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ABSTRACT OF THE DISSERTATION 

Electronic Properties of Suspended Few-Layer Graphene Membranes  

by 

Kevin Scott Myhro 

Doctor of Philosophy, Graduate Program in Physics  
University of California, Riverside, September 2017  

Dr. Chun Ning (Jeanie) Lau, Chairperson 

 

Graphene, the two-dimensional (2D) honeycomb lattice of sp2-hybrized carbon 

atoms, has emerged as a “wonder” material with unique properties, such as its linear 

energy dispersion with massless Dirac fermions, so-called half-integer quantum Hall (QH) 

effect, unparalleled tensile strength, and high optical transparency and thermal 

conductivity. Its few-layer counterparts have similar mechanical but remarkably different 

electrical properties, including layer- and stacking-dependent band structures, massive 

charge carriers, and energy gaps that may arise from single particle effect as well as 

electronic interactions.  

This dissertation reports my six year study of dual-gated suspended few-layer 

graphene (FLG) field effect transistor (FET) devices. In particular, we focus on their 

electronic transport properties at low temperature as a function of out-of-plane electric 

field !� and interlayer potential "�, charge carrier density n, temperature T, and out-of-  
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plane (𝐵⊥) and parallel (𝐵⫽) magnetic fields. A number of broken symmetry states in the 

absence and presence of external fields are observed in rhombohedral-stacked bilayer- 

(BLG), trilayer- (r-TLG), and tetralayer graphene (r-4LG). We also study the 

morphological deformation of suspended graphene membranes under electrostatic and 

thermal manipulation, which is relevant for analyzing low temperature transport data.  

In particular, in BLG, r-TLG and r-4LG, we observe intrinsic insulating states in 

the absence of external fields, with energy gaps of 2, ~40, and ~80 meV, respectively. We 

attribute this increasing gap size with number of layers N to enhanced electronic-

interactions near the charge neutrality point, due to the layer-dependent energy 

dispersions 𝑘𝑁 in r-FLG, which give rise to increasingly diverging density of states and 

interaction strength with increasing N, at least up to four layers. Our observations of the 

spontaneous insulating state in r-FLG are consistent with a layer antiferromagnetic state 

with broken time reversal symmetry, where the top and bottom layers are oppositely spin 

polarized. 
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Chapter 1: Introduction 

1.1 Background  

Physics is the fundamental science and it seeks to explain both the visible and the 

invisible using the most simplified, logical approaches, with the least number of 

assumptions and approximations. Philip Russel Wallace did just this when he employed 

the “tight-binding” approximation to solve the band structure of single layer graphene 

(SLG), the atomically-thin carbon allotrope of graphite, in 19471. This model was 

effective in predicting the properties of a single layer of graphene, however, it was 

unknown at the time whether such a single atomic layer of carbon would be stable. Multi-

walled carbon nanotubes (MWCNTs), which are concentric carbon fullerene tubes, were 

discovered in 19912, and single-walled carbon nanotubes (SWCNTs), or a rolled-up 

membrane of a single layer of graphene, were discovered in 19933. It was more than half 

a century after Wallace’s band structure calculation that flat sheets of SLG were finally 

isolated by Andre Geim and Konstantin Novoselov from Manchester University using the 

scotch tape exfoliation technique in 20044. The discovery of graphene has led to a gold 

rush in the research of its properties and applications, resulting in tens of thousands of 

publications, and has sparked intense interest in graphene-based heterostructures and 

many other two-dimensional (2D) materials as well5,6. 
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Figure 1.1. Frequency of sp2 carbon publications: Number of publications on sp2 
carbon per year plotted in a 50-year interval. Image taken from ref. 6. 
 

While SLG has been extensively studied6-9, its multilayer counterparts, including 

bilayer graphene (BLG), trilayer graphene (TLG) and tetralayer graphene (4LG), have 

been much less explored. As it will be discussed later, multiple layers of graphene 

constitute unique 2D materials, different from SLG. One of the largest and most striking 

differences, is that while SLG is a gapless semi-metal1,4,7,8, it has been found that 

BLG8,10-12, TLG13-15 and 4LG16,17 exhibit spontaneous insulating states and gate-tunable 

band gaps with non-relativistic charge carriers. Therefore, the single element of carbon 

can comprise many different 2D material platforms with distinct electronic, thermal and 

optical properties, which is the motivation of this dissertation. 

 

1.2 Basic properties of graphene 

Graphene is a single atomic layer of carbon in a honeycomb, or hexagonal lattice. 

Carbon, the sixth element, is one of the most abundant elements on Earth. It exists in 
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stable solid allotropes as diamond and graphite and is the primary element in coal. While 

diamond and coal have been used for thousands of years, graphite’s application is much 

more recent, as the first graphite pencil was invented the sixteenth century. Though 

graphite can be considered as a stack of graphene layers held together by van der Waals’ 

forces, the isolation of a single atomic layer of graphene has only been achieved in 2004, 

and its applications are still unfolding.  

Carbon exists in three dimensions (3D) as diamond and graphite, in two 

dimensions (2D) as graphene sheets, in one dimension (1D) as nanotubes and zero 

dimensions (0D) as buckeyballs. In its 2D form, graphene has been touted as a wonder 

material due to its unique electrical, magnetic, optical and mechanical properties19-21. As 

shown below in section 2.2.3, graphene has a linear band structure, which gives rise to 

relativistic charge carriers with a Fermi velocity of 108 m/s, which is 0.3% the speed of 

light21. Graphene is the strongest material at its length scales, with an incredible tensile 

strength that is 325 times stronger than steel18. Furthermore, graphene has an exceptional 

electronic mobility which can be over 100 times larger than silicon’s mobility at room 

temperature18. Graphene conducts heat ten times better than copper22, and it absorbs only 

SD = 2.3% of light23, where D is the fine structure constant, making it an unusual 

transparent conductor that is important for applications such as touch screens and solar 

cells. 
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1.3 Thesis outline and references 

This thesis is organized as follows. Chapter two discusses the background of 

graphene, describes the layer-dependent properties of few-layer graphene, and derives the 

band structure of SLG, BLG, Bernal-stacked TLG (B-TLG), and rhombohedral-stacked 

multilayers of graphene based off of tight binding calculations. Chapter three describes in 

detail the innovative multi-level electron beam lithography fabrication techniques used to 

create high quality prototype suspended few-layer graphene field effect transistors. 

Chapter four discusses the morphological deformation of suspended graphene 

membranes through electrostatic and thermal manipulation via in situ scanning electron 

microscopy. Chapter five motivates the use of suspended graphene and top gates, and 

presents the dual-gated electronic transport data of BLG and rhombohedral-stacked 

trilayer graphene (r-TLG), and discusses their spontaneous and induced insulating states. 

Chapter six presents tunable spontaneous insulating states in suspended rhombohedral-

stacked tetralayer graphene (r-4LG). Chapter seven gives a brief background on the 

quantum Hall effect in few-layer graphene (FLG) and discusses quantum Hall 

ferromagnetism in suspended r-TLG. Finally, chapter eight concludes the thesis and 

Appendix A provides some extra statistics on transport data and other supplementary 

information. 

 

References 

1. Wallace, P. R. The Band Theory of Graphite. Phys. Rev., 71, 622-634, (1947). 

2. Iijima, S. Helical microtubes of graphitic carbon. Nature, 354, 56-58 (1991). 



5 
 

3. Iijima, S., and Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. 
Nature, 363, 603-605 (1993). 

 
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, 

I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon 
films. Science, 306, 666-669 (2004). 

 
5. A. K. Geim and K. S. Novoselov. The rise of graphene. Nature, 6, 183-191 

(2007). 
 

6. M. S. Dresselhaus. Fifty years in studying carbon-based materials. Phys. Scr. 
T146, 014002 (2012). 

 
7. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., 

Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A. Two-dimensional gas of 
massless Dirac fermions in graphene. Nature, 438, 197-200 (2005). 

 
8. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. 

K. The electronic properties of graphene. Rev. Mod. Phys., 81, 109-163 (2009). 
 

9. Das Sarma, S., Adam, S., Hwang, E. H., and Rossi, E. Electronic transport in two-
dimensional graphene. Rev. Mod. Phys., 83, 407-470 (2011). 

 
10. Zhang, Y., Tang, T.-T., Girit, C., Hao, Z., Martin, M. C., Zettl, A., Crommie, M. 

F., Ron Shen, Y., and Wang, F. Direct observation of a widely tunable bandgap in 
bilayer graphene. Nature, 459, 820-823 (2009). 

 
11. Bao, W., Velasco, J. Jr., Zhang, F., Jing, L., Standley, B. Smirnov, D., Bockrath, 

M., MacDonald, A. H., and Lau, C. N. Evidence for a spontaneous gapped state in 
ultraclean bilayer graphene. Proc. Natl. Acad. Sci., 109 (27), 10802-10805 (2012). 

 
12. Velasco, J. Jr., Jing, L., Bao, W., Kratz, P., Aji, V., Bockrath, M., Lau, C. N., 

Varma, C., Stillwell, R., Smirnov, D., Zhang, F., Jung, J., and MacDonald, A. H. 
Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. 
Nat. Nanotechnol. 7, 156-160 (2012). 

 
13. Zhang, F., Sahu, B., Min, H., and MacDonald, A. H. Band structure of ABC-

stacked graphene trilayers. Phys. Rev. B, 82, 035409 (2010). 
 

14. Bao, W., Jing, L., Velasco, J. Jr., Lee, Y., Liu, G., Tran, D., Standley, B., Aykol, 
M., Cronin, S. B., Smirnov, D., Koshino, M., McCann, E., Bockrath, M. and Lau, 
C. N. Stacking-dependent band gap and quantum transport in trilayer graphene. 
Nature Phys. 7, 948-952 (2011). 

 



6 
 

15. Lee, Y., Tran, D., Myhro, K., Velasco, J. Jr., Gillgren, N., Lau, C. N., Barlas, Y., 
Poumirol, J. M., Smirnov, D., and Guinea, F. Competition between spontaneous 
symmetry breaking and single-particle gaps in trilayer graphene. Nat. Commun., 
5, 5656 (2014). 

 
16. Aoki, M. and Amawashi, H. Dependence of band structures on stacking and field 

in layered graphene. Solid State Commun. 142 (3), 123-127 (2007). 
 

17. Grushina, A. L., Ki, D.-K., Koshino, M., Nicolet, A. A. L., Faugeras, C., McCann, 
E., Potemski, M., and Morpurgo, A. F. Insulating state in tetralayers reveals an 
even-odd interaction effect in multilayer graphene. Nat. Commun., 6, 6419 
(2015). 

 
18. “About Diamonds” HRD Antwerp, 2017, http://www.hrdantwerp.com/en/about-

diamonds. 
 

19. De la Fuenta, J. “Graphene Applications & Uses.” Graphenea, 2017, 
https://www.graphenea.com/pages/graphene-properties#.WYkevojyvIV. 

 
20. Kobie, N. “What are carbon nanotubes?” Alphr, 2016, 

http://www.alphr.com/science/1003177/what-are-carbon-nanotubes. 
 

21. “In Situ Real-time Atomic Scale Nanostructural Synthesis, Characterization and 
Modeling.” Arizona State University, 2007, 
https://www.asu.edu/clas/csss/NUE/gallery.html. 

 
22. A. K. Geim and K. S. Novoselov. The rise of graphene. Nature, 6, 183-191 

(2007). 
 

23. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. 
K. The electronic properties of graphene. Rev. Mod. Phys., 81, 109-163 (2009). 

 
24. Das Sarma, S., Adam, S., Hwang, E. H., and Rossi, E. Electronic transport in two-

dimensional graphene. Rev. Mod. Phys., 83, 407-470 (2011). 
 

25. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and 
Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 8 
(3), 902-907 (2008). 

 
26. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, 

T., Peres, N. M. R., and Geim, A. K. Fine structure constant defines visual 
transparency of graphene. Science, 320 (5881), 1308 (2008). 

 
 
 



7 
 

Chapter 2: Theoretical Background 

2.1 Introduction 

Electronic band structure is one of the most important concepts in solid state 

physics, as it determines, to a large extent, a material’s electrical, optical and magnetic 

properties. There are many approaches to calculate the band structure of a crystal, such as 

the Cellular (Wigner-Seitz) method, Green’s Function (KKR) method, Augmented Plane 

Wave (APW) method, Orthoganol Plane Wave (OPW) method and the pseudopotential 

method, for instance1. In this chapter, we will use the tight binding (TB) approximation to 

calculate the electronic band structure of single layer graphene (SLG), bilayer graphene 

(BLG), Bernal-stacked trilayer graphene (B-TLG) and rhombohedral-stacked multilayers 

of graphene. 

 

2.2 The tight binding approximation 

In a crystal, atoms are tightly-packed with overlapping atomic wave functions. In 

the TB approximation, the atomic wavefunctions overlap significantly so that the orbitals 

are significantly modified from those of isolated atoms, yet, the overlaps are not so 

extreme as to destroy the atomic description altogether.  

The TB method assumes that single electrons are tightly bound to the atoms, 

hence the name tight binding, and considers all other electrons that form a fixed 

background, or mean-field, effectively neglecting the correlations between electrons. 

Although the TB model does not account for electron-electron interactions, it is a 
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reasonable starting point for calculating band structures of many crystals. The TB method 

requires two quantum numbers: the Bloch vector 𝑘⃗⃗ and the band index n. Bloch 

wavefunctions 𝛷𝑛𝑘(𝑟) are the product of a plane wave and some function 𝜑(𝑟) with the 

periodicity of the Bravais Lattice, as follows: 

𝛷𝑛𝑘(𝑟) =  𝑒𝑖𝑘⃗⃗∙𝑟𝜑(𝑟)      (2.1) 

Since 𝛷𝑛𝑘(𝑟) is periodic for all Bravais Lattice vectors 𝑅⃗⃗, 

𝛷𝑛𝑘(𝑟 + 𝑅⃗⃗) =  𝛷𝑛𝑘(𝑟)    (2.2) 

If there are N unit cells in a crystal, then the atomic wave functions at given 𝑘⃗⃗ and 𝑟 can 

be represented by a linear combination of Bloch wavefunctions: 

𝛷𝑗(𝑘⃗⃗, 𝑟) =  1
√𝑁

∑ 𝑒𝑖𝑘⃗⃗∙𝑅⃗⃗𝑗𝑖𝑁
𝑖=1 𝜑𝑗(𝑟 − 𝑅⃗⃗𝑗𝑖)  (2.3)  

where i is the summation index, 𝛷𝑗(𝑘⃗⃗, 𝑟) represents the wave function of the jth unit cell, 

and 𝑅⃗⃗𝑗𝑖 is the position vector from the ith unit cell to the jth unit cell. The electronic 

wavefunction will therefore be a linear combination of n Bloch wavefunctions, 

𝛹𝑗(𝑘⃗⃗, 𝑟) =  ∑ 𝑎𝑗𝑙𝛷𝑙(𝑘⃗⃗, 𝑟)𝑛
𝑙=1     (2.4) 

where 𝑎𝑗𝑙 is the expansion coefficient. The wavefunctions 𝛹𝑗(𝑘⃗⃗, 𝑟) are constructed as 

eigenstates of the single electron Hamiltonian, such that the energy of the jth unit cell is 

given by: 

𝐸𝑗(𝑘) =  <𝛹𝑗|𝐻|𝛹𝑗>
<𝛹𝑗|𝛹𝑗>

=  
∑ 𝑎𝑗𝑖

∗ 𝑎𝑗𝑙<𝛷𝑖|𝐻|𝛷𝑙>𝑛
𝑖𝑙
∑ 𝑎𝑗𝑖

∗ 𝑎𝑗𝑙
𝑛
𝑖𝑙 <𝛷𝑖|𝛷𝑙>

=  
∑ 𝑎𝑗𝑖

∗ 𝑎𝑗𝑙
𝑛
𝑖𝑙 𝐻𝑖𝑙

∑ 𝑎𝑗𝑖
∗ 𝑎𝑗𝑙𝑆𝑖𝑙

𝑛
𝑖𝑙

  (2.5) 

where 𝐻𝑖𝑙 are the transfer integral matrix elements and Sil is the overlap matrix elements, 

and they are defined as: 
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𝐻𝑖𝑙 = 〈𝛷𝑖|𝐻|𝛷𝑙〉
<𝛷𝑖|𝛷𝑙>

     (2.6) 

𝑆𝑖𝑙 = 〈𝛷𝑖|𝑆|𝛷𝑙〉
<𝛷𝑖|𝛷𝑙>

     (2.7) 

 Thus, the energy band 𝐸𝑗(𝑘) is determined by the secular equation: 

det(𝐻 − 𝐸𝑗𝑆) = 0    (2.8) 

where det is the determinant of the matrix. 

 

2.2.1 Single layer graphene  
 

Single layer graphene (SLG) consists of a single layer honeycomb lattice of sp2-

hybridized carbon atoms. Its Bravais lattice is a triangular lattice, with two atoms per unit 

cell (figure 2.1). We define the primitive lattice vectors 𝑎⃗1 and 𝑎⃗2 as: 

𝑎⃗1 = (𝑎
2
, √3𝑎

2
),   𝑎⃗2 = (𝑎

2
, − √3𝑎

2
)   (2.9) 

where a = 2.46 Å is the distance between the unit cells and 𝑎 √3⁄  is the distance between 

nearest neighboring carbon atoms. From the requirement 𝑎⃗𝑖 • 𝑏⃗⃗𝑗 = 2𝛿𝑖𝑗, the reciprocal 

lattice vectors are simply: 

𝑏⃗⃗1 = (2𝜋
𝑎

, 2𝜋
√3𝑎

),   𝑏⃗⃗2 = (2𝜋
𝑎

, − 2𝜋
√3𝑎

)   (2.10) 

The reciprocal lattice vectors define the Bravais lattice in the momentum space. The 

primitive translation vectors, reciprocal lattice vectors and the first Brillouin zone are 

shown in figure 2.1. 
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Figure 2.1. Crystal lattice structure of graphene: (a) Crystal structure diagram of 
graphene’s honeycomb lattice with A and B triangular sub-lattices. Vectors 𝑎⃗1 and 𝑎⃗2 are 
the primitive translation vectors, and vectors 𝛿1, 𝛿2 and 𝛿3 point to the nearest neighbors. 
(b) The first Brillouin zone for SLG in (𝑘𝑥, 𝑘𝑦) momentum space, with reciprocal lattice 
vectors 𝑏⃗⃗1 and 𝑏⃗⃗2. Image taken from ref. 2. 
 

Using the secular equation given in equation 2.8, we obtain 

|
𝐻𝐴𝐴(𝑘) − 𝐸(𝑘)𝑆𝐴𝐴(𝑘) 𝐻𝐵𝐴(𝑘) − 𝐸(𝑘)𝑆𝐵𝐴(𝑘)
𝐻𝐴𝐵

∗ (𝑘) − 𝐸(𝑘)𝑆𝐴𝐵
∗ 𝐻𝐵𝐵(𝑘) − 𝐸(𝑘)𝑆𝐵𝐵(𝑘)| = 0  (2.11) 

We will make the reasonable assumption that 𝐻𝐴𝐴 = 𝐻𝐵𝐵 and 𝑆𝐴𝐴 = 𝑆𝐵𝐵 because the two 

sub-lattices are identical. We need to simply determine these matrix elements to solve the 

energy E(k) of conduction electrons in the graphene lattice. 

