the overall charging power multiplied by the timeslot. The overall charging power has the 

following upper bound:  

𝑋(𝑡𝑖) ≤ 𝑅(𝑡𝑖) (3) 

where R(ti) is the product of the amount of plugged in PEVs and individual charging powers. For 

individual PEV charging, the following cost function is used:  

∑ 𝐶(𝑡𝑖)

𝑖

× 𝑥𝑛(𝑡𝑖) (4) 

where C(ti) is the cost per kWh (DC) at ti and xn(ti) is the charging energy for vehicle n at ti (xn(ti) 

is a decision variable). In this study, the cost per kWh is proportional to the net load demand. The 

two constraints are as follows: 
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∑ 𝑥𝑛(𝑡𝑖)

𝑖

= 𝑏𝑛 (5) 

0 ≤ 𝑥𝑛(𝑡𝑖) ≤ 𝑟𝑛(𝑡𝑖) = 𝑝𝑛(𝑡𝑖) × ∆𝑡𝑛(𝑡𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅ × 𝜂 (6) 

where pn(ti) is the charging power, ∆tn(ti) is the time the vehicle is plugged in for, and η is the 

charging efficiency (assumed to be 85%). Equation 5 states that the amount of energy used during 

the day (bn) is equal to total amount of energy sent to the vehicle when it recharges at home 

(∑ixn(ti)). Equation 6 states that the charging energy at any time slot cannot exceed the maximum 

allowable charging energy (rn(ti)). 

 Two methods for updating the cost load are updating the cost load by fixed time intervals 

and updating the cost load by a fixed number of vehicles. This is to avoid transmitting large 

amounts of data due to the large number of vehicles in the system. If the cost function is updated 

by a fixed time interval, the following equations are used: 

𝑠𝑘−1(𝑡𝑖) = ∑ 𝑥𝑛(𝑡𝑖)

𝑛

/𝜂∀𝑛  𝑠. 𝑡.  𝑇𝑘−1 ≤ 𝑡𝑎𝑛 < 𝑇𝑘 (7) 

𝑇𝑘 = 𝑇𝑘−1 + 𝑇𝑠𝑡𝑒𝑝 (8) 

where sk-1(ti) is the aggregated charging profile for step k-1, Tk is the time when the cost is updated, 

tan is the home arrival time after the last trip for PEV n, and Tstep is the time interval for cost 

function updating. If the cost function is updated by a fixed number of vehicles, the following 

equations are used: 

𝑠𝑘−1(𝑡𝑖) = ∑ 𝑥𝑛(𝑡𝑖)

𝑛

/𝜂∀𝑛  𝑠. 𝑡.   𝑉𝑘−1 < 𝑛 < 𝑉𝑘 (9) 

𝑉𝑘 = 𝑉𝑘−1 + 𝑉𝑠𝑡𝑒𝑝 (10) 

where Vk is the vehicle number when the cost is updated, n is the PEV number, and Vstep is the 

vehicle number interval for cost function updating. 
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4.2 Centralized Smart Charging Algorithm 

 The second model used for this thesis is the centralized smart charging algorithm. In the 

centralized charging approach, a central aggregator optimizes the charging of all of the vehicles 

within its domain. The main goal of the centralized charging algorithm is to minimize the operating 

costs of the PEV fleet as a whole instead of that for individual PEVs. In this scenario, the algorithm 

has knowledge of a perfect forecast, assuming that the entire day’s travel pattern and dwell period 

is known, the charging cost at each dwell period is known, and that the cost function for the entire 

year is known for all vehicles within the system [32]. 

 For the centralized smart charging algorithm, the goal is to minimize the following cost 

function: 

∑ ∑ 𝑓𝑖𝑗 × 𝑥𝑖𝑗

𝑠𝑒𝑔(𝑖)

𝑗=1

𝑚

𝑖=1

 (11) 

This is the summation of the total charging cost, where fij is the charging cost per kWh during the 

jth hour in the ith dwelling period and xij is the state of charge (SOC) increase during the jth hour 

in the ith dwelling period. 

When using the centralized smart charging algorithm, the following constraints apply: 

1. The amount of energy charged must be equal to the amount of energy discharged for the 

entire day (i.e., 24 hours). 

2. For each trip the vehicle makes, the decrease in SOC cannot be larger than the battery 

capacity. 

 Similar to how the individual charging energy xn(ti) is constrained in the decentralized 

charging algorithm, the SOC increase (xij) is constrained by the following equation: 
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0 ≤ 𝑥𝑖𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑖𝑗 × ∆𝑡𝑖𝑗 × 𝜂 (12) 

where powerij is the charging power, ∆tij is the dwell period, and η is the charging efficiency. 

4.3 Objective 1 Summary 

 Two smart charging algorithms have been identified to serve for analysis for this study: a 

centralized smart charging algorithm and a decentralized smart charging algorithm. For both 

algorithms, the governing equations as well as constraints are listed. The main distinction between 

the centralized and decentralized charging architectures is that the centralized architecture assumes 

that all travel patterns and load patterns are known, while the decentralized architecture does not. 

The decentralized smart charging algorithm has more equations and constraints governing it than 

the centralized smart charging algorithm. The decentralized smart charging algorithm will be 

explored in chapters 5 through 7, while the centralized smart charging algorithm will only be 

explored in chapter 7. 
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5. OBJECTIVE 2 RESULTS 

Modify the decentralized smart charging algorithm in order to deploy it on a fleet of PEVs 

 The decentralized smart charging algorithm identified in objective 1 will be deployed on a 

fleet of 10 Kia Souls. The algorithm originally developed by Li et al. [7] was modified by Ramos 

Muñoz et al. to obtain individual PEV profiles [37]. This allows for the algorithm to be applied on 

smaller scales, whereas the algorithm developed by Li et al. is mainly used for large-scale 

simulations. The algorithm modified by Ramos Muñoz et al. will be modified in order send vehicle 

commands to individual PEVs. Chapter 5 explores what modifications were made to the algorithm 

as well as the results from the testing. 

5.1 Modifications Made to the Algorithm 

 The main modification made to the algorithm by Ramos Muñoz et al. was the user interface 

(UI) of the original algorithm. The original algorithm by Li et al. has inputs and information that 

were mainly used for large-scale applications, such as NHTS travel data. The NHTS data contains 

information such as the household ID and vehicle ID of each trip and while this information is 

necessary to simulate large-scale travel patterns, it is not necessary for individual PEV trips. The 

UI was modified by Ramos Muñoz et al. so that only the necessary input parameters were 

necessary. The main input parameters necessary to determine individual PEV charging profiles are 

the arrival time of the PEV, the departure time of the PEV, the distance the PEV will have to travel 

until the next charge, and the SOC of the PEV. Figure 8 shows the flow chart for the algorithm. 

Ovals represent inputs, rectangles represent built models, and diamonds represent outputs. 
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Figure 8. Algorithm Flow Chart 

5.2 Cost Load and Vehicle Parameters 

 This section outlines the different parameters that are input into the algorithm. 

5.2.1 Cost Load 

 In order to deploy the charging algorithm, a cost load is required. For this demonstration, 

the Anteater Instructional Research Building (AIRB) is used. In order to obtain the AIRB data, the 

MelRok metering system is used [38]. Initially, to obtain an average load profile for the year, 2015 

– 2017 data were obtained at a 1-minute interval. However, a 1-minute interval resulted in too 

much noise in the data. Therefore, data were obtained at a 15-minute interval. However, the cost 

load in the algorithm has a two-day time span with a 1-minute interval (i.e., 2880 data points). 

Since a 15-minute interval results in 192 data points for a two-day time span, it was assumed that 

every 15-minute interval has the same value. Figure 9 and Figure 10 provides an example of the 

cost load at a 1-minute interval and 15-minute interval. 

Building Inputs

Cost Load

Decentralized 

Smart Charging 

Algorithm

PEV 

Charging 

Profile

Updated 

Cost 

Load

PEV Inputs

Arrival Time

Departure Time

Distance

SOC



27 

 

 

Figure 9. AIRB Cost Load: 1-Minute Interval (Adapted from Ref. [38]) 

 

Figure 10. AIRB Cost Load: 15-Minute Interval (Adapted from Ref. [38]) 
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5.2.2 Vehicle Data 

 As stated in the beginning of the chapter, 10 Kia Souls will be used for the demonstration. 

The 10 vehicles are numbered 105, 117, 118, 119, 120, 121, 122, 123, 124, and 125. In the study 

done by Li et al. [7], PHEVs and BEVs are used while for this demonstration, only BEVs are used. 

The simulation parameters used in the study done by Li et al. as well as the Kia Soul characteristics 

are listed in Table 3. 

Table 3. Vehicle Parameters (From Ref. [7], [39], [40]) 

Vehicle Parameters 

Vehicle Type All-Electric Range (miles) Battery Capacity (kWh) 

PHEV 40 13.6 

BEV 60 18.6 

Kia Soul 93 27 

 

5.2.3 Solar Data 

 In Figure 9 and Figure 10, the cost load depicted is the net load, which is the building 

electric load minus renewable generation. However, the MelRok metering system does not provide 

solar data for the Anteater Parking Structure (APS), which is the parking structure adjacent to 

AIRB that has solar panels attached to the top floor. In order to determine the net load, solar data 

from the Multipurpose Science & Technology Building (MSTB) were used as a proxy for AIRB, 

since it is available on the MelRok metering system. 

 To see if the MSTB solar data could be used as a proxy for APS, it had to be determined 

whether or not the MSTB solar profile followed the same trend as the APS solar profile. From a 

previous study, a week of solar data from summer 2015 were available for APS. Using the MelRok 

metering system, the same week of MSTB solar data were obtained. Figure 11 shows both the APS 

and MSTB solar profiles. 



29 

 

 

Figure 11. APS and MSTB Solar Profile (Adapted from Ref. [38]) 

 As seen in Figure 11, the APS and MSTB solar profile follow a similar trend, but have 

minor differences. Both profiles experience minor deviations, but overall, the differences in their 

profiles do not have a significant effect on the overall results. Once it was determined that the APS 

and MSTB solar profile follow similar trends, a scaling factor was calculated by dividing the 

MSTB solar profile by the APS solar profile. A scaling factor for each day of that week was 

calculated, and the week was averaged to determine an average scaling factor. For this study, it is 

assumed that the average scaling factor can be applied to each day of the year. Each day of the 

yearlong MSTB solar profile was divided by the average scaling factor in order to obtain a solar 

profile for APS. Figure 12 shows the scaling profile used. 
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Figure 12. Solar Scaling Profile 

5.2.4 Cost Updating 

 As stated in section 4.1, two methods for updating the cost load are updating the cost by 

fixed time intervals and updating the cost by a fixed number of vehicles. For this demonstration 

however, due to the low number of vehicles, the cost can be updated after each vehicle rather than 

after a fixed number of vehicles. To update the cost load, the PEV charging profile from the first 

vehicle is added to the original cost load. This becomes the updated cost load. The updated cost 

load is then sent back to the algorithm, where the next vehicle’s charging profile is created based 

off the updated cost load. This process is repeated depending on the number of vehicles. Figure 13 

shows how the cost load is updated. 
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Figure 13. Cost Load Updating 

5.3 Modifications made for Deployment 

 In order to deploy the algorithm, the vehicles need to be able to receive the commands from 

the algorithm and the algorithm needs to be able to receive the necessary input parameters. In order 

to achieve this, the on-board telematics will be used to send and receive information. Figure 14 

shows the information flow. First, the user will input the necessary parameters: their dwell period 

and next trip distance. When the vehicle plugs in, the current SOC and time they plug in will be 

obtained. These data are sent to the PEV smart charging algorithm, where it will use the cost load 

to determine the charging schedule, which gets sent back to the PEVs. 
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Figure 14. Information Flow 

5.3.1 User Application and SQL Database 

 In order for users to input their travel plans, a user application had to be developed. Figure 

15 shows the application programming interface (API), where the users can input their departure 

time, as well as their planned trip distance. The plug-in time as well as current SOC are obtained 

via telematics. 