The diagonal terms 𝐻𝐴𝐴 and 𝑆𝐴𝐴 of the determinant in equation 2.11 will be 

calculated separately from the off-diagonal terms. Plugging in equation 2.3 into 2.6, the 

first matrix element 𝐻𝐴𝐴 of the transfer integral matrix is: 

𝐻𝐴𝐴 =  1
𝑁

∑ ∑ 𝑒𝑖𝑘⃗⃗·(𝑅⃗⃗𝐴𝑗−𝑅⃗⃗𝐴𝑖)𝑁
𝑗=1 ⟨𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)|𝐻|𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)⟩𝑁

𝑖=1  (2.12) 

which reduces to: 

𝐻𝐴𝐴 = 1
𝑁

∑ ⟨𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)|𝐻|𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)⟩𝑁
𝑖=1    (2.13) 
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where, by the rules of eigenvalues, 

𝜀 =  ⟨𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)|𝐻|𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)⟩   (2.14) 

so, the diagonal elements of the transfer matrix are: 

𝐻𝐴𝐴 =  𝐻𝐵𝐵 =  1
𝑁

∑ 𝜀𝑁
𝑖=1 =  𝑁𝜀

𝑁
=  𝜀   (2.15) 

With the same analysis, the diagonal elements of the overlap matrix are: 

𝑆𝐴𝐴 = 𝑆𝐵𝐵 = ∑ ∑ 𝑒𝑖𝑘⃗⃗·(𝑅⃗⃗𝐴𝑗−𝑅⃗⃗𝐴𝑖)𝑁
𝑗=1 ⟨𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)|𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)⟩𝑁

𝑖=1 = 1  (2.16) 

With 𝐻𝐴𝐴, 𝐻𝐵𝐵, 𝑆𝐴𝐴 and 𝑆𝐵𝐵 solved simplistically, we move on to the off-diagonal matrix 

elements. The interaction among atoms that are further apart become increasingly 

negligible, so a simple approach to solving the off-diagonal elements is to only consider 

nearest-neighbor atoms, in which there are only three. Thus, the first off-diagonal term is: 

𝐻𝐴𝐵 =  1
𝑁

∑ ∑ 𝑒𝑖𝑘⃗⃗·(𝑅⃗⃗𝐵𝑗−𝑅⃗⃗𝐴𝑖)3
𝑗=1 ⟨𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)|𝐻|𝜑𝐴(𝑟 − 𝑅⃗⃗𝐵𝑗)⟩𝑁

𝑖=1  (2.17) 

The coupling strength to any of an A atom should be identical to each of the three 

neighboring B atoms, so that we can define it to be a constant, known as the nearest 

neighbor intralayer hopping parameter 𝛾0: 

γ0 ≡  −⟨𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)|𝐻|𝜑𝐴(𝑟 − 𝑅⃗⃗𝐵𝑗)⟩   (2.18) 

where the position vector between neighboring atoms is defined as: 

𝛿𝑗 ≡ 𝑅⃗⃗𝐵𝑗 − 𝑅⃗⃗𝐴𝑖    (2.19) 

so that equation 2.17 becomes: 

𝐻𝐴𝐵 =  − 1
𝑁

∑ ∑ 𝑒𝑖𝑘⃗⃗·𝛿⃗⃗⃗𝑗3
𝑗=1 𝛾0

𝑁
𝑖=1 𝑓(𝑘)   (2.20) 

where we have defined: 
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𝑓(𝑘) ≡  ∑ 𝑒𝑖𝑘⃗⃗·𝛿⃗⃗⃗𝑗3
𝑗=1     (2.21) 

 The term f(k) should be calculated explicitly to determine the matrix element 𝐻𝐴𝐵. 

The vector 𝛿𝑖 points to the three nearest neighboring atoms, with the forms 

 𝛿1 = (𝑎
2
, − 𝑎

2√3
) , 𝛿2 = (− 𝑎

2
, − 𝑎

2√3
) , 𝛿3 = (0, 𝑎

√3
)  (2.22) 

Thus 

𝑓(𝑘) =  𝑒𝑖𝑘⃗⃗·𝛿⃗⃗⃗1 + 𝑒𝑖𝑘⃗⃗·𝛿⃗⃗⃗2 + 𝑒𝑖𝑘⃗⃗·𝛿⃗⃗⃗3     

= 𝑒
𝑖𝑘𝑥𝑎

2 𝑒
− 

𝑖𝑘𝑦𝑎
2√3 + 𝑒− 𝑖𝑘𝑥𝑎

2 𝑒
− 

𝑖𝑘𝑦𝑎
2√3 + 𝑒

 
𝑖𝑘𝑦𝑎
√3  

   = 𝑒 
𝑖𝑘𝑦𝑎
√3 + 2𝑒− 

𝑖𝑘𝑦𝑎
2√3 cos (𝑘𝑥𝑎

2
)   (2.23) 

Similarly, the off-diagonal overlap matrix element 𝑆𝐴𝐵 is given by: 

𝑆𝐴𝐵 =  1
𝑁

∑ ∑ 𝑒𝑖𝑘⃗⃗·(𝑅⃗⃗𝐵𝑗−𝑅⃗⃗𝐴𝑖)3
𝑗=1 ⟨𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)|𝜑𝐵(𝑟 − 𝑅⃗⃗𝐵𝑖)⟩ =  𝑆0𝑓(𝑘)𝑁

𝑖=1  (2.24) 

where 𝑆0 is also a constant and is defined similarly to 𝛾0: 

𝑆0 =  ⟨𝜑𝐴(𝑟 − 𝑅⃗⃗𝐴𝑖)|𝜑𝐵(𝑟 − 𝑅⃗⃗𝐵𝑖)⟩   (2.25) 

Therefore, the transfer integral matrix 𝐻𝑆𝐿𝐺  and the overlap matrix 𝑆𝑆𝐿𝐺 for SLG are: 

𝐻𝑆𝐿𝐺 =  [
𝜀𝐴 −𝛾0𝑓(𝑘)

−𝛾0𝑓∗(𝑘) 𝜀𝐵
]   (2.26) 

𝑆𝑆𝐿𝐺 =  [
1 𝑆0𝑓(𝑘)

𝑆0𝑓∗(𝑘) 1 ]    (2.27) 

Plugging equations 2.26 and 2.27 into 2.11, and setting 𝜀𝐴 = 𝜀𝐴 = 𝜀, we obtain 

𝑑𝑒𝑡 |
𝜀 − 𝐸(𝑘) −(𝛾0 + 𝐸(𝑘)𝑆0)𝑓(𝑘)

−(𝛾0 + 𝐸(𝑘)𝑆0)𝑓∗(𝑘) 𝜀 − 𝐸(𝑘) | = 0  (2.28) 

Solving the determinant gives us: 
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(𝜀 − 𝐸(𝑘))2 − (𝛾0 + 𝐸(𝑘)𝑆0)2|𝑓(𝑘)|2 = 0   (2.29) 

This is simply a quadratic equation with the form: 

𝐸2(𝑘)[1 − 𝑆0
2|𝑓(𝑘)|2] + 𝐸(𝑘)[−2 − 2𝛾0𝑆0|𝑓(𝑘)|2] + 𝜀2 − 𝛾0

2|𝑓(𝑘)|2 = 0 (2.30) 

which has a solution: 

𝐸±(𝑘) = 𝜀±𝛾0|𝑓(𝑘)|
1∓𝑆0|𝑓(𝑘)|

     (2.31) 

where 𝐸+ (𝐸−) corresponds to the conduction (valence) band. 

 The primitive reciprocal lattice vectors 𝑏⃗⃗1 and 𝑏⃗⃗2 connect the points 𝐾+ and 𝐾− to 

the two other corners of the Brillouin zone, respectively, as shown in figure 2.1b, but they 

explicitly cannot connect 𝐾+ to 𝐾−, meaning that these two points themselves are 

inequivalent, and they are referred to as valleys. These two points in 2D momentum 

space (𝑘𝑥, 𝑘𝑦) are defined as the following, with respect to the gamma point:  

𝐾⃗⃗⃗𝜉 = 𝜉(4𝜋
3𝑎

, 0)     (2.32) 

where [ = +1 (-1) for the 𝐾+ (𝐾−) valley. If we define the momentum 

𝑝⃗ =  ℏ𝑘⃗⃗ −  ℏ𝐾⃗⃗⃗𝜉     (2.33) 

then the function f(k) from equation 2.23 becomes: 

𝑓(𝑘) =  𝑒 
𝑖𝑝𝑦𝑎
√3ℏ + 2𝑒− 

𝑖𝑝𝑦𝑎
2√3ℏcos (2𝜋𝜉

3
+ 𝑝𝑥𝑎

2ℏ
)   (2.34) 

A Taylor series expansion to first order gives: 

𝑓(𝑘) =  1 + 𝑖𝑝𝑦𝑎

√3ℏ
+ 2(1 − 𝑖𝑝𝑦𝑎

2√3ℏ
)[(1)(− 1

2
) − (√3

2
)(𝜉√3𝑝𝑥𝑎

2ℏ
) +…] (2.35) 

which simplifies to: 

𝑓(𝑘) =  − √3𝑎
2ℏ

(𝜉𝑝𝑥 − 𝑖𝑝𝑦)    (2.36) 
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Thus, in the low energy regime near the Dirac points, H ~ 0, and using equation 2.36 and 

its complex conjugate, the Hamiltonian from equation 2.26 reduces to a simple form: 

𝐻𝑆𝐿𝐺 =  𝑣𝐹 [
0 𝜉𝑝𝑥 − 𝑖𝑝𝑦

𝜉𝑝𝑥 + 𝑖𝑝𝑦 0 ] = 𝑣𝐹 [0 𝜋†

𝜋 0
]   (2.37) 

where 

𝜋 = 𝜉𝑝𝑥 + 𝑖𝑝𝑦    (2.38) 

and the Fermi velocity 𝑣𝐹 is: 

𝑣𝐹 = √3𝑎𝛾0
2ℏ

     (2.39) 

Therefore, the massless Dirac quasiparticles that transport through a SLG lattice at low 

energies can be described by a simple 𝑘⃗⃗•𝑝⃗ Hamiltonian. Plugging in the values for a = 

2.46 Å and using 𝛾0 = 3.033 eV into equation 2.39, we arrive at a Fermi velocity of ~9.8 

x 105 m/s, which is 0.3% the speed of light. From equation 2.37, the energy eigenvalues 

and eigenvectors are simply: 

𝐸𝑆𝐿𝐺
± = ±𝑣𝑝     (2.40) 

𝛷𝑆𝐿𝐺
± = 1

√2
( 1
±𝑒±𝑖𝜑)𝑒

𝑖
ℎ𝑝⃗·𝑟    (2.41) 

Equation 2.40 shows that in the low energy regime, the energy of electrons near the Dirac 

points 𝐾+ and 𝐾− are linear, and thus the charger carriers are relativistic, like photons, 

except they move at a speed that is 1 300⁄  of c. The energy 𝐸±(𝑘) from equation 2.31 

and the corresponding low energy continuum limit in equation 2.40 are shown in figure 

2.2. 



15 
 

 

Figure 2.2. Electronic band structure of SLG from TB calculation: The full tight 
binding energy E(k) of the electronic band structure of SLG with 𝛾0 = 3.033 eV. The 
energy dispersion near the Dirac points is linear. Image taken from ref. 2. 
 

2.2.2 Bilayer graphene 

Bilayer graphene (BLG) consists of two layers of graphene stacked upon each 

other such that the A sub-lattice of the top layer is directly above the B sub-lattice of the 

bottom layer, forming a dimer bond between the stacked atoms3. There are four atoms in 

the unit cell for BLG, two from each sub-lattice and two from each layer, in a rhombus-

shape3, as shown in figure 2.3a. If the two layers didn’t interact in any way, then the 

Hamiltonian for BLG would simply consist of the Hamiltonian in equation 2.26 repeated 

twice in the upper left and lower right-hand corners of the matrix, with other coupling 

matrix elements zero. However, the additional inter- and intralayer hopping parameters 

modify the Hamiltonian dramatically.  

The interlayer hopping parameter 𝛾1 denotes the coupling between the stacked 

atoms, i.e. the 𝐵1 atom of the bottom layer and the 𝐴2 atom of the top layer, 𝛾3 denotes 
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that between the 𝐴1 atom of the bottom layer and the 𝐵2 atom of the top layer, and 𝛾4 

between the 𝐴1 atom of the bottom layer and the 𝐴2 atom of the top layer. 

 

Figure 2.3. Lattice structure of BLG: (a) Top view of the BLG lattice. Black and white 
circles correspond to the bottom layer and black and grey circles correspond to the top 
layer. The unit cell is the shaded rhombus region. (b) Side view of the BLG lattice 
showing hopping parameters 𝛾0, 𝛾1, 𝛾3 and 𝛾4. Image taken from ref 3. 
 

Since 𝛾1 is a dimer bond between the 𝐵1 atom of the bottom layer and 𝐴2 atom of the top 

layer, it logically follows that it would appear in two places in the transfer integral matrix, 

namely in the 𝐻23 and the 𝐻32 matrix elements. Considering hopping parameters 𝛾0, 

𝛾1, 𝛾3 and 𝛾4, as shown in figure 2.3b, the transfer integral matrix for BLG has the form 

of two 2x2 SLG transfer integral matrices and their associated couplings. The rows and 

columns of the 4x4 transfer integral matrix for BLG are ordered as 𝐴1, 𝐵1, 𝐴2, 𝐵2, so 

that: 

𝐻𝐵𝐿𝐺 =

[
 
 
 

𝜀𝐴1        −𝛾0𝑓(𝑘)
−𝛾0𝑓∗(𝑘)       𝜀𝐵1

     𝛾4𝑓(𝑘)      −𝛾3𝑓∗(𝑘)
     𝛾1      𝛾4𝑓(𝑘)

𝛾4𝑓∗(𝑘)       𝛾1
−𝛾3𝑓(𝑘)   𝛾4𝑓∗(𝑘)

𝜀𝐴2     −𝛾0𝑓(𝑘)
−𝛾0𝑓∗(𝑘)        𝜀𝐵2 ]

 
 
 
  (2.42) 
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In this calculation of the electronic band structure of BLG, we will only consider 𝛾0 and 

𝛾1, the nearest-neighbor intra- and interlayer hopping parameters, respectively. Thus, the 

transfer integral and the overlap integral matrices simply to 

𝐻𝐵𝐿𝐺 = [

𝜀𝐴1 −𝛾0𝑓(𝑘)
−𝛾0𝑓∗(𝑘) 𝜀𝐵1

0             0
𝛾1             0

0            𝛾1
0            0

𝜀𝐴2 −𝛾0𝑓(𝑘)
−𝛾0𝑓∗(𝑘) 𝜀𝐵2

]  (2.43) 

𝑆𝐵𝐿𝐺 = [

1 𝑆0𝑓(𝑘)
𝑆0𝑓∗(𝑘) 1

0             0
𝑆1             0

0            𝑆1
0            0

1 𝑆0𝑓(𝑘)
𝑆0𝑓∗(𝑘) 1

]   (2.44) 

where 𝑆1 is the coupling between the 𝐵1 and 𝐴2 atoms: 

𝑆1 =  ⟨𝜑𝐴2(𝑟 − 𝑅⃗⃗𝐴2)|𝜑𝐵1(𝑟 − 𝑅⃗⃗𝐵1)⟩   (2.45) 

We will consider the low energy regime when calculating the band structure for BLG and 

set 𝜀𝐴1 = 𝜀𝐵1 = 𝜀𝐴2 = 𝜀𝐵2 = 𝑆0 = 𝑆1 = 0, so that the overlap matrix becomes an identity 

matrix and the determinant to the secular equation has the form: 

 det(𝐻 − 𝐸𝑆) =  𝑑𝑒𝑡 |

−𝐸 −𝛾0𝑓(𝑘)
−𝛾0𝑓(𝑘) −𝐸

0             0
𝛾1             0

0            𝛾1
0            0

−𝐸 −𝛾0𝑓(𝑘)
−𝛾0𝑓(𝑘) −𝐸

| = 0 (2.46) 

Expanding the determinant along the first column gives: 

det(𝐻 − 𝐸𝑆) = −𝐸 · 𝑑𝑒𝑡 |
−𝐸 𝛾1 0
𝛾1 −𝐸 −𝛾0𝑓(𝑘)
0 −𝛾0𝑓(𝑘) −𝐸

| + 

𝛾0𝑓(𝑘) · 𝑑𝑒𝑡 |
−𝛾0𝑓(𝑘) 0 0

𝛾1 −𝐸 −𝛾0𝑓(𝑘)
0 −𝛾0𝑓(𝑘) −𝐸

| = 0  (2.47) 

Solving these two 3x3 determinants gives: 
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𝐸4 + {−[𝛾0𝑓(𝑘)]2 − 𝛾1
2}𝐸2 + [𝛾0𝑓(𝑘)]4 = 0  (2.48) 

which is simply a quadratic equation in 𝐸2 and has a solution: 

𝐸2 =  𝛾0
2|𝑓(𝑘)|2+𝛾1

2±√{𝛾02|𝑓(𝑘)|2+𝛾12}2−4𝛾04|𝑓(𝑘)|4

2
   (2.49) 

Neglecting higher order term, we are left with: 

𝐸±(𝛼, 𝑘) =  ± 𝛾1
2

{√1 + 4𝛾02|𝑓(𝑘)|2

𝛾12 + 𝛼}   (2.50) 

where D = ±1. 𝐸+ (𝐸−) corresponds to the conduction (valence) band, and D = +1 (-1) 

corresponds to the higher (lower) energy band. Using a Maclaurin series expansion of 

equation 2.50 to first order, setting D = -1 for the low energy regime, and employing 

equations 2.36 and 2.39, we arrive at: 

𝐸−(𝛼 = −1, 𝑘) =  − 𝛾0
2|𝑓(𝑘)|2

𝛾1
=  − 1

2𝑚
(𝜉𝑝𝑥 − 𝑖𝑝𝑦)

2
 (2.51) 

where 

𝑚 = 𝛾1
2𝑣𝐹2    (2.52) 

From equation 2.51, we see that BLG has acquired a mass from the interlayer hopping 

parameter 𝛾1, with a quadratic energy dispersion. Since next-nearest intra- and interlayer 

hopping parameters have been neglected and we focused to the low energy regime, the 

effective Hamiltonian for BLG can be reduced to the following: 

𝐻𝐵𝐿𝐺
𝐸𝑓𝑓 = − 1

2𝑚
[

0 (𝜉𝑝𝑥 − 𝑖𝑝𝑦)2

(𝜉𝑝𝑥 + 𝑖𝑝𝑦)2 0
]  (2.53) 

Thus, BLG at low energies has energy eigenvalues and eigenvectors: 

𝐸𝐵𝐿𝐺
± = ± 𝑝2

2𝑚
     (2.54) 
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𝛷𝐵𝐿𝐺
± = 1

√2
( 1
∓𝑒∓2𝑖𝜉𝜑)𝑒

𝑖
ℎ𝑝⃗·𝑟    (2.55) 

The low energy band spectrum of BLG is plotted in figure 2.4. 

 

Figure 2.4. Electronic low-energy band spectrum of BLG: Plot with parameters: 𝛾0 = 
3.16 eV, 𝛾1 = 0.381 eV, 𝛾3 = 380 meV, 𝛾4 = 140 meV, 𝜀𝐵1 = 𝜀𝐴2 = 22 meV and 𝜀𝐴1 = 𝜀𝐵2 
= 0. Inset shows quadratic sub-bands near the 𝐾+ Dirac point. Image taken from ref. 3. 
 

2.2.3 Bernal-stacked trilayer graphene 
 

As we saw in the previous section, the band structure for BLG differs 

significantly from SLG. As more layers are added to graphene, different properties 

continue to emerge, and more configurations become available. While SLG and BLG 

have only one stable stacking configuration, trilayer graphene (TLG) has two stable or 

metastable stacking configurations: Bernal and rhombohedral. In Bernal-stacked TLG (B-

TLG), also known as ABA TLG, the 𝐵3 atom from the top layer sits directly above the 𝐴2 

atom from the middle layer and the 𝐵1 atom of the bottom layer4, as shown in figure 

2.5a-c. Rhombohedral-stacked TLG (r-TLG), however, consists of two Bernal-stacked 
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bilayers conjoined at the middle layer, such that a dimer bond forms between the 𝐴3 atom 

of the top layer and the 𝐵2 atom of the middle layer, while the 𝐴2 atom of the middle 

layer makes a dimer bond with the 𝐵1 atom of the bottom layer, as shown in figure 

2.5d,e. 

 

Figure 2.5. Crystal lattice structure of B-TLG: (a) Lattice structure diagram of B-TLG. 
(b) Side view of B-TLG lattice showing interlayer dimer bonds between atoms 𝐵1 and 
𝐴2, and 𝐴2 and 𝐵3. (c) Hopping parameters 𝛾1 - 𝛾5 for B-TLG. (d) Lattice structure 
diagram of r-TLG. (e) Side view of r-TLG lattice showing interlayer dimer bonds 
between atoms 𝐵1 and 𝐴2, and 𝐵2 and 𝐴3. Images (a), (b), (d), and (e) are taken from ref. 
4; image (c) is taken from ref. 5. 
 

By considering the hopping parameters 𝛾0 - 𝛾6, the transfer integral matrix can be 

written down by inserting hopping parameters into the appropriate coupling matrix 

elements of the 6x6 matrix, with the rows and columns ordered as 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3, 𝐵3, 

so that: 
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𝐻𝐵−𝑇𝐿𝐺 =

[
 
 
 
 
 
 

𝜀𝐴1
𝑣0𝜋
−𝑣4𝜋

𝑣0𝜋†

𝜀𝐵1
𝛾1

−𝑣4𝜋†

𝛾1
𝜀𝐴2

𝑣3𝜋
−𝑣4𝜋†

𝑣0𝜋†

𝛾2
𝑣6𝜋

−𝑣4𝜋

𝑣6𝜋
𝛾5
𝛾1

  𝑣3𝜋†

𝛾2
𝑣6𝜋†

−𝑣4𝜋
𝑣6𝜋†

𝛾5

𝑣0𝜋
−𝑣4𝜋†

𝛾1

   𝜀𝐵2
   𝑣3𝜋
−𝑣4𝜋†

  𝑣3𝜋†

𝜀𝐴3
𝑣0𝜋

−𝑣4𝜋
𝑣0𝜋†

𝜀𝐵3 ]
 
 
 
 
 
 

  (2.56) 

where we have employed equations 2.20 and 2.36, and introduced the relation: 

𝑣𝑖 = √3𝑎
2ℏ

𝛾𝑖     (2.57) 

The hopping parameters 𝛾0 - 𝛾5 for B-TLG are shown in figure 2.5c. The hopping 

parameter 𝛾6, not shown in figure 2.5c, is similar to 𝛾5, except it connects the 𝐴1 atom of 

the bottom layer to the 𝐵3 atom of the top layer. Next-nearest neighbor, next-next-nearest 

neighbor hopping terms, and so on, become increasingly negligible due to their large 𝛿 

vectors which appear in the f(k) function from equation 2.23, so assuming the low energy 

limit and only considering the nearest neighbor intra- and interlayer hopping parameters, 

𝛾0 and 𝛾1, respectively, the transfer integral matrix for B-TLG reduces to: 

𝐻𝐵−𝑇𝐿𝐺 =

[
 
 
 
 
 0

𝑣0𝜋
0

𝑣0𝜋†

0
𝛾1

0
𝛾1
0

0
0

𝑣0𝜋†
 
0
0
0

     
0
0
𝛾1

    0 
   0
   0

       
0
0
0

    𝑣0𝜋 
   0
   𝛾1

   0
   0
   0

     0
     0
   𝑣0𝜋

0
𝑣0𝜋†

0 ]
 
 
 
 
 

  (2.58) 

Note that this matrix strongly resembles the Hamiltonian for SLG from equation 2.37, 

except with an additional coupling from 𝛾1 from atoms 𝐵1 and 𝐴2 (similar to BLG) and 

𝐴2 and 𝐵3. Thus, the Hamiltonian for B-TLG, when only considering hopping parameters 

𝛾0 and 𝛾1, resembles a so-called 2+1 model, incorporating a linear band structure 
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dependence from SLG and a quadratic band structure from BLG. Namely, by applying 

the following unitary transformation6, 

𝑈 = √2

[
 
 
 
 
 
0
0
√2

0
0
0

0
0
0

  1
−1
 0

0
0
1

0
0
0

0
0
0

√2
0
0

0
0
0

  
0
0
0

1
0
0

 
0
1
1]
 
 
 
 
 

   (2.59) 

the Hamiltonian transforms to: 

𝐻𝐵−𝑇𝐿𝐺 =

[
 
 
 
 
 0

𝑣0𝜋
0

 
𝑣0𝜋†

0
0

  
0
0
0

0
0

 𝑣0𝜋†

0
0
0

 
−√2𝛾1

0
0

0
0

−√2𝛾1

0
0
0

   
𝑣0𝜋
0
0

  
0
0
0

  
0
0

𝑣0𝜋
 

0
𝑣0𝜋†

0 ]
 
 
 
 
 

  (2.60) 

This matrix can now be diagonalized using the L𝑜̈wdin-partitioning method to obtain the 

effective low energy Hamiltonian6: 

𝐻𝐵−𝑇𝐿𝐺 =

[
 
 
 
 
 0 𝑣0

2(𝜋†)2

√2𝛾1
𝑣0

2(𝜋)2

√2𝛾1
   0

0      0
0      0

0            0
0            0

  0 𝑣0𝜋†

𝑣0𝜋 0 ]
 
 
 
 
 

    (2.61) 

The low energy effective Hamiltonian for B-TLG using only hopping parameters 𝛾0 and 

𝛾1 explicitly shows the 2+1 model in equation 2.42. The low energy band structure is 

plotted in figure 2.6. 
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Figure 2.6. Electronic band structure of B-TLG: 2+1 model shows BLG quadratic 
sub-bands (black and blue) and SLG linear bands (red). 𝜉𝑚 indicates the Debye 
frequency. Image taken from ref. 6. 
 

 It is worthwhile to note that the band structure for B-TLG is modified when more 

hopping parameters are used. For instance, when including hopping parameters 𝛾0, 𝛾1, 

𝛾2, 𝛾5 and the onsite energy difference of two inequivalent carbon atoms of the same 

layer, G, the band structure loosely resembles the 2+1 model, however, the monolayer and 

bilayer bands are shifted, as shown in figure 2.77. Here, the SLG bands have separated by 

~ 𝛿 + 𝛾2
2

− 𝛾5
2

= 2 𝑚𝑒𝑉, and the BLG bands have separated by ~ |𝛾2|
2

= 14 𝑚𝑒𝑉, 

however, the relative shift results in no overall band gap, so B-TLG remains semi-

metallic7. 
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Figure 2.7. Electronic band structure of B-TLG: Band structure calculation at low 
energy for B-TLG around the 𝐾− point including parameters including parameters 𝛾0 = 
3.1 eV, 𝛾1 = 390 meV, 𝛾2 = -28 meV, 𝛾5 = 10 meV, and carbon atom intralayer onsite 
energy difference G� ����meV. Image taken from ref. 7. 
 

2.2.4 Rhombohedral-stacked few-layer graphene 

 In this section, we will use the results of the tight binding Hamiltonian 

calculations for r-TLG to generalize rhombohedral-stacked few-layer graphene. The 

lattice structure of r-TLG is shown in figures 2.5d,e and 2.8. A dimer bond forms between 

the 𝐴3 atom of the top layer and the 𝐵2 atom of the middle layer, while the 𝐴2 atom of the 

middle layer makes a dimer bond with the 𝐵1 atom of the bottom layer. Similar to the B-

TLG case, we will start by considering the atoms 𝐴1, 𝐵1, 𝐴2, 𝐵2, 𝐴3 and 𝐵3 and the 

hopping parameters 𝛾0 - 𝛾6. The hopping parameters 𝛾1 - 𝛾4 for r-TLG are shown in 

figure 2.8b; the hopping parameters not shown are 𝛾0, which is the nearest neighbor 
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Figure 2.8. Crystal lattice structure of r-TLG: (a) overhead view of r-TLG lattice. (b) 
Side view of r-TLG lattice showing interlayer hopping parameters 𝛾1, 𝛾2, 𝛾3 and 𝛾4. 
Image taken from ref. 8. 
 

interlayer hopping parameter, and 𝛾5 and 𝛾6, which are couplings from sites 𝐵1 to 𝐴3, and 

𝐴1 to 𝐴3, respectively. We see that the Hamiltonian can be written down by inserting 

hopping parameters into the appropriate coupling matrix elements of the 6x6 transfer 

integral matrix, as follows: 

𝐻𝑟−𝑇𝐿𝐺 =

[
 
 
 
 
 
 𝜀𝐴1

𝑣0𝜋
𝑣4𝜋

𝑣0𝜋†

𝜀𝐵1
𝛾1

𝑣4𝜋†

𝛾1
𝜀𝐴2

𝑣3𝜋
𝑣4𝜋†

𝑣0𝜋†

𝑣6𝜋
𝑣5𝜋†

𝑣4𝜋†

𝛾2
2

𝑣6𝜋
𝑣3𝜋

  𝑣3𝜋†

𝑣6𝜋†

𝛾2
2

𝑣4𝜋
𝑣5𝜋
𝑣6𝜋†

𝑣0𝜋
𝑣4𝜋
𝑣3𝜋†

   𝜀𝐵2
   𝛾1
   𝑣4𝜋

𝛾1
𝜀𝐴3
𝑣0𝜋

𝑣4𝜋†

𝑣0𝜋†

𝜀𝐵3 ]
 
 
 
 
 
 

  (2.62) 

where we have employed equations 2.20, 2.36 and 2.57. Similar to the B-TLG model, we 

ignore the weak couplings 𝛾2 - 𝛾6, so equation 2.62 reduces to an effective form, valid for 

rhombohedral-stacked few-layer graphene of two layers and up: 
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𝐻𝐴𝐵𝐶
𝐸𝑓𝑓 =

[
 
 
 
 
 
 0
𝑣0𝜋
0

𝑣0𝜋†

0
𝛾1

0
𝛾1
0

0
0

𝑣0𝜋†

0
0
0

     
0 …
0 …
0 …

   0
   0
   0
⋮

   
0
0
0
⋮

    

𝑣0𝜋
0
0
⋮

    0
      𝛾1

    0⋮

𝛾1
0

𝑣0𝜋
⋮

0 …
𝑣0𝜋† …
0

⋱ ]
 
 
 
 
 
 

  (2.63) 

Equation 2.63 is starting to look a lot like the Hamiltonian for SLG (2.37) and BLG 

(2.52). It turns out that rhombohedral-stacked N-layer graphene can be explained by an 

N-chiral 2D electron system9, and the effective Hamiltonian for N-layer ABC-stacked 

graphene is: 

𝐻𝐴𝐵𝐶
𝑁 = −𝛾1 [ 0 (𝜈†)2

𝜈2 0
]    (2.64) 

with energy eigenvalues9: 

𝐸𝐴𝐵𝐶
± = ±𝛾1(

𝑣𝐹
𝛾1

)𝑁    (2.65) 

where 

𝜈 = 𝑣𝐹𝜋
𝛾1

     (2.66) 

This shows that the band structure of multilayer rhombohedral-stacked graphene, when 

considering only the nearest neighbor intra- and interlayer hopping parameters in the low 

energy regime, scales with 𝑘𝑁, meaning that r-TLG has a cubic energy dispersion and r-

4LG has a quartic energy dispersion. Thus, as we continue to add layers to the few-layer 

graphene lattice, we introduce more interlayer couplings which modify the band structure 

and steadily increase the order of the polynomial of its energy dispersion. Band structure 

calculations9 show that this behavior of 𝑘𝑁 energy dispersion holds to at least four layers 

of graphene, but further work is needed to determine when this trend breaks down and 
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behavior of three-dimensional graphite occurs. The electronic band structure is plotted in 

figure 2.9 for r-TLG and r-4LG. 

 

Figure 2.9. Electronic band structure of r-TLG and r-4LG with 𝜸𝟎 = 3eV, 𝜸𝟏 = 0.363 
eV, and 𝜸𝟐 = 10 meV: (a) r-TLG band structure. (b) r-4LG band structure. Image taken 
from ref 9. 
 

2.3 Conclusion and references 

 Using the TB approximation that ignore remote hopping terms, we calculate that 

SLG has a linear energy dispersion with relativistic charge carriers, BLG gains a mass 

term and has a quadratic energy dispersion, and B-TLG consists of a superposition of the 

quadratic bilayer and linear single layer energy bands. Finally, the energy dispersion of 

N-layer rhombohedral-stacked multilayers of graphene, at least to four layers, scales as 

𝑘𝑁 at low energies. These simple band structures serve as zero-order approximation for 
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understanding the electronic properties of few-layer graphene, but can be significantly 

modified by remote hopping parameters and electronic interactions. 
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Chapter 3: Device Fabrication 

3.1 Introduction 

 In this chapter, we will present the fabrication recipe employed for creating 

doubly-suspended few-layer graphene (FLG) prototype field effect transistor (FET) 

devices. This recipe was originally created by Gang Liu, Jairo Velasco Jr. and Chun Ning 

(Jeanie) Lau, and later modified by Yongjin Lee and myself. This recipe entails a careful 

sample characterization and a multi-level electron beam lithography (EBL) process which 

results in both a suspended, contactless top gate and a suspended FLG membrane1. The 

samples are prepared by the mechanical exfoliation of graphite, and the number of layers 

and stacking order are determined. EBL is then used to define the device electrodes and a 

suspended top gate, and wet-etched to suspend the graphene membrane. Current 

annealing is performed post fabrication to improve sample quality. 

 

3.2 Sample Preparation 

 To prepare samples, we exfoliate graphene from Kish graphite with scotch tape 

onto oxidized silicon wafers, and use optical contrast and Raman spectroscopy to 

determine the number of layers and stacking order of the FLG sheets. 

 

3.2.1 Graphene Exfoliation 

 Kish graphite is used in all samples fabricated. First, the graphene is mechanically 

exfoliated onto diced Silicon wafers with 300-nm SiO2 surface layer using the scotch tape 
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technique2. The diced wafers are inspected under an optical microscope for exfoliated 

FLG flakes with the desired shape, thickness and surface homogeneity. Long, thin, and 

homogenous flakes are selected, typically. Sometimes graphene flakes with non-ideal 

shapes are patterned into the desired shape or geometry by inductively-coupled plasma 

(ICP) etching (see figure 3.4). 

 

3.2.2 Identification of Thickness and Stacking Order 

The thickness of a graphene flake can be estimated by measuring the relative 

green shift (RGS) between the flake and substrate, 

𝑅𝐺𝑆 =  𝐺𝑆−𝐺𝐺
𝐺𝑆

     (3.1) 

where 𝐺𝑆 (𝐺𝐺) is the green channel value of the substrate (graphene flake). Each layer of 

graphene has an opacity of SD = 2.3%, where D = 1 137⁄  is the fine structure constant; 

together with the thin film interference between lights paths that reflect off graphene, 

SiO2 and Si, optical contrast under a standard optical microscope can be used an effective 

tool in estimating the number of layers of graphene. The RGS values for single layer 

graphene (SLG) and FLG are listed along with the Raman backscattering peak intensity 

ratio 𝐼𝐺 𝐼2𝐷⁄  in table 3.1. A similar method can be employed to estimate the thickness of 

hexagonal boron nitride using the RGS value, and those results are discussed in Appendix 

A.1. 

An additional tool for confirming the flake thickness is the use of Raman 

spectroscopy3. In particular, the G mode in graphite is a single resonance intravalley 

longitudinal optical phonon mode near the * point and the 2D mode is a double-
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resonance intervalley scattering process which exhibits a strong frequency dependence on 

the excitation laser energy5-7. The ratio between the intensities of the peaks, 𝐼𝐺 𝐼2𝐷⁄ , 

predictably and linearly increases with increasing number of layers3,4. We empirically 

determined the peak intensity ratio 𝐼𝐺 𝐼2𝐷⁄  for the first four layers of graphene after taking 

Raman spectra from over one hundred samples; the measured 𝐼𝐺 𝐼2𝐷⁄  values are shown 

along with RGS values in table 3.1. In this work, we used a Horiba LabRAM HR 

Evolution Raman laser with a 532-nm wavelength. 

 RGS 𝐼𝐺 𝐼2𝐷⁄  

SLG 0.030 ± 0.010 0.8 ± 0.1 

BLG 0.053 ± 0.013 1.5 ± 0.2 

TLG 0.078 ± 0.013 2.2 ± 0.2 

4LG 0.105 ± 0.015 2.8 ± 0.2 

Table 3.1: Experimentally measured RGS and 𝐼𝐺 𝐼2𝐷⁄  values for the first four layers of 
graphene. 
 

To distinguish between Bernal and rhombohedral stacking orders, we rely upon the shape 

of the 2D, as shown in figure 3.1. The 2D peak in the Raman backscattering spectrum is 

symmetric for Bernal-stacked (B-) TLG and B-4LG, but it has a right-handed shoulder 

for rhombohedral-stacked (r-) TLG and r-4LG8-10. 
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Figure 3.1. Raman spectra of 2D peak in TLG: The 2D peak of the Raman shift of 
Bernal- (blue) and rhombohedral- (green) stacked TLG show characteristically different 
shapes. While the 2D peak of B-TLG is symmetric, the 2D peak of r-TLG has a 
prominent right-handed shoulder. 
 

3.3 Electron beam lithography 

 The second stage in sample fabrication is the process of electron beam 

lithography (EBL). A scanning electron microscope (SEM) is used to perform EBL so as 

to define alignment mark matrices, create a mask for dry etching if necessary, define a 

top gate and to define source/drain electrode patterns. In total, there are five to six 

lithographic steps required: two steps are required to make alignment marks, one optional 

step may be needed to dry-etch the graphene flake, two steps are required to define the 

top gate, and one step is required to write the source and drain electrodes. After the final 

lithography step, the entire device is submerged in buffered oxide etch (BOE) to create a 

suspended, dual-gated graphene device. These fabrication procedures are described in 

detail below. 
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3.3.1 Alignment Marks 

 Since the graphene flakes are small and randomly placed on the substrate, in order 

to couple them to metal contacts, we first fabricate alignment mark matrices around the 

selected graphene flakes. First, double layers of electron beam resists, methyl 

methacrylate (MMA) and polymethyl methacrylate (PMMA), are spun onto the sample, 

and each layer is baked at 180 oC for ten minutes on a standard hot plate. Then a small 

dab of silver paint is placed on the sample, and its location on the diced wafer relative to 

the flake is noted for reference. Next, the sample is loaded into the SEM, and the beam is 

focused onto the sample using the conducting silver paint. Alignment marks are written 

surrounding the flake with a predetermined alignment mark matrix using a Nanometer 

Pattern Generation System (NPGS) file. After EBL exposure, the sample is developed in 

a 3:1 ratio of isopropyl alcohol (IPA) to methyl isobutyl ketone (MIBK) for 60 seconds, 

rinsed in IPA for 30 seconds, and dried with 𝑁2 gas. The alignment mark matrix is 1.44 

mm x 1.44 mm in size, which makes it relatively easy to successfully target a graphene 

flake on the 4-mm x 4-mm chip. 