 Once the user inputs their departure date/time and planned trip distance, the information is 

sent to the SQL database. Figure 16 and Figure 17 show an example of the SQL database with the 

vehicle trip information as well as the vehicle status.  
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Figure 15. Online API 

 

Figure 16. Vehicle Trip Information 
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Figure 17. Vehicle Status 

 The vehicle’s arrival time is defined as when the charger is plugged into the vehicle and 

the vehicle begins charging. To determine the vehicle’s arrival time, the columns labeled 

“evStatusBatteryStatus”, “evStatusBatteryPlugin”, and “evStatusBatteryCharge” are used. If the 

value in “evStatusBatteryStatus” is less than 100 (i.e., SOC is less than 100%), the value in 

“evStatusBatteryPlugin” switches from 0 to 2 (i.e., the charger is plugged in), and the value in 

“evStatusBatteryCharge” switches from 0 to 1 (i.e., the vehicle begins charging), this indicates 

that the vehicle has begun charging, and the value in “StatusTimeStamp” is used as the arrival time 

(e.g., rows 14 and 15 in Figure 17). To determine the SOC during the arrival time, the value under 

“evStatusBatteryStatus” is multiplied by 27 (Kia Soul battery capacity) and divided by 100. 

 In order to determine the vehicle’s arrival time and SOC, the vehicle status needs to be 

updated at a certain time interval. The update interval can be seen in “StatusTimeStamp” by 

examining the time difference between the value in row n and n+1. This is referred to as the “poll 

rate” or “polling”, which affects the accuracy of the arrival time and SOC sent to the algorithm. 

5.3.2 Vehicle Commands 

 Once each vehicle has a charge profile, the charge commands are sent to the vehicles. 

Vehicle commands are sent according to the charging profile. Figure 18 and Table 4 show an 

example of vehicle charging commands for two vehicles. 
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Figure 18. PEV Charging Profiles 

Table 4. Vehicle Charge Commands 

Vehicle Charge Commands 

Vehicle ID Time Command 

105 8:59 AM On 

105 10:00 AM Off 

105 10:15 AM On 

105 10:30 AM Off 

105 10:45 AM On 

105 10:46 AM Off 

117 7:00 PM On 

117 7:13 PM Off 

117 7:30 PM On 

117 7:45 PM Off 

 

 For example, in Figure 18, vehicle 105 has three charging periods and vehicle 117 has two 

charging periods. This means that three “on/off” commands will be sent for vehicle 105, and two 

“on/off” commands will be sent for vehicle 117. Since the cost load and charging profiles have a 

1-minute resolution, the algorithm runs every minute. The algorithm checks the time on the 
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computer and if the time corresponds to the same time as a charge command, the command is sent. 

To ensure that the charger is turned on or off, the algorithm checks the vehicle status in between 

each on/off or off/on command and if the vehicle has not been turned on or off, it will issue another 

command. For example, if at 9:00 AM vehicle 105 has not begun charging, the algorithm will 

issue another on command. This is set up as a fail-safe in case the vehicle does not receive the 

initial command. Figure 19 shows the updated flow chart for the algorithm with a connection to 

the SQL database. 

 

Figure 19. Algorithm Flow Chart with Connection to SQL Database 
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5.4 Edge Cases 

 When modifying the algorithm, upon initial testing, three edge cases were discovered. 

5.4.1 Sorting Priority 

 The first edge case that must be taken into consideration is the sorting priority. When the 

algorithm was modified for multiple vehicles, the sorting priority became an issue. Depending on 

the order of the vehicles that arrive, the cost load can be affected in different ways. Therefore, in 

order to make sure the cost load is updated in a consistent manner, the following order is used: 

The first vehicle to arrive receives the first charge profile. If two or more vehicles arrive at the 

same time, the vehicle with the earliest departure time receives the first charge profile. If two or 

more vehicles arrive at the same time and have the same departure time, the vehicle with the 

farthest travel receives the first charging profile. The vehicles with the least flexibility receive first 

priority. 

5.4.2 Initial Plug-In 

 The second edge case is when the vehicle initially plugs in, the charger needs to be turned 

off. When the charger is plugged in the vehicle begins charging immediately, but the charge profile 

most likely will not require the vehicle to be charged immediately. Therefore, the algorithm will 

check to see if the vehicle should be charged when it initially plugs in. If not, the algorithm will 

send an “off” command to the vehicle. However, the poll rate dictates how long the vehicle will 

initially charge before the algorithm can send an off command. For example, if a vehicle plugs in 

at 8:32 AM and the poll rate is set to 5 minutes, the algorithm will use 8:35 AM as the arrival time. 

If the charge profile does not have an on command at 8:35 AM, the algorithm will issue an off 

command. In this scenario, the vehicle will charge for 3 minutes before the charger is turned off 

(Figure 20b). If the poll rate is set to 30 minutes, the algorithm will use 9:00 AM as the arrival 
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time. If the charge profile does not have an on command at 9:00 AM, the algorithm will issue an 

off command. In this scenario, the vehicle will charge for 28 minutes before the charger is turned 

off (Figure 21b). In situations where the initial SOC is close to maximum, if the poll rate is not 

small enough the vehicle could finish charging completely on the initial plug in. In Figure 20a and 

Figure 21a, the top plot represents the ideal charging profile, while Figure 20b and Figure 21b 

represents the charging profile with the poll rate taken into consideration. 

 

Figure 20. PEV Charging Profile: 5-Minute Poll Rate 
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Figure 21. PEV Charging Profile: 30-Minute Poll Rate 

5.4.3 Overnight Charging 

 The third edge case is if the vehicle needs to charge overnight. If a vehicle’s dwell period 

occurs overnight (e.g., arrive Monday at 6:00 PM and depart Tuesday at 5:00 AM), the charge 

profile will occur overnight, such as in Figure 22. Figure 22a shows the PEV charging profile 

while Figure 22b shows the cost load before and after the PEV charging profile. 
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Figure 22. Overnight Charging 

 However, the cost load changes when the next day arrives. For example, if the current day 

is Monday, the cost load consists of Monday and Tuesday, and when Tuesday arrives, the cost 

load consists of Tuesday and Wednesday. Since the algorithm only takes into account the time and 

not the date, when Tuesday arrives, the arrival time of the vehicle will be shifted to Tuesday at 

6:00 PM, rather than being kept at Monday at 6:00 PM and the departure time will be shifted to 

Wednesday at 5:00 AM, rather than being kept at Tuesday at 5:00 AM. The charge profile would 

then be set to charge overnight on Tuesday. In this case, since the departure time of the vehicle is 

5:00 AM on Tuesday, the vehicle would never charge. In order to ensure that the vehicle will be 

charged, when Tuesday arrives (i.e., 12:00 AM on Tuesday), the arrival time of the PEV will be 

set to 12:02 AM, while keeping the departure time the same. Using this method, the charge profile 

changes slightly (since the dwell period is no longer the same length) but remains fairly similar. 

Figure 23a shows the PEV charging profile when the arrival time is set to 12:02 AM. 
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Figure 23. Overnight Charging with Modified Arrival Time 

5.5 Results 

5.5.1 Vehicle Response Time 

 The first test was to determine the response time of the vehicle. The initial test was carried 

out on vehicle 121. Commands were sent to the vehicle via MATLAB commands. Figure 24 and 

Figure 25 show how the vehicle responded to the commands. 

 

Figure 24. Vehicle 121 Commands 

 

Figure 25. Vehicle 121 Status 
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 For the initial test, the vehicle poll rate was set at 10 minutes. This means that every 10 

minutes the vehicle status is updated. The initial on command was sent at 11:01 and at 11:10, the 

value in evStatusBatteryCharge became 1 indicating the charger has been turned on. At 11:35, an 

off command was sent and at 11:41, the value became 0 indicating the charger has been turned off.  

 To determine how long it takes for the vehicles to respond to the commands, four other 

vehicles were selected for testing to send vehicle commands to. Table 5 shows when both “on” 

and “off” commands were sent and how long it took the vehicles to respond. 

Table 5. Vehicle Charge Command Response Times 

Vehicle Charge Command Response Times 

Vehicle ID Off Sent Off Received On Sent On Received 

119 11:24:18 AM 11:27:00 AM 11:27:38 AM 11:29:58 AM 

120 11:15:22 AM 11:17:56 AM 11:18:34 AM 11:21:33 AM 

122 11:39:45 AM 11:41:55 AM 11:42:38 AM 11:45:24 AM 

124 11:04:40 AM 11:06:02 AM 11:09:06 AM 11:12:27 AM 

 

 On average, it took the vehicles 2 minutes and 12 seconds to respond to the off commands 

and 2 minutes and 51 seconds to respond to the on commands. However, these tests were 

performed while the vehicles were enclosed in a parking structure, which could affect the latency. 

5.5.2 Battery Testing 

 In order to obtain a more accurate arrival time and SOC, the poll rate was decreased to 5 

minutes from 10 minutes. However, a 5-minute poll rate caused the vehicle’s auxiliary battery to 

deplete within 2 to 3 days. Each time the vehicle’s status was polled, the on-board telematics turn 

on, causing an increase in the amperage. To determine the amperage increase, tests were performed 

on the vehicle using a multimeter. 
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Figure 26. Current Draw: 5-Minute Poll Rate (Hand Calculations) 

 As seen in Figure 26, each time the vehicle information was polled, the amperage increased 

to 3 amps from a baseline of ~260 milliamps. This results in 0.047 Amp-hours drawn from the 

battery during the poll period. The poll period refers to the increase in amperage each time the 

vehicle’s information is polled from the baseline of ~260 milliamps until it decreases back to the 

baseline amperage. To retrieve more data points, the vehicle’s auxiliary battery was attached to a 

shunt resistor, which was connected to an Arduino to record the amps. Figure 27 through Figure 

30 show the results for a 5, 10, 15, and 20-minute poll rate, respectively. 
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Figure 27. Current Draw: 5-Minute Poll Rate 

 

Figure 28. Current Draw: 10-Minute Poll Rate 
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Figure 29. Current Draw: 15-Minute Poll Rate 

 

Figure 30. Current Draw: 20-Minute Poll Rate 
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 In Figure 27 through Figure 30, the average amp-hour during each poll period was 0.039. 