After the initial alignment mark matrix is exposed and developed, images of the 

sample with the resist mask are taken with an optical microscope. An additional four 

alignment marks are then patterned with NPGS to be ±35 and ±55 Pm in the horizontal 

direction along the flake, in close proximity to the flake, as shown in figure 3.2. Finally, 

10 nm of chromium and 80 nm of gold are then evaporated into the alignment mark 

patterns using an electron beam evaporator. The metal is lifted off in acetone at room 
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temperature for a couple hours and then rinsed in IPA. Optical images are taken of the 

metallic alignment marks to allow for future pattern designs with the NPGS program. 

 

Figure 3.2. Optical images of alignment marks on a sample: (a) The alignment mark 
matrix, with crosses circled in green. The separation between the crosses is 60 Pm. (b) 
Extra alignment marks in close proximity to the flake (circled in red) are written and 
overlaid onto the original alignment mark matrix crosses (circled in green). 
 

3.3.2 Inductively-coupled plasma etching 

 For two-terminal devices, a rectangular-shaped flake is most desirable. To obtain 

rectangular flakes, sometimes an additional EBL step is required to define a mask for dry 

etching. Two layers of PMMA resist are spun onto the sample for 40 seconds at 4,000 

rpm and 1,000 rpm/sec, and each layer is baked for 10 minutes. With the metal alignment 

marks visible under the resist layers, NPGS design patterns are then generated to map out 

areas on the flake to be etched away. 
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After exposing the sample with EBL, it is developed in IPA:MIBK (3:1) for 60 

seconds, rinsed in IPA for 30 seconds and dried with N2 gas. The sample is then placed on 

a 4” silicon wafer and loaded into the ICP etcher. O2 or SF6 gases are used to etch away 

the undesirable areas of the graphene flake. Typically, O2 is admitted into the ICP 

chamber with DC power of 300 W and RF power of 30 W for 10-15 seconds. Figure 3.3 

displays the optical images of a graphene flake at various stages during this etching step. 

 

Figure 3.3. Inductively Coupled Plasma etching: (a) Graphene flake, as exfoliated onto 
an oxidized silicon wafer without electron beam resist. (b) Graphene flake with two 
layers of PMMA and a window in the resist opened with electron beam lithography. (c) 
The final, etched graphene flake, before removing the resist mask. 
 

3.3.3 Suspended top gate fabrication 

 Fabrication of suspended, contactless top gates is a crucial step in the study of 

these suspended FLG devices. We typically design top gates such that their anchors are 
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about 1 Pm away from the graphene flake and the top gate bridge is laterally separated 

from the source or drain electrodes by about 350 nm. Once the master NPGS file is 

completed, i.e. the entire device design, it is then decomposed into the three lithographic 

steps: 1E, 2E, and 3E. 

 The 1E step is the first lithographic step for fabricating the suspended top gate, 

and it defines the top gate electrode and anchors. The 1E step requires spinning and 

baking lift-off resist (LOR) and PMMA onto the sample. The LOR 3B is spun onto the 

sample first at 4,000 rpm for 40 seconds with acceleration and deceleration rates of 300 

rpm/sec. Next, the sample is baked for five minutes at 190 oC. Another layer of PMMA is 

then spun on the sample at 4,000 rpm for 40 seconds with acceleration and deceleration 

rates of 1,000 rpm/second, and baked at 180 oC for 10 minutes. Again, a dab of silver 

paint is placed onto the sample for focusing purposes in the SEM. With proper doses 

determined from dose tests with the corresponding electron beam resists, the 1E pattern is 

written on the sample. The typical dosages range from 250 to 600 μC cm2⁄  with an 

electron beam accelerating voltage of 20 kV. 

After exposure from the e-beam, the sample is developed by submerging it into a 

solution with a 3:1 ratio of IPA:MIBK at room temperature for 60 seconds. MIBK is used 

to open the PMMA window. The sample is then placed in IPA for 30 seconds, and 

observed under an optical microscope. If the PMMA window is completely opened in the 

resist mask without under- or over-developing, then we can proceed to develop in MF319 

solution for about two seconds to open the LOR window. The sample is then quickly 

moved to deionized water for five minutes, and subsequently gently dried with N2 gas. 
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The final process of the 1E step is to remove the top-most PMMA layer by submerging 

the sample in acetone at room temperature for ten minutes, then rinsing with IPA and 

drying with N2 gas. Now the entire top gate pattern is opened in the LOR window except 

for the top gate bridge. 

 In the second lithographic step for fabricating the suspended top gate, the 2E step, 

the top gate electrodes and anchors are defined again, together with the air-bridge. LOR 

still remains on the sample from the 1E step, and this is a vital requisite: a small 

rectangular region of LOR must remain on the sample where the top gate bridge is to be 

located. This serves as a sacrificial layer for depositing metals for the bridge. LOR 3B is 

used because it has a film thickness of 300 nm when spun at the specifications discussed 

above. Step 2E involves spinning, sequentially, one layer of MMA and one layer of 

PMMA onto the chip for 40 seconds at 4,000 rpm with acceleration and deceleration rates 

of 1,000 rpm/sec; each layer is baked for 10 minutes at 180 oC. MMA is used because of 

its undercut after developing which facilitates the formation of robust anchors. Again, a 

dab of silver paint is applied to the sample and the 2E step is written with the EBL with 

correct doses as determined from dose tests. Since the LOR was already developed in the 

1E step, we use IPA:MIBK (3:1) to develop the MMA and PMMA layers for 60 seconds, 

then rinse in IPA for 30 seconds and dry with N2 gas. 

 The MMA/PMMA window is now open. After inspecting under an optical 

microscope, the sample is ready for the three-angle electron beam evaporation. The 

sample is placed on a 45o angle tilt stage and 15 nm (165 nm) of Cr (Au) is deposited at a 

rate of 3.2 (4.0 Angstroms/s), while maintaining temperatures in the evaporator below 50 
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oC and pressures below 10-5 torr. We then rotate the sample by precisely 180o on the 45o 

angle tilt stage, and evaporate Cr/Au again. A final evaporation of 10 nm Cr and 100 nm 

Au is performed without the use of the tilt stage. The 1E, 2E and three-angle evaporation 

processes are shown in figure 3.4. Finally, the chip is removed from the evaporator and 

the metal is lifted off in PG remover for two hours at 60 oC. The chip is rinsed seven 

times in beakers with IPA before drying in a critical point dryer (CPD). Drying in a CPD 

dramatically improves device yield, as it replaces the IPA with liquid carbon dioxide 

(LCO2), which is then brought past its critical point such that maximal surface tension is 

eliminated. It is important to reduce surface tension to prevent the thin top gate structure 

from collapsing as the liquid is dried. High quality LCO2 is used to reduce the 

introduction of impurities to the sample. The critical point dryer used in this work is the 

AutoSamdri 815B Series A, by the Tousimis Research Corporation. 
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Figure 3.4. Schematic of 1E and 2E lithographic steps with three-angle electron 
beam evaporation: (a) LOR (green) is first spun and baked onto the SiO2 substrate (light 
blue), followed by PMMA (dark blue). (b) Next, the first pattern (1E step) is exposed on 
the sample, and developed. (c) The top-most PMMA layer is removed with acetone, and 
(d) a new layer of MMA (pink) and PMMA (dark blue) are spun and baked on the sample 
again. (e) Next, the sample is exposed once again (2E step), to prepare for the three-angle 
electron-beam evaporation. (f) Chromium and gold metal (yellow) are evaporated onto 
the sample from three difference incident angles. (g) Finally, lift off in PG remover 
removes all resists. The end-result is a suspended, contactless top gate. 
 

3.3.4 Split top gates 

 Another device design that I developed is suspended split top gates. The 

fabrication process for split top gates is identical to that of a single, suspend top gate. 

However, split top gates require extremely precise electron beam dosages, and the split 

top gates are much less robust, with weaker anchors. A minimum separation between the 

two split top gates was determined to be about 700 nm; separations less than 700 nm 

typically resulted in over-exposure of the top gate bridges and anchors due to EBL 

proximity effects. Furthermore, the surface area of the top gate anchors are also reduced 

were reduced as well to prevent shorting due to EBL proximity effects. Scanning electron 

microscope images of split top gates are shown in figure 3.5. 
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Figure 3.5. SEM image of suspended, split top gates: (a) Overhead image of suspended 
split top gates which shows the deposited metal is not shorted to the electrodes. (b) Tilted 
image of suspended split top gates shows that the top gates are indeed suspended above 
the graphene layer. 
 

3.3.5 Source and drain electrodes 

 The final process in the EBL procedure is the fabrication of the source and drain 

electrodes, lithographic step 3E. In this step, we use MMA and PMMA bilayer as resists. 

After the electron beam exposure, and development in MIBK:IPA (3:1), 15 nm of 

chromium and 150 nm of gold are evaporated onto the sample. Chromium and gold are 

chosen because they do not react with HF, which will be used in the next step to suspend 

the graphene. Chromium acts as a sticking or wetting layer, since gold by itself does not 

adhere well to the SiO2 substrate. Gold is used instead of chromium only, because it 

conducts well and because thick layers of chromium tend to crack and flake apart. A large 

thickness of 150 nm of gold is chosen to reduce the probability of gate leakage during 

wire bonding. 
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3.3.6 Suspending the graphene membranes 

 Wet etching with a buffered oxide etch (BOE) is used to suspend the graphene.  

The BOE solution used comprises of a 6:1 volumetric ratio of 40% ammonium fluoride 

(NH4F) in deionized water to 49% hydrofluoric acid (HF) in deionized water. After the 

final metal evaporation of source and drain top gates, the device is placed in acetone at 

room temperature or heated to 65 oC in order to lift off the resist. While the sample is still 

submerged in acetone, it is brought directly into IPA without drying, and rinsed in seven 

small beakers, each containing about 60 mL of IPA. Next, the samples are submerged in a 

6:1 BOE solution for 70 seconds, so as to release the graphene flake from the SiO2 

substrate. After the etching is complete, the sample is again dried in a CPD. The resultant 

device is a suspended few-layer graphene field effect transistor device with dual gates, as 

shown in figure 3.6. 

 

Figure 3.6. SEM image of doubly-suspended FLG device: False coloring is used to 
highlight features of the suspended, contactless top gate and the source-drain electrodes. 
The scale bar is 1 Pm. 
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3.4 Post-fabrication annealing 

 After fabrication, the sample is wire bonded to a 16- or 20-pin chip carrier and 

cooled in a cryostat. Before measurements, the sample must first be annealed and 

characterized. 

 

3.4.1 Current annealing 

 As-fabricated devices are contaminated with resist residues that introduce 

significant scattering and doping, thus typically have initially very low mobility and large 

minimum conductance. To improve device quality by removing impurities, we perform 

current annealing, during which a relatively large DC current density through the sample 

generates sufficient Joule-heating to burn off impurities. 

 To perform current annealing, we load a suspended graphene device on a chip 

carrier into a He3 or He4 cryostat, lowering the sample temperature to about 1.5K, and 

pumping out the sample space to a rough vacuum. We apply a DC voltage to the sample 

and measure its current. The current-voltage (I-V) characteristics are plotted while the 

bias is slowly ramped up at speeds of 5-15 mV/s and stopped when the I-V curve 

becomes sublinear and begins to saturate, as shown in Figure 3.7a. Current saturation 

usually occurs at a current density of ~ 0.2-0.4 mA/Pm/layer. Usually the sample is 

moderately resistive immediately following fabrication (2-5 k:) and has little or no gate 

response. After several current annealing cycles, rhombohedral-stacked graphene devices 

are much more resistive (>200 k:) or insulating and display a characteristic V-shaped 

conductance (G) vs back gate (VBG) curve, as shown in Figure 3.7b. 
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Figure 3.7. Current-annealing a suspended r-4LG device: (a) I-V curve of five 
annealing cycles. The I-V curve becomes sublinear at high voltage biases. (b) G(VBG) 
curves after each of five different current annealing cycles. The red, orange, green, blue 
and purple curves correspond to the first, fourth, fifth, seventh and eighth current 
annealing cycles. 
 

3.4.2 Calculation of field effect mobility 

 A metric to characterize the device performance is its electronic field effect 

mobility, P, as defined as 

𝜇 = 𝜎
𝑛𝑒

=  𝜎
𝑉𝐵𝐺

( 1
𝐶𝐵𝐺

𝐴 𝑒
) =  𝛥𝐺

𝛥𝑉𝐵𝐺
• 𝐿

𝑊
• ( 1

𝐶𝐵𝐺
𝐴 𝑒

)   (3.1) 

where V, n, 𝐶𝐵𝐺
𝐴  and e are the conductivity, charge carrier density, capacitance per area 

between the graphene and the back gate, and electron charge, respectively. The value 

dG/dVBG is simply the slope of a G(VBG) curve, L/W is the aspect ratio of the sample, and 

𝐶𝐵𝐺
𝐴  is given by: 

𝐶𝐵𝐺
𝐴 = 𝐶𝑃

𝐴
     (3.2) 
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where A is the area and CP is the capacitance of two sets parallel plate capacitors in 

series, given by: 

1
𝐶𝑃

= 1
𝐶1

+ 1
𝐶2

= 𝑑1
𝜅1𝜀1𝐴

+ 𝑑2
𝜅2𝜀2𝐴

   (3.3) 

Here, C1 is the capacitance of the air gap beneath the graphene with height 𝑑1, and 𝜅1 = 1 

for air. C2 is the capacitance of the remaining, unetched SiO2 with thickness 𝑑2 and 𝜅2 = 

3.9. For typical devices, 𝑑1 ~ 130 nm and 𝑑2 ~ 170 nm, thus 𝐶𝐵𝐺
𝐴 = 51 𝑎𝐹 𝜇𝑚2⁄ . This 

results in a charge carrier density in these fabricated samples of: 

𝑛 = 𝐶𝐵𝐺
𝐴

𝑒
(𝑉𝐵𝐺 − 𝑉𝐵𝐺

𝐷 ) = (3.1 𝑥 1010 𝑉−1𝑐𝑚−2)(𝑉𝐵𝐺 − 𝑉𝐵𝐺
𝐷 ). (3.4) 

The range of back gate chosen for mobility calculation is typically ~ (VBG
D, VBG

D + 3V), 

or similarly the carrier density range is ~ (0, +1011 cm-2), where VBG
D is the back gate 

voltage at which the conductance minimum is observed. Typically, mobility is calculated 

on the electron-side (positive gate voltage). 

 If a device is not imaged in an SEM prior to measurement (thus 𝑑1 and 𝑑2 are 

undetermined), then we can estimate the capacitance using the experimentally measured 

Landau fan. In a magnetic field, quantized plateaus are observed at integer filling factors 

𝜈, 

𝜈 = 𝑛ℎ
𝐵𝑒

= 𝐶𝐵𝐺
𝐴 (𝑉𝐵𝐺−𝑉𝐵𝐺

𝐷 )ℎ
𝐵𝑒

    (3.5) 

Therefore, the slope 𝑉𝐵𝐺 𝐵⁄  at a given filling factor determines the back gate capacitance 

per area 𝐶𝐵𝐺
𝐴 . When plotting G as a function of VBG and B, these quantum Hall states 

appear as a fan radiating from n = B = 0. We typically plot G(𝑉𝐵𝐺, B) or the differentiated 
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conductance 𝑑𝐺(𝑉𝐵𝐺,𝐵)
𝑑𝑉𝐵𝐺

 (the latter accentuates the features), and measure the slopes of the 

QH states on the n-B plane. 

 

3.5 Conclusion and references 
 

In this chapter, we discussed the how FLG samples are prepared by scotch tape 

exfoliation, characterized by optical contrast and Raman spectroscopy, and fabricated 

with EBL. The intricate steps of the fabrication recipe were described, including: 

spinning electron beam resists, writing alignment marks, dry etching the graphene flakes, 

multi-step EBL processes and electron beam evaporations to define suspended top gates 

and contact electrodes, and suspending the FLG membrane with wet etching and drying 

in a CPD. We also included SEM images of fabricated devices, which show the FLG 

membranes suspended above the substrate, with a suspended, contactless top gate that 

does not short to the source-drain contacts. Furthermore, we described some details of the 

post-fabrication annealed process, which leads to high mobility samples by burning off 

impurities, and provided geometrical calculations of the field effect mobility in our 

devices.  
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Chapter 4: In situ observation of electrostatic and thermal 
manipulation of suspended graphene membranes 
 

4.1 Introduction 

 Suspended graphene membranes enable the investigation of its intrinsic 

mechanical, electrical, optical, and thermal properties, such as unparalleled breaking 

strength1,2, wrinkling instability3-5, observation of the fractional quantum Hall effect6-8, 

states with spontaneous broken symmetries9-14, ultrahigh thermal conductivity15 and 

negative thermal expansion coefficient4. Thus, many of graphene’s intrinsic properties 

are only revealed via the study of suspended devices16. However, as an elastic membrane, 

graphene deforms readily, with an intricate relation between its morphology and electrical 

properties17-22. Thus, in situ studies of graphene’s deformation under externally controlled 

parameters are critical for an in-depth understanding of suspended graphene membranes. 

In this chapter, we report in situ observation of thermally and electrostatically 

induced morphological deformation of graphene membranes that are suspended across 

trenches. Under applied gate voltage, the graphene membrane deforms to adopt a nearly 

parabolic profile with a vertical displacement as large as 200 nm for a 3 Pm-long trench. 

Interesting, unclamped membranes slide under tension into the trenches. During cooling, 

due to their large negative thermal expansion coefficient4, graphene membranes buckle, 

forming periodic ripples with large deflections of the free edges. As these distortions are 

expected to have significant impact on graphene’s electrical properties17-22, our results 

will be important for understanding electrical, thermal, and mechanical properties of 
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suspended graphene devices, as well as paving the way for rational engineering of 

graphene using local strain and morphology. 

 

4.2 Device fabrication 

 The device fabrication method in this work23 differs from the doubly-suspended 

fabrication recipe described in the previous chapter. Here, suspended graphene 

membranes are prepared by the standard mechanical cleave technique on Si/SiO2 wafers 

with prepatterned trenches, as shown in figure 4.1a. Membranes that are 1, 2 and 3 layers 

thick are identified by color contrast in an optical microscope and/or using Raman 

spectroscopy. The trenches are defined by photolithography followed by plasma etching 

in a reactive ion etcher (RIE) system. The SiO2 layer is 300 nm thick with trench depth 

and length of 𝑑1 = 250 nm and L ~ 3.0 – 3.3 Pm, respectively. Typically, narrow and 

rectangular-shaped graphene sheets with widths W less than 1 Pm are selected by directly 

depositing Ti/Au metal electrodes through shadow masks24. Two types of devices are 

fabricated: (1) the graphene sheet is clamped by two metal electrodes that are deposited 

~1 Pm from the edges of the trench (figure 4.1b), and (2) the graphene sheet is 

unclamped with one of its ends contacted by a metal electrode placed ~ 10 mm away 

from the trench edge (figure 4.2a). 
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Figure 4.1. Device schematic, SEM and 𝒉𝟎(𝑽𝒈): (a) Schematic diagram of the 
deflection of a graphene membrane under 𝑉𝑔. (b) SEM image of a doubly clamped 
graphene device. All trenches in this work have L ~ 3.0–3.3 Pm. (c) Vertical deflection ℎ0 
calculated from equation 4.1, using 'L = 0 (red), -1 nm (blue), and 1 nm (green), 
respectively. Images taken from ref. 23. 
 

4.3 Electrostatic manipulation  
 
 Graphene’s deformation under electrostatic force can be modeled as a thin film 

that is doubly clamped at x = -L/2 and x = L/2; under a uniform P in the out-of-plane 

direction, it deflects and adopts a parabolic profile. Because of its extremely small 

thickness, graphene is almost always in the large deflection limit with maximum 

deflection ℎ0 at x = 0 given by the equation25-27 

𝑃𝐿2 = 8𝑇0𝑡ℎ0 + 64
3

𝐸𝑡
𝐿2(1−𝜈2)

ℎ0
3   (4.1) 
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where t ≈ 0.34 nm per layer is the thickness, and E is the Young’s modulus. Q is the 

Poisson ratio and is predicted to range from 0.1 to 0.3 for SLG28,29. Here, we use Q = 

0.165, the value for graphite in the basal plane30. 𝑇0 = [𝐸 (1 − 𝜈2⁄ )] (𝛥𝐿 𝐿⁄ ) is the pre-

existing stress in the membrane at P = 0, leading to relative elongation DL that can be 

either positive (tension) or negative (slack). In our experiments, the electrostatic pressure 

is 𝑃 = (𝐶2𝑉𝑔2) (2𝜀0)⁄ , where C is the capacitance per unit area between graphene and 

the gate, and 𝜀0 is the permittivity of vacuum. 

The formulation of equation 4.1 neglects the additional elastic energy required to 

bend the graphene sheet to a finite radius of curvature, because when using continuum 

elasticity, this bending energy can be shown to be much smaller than the stretching of 

energy of equation 4.1. For a finite-thickness continuum sheet, this energy ratio is 

negligibly small by a factor of ~(𝑡/ℎ0)2. For single layer graphene (SLG), the elastic 

bending energy is alternatively modeled in terms of its bending rigidity, which is 

expected to lie in the range N ≈ 1.1 eV26 to ~ 7 eV31, in which case the energy ratio is ~ 

(9N/Etℎ0
2) and again is safely neglected for any reasonable vale of ℎ0 > 1 nm. We also 

consider the effect of ripples acting as corrugations which increase the bending stiffness. 

For sinusoidal ripples of amplitude A, the energy ratio now scales as ~ (A/ℎ0
2) and can be 

neglected for the experiments reported here (typical ℎ0 ~ 20–200 nm and A ~ 1–10 nm)4. 

For the vast majority of works on suspended graphene, one makes the 

approximation of parallel plate geometry between graphene and the gate, in which case 

ℎ0 can be calculated by solving the equation 
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𝜀0
2

( 𝜀𝑟
𝜀𝑟𝑑1+𝑑2

)
2
𝑉𝑔2𝐿2 = 8𝑇0𝑡ℎ0 + 64

3
𝐸𝑡

𝐿2(1−𝜈2)
ℎ0

3  (4.2) 

where 𝑑1 = 250 nm is the depth of the trench, 𝑑2 = 50 nm is the thickness of the residual 

SiO2 at the bottom of the trench, and, 𝜀𝑟 ~ 3.9 is the dielectric constant of SiO2. Figure 

4.2c plots the calculated ℎ0 for SLG as a function of 𝑉𝑔, using L = 3.1 Pm, E = 1 TPa, and 

'L = 0 (red), -1 nm (blue), and 1 nm (green), respectively. Noticeably, even a miniscule 

strain (~0.03%) results in significant variation in ℎ0 at small 𝑉𝑔; at large 𝑉𝑔, all three 

curves approach the asymptotic value ℎ0 = [(3 64⁄ ) (𝑃𝐿4) (𝐸𝑡)⁄ ]1/3, which is sublinear 

in 𝑉𝑔. 

 To experimentally study the deflection, we perform in situ SEM imaging while 

applying 𝑉𝑔 to the devices. A series of images taken at 85o tilt angle for an unclamped 

device at different 𝑉𝑔 is shown in figure 4.2a–d. At 𝑉𝑔 = 0, the graphene membrane 

appears to be flat and taut across the trench. As 𝑉𝑔 is increased, the graphene deflects 

toward the gate, and adopts a parabolic profile. From the SEM images, we can readily 

measure ℎ0, which increases with 𝑉𝑔 and reaches ~ 200 nm at 𝑉𝑔 = 30 V. When 𝑉𝑔 is 

returned to zero from 30 V, graphene reverts to its flat state with little or no slacking. 

Indeed, we observe minimal hysteresis in ℎ0 when 𝑉𝑔 is swept up and down between 0 

and ± 30 V (figure 4.2e), which suggests that the deflection is elastic and reversible. At 

sufficiently large 𝑉𝑔, the graphene sheet irreversibly collapses to the bottom of the trench 

(figure 4.2f), with ripples in the highly strained regions that bridge the trenches’ banks 

and bottom4. 
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Figure 4.2. SEM images and 𝒉𝟎(𝑽𝒈) measurement: (a) A series of SEM images taken 
at 85o tilt angle for an unclamped SLG device at different 𝑉𝑔 = 0, 10, 25, and back to 0 V, 
respectively. (e) Minimal hysteresis in ℎ0 of an unclamped TLG device as 𝑉𝑔 sweeps 
between 0 and ± 30 V. (f) An SEM image showing a graphene sheet collapse to the 
bottom of the trench at sufficiently large 𝑉𝑔 (here 𝑉𝑔 = 40 V). Images taken from ref. 23. 
 

 The measured values of ℎ0 at 𝑉𝑔 ranging from 0 to 45 V for unclamped devices 

are shown as blue triangles in figure 4.3. The three panels correspond to single layer 

(SLG), bilayer (BLG), and trilayer graphene (TLG) devices, respectively. For 

comparison, ℎ0 calculated from equation 4.2 is plotted as green dotted lines, using 
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experimentally determined values of L. To account for the curvature of ℎ0 in SLG at low 

𝑉𝑔, 𝑇0 is obtained from fitting to be 108 Pa; 𝑇0 = 0 for BLG and TLG devices (in general, 

we find that 𝑇0 is sample-dependent, presumably due to variations in the exfoliation and 

fabrication process). The experimental data are in reasonable agreement with equation 4.2 

at low 𝑉𝑔 but deviate significantly for 𝑉𝑔 > 15 V, becoming superlinear in 𝑉𝑔.  

 

Figure 4.3. Electrostatic gate deflection 𝒉𝟎(𝑽𝒈) for suspended SLG, BLG and TLG 
devices, and simulation data of suspended SLG: (a) ℎ0(𝑉𝑔) for single layer, bilayer, 
and trilayer suspended graphene devices, respectively. The symbols are experimental data 
and the dotted and solid lines are calculated using equations 4.2 and 4.3, respectively. 
(b,c) Simulation showing nonuniform distribution of charge density and strain 
distribution (from top to bottom: 𝑉𝑔 = 1, 10, 20, 30, and 33.8V). Here, 𝑇0 = 0. Images are 
taken from ref. 23. 
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The same trend is observed for all devices with larger discrepancy for thinner sheets.  

The failure of equation 4.2 to account for the data prompts us to consider the 

possibility of the graphene sheet sliding into the trench under tension. To test this 

hypothesis, we revise the device geometry by depositing electrodes on graphene near the 

trench edges. Deflection data obtained from these doubly clamped devices (red squares in 

figure 4.3a) are notably smaller than the unclamped counterparts and are much closer to 

the calculated values. Taken together, these data indicate that under tension induced by 

the electrostatic pressure, the substrate-supported portion of unclamped graphene may 

slide into the trench, thus giving rise to increased deflection. Remarkably, this process 

appears to be elastic and reversible, since upon reducing 𝑉𝑔 to 0, ℎ0 returns to < 15 nm 

(figure 4.2a–e). Further works with similar experiments might enable one to study the 

layer dependence and substrate dependence of friction between graphene and the 

substrate32. 

 On the other hand, the sliding of graphene membranes under tension can only 

partially account for the discrepancy between the measured and calculated deflection 

values from equation 4.2. In particular, the experimental data are superlinear, whereas the 

calculated curves are sublinear. To elucidate this discrepancy, we note that, at large 𝑉𝑔, 

graphene adopts a parabolic profile, and hence the approximation of parallel plate 

electrostatics used in equation 4.2 is no longer valid. Instead, the capacitance between 

graphene and the top of the residual SiO2 layer is modified to 

𝐶 = 𝜀0

√ℎ0(𝑑1−ℎ0)
tan−1 (√ ℎ0

𝑑1−ℎ0
)   (4.3) 
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Thus, by combining equations 4.1 and 4.3, and taking into account the series capacitance 

of the SiO2 layer, we self-consistently solve for ℎ0(𝑉𝑔) using E as a fitting parameter. The 

results, which are calculated using E = 1.10 TPa (SLG), 0.98 TPa (BLG), and 1.17 TPa 

(TLG), are plotted as solid lines in figure 4.3a. Again, 𝑇0 are obtained to be ~ 108 Pa for 

SLG and 0 otherwise. The new curves are in very good agreement with experimental 

data; the value of Young’s modulus for graphene is determined to be E = 1.08 ± 0.1 TPa, 

similar to that reported previously1,2. Our results also agree with the numerical analysis in 

ref. 26. We also note that equation 4.2, which is based on the common assumption of 

parallel-plate geometry, is in reasonably good agreement with SLG data for 𝑉𝑔 < 15 V and 

with TLG data for 𝑉𝑔 < 35 V. 

 Further insight into the deflecting membrane can be achieved by using COMSOL, 

a finite element simulation software, to model the inhomogeneous charge density 

distribution (n) that arises from the large deformation of the graphene sheet at high 𝑉𝑔 and 

in turn alters the profile of the sheet. Figure 4.3b,c plots the spatial map of n and strain at 

different 𝑉𝑔. Both become notably inhomogeneous at high 𝑉𝑔: n reaches its maximum at 

the center of the deformed graphene sheet, while the strain is maximum at the clamped 

boundaries. These results should be important for understanding and interpreting 

transport and nanoelectromechanical data of suspended graphene devices. 
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4.4 Strain-induced rippling effects  
 
 Thus far we only considered flat suspended graphene membranes. On the other 

hand, many devices contain ripples. Such ripples are a consequence of graphene’s 

extremely small buckling energy and readiness to deform and can result from either 

tensile or compressive strain4. Since these long-wavelength ripples are smooth on the 

atomic scale, they are expected to have negligible effect on graphene’s intrinsic 

mechanical properties such as Young’s modulus and Poisson’s ratio, and, as noted above, 

the effect of corrugations in increasing the bending stiffness is also negligible in these 

experiments. Conversely, these ripples and strains are expected to strongly impact the 

electronic properties of graphene. Here, we investigate the effect of gating on graphene 

membranes containing strain-induced ripples. Figure 4.4a displays the SEM image of an 

unclamped device with oblique ripples, and electrodes that are deposited ~ 1.5 Pm away 

from the trench. Under applied 𝑉𝑔, in addition to the out-of-plane deflection of the entire 

sheet, the wavelength of the ripples O�decreases (figure 4.4b,c). Such a phenomenon is 

expected from the classical elasticity theory, 𝜆4 𝛼 𝛾−1, where J is the longitudinal tensile, 

which increases with 𝑉𝑔4. Furthermore, 𝑉𝑔 also changes the orientation of the ripples from 

oblique to normal to the edges of the trench, which could be explained by the partial 

sliding of the substrate-supported region of graphene. However, when metal contacts 

extend onto the suspended portion of graphene, as shown in figure 4.4d,e, the ripples are 

pinned by the electrodes, and varying 𝑉𝑔 has a much weaker effect on the morphology of 

the graphene ripples. 
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Figure 4.4. SEM images of suspended graphene devices: (a-c) SEM images of a 
partially clamped suspended graphene device with ripples at 𝑉𝑔 = 0, 15, and 30 V, 
respectively. Electrodes are placed ~ 1.5 Pm from the trench edges. (d,e) SEM images of 
a fully clamped suspended graphene device with oblique ripples at different 𝑉𝑔 = 0 and 30 
V, respectively. The ripples are fully clamped by electrodes that extend over the graphene. 
Images are taken from ref. 23. 
 

4.5 Thermal maniuplation 
 
 We now examine the effect of low temperature on graphene membranes’ 

morphology. Despite extensive low-temperature transport measurements on suspended 

graphene devices, direct observation of their morphology at low temperature has been 

lacking. Using an SEM cold stage, we perform in situ SEM imaging for relatively wide 

(W > L) graphene sheets at room temperature and at 100 K. Figure 4.5 shows that a 

graphene sheet that is originally flat at room temperature becomes rippled at 100 K. 

These ripples arise from the compressive strain induced by graphene’s negative thermal 
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expansion coefficient (TEC) and its substrate-pinned edges. Graphene’s expansion upon 

cooling can also induced the upward buckling of its two free edges, forming a ‘butterfly’ 

feature at two sides, as shown in figure 4.5b,c. 

 

Figure 4.5. SEM images of suspended SLG devices at room temperature and 100 K 
using a cold SEM stage: (a-c) SEM images for 𝑉𝐺 = 0 with devices at room temperature 
(left panels) and cooled to 100 K (right panels). (d,e) In situ SEM images with devices 
cooled to 100 K at 𝑉𝐺 = 0 V (left panel) and 30 V (right panel). Images taken from ref. 
23. 
 

This observation readily enables us to estimate the lower bound of the magnitude of the 

TEC by measuring the length along the arc of the butterfly feature. We estimate that the 

average TEC between 100 K and room temperature is as large as −2 × 10−5 𝐾−1 for 
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single layer graphene, consistent with previous measurements4,33-35. Lastly, when 𝑉𝑔 is 

applied to a wide graphene device at low temperature, the expanded butterfly feature is 

pulled to the bottom of the trench, though the bulk of the sheet remains free-standing. 

Therefore suspended graphene membranes, particularly those with large aspect ratios 

(W L⁄ ≫ 1), are prone to collapsing at low temperature. 

 

4.6 Conclusion and references 

 To conclude, we observe significant deflections of SLG, BLG and TLG 

membranes sheets in response to electrostatic force, which is in agreement with a model 

for the deflection of a thin film with elastic constant ~ 1.1 TPa. Finite element analysis 

simulations indicate that charge carrier density and strain are highly inhomogeneous in 

the suspended graphene membranes, with maxima at the center and clamped edges of the 

graphene membrane, respectively. At low temperature, due to graphene’s negative TEC, 

the central portion of a wide graphene sheet ripples and butterfly features form at its two 

free edges. Thus, these observations imply important applications for electrical, 

mechanical, thermal, and strain engineering in suspended graphene devices. Furthermore, 

these results of morphological deformation, inhomogeneous charge carrier density and 

strain, ripples and butterfly features should be taken into careful consideration when 

analyzing low temperature electronic transport data in suspended graphene field effect 

transistor devices. 
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Chapter 5: Spontaneous and induced insulating states in 
rhombohedral-stacked bilayer and trilayer graphene 
 

5.1 Introduction 

In this chapter, we will begin by motivating the use of suspended structures, 

including both the few-layer graphene (FLG) membranes and the suspended top gates. 

We will discuss the independent tuning of the out-of-plane electric field and charge 

carrier density in the sample, which can only be achieved by dual-gating. Next, we will 

discuss the origin of the single particle gap in bilayer graphene (BLG), and show 

transport data in moderate and high mobility suspended BLG devices with electric field 

tuning. Furthermore, we will show results of probing a spontaneous insulating state in 

BLG, and discuss its nature. We will also show results for the tuning of the intrinsic gap 

in high mobility rhombohedral-stacked trilayer graphene (r-TLG) devices as a function of 

carrier density, temperature, electric and magnetic fields. Finally, we will discuss the 

nature of the ground state of r-TLG at low temperature. 

 

5.2 The importance of suspended structures 

 “Doubly-suspended” refers to the FLG membranes suspended above the dielectric 

layer and below the top gate, as shown in figure 3.6 from chapter three. Several research 

groups have reported high electronic mobility in suspended single layer graphene1-3 

(SLG), FLG4-6 and symmetry-broken insulating states in doubly-suspended FLG with 

suspended top gates4,7-9, making the suspension of SLG, FLG and top gates an invaluable 

method for probing 2D materials. 
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Exfoliating graphene directly onto an SiO2 or SiC substrate typically results in 

moderate device mobility ranging from 1,000 to 10,000 cm2/Vs, although these numbers 

are still relatively low compared to that can be achieved in suspended devices1,4,10,11 or 

devices supported on or encapsulated within hexagonal boron nitride (hBN) layers12-15. 

hBN-supported graphene devices are more robust, though the presence of a substrate 

increases screening, so that the strength of electronic interactions is reduced. For 

instance, no gate tunable interaction-induced band gap has been observed in FLG 

encapsulated in hBN16. On the other hand, suspended graphene devices can be extremely 

clean and provides an ideal platform for exploring electronic interactions close to the 

charge neutrality point, though they are structurally fragile17 and can be susceptible to 

strain17 or ripples17,18. In this thesis, I focus only on suspended devices, whose field effect 

mobility is enhanced over that of substrate-supported devices by factors of about 50-200, 

reaching upwards of 200,000 cm2/Vs6, as shown in figure 5.1. Such high mobilities can 

be extremely difficult to achieve with typical substrate-supported samples. 

 

Figure 5.1. Minimum conductance 𝝈𝒎𝒊𝒏 v. electronic mobility P for B-TLG and r-
TLG devices: (a) non-suspended and (b) suspended devices. Image taken from ref. 6. 
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5.3 Independent tuning of the out-of-plane electric field and charge 
carrier density 
 
 A suspended graphene membrane separated from a metallic gate can be modeled 

as a parallel plate capacitor, with induced charge carrier density 

𝑛 =  𝑄
𝑒𝐴

=  𝐶𝐴𝑉𝐺
𝑒

    (5.1) 

where Q is the total induced charge, A is the area in which the charge is distributed, 𝐶𝐴 is 

the capacitance per area, 𝑉𝐺 is the applied gate voltage, and e is the electron charge. 

When both back gate and top gate are present, equation 5.1 becomes: 

𝑛 =  𝑛𝐵𝐺  + 𝑛𝑇𝐺 ≡   𝐶𝐵𝐺
𝐴

𝑒
(𝑉𝐵𝐺 − 𝑉𝐵𝐺

𝐷 ) + 𝐶𝑇𝐺
𝐴

𝑒
(𝑉𝑇𝐺 − 𝑉𝑇𝐺

𝐷 )  (5.2) 

where 𝑛𝐵𝐺  (𝑛𝑇𝐺) is the charge carrier density induced by the back (top) gate, 𝐶𝐵𝐺
𝐴  (𝐶𝑇𝐺

𝐴 ) is 

the capacitance per area of the back (top) gate, 𝑉𝐵𝐺 (𝑉𝑇𝐺) is the applied back (top) gate 

voltage, and 𝑉𝐵𝐺
𝐷  (𝑉𝑇𝐺

𝐷 ) is the back (top) gate Dirac point. From Gauss’ Law, the out-of-

plane electric field 𝐸⊥ in the sample is: 

𝐸⊥ =   (𝑛𝐵𝐺−𝑛𝑇𝐺)𝑒
2𝜀0

    (5.3) 

where 𝜀0 is the vacuum permittivity. Since all terms are known and there only exists two 

variables (𝑉𝐵𝐺 and 𝑉𝑇𝐺), the two equations can be independently solved, resulting in the 

de-coupling of 𝐸⊥ and n in these dual-gated samples. 