The average amp-hour during each break period was also calculated. The break period refers to 

the period between each polling rate, when the amperage is at the baseline. The combined amp-

hours of the poll period and break period is referred to as a single cycle. The number of cycles is 

used to determine approximately how many days the battery will last before it is depleted, 

assuming the battery has not been charged. To determine the number of days before the battery is 

depleted, the following calculations are used: 

Table 6. Kia Soul Auxiliary Battery (From Ref. [41], [42]) 

Kia Soul Auxiliary Battery 

Voltage (V) Reserve Capacity (min) Battery Capacity (Amp-hours) 

12 120 50 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝐴 ∙ ℎ] = 𝑅𝑒𝑠𝑒𝑟𝑣𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝑚𝑖𝑛] × 25 [𝐴] ×
1

60
 [

ℎ𝑜𝑢𝑟𝑠

𝑚𝑖𝑛
] 

𝐵𝑟𝑒𝑎𝑘 𝑃𝑒𝑟𝑖𝑜𝑑 [𝐴 ∙ ℎ] = 0.26 [𝐴] × 𝐵𝑟𝑒𝑎𝑘 𝑃𝑒𝑟𝑖𝑜𝑑 [𝑠] ×
1

3600
 [

ℎ𝑜𝑢𝑟𝑠

𝑠
] 

𝑃𝑜𝑙𝑙 𝑃𝑒𝑟𝑖𝑜𝑑 𝐴𝑚𝑝 − 𝐻𝑜𝑢𝑟𝑠 = 0.039 [𝐴 ∙ ℎ] 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑝 − 𝐻𝑜𝑢𝑟𝑠

𝐶𝑦𝑐𝑙𝑒
=

(𝐵𝑟𝑒𝑎𝑘 𝑃𝑒𝑟𝑖𝑜𝑑 𝐴𝑚𝑝 − ℎ𝑜𝑢𝑟𝑠 + 𝑃𝑜𝑙𝑙 𝑃𝑒𝑟𝑖𝑜𝑑 𝐴𝑚𝑝 − ℎ𝑜𝑢𝑟𝑠)

1 𝐶𝑦𝑐𝑙𝑒
 [

𝐴 ∙ ℎ

𝑐𝑦𝑐𝑙𝑒
] 

# 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠 =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

(
𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑝 − 𝐻𝑜𝑢𝑟𝑠

𝐶𝑦𝑐𝑙𝑒
)

 [
𝐴 ∙ ℎ

(
𝐴 ∙ ℎ
𝑐𝑦𝑐𝑙𝑒

)
] 
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𝐷𝑎𝑦𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝐷𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =
# 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠 [𝐶𝑦𝑐𝑙𝑒] × (

𝑃𝑜𝑙𝑙 𝑅𝑎𝑡𝑒
𝐶𝑦𝑐𝑙𝑒

 ) [
𝑚𝑖𝑛

𝑐𝑦𝑐𝑙𝑒
]

1440 [
𝑚𝑖𝑛
𝑑𝑎𝑦

]
 

Table 7 and Figure 31 show approximately how many days the battery will last before it is fully 

depleted based on the poll rate. 

Table 7. Poll Rate Characteristics 

Poll Rate Characteristics 

Poll Rate 
Break 

Period A∙h 

Poll Period 

A∙h 
Total A∙h # of Cycles 

Days before 

Depletion 

5 Minutes 0.005 0.039 0.044 1133 3.93 

10 Minutes 0.027 0.039 0.066 758 5.26 

15 Minutes 0.048 0.039 0.087 577 6.00 

20 Minutes 0.070 0.039 0.109 459 6.37 

 

 

Figure 31. Battery Depletion 

5.6 Poll Rate Effect on Charging Schedules and Cost Load 

 The poll rate can affect how the overall profile is shaped. In order to simulate how the poll 

rate affects the net load, the 2009 NHTS data were used to represent vehicle travel patterns [16]. 
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These data were filtered for work related travel. Figure 32 through Figure 34 show arrival and 

departure times, as well as VMT. 

 

Figure 32. Arrival Times for Work Related Travel (Adapted from Ref. [16]) 
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Figure 33. Departure Times for Work Related Travel (Adapted from Ref. [16]) 

 

Figure 34. Vehicle Miles Traveled for Work Related Travel (Adapted from Ref. [16]) 
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 As seen in Figure 34, the majority of VMT for work related travel is less than 30 to 40 

miles. For the following simulations, the VMT were limited to 30 miles to ensure that the vehicles 

will not travel more than the allowable range. Figure 35 through Figure 38 show the effects of a 5, 

10, 15, and 20-minute poll rate on the cost load when 500 vehicles are simulated, respectively. 

 

Figure 35. Cost Load Before and After PEV Charging: 5-Minute Poll Rate 
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Figure 36. Cost Load Before and After PEV Charging: 10-Minute Poll Rate 

 

Figure 37. Cost Load Before and After PEV Charging: 15-Minute Poll Rate 
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Figure 38. Cost Load Before and After PEV Charging: 20-Minute Poll Rate 

 In Figure 35 through Figure 38, subplots “a” show the ideal profile, where the poll rate 

does not affect that charging profiles and subplots “b” show the profile when the poll rate is taken 

into account. It is clear that as the poll rate increases, the profile becomes more unstable. The 

majority of the “spikes” in the cost load occurs around 8 AM – 9 AM, corresponding with the 

majority of arrival times, as seen in Figure 32. 

5.7 Objective 2 Summary 

 As seen in sections 5.5.2 and 5.6, the poll rate has a significant effect on both the battery 

as well as the accuracy of the results. While a 1-minute poll rate would be the most ideal, it is not 

possible since it takes on average 3.8 minutes to obtain the vehicle status. As seen earlier, a 5-

minute poll rate caused the auxiliary battery to deplete within 2-3 days. Therefore, for this 

demonstration, a 10-minute poll rate should be used. This will provide the most accurate results 

without putting too much strain on the battery. 
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 One potential solution to address the poll rate issue would be to use the EVSE to obtain the 

vehicles’ status rather than the vehicles’ on-board telematics system. This would remove the need 

to use the telematics system to obtain the status since once the vehicle plugs in, the vehicles’ status 

can get sent to the algorithm from the EVSE side. Another potential solution would be to use a 

“hybrid” polling approach. Using this approach, the poll rate can be set to 5 minutes when the 

vehicles are plugged in, and reverted back to 20 minutes once they have finished charging. 

 While this demonstration is for 10 vehicles, the algorithm can be scaled up to larger scales, 

such as what has been done in [7]. When deploying the algorithm on a small fleet of vehicles such 

as the demonstration, the computation time is not extensive and the cost load can be updated after 

each vehicle. However, as the number of vehicles scale up, if the cost load is to be updated after 

each vehicle, significant computation power will be needed. Therefore, as the number of vehicles 

increase, to avoid transmitting large amounts of data, the cost load should be updated after a fixed 

number of vehicles or a fixed time step.   
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6. OBJECTIVE 3 RESULTS 

Develop and simulate smart charging scenarios within a microgrid 

 The decentralized smart charging algorithm identified in objective 1 will be used to create 

and simulate different smart charging scenarios. Chapter 6 explores how the decentralized smart 

charging algorithm affects different building loads on a microgrid. 

6.1 University of California, Irvine Microgrid 

 The microgrid used for analysis in this thesis is the University of California, Irvine’s (UCI) 

microgrid. The UCI microgrid serves more than 30,000 members as well as a variety of building 

types such as residential, office, and research buildings. As seen in Figure 39, a wide array of 

different technologies have been installed on UCI’s microgrid such as gas and steam turbines, 

electric vehicle chargers, solar PV, etc. [43]. 

 

Figure 39. UCI Microgrid (From Ref. [43]) 
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6.2 Cost Loads: Time-Of-Use Rate Structure & Building Loads 

 For these simulations, three different cost loads were selected to evaluate how the smart 

charging algorithm impacts UCI’s electric load: Southern California Edison’s (SCE) Time-Of-Use 

(TOU) rate structure, a proposed future TOU rate structure, and different building loads. Using 

different cost loads will shape the net load profile in different ways. 

6.2.1 SCE TOU Rate Structure 

 The first cost load used is the TOU rate structure provided by SCE. This is used to estimate 

how much it will cost each individual PEV to charge. While UCI charges each vehicle based on 

how long they are parked for ($2.50/hour [44]), in order for it to be practical to use the SCE TOU 

rate structure as a cost load, it is assumed that the vehicles will be charged based on how much 

energy they use rather than how long they are parked for. If vehicle owners were charged based 

on their dwell period, using this rate structure as a cost load would not be practical since work 

dwell periods typically last around 8 hours. In this scenario, vehicles will attempt to charge at the 

lowest cost, which may not necessarily occur when the net load is at the lowest. The SCE TOU 

rate structure is broken up into three categories and two seasons: off-peak, mid-peak, on-peak, and 

the winter (10/1 – 5/31) and summer (6/1 – 9/30) seasons. These costs consist of peak cost and 

transmission and distribution charges. For both seasons, holidays and weekends use off-peak costs 

[45]. Figure 40 shows the SCE TOU rate structure for both seasons and all three categories along 

with a generic normalized solar profile. As seen in Figure 40, the costs tend to be the cheapest 

when renewable generation is at a minimum, meaning that the net load will not be at the lowest 

value.  



56 

 

 

Figure 40. SCE TOU Rate Structure with Solar Profile 

6.2.2 Future TOU Rate Structure 

 The second cost load used is a proposed future TOU rate structure. The way TOU rate 

structures are designed is important since it can encourage electric loads to coordinate better with 

solar production. The California Public Utilities Commission (CPUC) aims to shift PEV charging 

to times of the day that utilize low-cost renewable energy in order to better assist the grid. 

However, commercial TOU rates that are currently used were not constructed with renewable 

generation and integration taken into consideration. Therefore, investor owned utilities (IOUs) 

such as San Diego Gas and Electric, Pacific Gas and Electric, and Southern California Edison have 

proposed shifting their peak TOU rates to late afternoon and into the evening, such as 4 PM – 9 

PM. This will provide better alignment with the “duck curve” since peak prices would be shifted 

to expected peak periods, as seen in Figure 4 [46]–[48]. 
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This proposed rate structure will alter the costs such that the cost will be the lowest when 

renewable generation is maximized and the highest when renewable generation is minimized. In 

this scenario, vehicles will also attempt to charge at the lowest cost. However, in contrast to the 

SCE TOU rate structure, this rate structure tends to be the lowest when the net load is at the lowest. 

For this rate structure it is assumed that the SCE on-peak and off-peak hours/rates will switch for 

the summer season, and the mid-peak and off-peak hours/rates will switch for the winter season. 

Weekend and holidays will still use off-peak costs. Figure 41 shows the proposed future TOU rate 

structure along with the same normalized solar profile shown in Figure 40. Note how the lowest 

rates corresponds with peak solar production. 

 

Figure 41. Future TOU Rate Structure with Solar Profile 

6.2.3 Building Profiles 

 The third cost load used are different building profiles. In this scenario, vehicles will 

attempt to charge when the net load is the lowest. The six buildings selected already have EVSEs 
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installed. Table 8 lists each building as well as the number of chargers located at each building. 

Figure 42 and Figure 43 shows each building’s electric load profile and where the chargers are 

located, respectively. When using the building profiles as the cost load, both the SCE and future 

TOU rate structure will be used to determine how much it will cost the vehicles to charge. 

Table 8. UCI Buildings with EVSEs (From Ref. [44]) 

UCI Buildings with EVSEs 

Building Number of Chargers 

A. Anteater Parking Structure (APS) 20 

B. East Campus Parking Structure (ECPS) 20 

C. Mesa Parking Structure (MPS) 14 

D. Multipurpose Science Technology Building (MSTB) 6 

E. Student Center Parking Structure (SCPS) 12 

F. Social Science Parking Structure (SSPS) 38 

 

 

Figure 42. UCI Building Electric Load Profiles (Adapted from Ref. [38]) 
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Figure 43. UCI EVSE Charger Locations (From Ref. [44]) 

6.3 Simulation Scenarios 

 For the following simulations, the goal is to determine how smart charging will impact the 

electric load at the six different building locations. As seen in section 5.6 the poll rate can have a 

significant effect on the overall net load depending on what it is set to. However, two potential 

solutions for this issue are noted in section 5.7. For the following simulations two cases are 

considered: a base case where it is assumed that no poll rate is necessary and the vehicles follow 

the exact charge profile they are given, and a case where a poll rate of 10 minutes is used and the 

vehicles follow a charge profile with the poll rate taken into consideration. The case with the poll 

rate taken into consideration will be benchmarked against the base case to determine how the poll 

rate affects the overall net load. 
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6.4 Metrics: Cost to Charge and Electric Grid CO2 Emissions 

 To determine the impact that smart charging has, two different metrics are examined: the 

cost to charge the vehicles and the electric grid CO2 emissions that result from PEV charging. 

6.4.1 Cost to Charge 

 The first metric analyzed is the cost to charge the vehicles. This metric reflects the costs 

that PEV owners will incur when they charge their vehicles and allows owners to see the difference 

in cost when a poll rate is taken into consideration versus when no poll rate is needed. The rate 

structures shown in section 6.2.1 and 6.2.2 are used to determine the charging costs. 