 

5.4 Electric field tuning and spontaneous insulating states in bilayer 
graphene 
 

We first focus on dual-gated suspended BLG devices, which typically have 

source-drain separations ~ 1 –1.5 Pm, and widths 1.3 –1.6 Pm. Current annealing at 
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T=1.6K is used to remove resist residue and absorbants through Joule heating, as 

discussed in chapter three. Samples are measured in a He3 cryostat, 

 

5.4.1 Single particle gap in bilayer graphene 
 

From tight-binding calculations, the charge carriers in BLG behave as massive 

Dirac fermions, and are described by a combination of the Schrödinger and Dirac 

equations, with energy given by19,20-24 

𝐸𝑠(𝑘) = [𝑒2𝑉⊥
2 + ħ2𝑣𝐹

2𝑘2 + 𝑡⊥2/2 ± (4𝑒2𝑉2ħ2𝑣𝐹
2𝑘2 + 𝑡2ħ2𝑣𝐹

2𝑘2 + 𝑡⊥4/2)1/2]
1/2

 

          (5.4) 

where 𝑉⊥ is the electric potential across the bilayer, e the electron charge, h is Planck’s 

constant, 𝑣𝐹~106 m/s is SLG’s Fermi velocity, t~3 eV is the nearest neighbor hopping, 

𝑡⊥~0.4 eV is the interlayer hopping energy, and the ± signs refer to the conduction and 

valence bands, respectively. For 𝑉⊥=0 and at low energies, BLG has a parabolic 

dispersion with zero band gap, E=±h2k2/2m*, where m*=𝑡⊥/2𝑣𝐹
2 ~0.03𝑚𝑒 is the 

effective mass of charge carriers25-27 and 𝑚𝑒 is electron rest mass. For 𝑉⊥≠0, the band 

structure adopts a ‘Mexican-hat’ shape, with a band gap '= 𝑡⊥𝑉⊥/(𝑡⊥2 +𝑉⊥
2)1/2. 

We note that 𝑉⊥ is the screened internal potential between the layers, and is not 

simply given by 𝐸⊥d, where 𝐸⊥ is the applied external field and d=0.34 nm is the 

interlayer spacing. Generally, 𝑉⊥ is reduced from 𝐸⊥d by a factor of 5-10 at low 𝐸⊥ and 

by a factor of ~2 at large 𝐸⊥. The most interesting consequence of equation 5.4 is that 

BLG allows creation of a band gap that is tunable by an applied external potential and 
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ranges from 0 to 250 meV. Such a tunable band gap has been verified in a number of 

transport and optical experiments28-33, and is significant as a promising route to band gap 

engineering and control in graphene electronics. 

 

5.4.2 Transport data of bilayer graphene devices with moderate 
mobility 
 

We first examine the transport data35 from a dual-gated suspended device with 

moderate mobility, ~10,000 cm2/Vs. The presence of two gates allows us to adjust the 

applied electric field 𝐸⊥ and induced charge density n independently. Figure 5.2 presents 

a two-dimensional plot of the two-terminal differential conductance G=dI/dV (color) vs. 

applied back gate voltage 𝑉𝑏𝑔 and top gate voltage 𝑉𝑡𝑔. The most prominent feature of the 

plot, the thin diagonal band, indicates the CNP of the device, demonstrating that charge 

density and type can be tuned by either of the two gates. The slope of the band in the 𝑉𝑡𝑔-

𝑉𝑏𝑔 plane yields the ratio between the capacitive coupling efficiency of the two gates, 

𝐶𝑡𝑔/𝐶𝑏𝑔 ≅ 0.34, where 𝐶𝑏𝑔 (𝐶𝑡𝑔) is the capacitance per unit area between graphene and 

the back gate (top gate). From Landau fan data (not shown) as well as geometrical 

consideration, we estimate that 𝐶𝑏𝑔 ~ 50 aF/μm2 and 𝐶𝑡𝑔 ~ 16.6 aF/μm2.  
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Figure 5.2. Electronic transport data in a suspended BLG device with a moderate 
mobility. (a). G(𝑉𝑏𝑔, 𝑉𝑡𝑔) of a device with mobility 10,000 cm2/Vs at B=0. (b). Same data 
as (a) plotted as G(𝐸⊥, n). (c). Line trace G(n) at 𝐸⊥=0. (d). Line trace G(𝐸⊥) at n=0. 
Image taken from ref. 35. 
 

The device behavior is more easily analyzed as a function of 𝐸⊥ and n, which are 

calculated using equations 5.2 and 5.3. Figure 5.2b replots the data in figure 5.2a as a 

function of 𝐸⊥ (vertical axis) and n (horizontal axis). A line trace G(n) at 𝐸⊥=0 is shown 

in figure 5.2c. As expected, G rises sharply as n increases, indicating reasonably high 

device quality. Figure 5.2d displays the vertical line trace G(𝐸⊥) at n=0, where G 

decreases symmetrically with 𝐸⊥ of either polarity. Such a conductance maximum at n=0 

is consistent with the opening of a small band gap induced by electric field. 

 
5.4.3 Transport data of bilayer graphene devices with high mobility 
 

The 𝐸⊥-induced gap in equation 5.4 (nascent in figure 5.2d) is often called the 

single-particle gap, since it emerges from calculations that ignore electronic interactions. 

Interestingly, it appears to break down for our very best samples with mobility >50,000 

cm2/Vs4,34,36,37. Figure 5.3a-b plots G(𝑉𝑏𝑔, 𝑉𝑡𝑔) and G(𝐸⊥, n) of a device35 with mobility 

~80,000 cm2/Vs. Similar to figure 5.2c, the line trace G(n) at 𝐸⊥=0 shows an exceedingly 

steep V curve, indicating very strong field effect (figure 5.3c). However, in contrast to 
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data in figure 5.2d, G(𝐸⊥) at n=0 displays a conductance minimum at 𝐸⊥=0, and increases 

to a maximum at |𝐸⊥|~15 mV/nm, before decreasing again for larger 𝐸⊥. Another 

surprising feature is that the minimum conductivity at 𝐸⊥=n=0 is exceedingly low, ~1-5 

μS, thus the device is insulating at the CNP. This again is in sharp contrast with the 

device in figure 5.2, whose minimum conductance is ~300 μS.  

 
Figure 5.3. Electronic transport data in a suspended BLG device with high mobility: 
(a). G(𝑉𝑏𝑔, 𝑉𝑡𝑔) of a device with mobility 80,000 cm2/Vs at B=0. (b). Same data as (a) 
plotted as G(𝐸⊥, n). (c). Line trace G(n) at 𝐸⊥=0. (d). Line trace G(𝐸⊥) at n=0. Image 
taken from ref. 35. 
 

To further investigate the insulating state at the CNP, we measure its conductance 

G as a function of source-drain bias V and 𝑛𝑏𝑔. The data are shown in figure 5.4a. The 

dark blue region near the origin represents a low conductance state, ‘sandwiched’ 

between conductance peaks (bright red regions) from above and below. This is more 

clearly seen in the line trace G(V) at 𝑛𝑏𝑔=n=𝐸⊥=0 (figure 5.4b), where G remains close to 

0 for small V, but rises abruptly to conductance peaks at V=±2mV, and decreases to 350 

PS for |V|>3mV. Such a G(V) curve strongly resembles the density of states of a gapped 

state, such as that of a superconductor or charge density wave, and points to the formation 

of a gapped insulating phase in charge neutral BLG. Intriguingly, this insulating phase 

can be ‘extinguished’ by the application of 𝐸⊥. Figure 5.4c plots G(V, n) at 𝐸⊥=14.4 
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mV/nm. In contrast to data at 𝑛𝑏𝑔=n=𝐸⊥=0 (figure 5.4b), both the central insulating 

region and the sharp conductance peaks are absent. Instead, the G(V) line trace (figure 

5.4d) is moderately V-shaped, suggesting slightly non-linear I-V characteristics, which is 

what one would normally expect for transport across a mesoscopic device. Thus, upon 

application of a small electric field, the gapped insulating phase is suppressed, and BLG 

reverts to the behavior of a more conventional conductor. 

 
Figure 5.4. Gate-tuning the spontaneous insulating state in bilayer graphene: (a). 
G(V, 𝑛𝑏𝑔) at B=0. (b). Line trace through (a) at 𝑛𝑏𝑔=n=𝐸⊥=0. (c). G(V, n) at 𝐸⊥=14.4 
mV/nm. Color scale is the same as that in (a). (d). Line trace through (c) at n=0. Image 
taken from ref. 35. 

 

  Finally, we examine how this insulating phase change with temperature T and 

magnetic field B. Figure 5.5a displays minimum conductivity 𝜎𝑚𝑖𝑛(T) at B=n=𝐸⊥=0 for 

two different samples. For both samples, the conductance drops precipitously at T~5K, 

suggesting the onset of an insulating phase. In magnetic field, the conductance, which is 

already low, decreases exponentially with B, and reaches nS or (GΩ)−1 for B~0.3T. This 

gapped insulating phase we observe in charge neutral bilayer graphene cannot be 

explained by singe particle physics, but arises from many body interactions. In fact, the 

enhanced density of states of BLG at the CNP is unstable to electronic interactions and 

favors formation of correlated states with various broken symmetries. There has been  
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Figure 5.5. Transport measurements and electron configurations in BLG: (a). 
Minimum conductivity of two suspended BLG devices vs. T(K) at the charge neutrality 
point. (b). Conductance vs. B at T=0.54 and 1.2K, respectively. (c). Schematic 
configuration of electrons in BLG at B=0, showing a layer antiferromagnetic state. (d). 
Schematic configuration of electrons at finite B, showing a canted antiferromagnetic 
state. Image taken from ref. 35. 
 

much experimental and theoretical debate on this topic4,27,34,36-58. Various theoretical 

models proposed a number of possible correlated states in BLG, which include: (1). 

nematic state with reduced rotational symmetry, (2). Quantum anomalous Hall and 

current loop states with broken time reversal symmetry, (3). layer antiferromagnetic state 

with broken time reversal and spin rotation symmetries, (4). charge layer polarized state 

with broken inversion symmetry, and (5). quantum spin Hall state with broken spin 

rotational and Ising valley symmetries. Our experimental data is most consistent with the 

layer antiferromagnetic state (LAF), where the two layers are oppositely spin polarized 

(figure 5.5c); upon application of magnetic field and the onset of Zeeman energies, the 

spins start to tilt, giving rise to a canted antiferromagnetic state, which has recently been 

confirmed by an experiment on BLG in a tilted magnetic field59. 
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5.5 Probing of the intrinsic gap in rhombohedral-stacked trilayer 
graphene with temperature and external fields 
 

Similar to the high-quality BLG devices measured, pristine rhombohedral-stacked 

trilayer graphene (r-TLG) samples in this work show high electronic field effect 

mobilities between 20,000 and 90,000 cm2/Vs, with low minimum conductance at low 

temperatures in the absence of external fields. The r-TLG samples in this work typically 

have source-drain separations ~ 1 – 1.5 Pm, and widths 1.3 – 1.6 Pm. In this work, we 

probe the spontaneous interaction-induced gap of two high mobility, suspended r-TLG 

devices60 as a function of temperature and external fields. 

 

5.5.1 Temperature dependence of the intrinsic gap in rhombohedral-
stacked trilayer graphene 
 

To investigate the nature of the intrinsic gap in r-TLG, we take transport 

spectroscopy34,61 of two r-TLG devices at n=𝑈⊥=0 reveals intriguing features: at small 

source-drain bias V, the device stays insulating, but as V increases ±42mV, G rises by 

more than six orders of magnitude to extremely sharp peaks, then decreases to ~15 e2/h 

for larger V (figure 5.6a). Such a G(V) curve strongly resembles the density of states of a 

gapped phase, suggesting the presence of an energy gap '~42meV at n=𝑈⊥=B=0. With 

increasing charge density n, the gap diminishes and eventually disappears entirely (figure 

5.6b). At n=3x1011cm-2, G(V) is flat, indicating that r-TLG becomes gapless at high 

density. The gapped, insulating state near the CNP in the absence of external fields is 

unexpected from tight-binding calculations, but instead suggests a phase arising from 
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electronic interactions with spontaneous broken symmetries62. The magnitude of the gap, 

~42meV, is exceedingly large for an interaction-induced state.  

 

Figure 5.6. Transport data at 𝑩⊥=0 (a,b: Device 1; c-f: Device 2): (a) G(V) at 𝑈⊥=n=0. 
(b) G(V) at 𝑈⊥=0 and different n. (c) 𝐺𝑚𝑖𝑛(V) at 𝑈⊥=n=0 and different temperatures. (d) 
𝐺𝑚𝑖𝑛 at V=0 versus T. (e) 𝐺𝑚𝑖𝑛 versus 1/T in Arrhenius scale. The blue line is a fit to the 
equation 𝐺𝑀𝐼𝑁 = 𝐺0𝑒−𝛥 2𝑘𝐵𝑇⁄  for 30K<T<40K. (f) Measured ' as a function of T. The 
solid line is a fit to equation 5.5. Image taken from ref. 60. 
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It is more than an order of magnitude larger than that found in BLG34,36, reflecting the 

divergent nature of the density of states and strong electronic interactions in r-TLG at the 

CNP. It also a factor of seven larger than that previously observed in singly gated 

devices6, likely due to improved device geometry and quality. 

To further establish the magnitude of the gap, we examine temperature 

dependence of G(V) at n=𝑈⊥=0 (figure 5.6c). Figure 5.6d plots minimum conductance 

𝐺𝑚𝑖𝑛=G(V=0) as a function of T. At high temperatures T>40K, the device is conductive, 

𝐺𝑚𝑖𝑛~15 e2/h with a small linear T-dependence. The G(V) curves are approximately 

constant, similar to that of a conventional resistor. However, when T<~40K, 𝐺𝑚𝑖𝑛 drops 

precipitously and becomes insulating for T<30K, and G(V) curves develop prominent 

peaks at finite V. In the transition region 30<T<40K, the 𝐺𝑚𝑖𝑛(T) curve is well-described 

by the thermal activation equation, 𝐺𝑀𝐼𝑁 = 𝐺0𝑒−𝛥 2𝑘𝐵𝑇⁄  (figure 5.6e), where 𝑘𝐵 is the 

Boltzmann’s constant and '~43meV is obtained as a fitting parameter. This is in excellent 

agreement with the value of ' obtained from G(V) curves at T=300mK, thus confirming 

the presence of an insulating state with ~42 ± 1 meV gap. Using G(V) curves, we can also 

directly measure the evolution of ' (taken as half of the peak-to-peak separation in V) as 

a function of T. As shown in figure 5.6f, ' is almost constant for T<10K, but drops 

precipitously for T>30K. This behavior is a characteristic of order parameters during 

phase transitions in mean field theories. Thus, we fit '(T) to the function63 

𝛥(𝑇) =  𝛥0 [𝐴 (1 − 𝑇
𝑇𝐶

) + 𝐵 (1 − 𝑇
𝑇𝐶

)
2
]
1/2

   (5.5) 



76 
 

where 𝑇𝑐 is the critical temperature. Equation 5.5 reduces to the usual mean –field 

functional form √1 − 𝑇
𝑇𝑐

 for T/𝑇𝑐 sufficiently close to 1, and the second term (1 − 𝑇
𝑇𝑐
)
2
 is 

inserted to capture the vanishingly small dependence on T as T→0. Excellent agreement 

with data is obtained, yielding 𝐴 = 2.0, 𝐵 = −1.0, and 𝑇𝑐 = 34𝐾. The energy scale of 

the gap, 𝛥0
𝑘𝐵

= 500 𝐾, which is much larger than that associated with the critical 

temperature, signifies that this insulating state observed at the CNP is a correlated phase. 

 

5.5.2 Tuning of the intrinsic gap in rhombohedral-stacked trilayer 
graphene with external fields 
 
 To elucidate the nature of this correlated phase, we examine how it is modified in 

the presence of an external field that selectively breaks one of the degeneracies. For 

instance, application of 𝑈⊥ breaks the inversion (which-layer) symmetry, and, in the 

single-particle picture, gives rise to a proportionally scaled energy gap. Figure 5.7a 

displays G as a function of V and 𝑈⊥ at n=0. As 𝑈⊥ is the externally imposed potential 

bias, it will be heavily screened due to r-TLG’s large density of states near the CNP64-66. 

Thus, we expect the screened interlayer potential bias 𝑈⊥
𝑆 ≪ 𝑈⊥. Using a simplified two-

band Hamiltonian for r-TLG and assuming that the dielectric constant of r-TLG is 1, we 

self-consistently calculate 𝑈⊥
𝑆 for given values of n and 𝑈⊥: 

   𝑈⊥
𝑆 =  𝑈⊥ + 𝑑𝑒2

2𝜀0
(1
𝜋
) (𝛾1

ħ𝜈
)
2
(𝑈⊥

𝑆

2𝛾1
)
2 3⁄

[∫ 𝑑𝑥
√1+𝑥3 − 2.8𝑥𝐹

0 ] (5.7) 
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where 𝑥𝐹 = 𝜈2𝜋ħ2𝑛 [ 4
(𝑈⊥

𝑆)2𝛾14]
1 3⁄

, 𝛾1 is the interlayer hopping parameter, v is the Fermi 

velocity of charges in monolayer graphene, and d=0.67nm is the spacing between 

outmost layers. The screening-corrected data G(V, 𝑈⊥
𝑆) are shown in figure 5.7b. The 

sharp peaks in G(V), that is, the gap edges, appear as red curves that separate the 

insulating (dark blue) and conductive (light blue) regions in figure 5.7a,b.  

 

Figure 5.7. Transport data at n=0 and finite 𝑼⊥ and 𝑩⫽: (a) G(V, 𝑈⊥) and G(V, 𝑈⊥
𝑆) in 

units of e2/h from Device 1. (c) Line traces G(V) at 𝑈⊥=0 and 𝑈⊥= -50mV. (d) G(V, 𝐵⫽) 
in units of e2/h from Device 2. Image taken from ref. 60. 
 

' decreases symmetrically and linearly with applied 𝑈⊥
𝑆 of either polarity, to ~ 30meV at 

|𝑈⊥|=50mV or |𝑈⊥
𝑆|=3mV (figure 5.7b), though not yet completely closed at the largest 

applied |𝑈⊥| (in other devices with lower mobility, we also observe that the device 
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conductance increases from <0.1 e2/h with increasing |𝑈⊥|, exceeding 1.5e2/h at 

|𝑈⊥|=85mV). In contrast, an in-plane magnetic field 𝐵⫽ couples to the spin but not orbital 

degrees of freedom and raises the Zeeman energy. Figure 5.7d plots G(V, 𝐵⫽) for 𝐵⫽=0 to 

31T. ' stays almost constant for 𝐵⫽|<10T, but decreases to 35mV at 𝐵⫽=31T. Thus, 

addition of Zeeman energy suppresses the gapped phase, suggesting that the phase has 

spin-ordering, but no net magnetic moment. 

 

5.5.3 Discussion of the intrinsically-gapped state  
 

 To summarize our experimental findings, we observe an insulating state in r-TLG 

at n=𝑈⊥=B=0, with an energy gap '(T=0)~42meV. This gap can be suppressed by 

increasing charge density n, a critical temperature 𝑇𝑐~34K, by an interlayer potential 𝑈⊥ 

of either polarity and by an in-plane magnetic field. Among the spatially uniform 

correlated phases in r-TLG discussed in the literature67-72, only LAF, in which the top and 

bottom layers have equal number of electrons with opposite spin polarization, is 

consistent with our experimental observations. For instance, the presence of an energy 

gap eliminates the mirror-breaking, inversion breaking, interlayer current density wave or 

layer polarization density wave states71, and the zero conductance eliminates the 

superconductor, quantum spin Hall and quantum anomalous Hall states that host finite (or 

even infinite) conductance. Furthermore, the symmetrical suppression of the gap by 𝑈⊥ of 

either polarity suggests that charges in the insulating state are layer-balanced, as the 

device would otherwise exhibit opposite dependence on 𝑈⊥ of opposite polarities. This 



79 
 

excludes all layer-polarized states, including the quantum valley Hall and layer 

polarization density wave states, and any single-particle state that arises from inadvertent 

doping of one of the surface layers. 