6.4.2 Electric Grid CO2 Emissions 

 The second metric analyzed is the electric grid CO2 emissions. This metric is used to 

determine the emissions that come from the electric grid as a result of PEV charging. To determine 

the electric grid CO2 emissions, an emissions factor (EF) based on California Independent System 

Operator (CAISO) data were created. To create an emissions factor, renewable production data for 

California were obtained from the CAISO Renewables Watch, which provides hourly power 

production data from the California grid for a specified day for specific resource types [49]. The 

resource types are separated into two categories, zero-carbon and carbon technologies. Zero-

carbon technologies that are considered are solar, wind, and geothermal, while carbon-

technologies that are considered are thermal and import resources. It is assumed that thermal 

resources emit carbon at a rate of 1232.35 pounds per MWh [50], and import resources emit carbon 

at a rate of 782.2 pounds per MWh [51]. Using these carbon-technology emissions factors, an 

hourly resolved emissions factor for the entire year was produced using the following calculation: 

(𝑇ℎ𝑒𝑟𝑚𝑎𝑙 [𝑀𝑊ℎ] ∗ 𝑇ℎ𝑒𝑟𝑎𝑚𝑙 𝐸𝐹 [
𝑙𝑏

𝑀𝑊ℎ
]) + (𝐼𝑚𝑝𝑜𝑟𝑡 [𝑀𝑊ℎ] ∗ 𝐼𝑚𝑝𝑜𝑟𝑡 𝐸𝐹 [

𝑙𝑏
𝑀𝑊ℎ

])

(𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠 + 𝑁𝑢𝑐𝑙𝑒𝑎𝑟 + 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 + 𝐼𝑚𝑝𝑜𝑟𝑡𝑠 + 𝐻𝑦𝑑𝑟𝑜)[𝑀𝑊ℎ]
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Using these calculations, the emissions factor produced had a maximum, minimum, and average 

rate of 821.67, 424.18, and 660.96 pounds per MWh, respectively. However, since the average 

emissions factor produced was higher than the 2014 Emissions and Generation Resource 

Integrated Dataset (eGRID) rate of 568.6 pounds per MWh for California, the estimated time 

resolved emissions factor was normalized to the eGRID value [52]. Figure 44a and Figure 44b 

shows a winter and summer example for typical CO2 emissions factors where each tick mark 

represents midnight. 

 

Figure 44. Winter and Summer CO2 Emissions Factor 

6.5 Simulation Results 

 Five sets of scenarios were simulated with increasing vehicle traffic, starting from 100 

vehicles at each location up to 900 vehicles, increasing in increments of 200 vehicles. For the 

following simulations it is assumed that the number of chargers is proportional to the number of 

vehicles. The following simulations were simulated on August 9th. Figure 45 shows an example of 
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the cost load before and after PEV charging for three different cost loads for 500 vehicles. Figure 

45a uses the building profile as the cost load, Figure 45b uses the SCE TOU rate structure as the 

cost load, and Figure 45c uses the future TOU rate structure as the cost load. This specific example 

uses APS for the building cost load. Figure 46 shows the same plots as Figure 45 but with a 10-

minute poll rate. Figure 47 and Figure 48 shows the average electric grid CO2 emissions and cost 

to charge per two days for all cost loads, respectively. In each figure, the legend represents which 

cost load was utilized. Table 9 and Table 10 shows the percent change between the scenarios with 

and without the poll rate for the averaged values presented in Figure 47 and Figure 48, respectively. 

Positive values indicate a percent increase and negative values indicate a decrease, respectively. 

Table 11 and Table 12 show the number of simulations performed and the average standard 

deviation (STD) for each simulated vehicle traffic level for the average electric grid CO2 emissions 

and cost to charge for all cost loads, respectively. To view individual values for each cost load, 

refer to Table 25 through Table 52 in the appendix. 
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Figure 45. Cost Load Before and After PEV Charging for APS 

 

Figure 46. Cost Load Before and After PEV Charging for APS: 10-Minute Poll Rate 
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Figure 47. Electric Grid CO2 Emissions 

 

Figure 48. Cost to Charge 
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Table 9. Electric Grid CO2 Emissions Percent Change 

Electric Grid CO2 Emissions Percent Change 

Vehicles Building SCE TOU Future TOU 

100 0.22 -0.19 0.60 

300 0.24 -0.20 0.61 

500 0.24 -0.20 0.61 

700 0.24 -0.20 0.60 

900 0.23 -0.20 0.60 

 

Table 10. Cost to Charge Percent Change 

Cost to Charge Percent Change 

Vehicles Building SCE TOU Building Future TOU SCE TOU Future TOU 

100 -0.78 0.93 0.47 2.24 

300 -0.84 1.04 0.47 2.26 

500 -0.86 1.06 0.47 2.26 

700 -0.85 1.06 0.48 2.25 

900 -0.84 1.05 0.47 2.25 

 

Table 11. Electric Grid CO2 Emissions Standard Deviation 

Electric Grid CO2 Emissions Standard Deviation (%) 

Veh Sim Bldg Bldg w/PR SCE SCE w/PR Future Future w/PR 

100 500 6.33 6.31 6.33 6.34 6.25 6.22 

300 500 3.66 3.65 3.69 3.70 3.60 3.59 

500 300 2.75 2.74 2.76 2.76 2.71 2.70 

700 150 2.37 2.37 2.33 2.33 2.40 2.39 

900 100 2.13 2.12 2.15 2.15 2.09 2.08 

 

Table 12. Cost to Charge Standard Deviation 

Cost to Charge Standard Deviation (%) 

Veh Sim 
Bldg 

SCE 

Bldg SCE 

w/PR 

Bldg 

Future 

Bldg Future 

w/PR 
SCE 

SCE 

w/PR 
Future 

Future 

w/PR 

100 500 6.51 6.54 6.52 6.45 6.77 6.73 6.37 6.25 

300 500 3.79 3.80 3.75 3.70 3.89 3.87 3.68 3.61 

500 300 2.78 2.79 2.81 2.78 2.87 2.85 2.73 2.69 

700 150 2.41 2.42 2.49 2.46 2.52 2.50 2.42 2.38 

900 100 2.17 2.19 2.14 2.10 2.30 2.29 2.13 2.08 

 

 In Figure 45a, when using the SCE TOU rate structure as the cost load, the vehicles tend 

to charge in the morning. This is typically when vehicles plug in upon arrival, centering around 

8:00 AM. In Figure 45b, when using the future TOU rate structure as the cost load, vehicles tend 
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to shift their charge schedules to the middle of the day around 12:00 PM – 3:00 PM. In Figure 45c, 

when using the building profile as the cost load, the charge schedules are distributed throughout 

the day in order to fill the valley and minimize the load. Depending on which cost load is utilized, 

the final cost loads are shaped in different ways, which affects the electric grid CO2 emissions and 

cost to charge as seen in Figure 47 and Figure 48. When the building profile is used as the cost 

load, the CO2 emissions that result are the second to highest, and the cost to charge is either the 

highest or third to highest, depending on which rate structure is used. When the SCE TOU rate 

structure is used as the cost load, the CO2 emissions that result are the highest, and the cost to 

charge is the second to highest. When the future TOU rate structure is used as the cost load, both 

the CO2 emissions and cost to charge are the lowest out of the three cost loads. 

 In Table 9, “building profile”, “SCE TOU rate”, and “future TOU rate” each refer to which 

cost load was used. In Table 10, “building SCE TOU” and “building future TOU” refer to the cost 

load when the building profile was used with the SCE TOU rate structure and future TOU rate 

structure, respectively. When the poll rate is taken into consideration, emissions increase slightly 

when the building profile and future TOU rate structure are used as the cost load since vehicles 

will charge briefly when the emissions factor is higher. If the SCE TOU rate structure is used to 

determine the cost to charge when the building profile is used as the cost load, the cost will 

decrease slightly since the cost is cheaper when the emissions factor is higher. When the future 

TOU rate structure is used to determine the cost to charge when the building profile is used as the 

cost load, the cost increases since with this rate structure the cost is more expensive when the 

emissions factor is higher. When the SCE TOU rate structure is used as the cost load, emissions 

slightly decrease since vehicles will charge slightly into the period when the emissions factor is 
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lower. The poll rate forces the vehicles to charge slightly into the more expensive rate period, 

which coincides with a lower emissions factor, leading to an increase in the cost to charge. 

 In Table 11 and Table 12, “veh” represents the number of vehicles simulated, “sim” 

represents the number of simulations performed at that vehicle traffic, “bldg” represents the 

building cost load, and “PR” represents poll rate. In Table 12, “bldg SCE” represents the building 

profile using the SCE TOU rate structure to determine the cost to charge and “bldg future” 

represents the building profile using the future TOU rate structure to determine the cost to charge. 

In both tables, as the number of vehicles increased, the number of simulations that needed to be 

performed decreased. Higher simulated vehicle traffic shows less variability between all 

simulations, indicated by the decreasing standard deviation. With the standard deviation ranging 

between 2% and 6%, most outliers that would have appeared in the simulations have been filtered 

out. 

6.6 Objective 3 Summary 

 From the perspective of CO2 emissions and cost, using the future TOU rate structure 

appears to be the ideal cost load to use to charge the vehicles. However, if this cost load is used, a 

large peak occurs in the middle of the day, more than twice as much as the peak that occurs when 

the SCE TOU rate structure is used as the cost load and more than five times as much as the peak 

that occurs when the building profile is used as the cost load. For the grid operator, this is difficult 

to manage, as power plants would have to ramp up quickly in order to meet the sudden demand. 

To benefit both the grid operator and vehicle owners, the building profiles should be used as the 

cost load but with a real time pricing structure implemented (i.e., the cost should be the lowest 

when the net load is the lowest and vice versa). For all cost loads, the poll rate does not have a 

significant effect on the resulting CO2 emissions and cost to charge.  



68 

 

7. OBJECTIVE 4 RESULTS 

Integrate smart charging algorithms into the Holistic Grid Resource Integration and 

Deployment (HiGRID) model to determine California electric grid emissions. 

 As seen in the literature presented in section 2.5, studies that used a centralized smart 

charging architecture have mainly focused on large-scale implementation and have been used to 

demonstrate the benefits of smart charging approaches when compared to non-smart charging 

approaches. However, as seen in the literature, many barriers associated with the centralized smart 

charging architecture prevent it from being implemented in real life systems. On the other hand, 

decentralized smart charging architectures have mainly been examined on small-scale residential 

systems, but are more feasible and likely to be implemented in real life systems since they do not 

face the same challenges that centralized smart charging architectures face.  

 In order to meet California’s climate change goals, it will be necessary to be able to 

implement decentralized architectures on larger, state-wide scales. This leads to the question of 

whether or not decentralized smart charging approaches can achieve the same system-wide 

benefits of an ideal centralized smart charging approach. Chapter 7 explores the difference 

between a centralized and decentralized approach when implemented on a large-scale system. The 

electric grid greenhouse gas and criteria pollutant emissions associated with the decentralized 

smart charging algorithm are benchmarked against the centralized smart charging algorithm to 

determine whether or not decentralized smart charging approaches can achieve the same benefits 

as centralized smart charging approaches in the year 2030. 

7.1 Model Implementation 

 As stated earlier, this chapter focuses on the two different charging algorithms developed 

by Li et al: the centralized and decentralized smart charging algorithm [7], [32]. Both algorithms 
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are integrated into the HiGRID model developed by Eichman et al. and Shaffer et al. to determine 

the electric grid CO2 and NOx emissions [35], [53], [54]. Figure 49 shows a model flow chart of 

the overall approach. Rectangles represent built models, ovals represent outputs, and rounded 

rectangle shapes represent input parameters. 