Thus, based on the above experimental observations, we identify LAF with 

broken time reversal and spin rotation symmetries as the most likely candidate among the 

proposed ground states in r-TLG. Theoretically, an LAF ground state can be justified by 

the following considerations. The strong screening due to the large density of states in r-

TLG leads to very short-range Coulomb repulsions among. For such local interactions, 

the most likely symmetry-broken states are the LAF and nematic phases, and the gapless 

and conductive nematic phase is incompatible with our observation of a gapped insulator, 

leaving LAF as the only viable alternative. Moreover, mean field arguments that 

generally favor the LAF phase should be more robust in r-TLG than that in bilayer 

graphene, due to the divergent density of states and stronger electrons near the CNP that 

suppresses fluctuations. Finally, recent works73,74 report formation of magnetic moments 

in graphene that results from interactions among the p-electrons of graphene in the 

presence of hydrogen and fluorine atoms and vacancies, thus it is not unreasonable to 

expect emergent magnetism arising from strong electronic interactions in r-TLG. 

Within the mean-field framework, a simple estimate of the LAF gap yields 

∆ ≈ 2 × ( 𝑐
𝜋√3

)
3 𝛾1

4𝑈3

𝛾06     (5.8) 

where 𝛾0 ≈ 2.7eV, 𝛾0 ≈ 0.4eV are tight binding parameters, c ≈2.8, and U is the 

Hubbard onsite interaction. Using these parameters, and substituting the experimentally 

obtained value '=42meV, we obtain U~13eV, not too different from theoretically 
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predicated values75-77 of 5–10eV. Alternatively, the gap can be further enhanced by 

exchange processes associated with the long-range part of the interaction75. A possible 

phase diagram for charge neutral r-TLG that is consistent with our experimental results, 

together with schematics for electron configurations, is summarized in figure 5.8. In the 

absence of external fields, a charge neutral r-TLG is an LAF with broken time reversal 

and spin rotation symmetries. Increasing 𝑈⊥ of either polarity pushes electrons to one of 

the surface layers and suppresses the gap. For sufficiently large |𝑈⊥|, all charges reside in 

either the top or bottom layer, giving rise to a quantum valley Hall (QVH) insulator with 

broken inversion symmetry. We note that the different broken symmetries of the QVH  

 

Figure 5.8. Possible phase diagram and schematics of electronic configurations for r-
TLG: The blue and red arrows indicate charges from 𝐾 and 𝐾’ valleys, respectively 
(CAF, canted antiferromagnet; F, ferromagnet; LAF, layer antiferromagnet; QVH, 
quantum valley Hall). Image taken from ref. 60. 
 

and LAF states preclude a continuous phase transition between them49,78,79. In contrast, as 

𝐵⫽ increases from 0, the competition between the Zeeman and the exchange energies tilts 
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the electron spins, and r-TLG crosses over to the CAF phase. For very large 𝐵⫽, we 

expect that the electrons eventually form a ferromagnet (F); in the quantum Hall regime, 

this ferromagnet is analogous to a quantum spin Hall state59, with counter-propagating 

edge states and conductance B~6e2/h. 

 

5.6 Conclusion and references 

 We have provided evidence that the suspension of FLG membranes and the 

application of top gates are important to increase field mobility and decouple 𝐸⊥ and n, 

respectively, allowing for the fine tuning of external fields in high mobility samples. We 

have shown that moderate mobility BLG devices are conducting at low temperature in 

the absence of external fields and obey the single particle picture with the tendency for 

𝐸⊥ to open a single particle gap. Conversely, high mobility BLG devices are insulating at 

low temperature with a 2-meV-gap that is closed by 𝐸⊥, which violates the single particle 

picture and implies the presence of correlated electron behavior. Furthermore, we have 

shown results for the tuning of the ~40 meV intrinsic gap in high mobility r-TLG as a 

function of carrier density, temperature, electric and magnetic fields. Finally, transport 

data is consistent with a layer antiferromagnetic phase for both BLG and r-TLG at low 

temperature in the absence of external fields. 
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Chapter 6: Spontaneous insulating states in suspended 
rhombohedral-stacked tetralayer graphene 
 

6.1 Introduction 

The intrinsic insulating states observed in suspended bilayer (BLG) and 

rhombohedral-stacked trilayer graphene (r-TLG) devices, as discussed in last chapeter, 

arise from the large density of states near the charge neutrality point (CNP). Notably, the 

gap in r-TLG, which has a cubic dispersion, is an order of magnitude larger than that of 

BLG which has quadratic dispersion. This prompts us to examine rhombohedral-stacked 

tetralayer graphene (r-4LG) devices, which are predicted to have 𝑘4 dispersion in the 

low-energy limit1, and enormous density of states near the CNP. Though a small intrinsic 

gap is observed in Bernal-stacked tetralayer graphene (4LG) devices2, r-4LG has not been 

explored. Using bias spectroscopy that is used to measure the intrinsic gaps in suspended 

BLG3-5 and r-TLG6-8 graphene, we report the experimental observation of a giant 

spontaneous insulating state in r-4LG at low temperatures in the absence of external 

fields. These suspended r-4LG samples have varying gap sizes ranging from 45 to 80 

meV, which are mapped as a function of T, n, 𝐸⊥, and 𝐵⊥. Furthermore, we summarize 

findings on BLG, r-TLG and 4-TLG and discuss the nature of the intrinsic insulating 

state in rhombohedral-stacked few-layer graphene (FLG). 
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6.2 Temperature dependence of the intrinsic gap 
 

In this section, we will discuss the results of probing the intrinsic band gap in 

FLG with respect to temperature, as shown in figure 6.1. Most r-4LG devices used in this 

study have dimensions L = W = 1.5 mm. Figure 6.1a plots the two-terminal differential 

conductance as a function of source-drain bias of an r-4LG device at the CNP and 

B=𝐸⊥=0 for T = 0.260 (red), 20 (orange), 30 (green), 35 (blue) and 70 K (purple), 

respectively. At low temperature, the gap size ', which is taken as the half of the peak-to-

peak spacing, is measured to be 75 meV. This gap size is indeed very large, considering 

its nature as a correlated state. As temperature increases, ' decreases in size, and is 

completely washed out at 70 K. The gap size ' and the critical temperature 𝑇𝑐 are plotted 

for BLG, r-TLG and r-4LG as a function of number of layers in the inset of figure 6.1b. 

We have observed a systematic trend in a few dozens of samples of increasing gap and 

critical temperature with increasing number of layers of rhombohedral-stacked FLG. 
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Figure 6.1: Probing the intrinsic gap in r-4LG at different temperature at 
n=𝑬⊥=B=0. (a) G(𝑉𝑆𝐷) at varying temperatures. The red, orange, green, blue and purple 
line traces correspond to T = 0.260, 20, 30, 35, and 70 K, respectively. (b) 𝐺𝑀𝐼𝑁(𝑇) for 
another r-4LG device. Inset: Gap size ' and critical temperature 𝑇𝑐 as a function of layer 
for 2, 3 and 4 layers. (d) 𝐺𝑀𝐼𝑁(1 𝑇⁄ ) in Arrhenius scale for another r-4LG device. Inset: 
ln(𝐺𝑀𝐼𝑁) plotted versus 1 𝑇⁄  which shows nearly linear behavior. 
 

The minimum conductance versus temperature 𝐺𝑀𝐼𝑁(𝑇) is plotted in figure 6.1b 

for another r-4LG device. At high temperature, 𝐺𝑀𝐼𝑁 is linear in T, suggesting 

conductivity limited by electron-phonon scattering9-14. At ~40K, the conductance 

decreases dramatically to zero, suggesting a metal-insulating transition. Similar data from 

another r-4LG is plotted in Arrhenius scale as 𝐺𝑀𝐼𝑁(1 𝑇⁄ ) in figure 6.1c. Around 20 K the 

slope of 𝐺𝑀𝐼𝑁(1 𝑇⁄ ) abruptly changes, indicating two different energy scales involved in 

transport. Thus, r-4LG continues a trend found in its fewer-layer rhombohedral-stacked 

FLG allotropes counterparts: increasing gap size and critical temperature with increasing 

number of layers of graphene. This correlated phase of electron interactions will be 

qualitatively discussed in section 6.5.  
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6.3 Dual-gated electrical tuning of the intrinsic gap 
 
 In this section, we explore the dependence of the intrinsic band gap in FLG on 

out-of-plane electric field 𝐸⊥ and charge carrier density n. We observed similar behavior 

in several high-quality, doubly-suspended r-4LG FET devices. In figure 6.2a, we plot 

G(𝑉𝑆𝐷, 𝐸⊥) for an r-4LG device with a 48 meV gap. As |𝐸⊥| increases from 0, the gap 

closes, as shown by line traces G(𝑉𝑆𝐷) at different 𝐸⊥ at n = B = 0 and T = 1.5 K in figure 

6.2b. The red, green, blue and purple line traces correspond to 𝐸⊥= 0, 75, 155 and 190 

mV/nm, respectively. We plot the gap size�' verses electric field 𝐸⊥ in the inset of figure 

6.2b and find that at a critical field of 155 mV/nm the gap is completely closed, but 

increasing the electric field further causes the gap to re-open. This is similar to that 

observed in BLG, i.e. small 𝐸⊥ closes the interaction-induced energy gap, and the device 

transitions to a layer-polarized state with a trivial band gap at very large 𝐸⊥ (in this 

device, we limited the maximum out-of-plane electric field 𝐸⊥
𝑀𝐴𝑋 = 190 mV/nm in order 

to prevent strain-induced buckling of the r-4LG membrane under electrostatic force, as 

the suspended FLG samples are mechanically fragile). 

 

 

 

 

 

 



93 
 

 
Figure 6.2: Tuning the intrinsic gap in r-4LG at B = 0. G(𝑉𝑆𝐷, 𝐸⊥) in PS for a 
suspended r-4LG device with 10,000 cm2/Vs mobility and a 48 meV gap at n = 0 and T = 
1.5 K. (b) Line traces G(𝑉𝑆𝐷) from (a) at varying out-of-plane electric field 𝐸⊥. Red, 
green, blue and purple line traces correspond to 𝐸⊥ = 0, 75, 155 and 190 meV/nm. Inset: 
Gap size plotted vs. out-of-plane electric field, '(𝐸⊥). (c) G(𝑉𝑆𝐷, 𝑛) in PS for another r-
4LG device with a 79 meV gap at 𝐸⊥ = 0 and T = 260 mK. (d) Line traces G(𝑉𝑆𝐷) from 
(c) at varying charge carrier density n. The red, orange, green, blue, purple and black line 
traces correspond to n = 0, -0.2, -0.4, -0.6, -1.2, and -3.0 x 1011 cm-2, respectively. Inset: 
Conductance at the CNP plotted vs. carrier density, 𝐺𝐶𝑁𝑃(𝑛). 
 

Similar measurements are taken on another r-4LG device with a 79 meV gap. 

G(𝑉𝑆𝐷, 𝑛) is plotted in figure 6.2c at 𝐸⊥ = B = 0, and T = 260 mK. A robust insulating 

state is observed as the blue low-conducting region near the CNP on the plot. Line traces 

G(𝑉𝑆𝐷) are plotted in figure 6.2d where the red, orange, green, blue, purple and black line 
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traces are taken at n = 0, -0.2, -0.4, -0.6, -1.2, and -3.0 x 1011 cm-2, respectively. The 

gapped state completely closes at -3.0 x 1011 cm-2, as high charge density increases 

screening and decreases interaction effects. 

 

6.4 Dependence of the intrinsic gap on magnetic field 
 
 In this section, we investigate the evolution of the gapped state of r-4LG in a 

perpendicular magnetic field B. Figure 6.3a-b plots G(𝑉𝑆𝐷, 𝐵) and line traces G(𝑉𝑆𝐷) at 

different B, respectively. We can see that B increases the energy gap, while also 

modifying the line shape of G(𝑉𝑆𝐷).  

 

Figure 6.3. Tuning the intrinsic gap in r-4LG with perpendicular magnetic field at 
n=𝑬⊥=0 and low temperature: (a) G(𝑉𝑆𝐷, 𝐵) in PS for a doubly-suspended r-4LG 
device. (b) Line traces G(𝑉𝑆𝐷) from (a) at varying magnetic field B. Red, orange, green, 
blue and purple line traces correspond to B = 0, 0.5, 1.0, 1.5 and 2.0 T, respectively. (c) 
Normalized gap size with respect to base temperature gap, 𝛥(𝐵) 𝛥0⁄ . Results are shown 
for three different devices in purple, green and blue. 
 

Measured base-temperature gaps ' are normalized with respect to their B = 0 gap size 

and plotted v. magnetic field as 𝛥(𝐵) ∆0⁄  in figure 6.3c. In this plot, we observe nearly-

linear dependencies of the gap size with magnetic field. The reason for the differing 
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slopes between the purple data points and the green and blue data points is unknown and 

could be related to the pre-existing strain or disorder in the system. 

 

6.5 The nature of the intrinsic gap 
 

To further investigate the nature of the intrinsic gap in r-4LG, we measure the gap 

size with varying different for several samples. Figure 6.4 plots '(T) normalized by the 

'0(T=0) for three different suspended r-TLG devices. All three data sets collapse into a 

single curve, underscoring the reproducibility of these results. Similar to the analysis in 

the previous chapter on r-TLG, we can model this behavior of a closing gap with 

temperature by using 𝑇𝑐 as an order parameter in temperature in the mean field 

approximation and by expressing '(T) as: 

𝛥(𝑇)
𝛥0(𝑇=0)

= [𝐴 (1 − 𝑇
𝑇𝑐
) + 𝐵 (1 − 𝑇

𝑇𝑐
)
2
]
1/2

   (6.1) 

The data points are thus fitted to equation 6.1 (black curve in figure 6.1b), 

yielding fitting parameters A = 1.57, B = -0.52, and 𝑇𝑐= 40 K. Both the gap size ' and the 

critical temperature 𝑇𝑐 for r-4LG are larger than r-TLG, indicating an even more-

enhanced correlated electron phase at the CNP in r-4LG. 
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Figure 6.4. Intrinsic gap closure with temperature in r-4LG: Normalized gap size 
with respect to base temperature gap as a function of temperature, 𝛥(𝑇) 𝛥0⁄ . Results are 
plotted in blue, green and red for three different devices. 
 

Spontaneous symmetry breaking and the breakdown of single particle physics has 

been observed to occur in FLG systems15-19 close to the CNP where electronic 

interactions become increasingly relevant. The interaction parameter, 𝑟𝑆, also known as 

the Wigner-Seitz radius, is given by the ratio of the average electron Coulomb interaction 

energy to the average Fermi energy, and this parameter has the form: 

𝑟𝑆 𝛼 𝑛
−(𝑝−1)

2      (6.2) 

where n is the charge carrier density and p is the energy dispersion power of the energy 

eigenstates of the Hamiltonian. In the case of linearly dispersing energy bands3, p=1 and 

the interaction strength for SLG, 𝑟𝑆𝑆𝐿𝐺, is constant and independent of carrier density n. In 

BLG, however, which has two sets of quadratic energy bands with p=2 and a constant 

density of states4, approaching the CNP leads to an increasing interaction strength 𝑟𝑆 

which has the form 𝑟𝑆𝐵𝐿𝐺 D 𝑛−1 2⁄  and diverges at the CNP as nÆ0. In r-TLG that has a 
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cubic dispersion with p=3 and diverging density of states 𝐷𝑂𝑆 α 𝑛−1 2⁄  at low energies6, 

the interaction strength diverges even quicker near the CNP with 𝑟𝑆𝑇𝐿𝐺 D 𝑛−1. Finally, 

tight-binding Hamiltonian calculations show that r-4LG has a quartic energy dispersion1, 

and this causes the DOS to diverge faster as 𝐷𝑂𝑆 𝛼 𝑛−1 at the CNP, and the interaction 

strength will also diverge even faster with 𝑟𝑆4𝐿𝐺 D 𝑛−3 2⁄  near the CNP. This trend of 

rapidly diverging DOS and electronic interaction strength 𝑟𝑆 with number of layers near 

the charge neutrality is consistent with our experimental observation that the interaction-

induced gap and transition temperature both increase with number of layers, as 

summarized in table 6.1. It is unclear when this layer-dependent trend will saturate in 

multiple layers of graphene as graphite is formed, and more work is needed to further 

probe the electrical properties of unobserved FLG allotropes of five, six and seven layers. 

 E(k) E(n) DOS 𝑟𝑆 𝛼 𝑛
−(𝑝−1)

2  ' (meV) 𝑇𝑐 (K) 

SLG D k D n1/2 D n1/2 constant 0 0 

BLG D k2 D n constant D n-1/2 2 5 

r-TLG D k3 D n3/2 D n-1/2 D n-1 42 36 

r-4LG D k4 D n2 D n-1 D n-3/2 44-79 40 

Table 6.1: Properties of SLG, BLG, r-TLG and r-4LG. Energy as a function of wave 
vector E(k) and as a function of carrier density E(n), density of states (DOS), the 
interaction parameter 𝑟𝑆, gap size ' (meV) and critical temperature in 𝑇𝑐(K) are given for 
SLG, BLG, r-TLG and r-4LG. ' and 𝑇𝑐 are determined empirically by analyzing data 
gathered by the Jeanie Lau group. 
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6.6 Conclusion and references 
 
In suspended rhombohedral-stacked tetralayer graphene, we observed an 

insulating state with giant interaction-induced energy gap, up to ~80 meV. This gap can 

be closed by increasing temperature, out-of-plane electric field and charge carrier density, 

and increased further by a magnetic field. The presence of this gap is similar to those 

observed in BLG and r-TLG, and arises from the correlated electron behavior that 

dominates near the CNP as the DOS and interaction parameter diverge. It is not clear, 

however, whether the trend of increasing gap size with number of layers will continue, as 

effects of screening, higher subbands and remote hopping parameters will increase in 

thicker samples and the 𝑘𝑁 dispersion may no longer be a valid approximation. 
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Chapter 7: Quantum Hall transport in suspended trilayer 
graphene 
 

7.1 Introduction 

We will begin this chapter by describing background on the quantum Hall effect 

(QHE) in single layer graphene (SLG) and few-layer graphene (FLG). Next, we will 

present quantum Hall (QH) transport data of suspended FLG, including Bernal-stacked 

trilayer graphene (B-TLG). Furthermore, we show QH transport with and without the use 

of a top gate in rhombohedral-stacked trilayer graphene (r-TLG). Finally, we will show 

evidence of multicomponent QH ferromagnetism and Landau level (LL) crossings in r-

TLG. 

 

7.2 The quantum Hall effect 

From the classical Hall effect, for an electrical current flowing through a plane 

and subject to an out-of-plane magnetic field, a Hall voltage will be generated in the 

plane, orthogonal to the current. Due to the Lorentz force, electrons will take on 

cyclotron orbits in the plane, with a cyclotron frequency 𝜔𝐵 = 𝑒𝐵 𝑚⁄ . From the Drude 

model, the expected resistivities in the longitudinal and Hall (transverse) directions to the 

current are 𝜌𝑥𝑥 = 𝑚
𝑛𝑒2𝜏

 and 𝜌𝑥𝑦 = 𝐵
𝑛𝑒

, respectively, where m is mass, n is charge density, e 

is the elementary charge, 𝜏 is the scattering time, and B is the magnetic field. In this 

classical model, the resistivity in the longitudinal direction scales inversely with charge 

density and the scattering time, meaning that cleaner samples with longer scattering times 
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will have larger conductivity, and the Hall resistivity scales linearly and continuously 

with B. 

In the integer quantum Hall effect (IQHE), the Hall resistance becomes quantized, 

with the values 𝜌𝑥𝑦 = ( ℎ
𝑒2)

1
𝜈
, where h is Planck’s constant and Q is an integer indicating 

the number of filled Landau levels, called the filling factor. Thus 𝜌𝑥𝑦 changes stepwise 

with B, instead of a continuous, linear function in B. When the Hall resistivity rests on a 

quantized plateau, the longitudinal resistivity vanishes, 𝜌𝑥𝑥 = 0 (figure 7.1). Klaus von 

Klitzing was awarded the Nobel Prize in physics in 1985 for his 1980 discovery of the 

QHE in a silicon-based metal-oxide-semiconductor field-effect transistor (MOSFET)1. 