 

Figure 49. Model Flowchart 

 First, the necessary parameters for the smart charging algorithms are identified. For this 

study, it is assumed that all of the PEVs are BEVs. The main parameters related to the BEVs are 

their range and battery capacity, which for this study use fleet averaged values presented in sections 

7.2.2 and 7.2.3. Each BEV follows a travel pattern based off of the 2009 NHTS data [16]. The 

smart charging parameters that are altered are explained in sections 7.2.2 and 7.2.3. Note that the 

BEV parameters and PEV infrastructure parameters are common between both algorithms. Once 

the charging parameters have been decided they are then sent to the charging algorithm where the 
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aggregated charging profile is calculated. The aggregated charging profile is then sent to HiGRID, 

where the electric grid CO2 and NOx emissions from the electric grid are calculated. 

7.1.1 Holistic Grid Resource Integration and Deployment (HiGRID) Model 

 The HiGRID model serves as the main tool for the analyses in this chapter. HiGRID is a 

model developed at UCI as part of a California Energy Commission (CEC) sponsored project to 

determine any barriers that arise when integrating increasing renewable resources into the electric 

grid. It is an hourly resolved model that simulates the electric grid in response to different 

renewable portfolios. Analyses can be carried out on small-scale systems such as college 

campuses, all the way to the entire California electric grid, depending on the input parameters. 

HiGRID produces hourly resolved outputs such as electric power generation, fuel consumption, 

and part-load condition for grid resources over the course of a year. From these outputs, electric 

grid CO2 and NOx emissions can be calculated. Figure 50 shows an example of a time series output 

from HiGRID. Two different classes of power plants are peakers, which are fast responding, 

simple cycle power plants and load followers, which are moderate responding combined cycle 

power plants [35]. 
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Figure 50. HiGRID Time Series Output 

7.2 Simulation Scenario Parameters 

 Section 7.2 covers the different parameters that were used in the HiGRID model, as well 

as both the centralized and decentralized smart charging algorithms. 

7.2.1 HiGRID Scenario Parameters 

 The main parameter that affects the net load are the capacities of renewable generation 

technologies installed on the electric grid. To determine the potential renewable generation 

capacity in 2030, data from the Energy + Environmental Economics (E3) California PATHWAYS 

Model were used. The E3 pathways model is a tool to determine different pathways to reach an 

80% reduction in GHG emissions by the year 2050. The “Straight Line” scenario from the 

Pathways study, which is a trajectory that achieves a linear progression towards an 80% GHG 

reduction in California by 2050, was used for this study [55]. Table 13 lists the predicted renewable 

generation capacities for 2030 from this scenario. 
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Table 13. E3 2030 Renewable Generation Capacity 

E3 2030 Renewable Generation Capacity (MW) 

Geothermal Solar Wind Rooftop PV 

3105 20850 20790 11800 

 

 The second parameter that affects the overall load is the projected PEV load in 2030, which 

is also taken from the E3 Pathways study. For the year 2030, the projected annual PEV load is 

3.96×104 GWh [55], which corresponds to 7.7 million PEVs deployed in the California light-duty 

transportation sector. 

7.2.2 Smart Charging Scenario Parameters: Common 

 The behavior of the centralized and decentralized smart charging algorithms in terms of 

their ability to shape the electric vehicle charging load profile is commonly affected by various 

parameters, listed in Table 14. 

Table 14. Smart Charging Parameters 

Smart Charging Parameters 

Parameter Value 

Charging Infrastructure Location Availability Home & Workplace 

Charger Power (kW) 10 

Vehicle Range (miles) 200 

Vehicle Efficiency (kWh/mile) 0.34 

 

For this study the following assumptions are used for both charging algorithms: 

 All vehicles commute to their workplace and are able to charge at both home and 

work locations. At both locations, a 10-kW charger is used to recharge the vehicles.  

 All vehicles have a range of 200 miles with an energy consumption per mile of 

0.34, resulting in a 68-kWh battery for each vehicle. 
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7.2.3 Smart Charging Scenario Parameters: Decentralized 

 The decentralized smart charging algorithm has additional parameters that are not included 

in the centralized charging algorithm. Table 15 lists the parameters specifically designed for the 

decentralized smart charging algorithm. 

Table 15. Decentralized Smart Charging Parameters 

Decentralized Smart Charging Parameters 

Parameter Value 

Continuous Charging On/Off 

Error Prediction On/Off 

Final Error Type Variable: 1 through 4 

Maximum Error (MW) Variable: 184 up to 9195 

Cost Function Update Time (min) Variable: 30 up to 1440  

Forecast Length (hours) Variable: 6, 8, 10, 12 

Forecast Type Variable: 1 through 3 

 

 The continuous charging parameter dictates whether or not the vehicle will have multiple 

charging periods. Turning this parameter on means that the vehicle will continuously charge even 

if a peak occurs during the charging period. The error prediction parameter allows the algorithm 

to account for errors that occur while predicting the load since it is not possible to predict the load 

100% perfectly. This parameter is not present in the centralized algorithm since a perfect forecast 

is assumed. The final error type parameter is used to determine how the error is calculated. Final 

error type 1 through 3 utilize a random number generator, while final error type 4 is dependent on 

the maximum error. The maximum error parameter is the maximum allowable error in MW. The 

cost function update time interval parameter is the frequency at which the cost function provided 

by the electric grid to the individual vehicle is recalculated and transmitted. This parameter value 

is influenced by two limitations: the accuracy of the cost function and the data/information volume 

transfer limit. The forecast length parameter is how far the error is forecasted in determining the 

cost function from the time when a PEV is plugged in to the electric grid. The forecast type 
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parameter is the type of forecast the forecast length parameter is. Forecast type 1 is a random 

forecast error, forecast type 2 is a linear reducing forecast error, and forecast type 3 is an 

exponentially reducing forecast error. 

7.3 Sensitivity Analysis 

 To determine the effect of each parameter in decentralized smart charging algorithm, a 

sensitivity analysis had to be done. To perform the sensitivity analysis, an initial decentralized case 

is chosen, and each parameter from the initial case is varied and the CO2 and NOx emissions are 

compared to the centralized case. The values for the initial decentralized case are listed in Table 

16. Table 17 through Table 23 shows the absolute percent difference in CO2
 and NOx emissions 

compared to the centralized case.  

Table 16. Decentralized Smart Charging Parameters: Initial Case 

Decentralized Smart Charging Parameters: Initial Case 

Parameter Value 

Continuous Charging Off 

Error Prediction On 

Final Error Type 4 

Maximum Error (MW) 3000 

Cost Function Update Time (min) 30 

Forecast Length (hours) 12 

Forecast Type 3 

 

Table 17. Continuous Charging: CO2 and NOx Percent Difference 

Continuous Charging: CO2 and NOx Percent Difference 

Value CO2 NOx 

On 3.06% 4.33% 

 

 For the continuous charging parameter, the parameter was turned on. As shown in Table 

17, turning the continuous charging parameter on affects the emissions. CO2 emissions 

experienced around a 3% change and NOx emissions experienced around a 4% change. 

Table 18. Error Prediction: CO2 and NOx Percent Difference 

Error Prediction: CO2 and NOx Percent Difference 
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Value CO2 NOx 

On 0.29% 1.07% 

 

 For the error prediction parameter, the parameter was turned off. As shown in Table 18, 

turning the error prediction parameter off did not have a significant impact on emissions. CO2 

emissions experienced around a 0.3% change and NOx emissions experienced around a 1% change. 

Table 19. Final Error Type: CO2 and NOx Percent Difference 

Final Error Type: CO2 and NOx Percent Difference 

Value CO2 NOx 

1 0.08% 1.84% 

2 0.28% 1.11% 

3 0.28% 1.12% 

 

 For the final error type parameter, the values were set to 1, 2, and 3. As shown in Table 19, 

changing the final error type parameter did not have a significant impact on emissions. For all 

values, CO2 emissions experienced around a 0.3% change and NOx emissions experienced around 

a 1% to 2% change. 

Table 20. Maximum Error: CO2 and NOx Percent Difference 

Maximum Error: CO2 and NOx Percent Difference 

Value CO2 NOx 

184 0.27% 1.09% 

552 0.28% 1.07% 

920 0.27% 1.09% 

1839 0.29% 1.05% 

2759 0.28% 1.08% 

3678 0.30% 1.08% 

4598 0.29% 1.09% 

5517 0.30% 1.07% 

6436 0.29% 1.09% 

7356 0.28% 1.08% 

8275 0.29% 1.08% 

9195 0.30% 1.08% 

 

 For the maximum error parameter, the values were set to a certain percentage of the 

maximum aggregated value of the PEV load. The following values show 1%, 3%, 5%, 10%, 15%, 
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20%, 25%, 30%, 35%, 40%, 45%, and 50%. As shown in Table 20, changing the maximum error 

parameter did not have a significant impact on emissions. CO2 emissions experienced around a 

0.3% change, and NOx emissions experienced around a 1% change. 

Table 21. Cost Function Update Time: CO2 and NOx Percent Difference 

Cost Function Update Time: CO2 and NOx Percent Difference 

Value CO2 NOx 

45 0.28% 1.09% 

60 0.28% 1.14% 

90 0.23% 1.38% 

120 0.16% 1.95% 

180 0.56% 3.70% 

240 1.41% 6.98% 

300 1.35% 6.13% 

360 2.99% 11.18% 

540 3.80% 12.75% 

720 3.60% 12.58% 

1080 6.18% 19.95% 

1440 7.49% 23.67% 

 

 For the cost function update time parameter, the values were set to 45, 60, 90, 120, 180, 

240, 300, 360, 540, 720, 1080, and 1440 minutes. As shown in Table 21, varying the cost function 

update time has a significant impact on emissions. As the values increased, both CO2 and NOx 

percent difference increased. 

Table 22. Forecast Length: CO2 and NOx Percent Difference 

Forecast Length: CO2 and NOx Percent Difference 

Value CO2 NOx 

6 0.28% 1.09% 

8 0.28% 1.09% 

10 0.28% 1.09% 

 

 For the forecast length parameter, the values were set to 6, 8, 10, and 12 hours. As shown 

in Table 22, changing the forecast length parameter did not have a significant impact on emissions. 

For all values, CO2 emissions experienced around a 0.3% change and NOx emissions experienced 

around a 1% change. 
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Table 23. Forecast Type: CO2 and NOx Percent Difference 

Forecast Type: CO2 and NOx Percent Difference 

Value CO2 NOx 

1 0.30% 1.07% 

2 0.28% 1.09% 

 

 For the forecast type parameter, the values were set to 1 and 2. As shown in Table 23, 

changing the forecast type parameter did not have a significant impact on emissions. For all values, 

CO2 emissions experienced around a 0.3% change and NOx emissions experienced around a 1% 

change. 

7.4 Results: CO2 and NOx Emissions 

 From the sensitivity analysis, it is clear that emissions were not sensitive to most of the 

parameters. Most parameters only experienced a 0.3% change in CO2 emissions and 1% change 

in NOx emissions. However, when compared to the other parameters the continuous charging 

parameter and cost function update parameter were more sensitive.  

7.4.1 CO2 Emissions 

 Figure 51 and Figure 52 shows the year 2030 electric grid CO2 emissions for the scenario 

where the continuous charging parameter and cost function update time are varied, respectively. 

The blue and red bars represent CO2 emissions resulting from load following (LF) power plant 

generation and startups respectively, while the yellow and green bars represent CO2 emissions 

caused by peaker (PK) power plant generation and startups respectively. Load following power 

plants are slower responding power plants while peaker power plants are faster responding power 

plants. In both figures, base refers to the centralized case that the decentralized case is being 

compared against. 



78 

 

 

Figure 51. CO2 Emissions Breakdown: Continuous Charging 

 

Figure 52. CO2 Emissions Breakdown: Cost Function Update Time 
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 In Figure 51, it is clear that when the continuous charging parameter is turned on, the CO2 

emissions increase. This is expected since when this parameter is turned on, the vehicles will 

attempt to charge, even if a peak occurs in the net load. When this occurs, the use of peaker plants 

increase, which is indicated by the increasing yellow and green segments. In the base case, about 

2% of total CO2 emissions are caused by peaker plants and when the continuous charging 

parameter is turned on, about 3% of total CO2 emissions are caused by peaker plants. 

 In Figure 52, the general trend is that CO2 emissions increase as the cost function update 

time increases. While a few cases exist where the CO2 emissions decrease as the cost function 

update time increase, such as when the time step increases from 240 minutes to 300 minutes, this 

is primarily due to HiGRID being able to optimize the dispatch solution to increase the use of load 

following plants vs peaker plants. However, this does not occur often, and the main trend indicates 

that CO2 emissions increase as the update time step increases. The main source of the increase in 

CO2 emissions is caused by the use of peaker plants. This is indicated by the increasing yellow 

and green segments, while the blue segments stay relatively constant. This is expected since as the 

time step increases, there can be significant changes in the electric load between the first and 

second update interval. This can significantly alter how the vehicles decide on their charging 

schedules. For example, if the update interval is long and many vehicles plug in during that update 

interval, the vehicles during the current update interval will not be able to take into account the 

impacts when determining their charging schedules; only the vehicles that plug in during the 

second update interval will. As sudden changes in the electric load occur, it becomes more difficult 

to smoothen the load due to the peaks caused by the aggregated charging profiles, resulting in the 

increased use of peaker plants. The impact of CO2 emissions caused by peaker plants becomes 

more evident the longer the time step is, such as when comparing the base case to the case with 
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the longest time step (1440-minute time step). In the base case, about 2% of total CO2 emissions 

are caused by peaker plants while in the case where the time step is set to 1440 minutes, about 

12% of total CO2 emissions are caused by peaker plants. For all cases, the majority of peaker plant 

emissions are from electricity generation. Note that for both the centralized and decentralized 

charging algorithms when the continuous charging parameter and cost function update parameter 

are varied, the emissions caused by load following plant startups is negligible when compared to 

the overall emissions, since load following plants do not need to restart very often. 

 Figure 53 and Figure 54 show examples of the net load and total load (net load + PEV load) 

profiles for the scenario where the continuous charging parameter and cost function update time 

are varied, respectively. Figure 53a and Figure 54a shows the profiles when the centralized 

algorithm is used. Figure 53b shows the profiles when the decentralized charging algorithm is used 

when the continuous charging parameter is turned on. Figure 54b and Figure 54c shows the profiles 

when the decentralized charging algorithm is used with a 45-minute and 300-minute time step, 

respectively. 
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Figure 53. Centralized and Decentralized Charging Profiles: Continuous Charging 

 

Figure 54. Centralized and Decentralized Charging Profiles: Cost Function Update Time 
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 In Figure 53a and Figure 54a, using the centralized charging algorithm to charge the 

vehicles produces a relatively smooth profile with minimal peaks. This reduces the need for 

startups from the load following or peaker plants, as seen in the base case in Figure 51 and Figure 

52. In Figure 53b, when the continuous charging parameter is turned on, the vehicles will charge 

even when a peak occurs in the net load. This does not occur when the centralized charging 

algorithm is used. Creating new peaks leads to the increased use of peaker plants, indicated by the 

increase in peaker plant generation and start up CO2 emissions. In Figure 54b, using the 

decentralized charging algorithm to charge the vehicles when a 45-minute time step is used 

produces a profile that follows a trend similar to the profile produced from the centralized charging 

algorithm. The peaks are relatively small but the overall profile is more variable, which leads to 

an increase in the use of peaker plants. This is indicated by the increase in peaker plant generation 

and start up CO2 emissions when a 45-minute time step is used when compared to the base case. 

In the bottom plot in Figure 54c, using the decentralized charging algorithm to charge vehicles 

when a 300-minute time step is used produces a profile that has many peaks and is generally more 

variable than the cases represented in Figure 54a and Figure 54b. It is clear that the major peaks 

tend to happen when valleys in the net load occur since all of the vehicles charge at that time. 

 The variability seen in Figure 53 and Figure 54 directly affect how power plants on the 

electric grid are dispatched. Figure 55 and Figure 56 presents a 12-day time series of how the 

electric grid resources are dispatched. Figure 55a and Figure 56a shows the electric grid resource 

dispatch for the centralized case. Figure 55b shows the electric grid resource dispatch for the 

decentralized case when the continuous charging parameter is turned on, and Figure 56b and 

Figure 56c shows the electric grid resource dispatch for the decentralized case when the cost 

function update time is set to 45 minutes and 300 minutes, respectively. 
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Figure 55. HiGRID Time Series Output: Continuous Charging 

 

Figure 56. HiGRID Time Series Output: Cost Function Update Time 
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 As seen in Figure 55a and Figure 56a, using the centralized algorithm allows for steady 

state operation of load following power plants with minimal variability. In Figure 55b, using the 

decentralized algorithm with the continuous charging parameter turned on causes an increase in 

the variability of load following power plants as well as an increase in the use of peaker plants. A 

portion of the electrical generation is curtailed as well, as seen in days 4 and 10. In Figure 56b, 

using the decentralized algorithm with a cost function update time of 45 minutes still allows for 

smooth operation of load following and peaker plants. However, in Figure 56c when the cost 

function update time is increased to 300 minutes, load following plants do not operate as smoothly 

and experience increased variability, and the use of peaker plants increase as well in order to meet 

the electric load demand. 

 Table 24 lists the number of power plant start up events for both load following and peaker 

plants over the course of a year. As the time step increases the profiles have more peaks, which 

leads to an increase in the number of peaker start up events. Load following plant start up events 

remain fairly consistent, averaging about 2700 starts per year, with the exception of the base case.  

Table 24. Power Plant Start Up Events: Cost Function Update Time 

Power Plant Start Up Events: Cost Function Update Time 

Update Time Step Peaker Start Ups (#) Load Following Start Ups (#) 

Base (Centralized) 11047 1581 

45 19605 2735 

60 19989 2731 

90 21549 2650 

120 24848 2591 

180 31920 2251 

240 46681 2747 

300 41412 2450 

360 62143 2633 

540 65770 2702 

720 66409 2580 

1080 96129 3017 

1440 110236 3273 
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 These results show that when using the decentralized smart charging algorithm on a large 

fleet of PEVs on California’s electric grid, if the continuous charging parameter is turned on, a 

slight increase in CO2 emissions occurs due to the increased use of peaker plants when vehicles 

charge during the peaks in the net load. If the cost function update time parameter is varied, it can 

only provide the same emissions benefits as the centralized smart charging algorithm when the 

cost function is updated at frequent intervals. From a practical standpoint, this means that the 

communications infrastructure must be able transfer large amounts of data frequently and reliably. 

7.4.2 NOx Emissions 

 Figure 57 and Figure 58 shows the year 2030 electric grid NOx emissions for the scenario 

where the continuous charging parameter and cost function update time are varied, respectively. 

The blue and red bars represent NOx emissions resulting from load following (LF) power plant 

generation and startups respectively, while the yellow and green bars represent NOx emissions 

caused by peaker (PK) power plant generation and startups respectively. In both figures, base refers 

to the centralized case that the decentralized case is being compared against. 
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Figure 57. NOx Emissions Breakdown: Continuous Charging Value 

 

Figure 58. NOx Emissions Breakdown: Cost Function Update Time 
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 Similar to Figure 51 and Figure 52, it is clear that when the continuous charging parameter 

is turned on and the time step increases, the NOx emissions increase as well. While a few cases 

exist where the NOx emissions decrease as the cost function update time increase, such as when 

the time step increases from 240 minutes to 300 minutes, this is primarily due to HiGRID being 

able to optimize the dispatch solution to increase the use of load following plants vs peaker plants. 

However, this does not occur often, and the main trend indicates that NOx emissions increase as 

the update time step increases. The main source of the increase in NOx emissions is caused by the 

increase in use of peaker plants in both Figure 57 and Figure 58. For the base case, about 4% of 

total NOx emissions are caused by peaker plants. When the continuous charging parameter is 

turned on, about 5% of NOx emissions are caused by peaker plants. In the case where the cost 

function update time is set to 1440 minutes in Figure 58, about 23% of total NOx emissions are 

caused by peaker plants. One key difference between the CO2 emissions and NOx emissions is the 

percentage of emissions caused by peaker plant startups when compared to the total emissions 

caused by peaker plants. About 9% to 15% of peaker plant CO2 emissions are caused by startups, 

while about 40% to 50% of peaker plant NOx emissions are caused by startups for both scenarios. 

In California, thermal combustion based power plants are used on the electric grid and each time 

they start up, NOx emissions are produced. When the net load demand drops, these power plants 

go offline and when they need to go online again, clean-up equipment such as selective catalytic 

reduction restart and need to reach certain operating temperatures in order to be effective for post-

combustion NOx cleanup. During this time, significant NOx emissions can occur since natural gas 

is being burned as the clean-up equipment is to returning to its optimal operating temperature. 

 These results show that when using the decentralized smart charging algorithm on a large 

fleet of PEVs on California’s electric grid, a slight increase in NOx emissions occurs due to the 
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increased use of peaker plants when the continuous charging parameter is turned on. When the 

cost function update time is varied, it can provide similar emissions benefits as the centralized 

smart charging algorithm only when the cost function update time is varied at frequent intervals. 

Since power plant startups affect NOx emissions more than CO2 emissions, the decentralized 

algorithm was not able to match the exact performance of the centralized algorithm when varying 

the cost function update time. 

7.5 Real World Implications 

 When trying to deploy smart charging algorithms in real world systems, a major component 

that must be considered is the willingness of PEV owners to participate. Implementing a 

decentralized architecture addresses the privacy concerns of letting a central aggregator know 

individual travel plans, but this method requires frequent communication with the electric grid in 

order to achieve the same results. To ensure that the potential benefits of smart PEV charging are 

realized on a system wide basis, it is important to have adequate communication infrastructure as 

well as the support of information updating. Many components must be taken into consideration 

when implementing different types of communication infrastructure, such as the type of 

technology (wired vs. wireless), the range of the technology, the security and reliability of the 

technology, and the cost and transfer rate of the data. Different types of communication 

technologies that have been explored and can be considered for smart charging applications are 

ZigBee, Power Line Communication (PLC), Digital Subscriber Line (DSL), Wi-Fi, and cellular 

communication technologies such as 3G and LTE [26], [56]–[58]. To see the advantages and 

disadvantages of some of the technologies listed, refer to Güngör et al [56]. 

 Frequent communication with the electric grid means that the PEV profiles must be 

transferred to the grid operator frequently. In order for a decentralized charging architecture to be 
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feasible, the communication infrastructure would need to consist of low data costs and fast transfer 

rates. If the data costs are incurred on the PEV owners and if the costs are high, this may deter 

PEV owners from participating. As the number of PEVs in the system increase, if the aggregated 

PEV profiles cannot be transferred fast enough, the grid operators will not be able to update the 

cost load frequently enough.  

7.6 Objective 4 Summary 

 Two smart charging architectures were deployed to see how they impact electric grid GHG 

and criteria pollutant emissions that result from PEV charging. A centralized algorithm that is 

assumed to have a perfect forecast of the electric net load is used as a benchmark for a decentralized 

algorithm to be compared against. The decentralized algorithm does not have a perfect forecast of 

the electric net load and does not have the advantage of central optimization but is more feasibly 

deployable in real world systems. The decentralized algorithm is compared against the centralized 

algorithm to determine whether or not decentralized architectures can provide the same emissions 

benefits as a centralized architecture on the California electric grid in the year 2030. 

 It was found that only the continuous charging parameter and cost function update time 

parameter had an effect on overall emissions. When the continuous charging parameter was turned 

on, emissions increased since vehicles would charge even when a peak load in the electric net load 

occurred. When the cost function update time was varied, emissions would generally increase as 

the cost function update time increased since the net load would experience more instabilities. If 

the cost function update time is updated frequently enough, then the decentralized algorithm can 

achieve the same emissions benefits as the centralized architecture. For both parameters, the main 

cause of emissions increase is due to the increased use of peaker plants, since these fast responding 

plants are used to meet sudden changes that occur in the net load.  
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8. SUMMARY AND CONCLUSIONS 

8.1 Summary 

 In California, the largest economic sector contributing to the increase in anthropogenic 

GHG emissions is the transportation sector. Major reforms must be made in the transportation 

sector in order to reduce GHG emissions. Electric vehicles, a subset of which are PEVs, have been 

identified as one of the forefront solutions in reducing GHG emissions since they have several 

advantages compared to their ICE counterparts, such as reduced usage in petroleum and reduced 

tailpipe emissions. However, while PEVs offset tailpipe emissions, their batteries must be 

recharged, which leads to an increase in the electric demand. If all of the PEVs recharge at the 

same time, this will lead to sudden peaks in the electric net load. Grid operators would need to 

ramp up power plants quickly in order to meet the sudden demand in electricity, subsequently 

leading to an increase in electric grid CO2 emissions. To ensure that PEVs will not have a 

significant impact on the electric load, “smart” charging protocols are necessary to manage PEV 

charging schedules. 

 Two different smart charging algorithms were explored in this study: decentralized and 

centralized. For the decentralized smart charging algorithm, PEV charging profiles are optimized 

based on a cost function derived from a local load. This minimizes costs on the local load but may 

not minimize costs on the global load. For the second algorithm, the centralized smart charging 

algorithm, PEV charging profiles are optimized based on a cost function derived from a global 

load. This minimizes costs on the global load but may not minimize costs on the local load. 

 The decentralized smart charging algorithm was modified so that it could be deployed on 

a fleet of Kia Soul PEVs on the UCI microgrid. To create charging schedules for each vehicle, the 

vehicles’ status was obtained by using the on-board telematics system to send the vehicles’ SOC 
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and arrival time to the algorithm. However, the vehicles’ status could only be obtained every x 

minutes, which is referred to as the poll rate. To obtain the most accurate results, the poll rate was 

initially set to 5 minutes. Upon initial testing however, it was discovered that a 5-minute poll rate 

would deplete the vehicles’ auxiliary battery in 2 to 3 days. 

 Since it was discovered that the poll rate can alter how PEV charging schedules are 

determined, simulations were performed with a 10-minute poll rate since a 10-minute poll rate 

would not deplete the battery quickly. To determine whether or not the poll rate has a significant 

impact on the electric load, simulations were performed on different cost loads on the UCI campus 

with varying PEV traffic loads. Six different buildings were chosen to serve as the location for 

PEVs to charge: APS, ECPS, MPS, MSTB, SCPS, and SSPS. At each building, three different 

cost loads were tested: the SCE TOU rate, a proposed future TOU rate, and the building profiles. 

Two different metrics were used to determine the impact that the poll rate has: electric grid CO2 

emissions and the cost to charge PEVs. The results showed that the poll rate did not have a 

significant effect on either metric. Electric grid CO2 emissions experienced a 0.2% to 0.6% percent 

change, while the cost to charge the vehicles experienced 0.5% to 2.2% change when the poll rate 

was considered. 

 In order to reduce GHG emissions on a state-wide scale, these smart charging algorithms 

will need to be deployed on larger fleets of vehicles. As addressed earlier, the decentralized 

charging algorithm is considered a “field-deployable” algorithm since it is more likely to be used 

in practice compared to the centralized charging algorithm. However, the centralized charging 

algorithm is a more ideal algorithm since it has a more accurate forecast of the electric net load 

and can manage the charging of all PEVs. To determine whether or not the decentralized charging 

algorithm could provide the same benefits as the centralized charging algorithm, both algorithms 
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were simulated on the California electric grid in the year 2030 with an increased population of 

PEVs. It was shown that the decentralized algorithm had two main parameters that influence 

electric grid emissions. If the vehicles are allowed to continuously charge, they will increase 

emissions compared to the centralized algorithm since vehicles will still charge even when a peak 

in the electric load occurs. If vehicles cannot communicate with the grid frequently enough, 

emissions will increase since the grid operator will not be able to update the cost load frequently. 

When the communication with the grid is high, the decentralized charging algorithm can provide 

the same emissions benefits as the centralized charging algorithm. 

 Many barriers and challenges are associated with introducing an increasing number of 

PEVs into the market. Deploying PEV smart charging algorithms on the electric grid is a way to 

address some of these challenges. This thesis demonstrates that while many obstacles are 

associated with smart charging, if implemented correctly, they have a great potential in reducing 

GHG and criteria pollutant emissions. 

8.2 Conclusions 

 A decentralized smart charging architecture is a more viable option for real life 

deployment than a centralized smart charging architecture 

While a centralized smart charging algorithm has the ability to provide more accurate 

results, many barriers are associated with it. Utilizing a decentralized smart charging 

algorithm addresses these barriers. In the centralized architecture, vehicle owners would 

have to disclose their travel patterns to a central operator, which could lead to privacy 

concerns. In the decentralized architecture, the travel patterns solely reside with the vehicle 

owner and does not need to be disclosed to a central operator. In the centralized 

architecture, as the number of vehicles scale up, the computation power required to satisfy 
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all vehicle demands would scale up as well. This issue is not present in the decentralized 

architecture 

 Using telematics to obtain the vehicles’ status can cause issues to the vehicles’ 

auxiliary battery as well as affect the accuracy of the charging profiles 

The need to obtain the vehicles’ status proved to be a major barrier associated with a 

telematics-based approach. If the vehicles’ status is updated frequently, this leads to a more 

accurate charging schedule, but also leads to battery degradation. On the other hand, if the 

vehicles’ status is not updated frequently enough, this could lead to inaccurate charging 

schedules. A potential solution to this issue is to obtain the vehicles’ status from the EVSE 

side rather than obtaining it from the vehicle side. If the vehicles’ status could get sent to 

the algorithm upon initial plug-in, this would eliminate the need to obtain the vehicles’ 

status through polling. Another solution would be to use a “hybrid” approach when polling 

the vehicles. For example, the polling rate could be set to 5 minutes when the vehicle is 

plugged in, and when the vehicle is not plugged in it can be reverted to 20 minutes. This 

approach assumes that poll rates can occur for individual vehicles rather than for the entire 

fleet of vehicles. 

 Using a real time pricing structure is the most effective way to reduce costs for PEV 

owners as well as reduce emissions 

With the way the current TOU rate structures are set up, the cheapest prices tend to happen 

when renewable generation is minimized, and the highest prices occur when renewable 

generation is maximized. This deters PEV owners from charging their vehicles when the 

grid is producing its power renewably. Using a rate structure that shifts the cheapest prices 

to when renewable generation is maximized will reduce costs for PEV owners as well as 
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reduce emissions. However, this can lead to sudden peaks occurring in the electric load. A 

real time pricing structure would be the best solution to reduce costs for PEV owners, 

reduce emissions, and reduce peaks in the electric load. This type of rate structure would 

incentivize vehicles to charge when the grid is the cleanest as well as fill the valley that 

occurs in the middle of the day, making it easier for grid operators to manage the load. 

 The decentralized smart charging algorithm can provide the same benefits as the 

centralized algorithm when programmed correctly 

In order for the decentralized smart charging algorithm to achieve the same results as the 

centralized smart charging algorithm, it must be tuned accordingly. The most important 

parameter that must be taken into consideration when using the decentralized smart 

charging algorithm is to ensure that communication with the electric grid occurs frequently 

enough. Practically, this means that the proper telematics infrastructure would have to be 

established to make sure that information can be transferred quick enough. 
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APPENDIX 
 

Table 25. CO2 Emissions using Bldg. Profiles as Cost Load 

CO2 Emissions (pounds) (Building Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 42.16 44.31 28.72 12.21 26.28 85.37 

100 211.74 220.17 209.87 205.35 216.82 222.62 

300 641.51 653.55 635.26 625.53 648.47 659.41 

500 1070.72 1084.66 1062.57 1045.61 1073.86 1092.87 

700 1498.50 1518.12 1488.93 1471.58 1500.37 1527.43 

900 1920.32 1953.57 1911.88 1894.50 1924.34 1963.02 

 

Table 26. CO2 Emissions w/Poll Rate using Bldg. Profiles as Cost Load 

CO2 Emissions with Poll Rate (pounds) (Building Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 42.30 44.30 28.86 12.29 26.30 85.30 

100 212.24 220.35 210.51 206.33 217.19 222.72 

300 642.96 654.58 637.03 627.97 650.06 660.24 

500 1073.46 1086.47 1065.46 1049.45 1076.66 1094.40 

700 1502.40 1520.58 1492.83 1476.78 1504.28 1529.61 

900 1925.33 1956.70 1917.02 1900.45 1929.39 1965.82 

 

Table 27. CO2 Emissions using SCE TOU Rate as Cost Load 

CO2 Emissions (pounds) (SCE TOU Rate Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 45.37 45.22 31.84 13.63 27.20 86.04 

100 225.45 226.35 225.45 226.35 225.48 226.34 

300 678.27 679.15 678.27 679.15 679.47 678.05 

500 1128.04 1131.42 1127.83 1131.09 1128.79 1132.21 

700 1582.46 1580.41 1581.95 1584.94 1582.04 1587.15 

900 2030.14 2034.28 2030.14 2034.28 2030.14 2034.28 

 

Table 28. CO2 Emissions w/Poll Rate using SCE TOU Rate as Cost Load 

CO2 Emissions with Poll Rate (pounds) (SCE TOU Rate Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 45.27 45.13 31.77 13.60 27.15 85.87 

100 225.01 225.90 225.01 225.90 225.05 225.89 

300 676.94 677.83 676.94 677.83 678.15 676.71 

500 1125.82 1129.23 1125.61 1128.90 1126.58 1129.99 

700 1579.36 1577.33 1578.76 1581.85 1578.95 1584.04 

900 2026.22 2030.27 2026.22 2030.27 2026.22 2030.27 
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Table 29. CO2 Emissions using Future TOU Rate as Cost Load 

CO2 Emissions (pounds) (Future TOU Rate Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 40.91 41.08 28.55 12.39 24.46 77.49 

100 204.23 205.33 204.23 205.33 204.24 205.32 

300 611.55 614.31 611.55 614.31 613.46 616.67 

500 1023.64 1020.77 1023.98 1020.70 1021.24 1021.44 

700 1430.76 1433.12 1429.38 1434.68 1428.18 1429.64 

900 1833.45 1844.12 1833.45 1844.12 1833.45 1844.12 

 

Table 30. CO2 Emissions w/Poll Rate using Future TOU Rate as Cost Load 

CO2 Emissions with Poll Rate (pounds) (Future TOU Rate Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 41.16 41.32 28.72 12.46 24.61 77.95 

100 205.45 206.57 205.45 206.57 205.46 206.56 

300 615.28 618.03 615.28 618.03 617.19 620.41 

500 1029.81 1026.95 1030.15 1026.87 1027.49 1027.67 

700 1439.33 1441.77 1438.05 1443.34 1436.84 1438.21 

900 1844.56 1855.20 1844.56 1855.20 1844.56 1855.20 

 

Table 31. Cost using Bldg. Profiles as Cost Load: SCE TOU Rate 

Cost ($) (Building Cost Load: SCE TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 8.09 6.83 5.47 2.21 4.29 13.31 

100 39.57 36.20 38.80 39.26 37.23 36.17 

300 116.01 111.26 116.53 118.25 113.84 110.94 

500 192.51 186.56 193.59 197.04 190.72 186.13 

700 270.06 261.82 271.20 276.06 268.27 262.24 

900 347.18 337.09 348.51 354.02 345.39 336.77 

 

Table 32. Cost w/Poll Rate using Bldg. Profiles as Cost Load: SCE TOU Rate 

Cost with Poll Rate ($) (Building Cost Load: SCE TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 8.01 6.82 5.42 2.19 4.27 13.26 

100 39.24 36.00 38.45 38.87 36.96 35.96 

300 115.06 110.48 115.48 117.02 112.83 110.16 

500 190.83 185.20 191.86 195.02 189.03 184.79 

700 267.67 259.90 268.83 273.32 265.88 260.33 

900 344.09 334.68 345.37 350.73 342.26 334.37 
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Table 33. Cost using Bldg. Profiles as Cost Load: Future TOU Rate 

Cost ($) (Building Cost Load: Future TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 5.74 6.81 4.05 1.85 3.91 12.74 

100 29.18 32.47 29.19 28.90 31.06 32.60 

300 89.22 94.39 87.80 86.17 91.38 94.89 

500 149.30 155.47 147.20 143.10 150.38 155.75 

700 208.60 217.42 205.89 201.50 209.24 216.80 

900 266.68 279.12 264.22 259.73 267.83 279.40 

 

Table 34. Cost w/Poll Rate using Bldg. Profiles as Cost Load: Future TOU Rate 

Cost with Poll Rate ($) (Building Cost Load: Future TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 5.82 6.82 4.11 1.87 3.93 12.77 

100 29.49 32.65 29.53 29.31 31.33 32.78 

300 90.16 95.12 88.83 87.42 92.35 95.62 

500 150.96 156.73 148.91 145.11 152.07 157.02 

700 210.90 219.20 208.25 204.25 211.58 218.58 

900 269.64 281.43 267.25 263.03 270.84 281.72 

 

Table 35. Cost using SCE TOU Rate as Cost Load 

Cost ($) (SCE TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 6.33 6.32 4.44 1.90 3.78 12.00 

100 31.44 31.64 31.44 31.64 31.45 31.63 

300 94.51 94.65 94.51 94.65 94.69 94.55 

500 157.15 157.59 157.12 157.55 157.36 157.59 

700 220.29 220.43 220.44 220.97 220.53 221.16 

900 283.26 283.70 283.26 283.70 283.26 283.70 

 

Table 36. Cost w/Poll Rate using SCE TOU Rate as Cost Load 

Cost with Poll Rate ($) (SCE TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 6.36 6.35 4.46 1.91 3.80 12.05 

100 31.59 31.78 31.59 31.78 31.60 31.78 

300 94.96 95.10 94.96 95.10 95.13 95.00 

500 157.91 158.32 157.88 158.28 158.10 158.33 

700 221.34 221.47 221.51 222.01 221.58 222.21 

900 284.58 285.06 284.58 285.06 284.58 285.06 
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Table 37. Cost using Future TOU Rate as Cost Load 

Cost ($) (Future TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 5.19 5.23 3.62 1.58 3.11 9.84 

100 25.94 26.06 25.94 26.06 25.95 26.06 

300 77.68 78.00 77.68 78.00 77.89 78.34 

500 130.05 129.65 130.10 129.64 129.66 129.63 

700 181.62 181.89 181.45 182.29 181.27 181.63 

900 232.74 234.14 232.74 234.14 232.74 234.14 

 

Table 38. Cost w/Poll Rate using Future TOU Rate as Cost Load 

Cost with Poll Rate ($) (Future TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 5.31 5.34 3.71 1.61 3.18 10.06 

100 26.52 26.65 26.52 26.65 26.52 26.65 

300 79.44 79.75 79.44 79.75 79.66 80.11 

500 132.98 132.58 133.02 132.57 132.62 132.58 

700 185.68 185.98 185.56 186.39 185.37 185.70 

900 237.99 239.40 237.99 239.40 237.99 239.40 

 

Table 39. CO2 Emissions STD using Bldg. Profiles as Cost Load 

CO2 Emissions STD (%) (Building Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.50 14.52 17.21 25.78 18.15 10.47 

100 6.45 6.24 6.40 6.29 6.36 6.24 

300 3.73 3.58 3.71 3.59 3.61 3.73 

500 2.66 2.89 2.69 2.88 2.74 2.63 

700 2.27 2.26 2.48 2.45 2.50 2.28 

900 2.18 2.07 2.20 2.08 2.18 2.07 

 

Table 40. CO2 Emissions STD w/Poll Rate using Bldg. Profiles as Cost Load 

CO2 Emissions STD with Poll Rate (%) (Building Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.45 14.52 17.09 25.63 18.14 10.48 

100 6.41 6.24 6.38 6.25 6.34 6.24 

300 3.72 3.57 3.70 3.57 3.60 3.72 

500 2.66 2.88 2.68 2.87 2.73 2.62 

700 2.27 2.25 2.48 2.44 2.49 2.27 

900 2.18 2.06 2.19 2.07 2.17 2.06 
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Table 41. CO2 Emissions STD using SCE TOU Rate as Cost Load 

CO2 Emissions STD (%) (SCE TOU Rate Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.47 14.48 17.17 26.27 18.37 10.53 

100 6.34 6.32 6.34 6.32 6.34 6.31 

300 3.73 3.64 3.73 3.64 3.75 3.66 

500 2.74 2.97 2.74 2.94 2.64 2.54 

700 2.21 2.12 2.34 2.48 2.56 2.28 

900 2.11 2.20 2.11 2.20 2.11 2.20 

 

Table 42. CO2 Emissions STD w/Poll Rate using SCE TOU Rate as Cost Load 

CO2 Emissions STD with Poll Rate (%) (SCE TOU Rate Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.49 14.50 17.20 26.30 18.41 10.55 

100 6.35 6.33 6.35 6.33 6.35 6.32 

300 3.73 3.65 3.73 3.65 3.76 3.67 

500 2.75 2.97 2.75 2.94 2.64 2.54 

700 2.21 2.12 2.34 2.49 2.56 2.28 

900 2.11 2.20 2.11 2.20 2.11 2.20 

 

Table 43. CO2 Emissions STD using Future TOU Rate as Cost Load 

CO2 Emissions STD (%) (Future TOU Rate Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.28 14.53 16.90 25.25 17.88 10.46 

100 6.32 6.18 6.32 6.18 6.33 6.18 

300 3.69 3.45 3.69 3.45 3.53 3.81 

500 2.59 2.75 2.61 2.75 2.86 2.69 

700 2.34 2.35 2.63 2.41 2.45 2.21 

900 2.23 1.95 2.23 1.95 2.23 1.95 

 

Table 44. CO2 Emissions STD w/Poll Rate using Future TOU Rate as Cost Load 

CO2 Emissions STD with Poll Rate (%) (Future TOU Rate Cost Load) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.21 14.46 16.79 25.12 17.78 10.42 

100 6.29 6.15 6.29 6.15 6.30 6.15 

300 3.67 3.44 3.67 3.44 3.52 3.79 

500 2.58 2.74 2.60 2.74 2.84 2.68 

700 2.34 2.35 2.63 2.39 2.44 2.20 

900 2.22 1.93 2.22 1.93 2.22 1.93 
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Table 45. Cost STD using Bldg. Profiles as Cost Load: SCE TOU Rate 

Cost STD (%) (Building Cost Load: SCE TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.75 15.89 17.41 27.42 19.13 11.46 

100 6.47 6.55 6.50 6.24 6.76 6.55 

300 3.73 3.83 3.76 3.71 3.84 3.86 

500 2.68 2.99 2.71 2.93 2.61 2.75 

700 2.26 2.21 2.33 2.52 2.56 2.55 

900 2.21 2.14 2.19 2.11 2.21 2.17 

 

Table 46. Cost STD w/Poll Rate using Bldg. Profiles as Cost Load: SCE TOU Rate 

Cost STD with Poll Rate (%) (Building Cost Load: SCE TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.80 15.86 17.65 27.53 19.16 11.43 

100 6.54 6.53 6.55 6.32 6.78 6.54 

300 3.76 3.83 3.78 3.73 3.86 3.87 

500 2.69 3.00 2.72 2.96 2.63 2.75 

700 2.27 2.21 2.35 2.55 2.59 2.56 

900 2.22 2.16 2.22 2.13 2.23 2.18 

 

Table 47. Cost STD using Bldg. Profiles as Cost Load: Future TOU Rate 

Cost STD (%) (Building Cost Load: Future TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 15.36 14.94 17.25 24.99 18.64 10.87 

100 6.89 6.43 6.52 6.25 6.63 6.42 

300 3.90 3.71 3.83 3.51 3.51 4.01 

500 2.64 2.89 2.72 2.87 2.91 2.85 

700 2.38 2.50 2.73 2.47 2.48 2.35 

900 2.24 2.01 2.29 2.03 2.24 2.03 

 

Table 48. Cost STD w/Poll Rate using Bldg. Profiles as Cost Load: Future TOU Rate 

Cost STD with Poll Rate (%) (Building Cost Load: Future TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 15.16 14.86 16.95 24.83 18.55 10.86 

100 6.76 6.40 6.45 6.16 6.53 6.38 

300 3.86 3.68 3.77 3.47 3.48 3.97 

500 2.62 2.86 2.69 2.83 2.87 2.81 

700 2.37 2.47 2.71 2.42 2.46 2.31 

900 2.21 1.98 2.25 1.99 2.21 1.99 
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Table 49. Cost STD using SCE TOU Rate as Cost Load 

Cost STD (%) (SCE TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 15.22 15.43 18.57 27.99 19.27 11.19 

100 6.95 6.59 6.95 6.59 6.95 6.58 

300 3.88 3.87 3.88 3.87 3.99 3.88 

500 2.79 3.02 2.81 3.00 2.74 2.90 

700 2.35 2.29 2.42 2.67 2.70 2.67 

900 2.43 2.18 2.43 2.18 2.43 2.18 

 

Table 50. Cost STD w/Poll Rate using SCE TOU Rate as Cost Load 

Cost STD with Poll Rate (%) (SCE TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 15.14 15.35 18.44 27.83 19.13 11.12 

100 6.91 6.55 6.91 6.55 6.91 6.54 

300 3.85 3.84 3.85 3.84 3.97 3.85 

500 2.77 3.00 2.78 2.98 2.72 2.87 

700 2.33 2.27 2.40 2.65 2.69 2.65 

900 2.41 2.17 2.41 2.17 2.41 2.17 

 

Table 51. Cost STD using Future TOU Rate as Cost Load 

Cost STD (%) (Future TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.56 14.85 17.22 25.84 18.42 10.55 

100 6.47 6.27 6.47 6.27 6.48 6.26 

300 3.74 3.53 3.74 3.53 3.62 3.93 

500 2.57 2.80 2.60 2.81 2.88 2.73 

700 2.34 2.35 2.66 2.41 2.52 2.22 

900 2.32 1.94 2.32 1.94 2.32 1.94 

 

Table 52. Cost STD w/Poll Rate using Future TOU Rate as Cost Load 

Cost STD with Poll Rate (%) (Future TOU Rate) 

Vehicle Traffic APS ECPS MPS MSTB SCPS SSPS 

Base 14.28 14.60 16.85 25.33 18.03 10.38 

100 6.35 6.15 6.35 6.15 6.35 6.15 

300 3.66 3.47 3.66 3.47 3.56 3.85 

500 2.54 2.75 2.56 2.76 2.83 2.68 

700 2.31 2.32 2.63 2.35 2.46 2.18 

900 2.28 1.89 2.28 1.89 2.28 1.89 

 

 