 

Figure 7.1: QHE in a silicon MOSFET.  Longitudinal voltage 𝑈𝑃𝑃 and Hall voltage 𝑈𝐻 
plotted vs. gate voltage. The first three Landau levels N = 0, 1, and 2 are displayed on the 
voltage axis. Data taken at magnetic field B = 18 T, temperature T = 1.5 K, and source-
drain current 𝐼𝑆𝐷 = 1 PA. Inset: schematic of the silicon MOSFET device. Image taken 
from ref. 1. 
 

Since the first discovery of the IQHE in a silicon MOSFET, a staggering number of 

research papers have been published on both IQHE and fractional quantum Hall effect 
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(FQHE) in many different systems, including such materials as gallium arsenide 

heterostructures2,3, single layer graphene4,5, few-layer graphene6-9, black phosphorus10, 

transition metal dichalcogenides11,12 (TMDs) and oxides13,14. 

 

7.3 The quantum Hall effect in single and few-layer 
graphene 
 

7.3.1 The quantum Hall effect in single layer graphene 

Electrons are confined to two dimensions (2D) in electronic transport 

measurements of single layer graphene (SLG). The so-called half-integer QHE was first 

observed in SLG by two separate research groups in 20054,5, in which conductivity was 

quantized in half integers of 4e2/h, as shown in figure 7.2a. 

 

Figure 7.2: QHE in graphene.  (a) QHE in SLG. Longitudinal resistivity 𝜌𝑥𝑥 in green 
and Hall conductivity  𝜎𝑥𝑦 in red. 𝜌𝑥𝑥 = 0 when plateaus occur in 𝜎𝑥𝑦. Conductivity is 
quantized in half-integers of e2/h. Inset: QHE in BLG. Hall conductivity 𝜎𝑥𝑦, quantized in 
integers of e2/h. Image taken from ref. 4. (b) LL density of states and QH conductivity as 
a function of energy in SLG. Image taken from ref. 5. 
 

The Landau level (LL) energy of SLG is given by4: 



104 
 

𝐸𝑁
𝑆𝐿𝐺 = ±𝑣𝐹√2𝑒ħ𝐵𝑁    (7.1) 

where N=0, ±1, ±2... is the LL index. The lowest LL occurs at N = 0 and 𝐸𝑁=0 = 0, 

shared equally by electrons and holes. Therefore, the QH conductivity in SLG4 is 

𝜎𝑥𝑦
𝑆𝐿𝐺 = ±4 𝑒2

ℎ
(𝑁 + 1

2
)    (7.2) 

where the factor of 4 is due to the double-spin and double-valley degeneracy in graphene. 

The LL density of states (DOS) and the QH conductivity 𝜎𝑥𝑦 are plotted as a function of 

energy for SLG in figure 7.2b. The broadening of the LL DOS is due to disorder in the 

system. 

 

7.3.2 The quantum Hall effect in bilayer graphene 

 The QHE in BLG is similar to SLG, with conductivity plateaus occurring at 

integer values of 4e2/h, as shown in the inset in figure 7.2a. Another interesting feature 

about the BLG QHE is that there is a jump of 8 e2/h across the charge neutrality point 

(CNP). The origin of this effect is due to the interlayer coupling 𝛾1 (shown in figure 2.3) 

which introduces a mass term into the Hamiltonian with a quadratic energy dispersion, a 

Berry’s phase of 2S, and new energy eigenstates with a doubly-degenerate zero energy 

LL with N=0 and N=16: 

𝐸𝑁
𝐵𝐿𝐺 = ± ħ𝑒𝐵

𝑚 √𝑁(𝑁 − 1)    (7.3) 

where the mass m is given by equation 2.52. The QH conductivity in BLG is given by6:  

𝜎𝑥𝑦
𝑆𝐿𝐺 = ±4 𝜈𝑒2

ℎ
     (7.4) 
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Thus, the lowest Landau level (LLL) in BLG has an additional N=0 and N=1 orbital 

degeneracy, leading to the jump of 8 e2/h at the CNP. 

 

7.3.3 The quantum Hall effect in few-layer graphene 

The lattice structure of B-TLG and r-TLG are shown in figures 2.5 and 2.6. Since 

the low energy Hamiltonian of B-TLG consists of a linear SLG branch and two quadratic 

BLG branches, as shown in equation 2.61, it makes sense that this so-called 2+1 model 

results in a QHE in B-TLG similar to a superposition of LLs from BLG and SLG9,15,16. 

Conversely, the QH effect is modified in r-TLG, such that charge carriers have a cubic 

energy dispersion, Berry’s phase of 3S, and LL energies7: 

𝐸𝑁
𝑟−𝑇𝐿𝐺 = ±

(𝑣𝐹ħ√2𝑒𝐵
ℎ𝑐 )

3

𝛾12 √𝑁(𝑁 − 1)(𝑁 − 2)   (7.5) 

Now, r-TLG has a triply-degenerate zero-energy state for N = 0, 1, and 2. This results in a 

step of 12 e2/h across the CNP, as shown in figure 7.3, with QH plateaus at values of 

±6e2/h, ±10e2/h, ±14 e2/h, and so on7. 
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Figure 7.3: QHE in r-TLG. Hall conductivity 𝜎𝑥𝑦 and longitudinal resistivity 𝜌𝑥𝑥 are 
plotted versus back gate voltage 𝑉𝐺 and carrier density 𝑛𝑆. 𝜌𝑥𝑥 goes to zero when 𝜎𝑥𝑦 
platueas. Image taken from ref. 7. 
 

7.4 Quantum Hall transport in suspended trilayer graphene 

In this work, QH transport data is reported for both suspended B-TLG and r-TLG. 

Standard lock-in amplifier techniques are used to measure the two-terminal differential 

conductance G = dI/d𝑉𝑆𝐷, where we use an AC source-drain bias 𝑉𝑆𝐷=50 PV, with a low 

frequency less than 200 Hz. Shubnikov-de Hass oscillations are seen at less than 1 T and 

QH plateaus are resolved at less than 2 T in most devices.  

 

7.4.1 Quantum Hall transport in Bernal-stacked trilayer graphene 
 

Broken symmetry QH states are observed in doubly-suspended B-TLG in this 

work. QH transport is measured for high-quality, doubly-suspended B-TLG devices at 
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liquid helium temperature with large B/T ratios. Similar behavior is seen in several high-

quality devices with high mobility (>10,000 cm2/Vs). Figure 7.4a shows the standard LL 

‘fan diagram’ of the device, that is, G (color scale) as a function of 𝑉𝑏𝑔 (horizontal axis) 

and B (vertical axis). The QH plateaus appear as the colored bands that diverge from B=0 

and the charge neutrality point (CNP). The small apparent curvature in the fan diagram 

for small B arises from the smeared crossing between MLG-like and BLG-like bands, 

which will be discussed further below. From the fan diagram, the back gate’s coupling 

efficiency is estimated to be 𝛼𝐵𝐺  ∼ 3.8 × 1010 cm−2/V, which also agrees with that 

calculated from device geometry. 

To accentuate the evolution of the QH plateaus with 𝑉𝑏𝑔 and B, we plot 

dG/d𝑉𝑏𝑔(𝑉𝑏𝑔, B) of the same data set in Figure 7.4b. The filling factor of each plateau, 

which appears as a white band, ν =nℏ/Be = 𝛼𝐵𝐺𝑉𝐵𝐺h/Be, is calculated from its slope in 

the 𝑉𝐵𝐺−B plane and labeled in Figure 7.4b. The most prominent feature is the very 

strong ν = −2 plateau in the hole-doped regime, which is resolved at B as small as 0.25 T 

(here we define hole-doped and electron-doped regime to have negative and positive 

filling factors, respectively.) Line traces G(𝑉𝐵𝐺) at several B values for B < 4.2 T are 

shown in Figure 7.4c. When replotted as a function of ν, the traces nearly collapse into a 

single curve with properly quantized plateaus at ν = −2, 2, 6, and 10. The appearance of 

robust ν = 6 and 10 states agrees with equations 7.1 and 7.3 and prior reports15,17,18. On 

the other hand, our observation of the ν = 2 and in particular the exceedingly robust ν = 

−2 plateaus, is unexpected from equations 7.1 and 7.3. This can however be accounted 

for by the ‘2+1’ model that takes remote hopping into account instead of MLG-like and  



108 
 

 

Figure 7.4: Landau fan diagram G(𝑽𝑩𝑮, B) and line traces for B-TLG at low 
temperature. (a,b) G(𝑉𝐵𝐺, B) and dG/d𝑉𝐵𝐺 of a TLG device. Numbers indicate filling 
factors. The color scale in (a) indicates conductance in units of e2/ℏ. (c) G(𝑉𝐵𝐺) and G(ν) 
at B=1.5, 2.2, 3.5, and 4.2 T, respectively (from blue to red). (d) G(𝑉𝐵𝐺) and G(ν) at 
B=4.5, 6, 7, 8, and 10 T (from blue to red). (e) G(𝑉𝐵𝐺, B) and G(ν) at B=10, 12, 14, 16 
and 18 T (from blue to red). Image taken from ref. 16. 
 

BLG-like bands both touching at a single point, including next-nearest hopping 

parameters (𝛾2 and 𝛾5) leads to bands that are individually gapped, with a relative vertical 

offset between the MLG-like and BLG-like bands, whose tops of valence bands are 

located at −𝛾2 2⁄  and 𝛾2 2⁄ , respectively. Consequently, the LL spectrum of such a band 

structure is modified from equations 7.1 and 7.3 as follows: (i) since ABA stacked TLG 
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obeys mirror symmetry but not inversion symmetry19, its valley degeneracy is not 

protected; the broken valley degeneracy of the lowest LL19 manifests as ν = ±2 plateaus, 

as observed experimentally; (ii) the spectrum is particle-hole asymmetric; and (iii) LLs 

originating from the MLG-like and BLG-like bands cross at energy ∼±𝛾2 2⁄ . 

All three features are observed in our experimental data. Apart from the robust ν = 

±2 plateaus, the particle-hole asymmetry is clearly reflected in the sequence of resolved 

plateaus; the ν = 6 and 10 plateaus are observed only in the electron doped regime and ν 

= −8 is observed solely in the hole-doped regime. The dark blue feature at 𝑉𝑏𝑔 ∼−5 V, 

indicated by the dotted circle in Figure 7.4b, corresponds to the crossings between LLs 

that belong to the MLG and BLG-like spectra19. From the data, the crossings occur at ∼ 

−1.9 × 1011 cm−2, corresponding to ∼ −8 meV. Thus, our data suggest 𝛾2 ∼ −16 meV in 

TLG, in reasonable agreement with the value from bulk graphite20, −20 meV. 

Thus far the ν = −2, 2, 6, and 10 plateaus are well accounted for by single particle 

tight binding calculations, using values of hopping parameters obtained from graphite. 

(The absence of the ν = −6 state is an experimental surprise and currently not 

understood). At larger B, we also observe additional plateaus at ν = ±1, ±3, −4, and −5, 

which indicate almost complete lifting of spin, valley and orbital degeneracies in the 

lowest LL. The ν = 0 plateau, although resolved, is ∼0.3 e2/ℏ at 18 T. This lack of true 

insulating behavior is likely due to the presence of small amount of residual impurities. 

Figure 7.4d plots G(𝑉𝐵𝐺) and G(ν) at B=4.5, 6, 7, 8 and 10 T, respectively, showing 

satisfactory conductance quantization. The ν = ±1 plateaus are resolved at B as low as 4.5 

T and persists to 18 T (figure 7.4e), the highest available field. These additional plateaus, 
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particularly those at odd filling factors, cannot be accounted for by any tight binding 

model or simple breaking of layer symmetry due to the presence of an out-of-plane 

electric field. Instead, the plateaus’ appearance at high B values in samples with high 

mobility (≥10000 cm2/(Vs)) strongly suggests symmetry breaking arising from electronic 

interactions. In fact, they can be qualitatively understood in terms of QH ferromagnetism 

and Hund’s rule-like filling of the 12-fold degenerate lowest LL21. Within this model, the 

LLs between ν = −6 and 6 are filled in the order of maximizing spin, chirality (BLG-like 

branch first), valley, and orbital indices. At large B, the ν = −5, −4, −3,−2, 1, 2, and 3 

states belong to the BLG-like branch, while the ν = −1, 0, +4, and +5 states to the MLG-

like branch22. (The ν = 4 and ν = −2 are marginal cases as they separates a series of 

bilayerlike LL’s and a series of monolayer-like LL’s. For instance, at ν = 4, for positive 

energies the last N = 0 bilayer-like LL is filled or the first N = 0 MLG-like LL is empty.) 

As observed experimentally, all the BLG-like states are fully resolved, whereas only the ν 

= −1 (and to some extent the ν = 0) state in the SLG-like branches is observed. 

 

7.4.2 Quantum Hall transport in rhombohedral-stacked trilayer 
graphene with and without the use of a top gate 
 

We turn our attention toward suspended r-TLG with dual gates. Here, we report 

transport data23 of an r-TLG device with a field effect mobility of 42,000 cm2/Vs at 270 

mK in a He3 cryomagnet. As shown in Figure 7.5a, which plots two terminal conductance 

G(B, ν) in units of e2/h with top gate disconnected or grounded, QH plateaus appear as 

vertical bands. As B increases, QH plateaus at filling factors ν = −5 and −3 are resolved 
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first, followed by −1 and −2. This can be more clearly seen in the line traces G(ν): only 

the ν = −3 plateau are fully resolved at B = 4.5T, whereas additional plateaus at ν = −2 

and −1 are resolved at B = 5.5 T (figure 7.5b). 

 

Figure 7.5. Transport data in suspended r-TLG devices with back gate applied 
voltage only: (a) G(B, Q) of an r-TLG device with only back gate engaged. (b) Line 
traces G(Q) at B=4.5 and 5.5 T, respectively. Image taken from ref. 23. 

 

These results are fully consistent with a prior work using singly gated devices24. 

However, in the above measurement with only a single gate, 𝑈⊥ is not controlled but 

scales with n. When we carefully control both 𝑈⊥ and n, a qualitatively different picture 

emerges. Figure 7.6a,b plots G(B, ν) at 𝑈⊥=0 and −20 mV, respectively, and line traces at 

B = 5 T are shown in Figure 7.6c,d. At 𝑈⊥= −20 mV, the ν = −3 (but not the ν = −2) state 

is resolved (figure 7.6b,d) in an apparent agreement with the Hund’s rule, again 

qualitatively similar to data from singly gated studies (figure 7.5a,b and ref 24). However, 

in the absence of interlayer bias the plateaus at ν = −6 are first resolved (as expected), 

followed by (unexpectedly) − 4 and −2 that are fully resolved at B = 5 T; the odd integer 

plateaus ν = −3 and −1 appear only as small shoulders even at B = 8 T. 
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Figure 7.6. Electric transport in a doubly-suspended r-TLG device with top gate 
used to fix interlayer potential: (a,c). G(B, ν) in units of e2/h at 𝑈⊥= 0, and line traces 
G(ν) at B = 5 T. (b,d). Similar data at 𝑈⊥ = −20 mV. Image taken from ref. 23. 
 

7.4.3 Multicomponent quantum Hall ferromagnetism and Landau level 
crossing in rhombohedral-stacked trilayer graphene 
 

As shown in the previous section, the exact sequence of plateaus depends strongly 

on 𝑈⊥, thus the exact symmetries of QH states cannot be inferred from singly gated 

devices. In particular, for charge-balanced r-TLG the orbital pseudospin is maximized 

first, that is, the triple orbital degeneracy is broken prior to that of spin and valley; this 

suggests that the conventional Hund’s rule does not apply in this system. This indicates 

that either interactions are spin and valley dependent or that single particle hopping terms 

can influence the broken symmetry sequence. To further investigate the plateaus’ 

dependence on 𝑈⊥ we measure G(𝑈⊥, Q) at constant B. The resolved QH plateaus appear 
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as an array of bands centered at integer values of Q with a striking network of staggered 

‘hexagons’ (figure 7.7a,b). 

 

Figure 7.7. Quantum Hall transport data in r-TLG at varying interlayer potential: 
(a,b). G(𝑈⊥, ν) in units of e2/h at B = 7 and 5 T, respectively. The arrows indicate line 
traces along which Figure 7.6c,d would be taken. (c). Line traces G(𝑈⊥) at B = 5 T and ν 
= −1, −2, and −4. The triangle and squares mark 𝑈⊥𝐶 values at which G is not quantized. 
Image taken from ref. 23. 
 

As B increases, the sizes of these hexagons grow accordingly. G is properly 

quantized at νe2/h except at certain critical 𝑈⊥𝐶 values that yield the horizontal ‘ridges’ of 

the hexagons. For instance, at ν = −1, G is quantized at 1e2/h except near 𝑈⊥ = 0 mV 

(Figure 7.7c, green curve); at ν = −2 and ν = −4 states, quantization is lost at 𝑈⊥𝐶 ∼ ± 18 

mV (red curve) and 𝑈⊥𝐶 ∼ 35 mV (blue curve), respectively, and the corresponding 𝑈⊥𝐶 

values are indicated by red squares and blue triangles. Consequently, a given plateau is 

resolved (unresolved) if G(ν) is taken at 𝑈⊥ ≠ 𝑈⊥𝐶 (𝑈⊥ = 𝑈⊥𝐶), that is, the line traces in 



114 
 

figure 7.6c,d are effectively taken along the red and green arrows in figure 7.7b, 

respectively. Our experimental results demonstrate the presence of QH ferromagnetic 

states in r-TLG and enable us to determine the symmetries of the states at intermediate 

filling factors. One combination of the spin-valley degrees of freedom is lifted first, 

leading to the layer antiferromagnetic state at ν = 0. This is followed by the breaking of 

the orbital degeneracy and the appearance of the even integer states at ν = −2 and −4. 

Finally, in the presence of finite 𝑈⊥ that breaks the inversion symmetry, the remaining 

spin-valley symmetries are broken and the odd integer states are resolved. Schematic of 

the symmetries of the QH states in the lowest LL is shown in Figure 7.8a. 

Within the QH ferromagnetism, the hexagon patterns can be naturally accounted 

for by a model of crossings between LLs25-27, whose energies depend on both 𝑈⊥ and B. 

In the zeroth LL of the two-band model, only the A (B) sublattice of the top (bottom) 

layer are relevant for low-energy considerations. We thus ignore the contribution of the 

middle layer, and treat layer, valley, and sublattice indices as equivalent. Hence, energies 

of LLs that are partially localized to the top (bottom) layer increase (decrease) with 

increasing 𝑈⊥; these two sets of LLs cross whenever the difference in LL energies are 

compensated by the externally applied interlayer potential. At a given ν, G is quantized 

properly except at the crossing points. Using LL spectra similar to that depicted in figure 

7.8a, we model the density of states of each LL as a Lorentzian and calculate the total 

density of states of the system as a function of n and 𝑈⊥. The simulation result reproduces 

the observed ‘hexagon’ patterns (figure 7.8b), confirming the presence of multiple LL 

crossings driven by 𝑈⊥ in the QH regime. 
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Figure 7.8. LL crossings and the Q = -2, -4 LL gaps in r-TLG: (a). Schematic diagram 
of LL evolution with 𝑈⊥ and the resultant QH states in the hole-doped regime. Colored 
numbers, ±, and arrows indicate orbital, valley, and spin indices. (b). Simulated total 
density of states versus 𝑈⊥ and Q. Color scale: blue (low), red (high). (c). Measured 
𝑈⊥𝐶(B) for ν = −2 and −4 states, respectively. The dotted lines are guides to the eye. 
Image taken from ref. 23. 
 

In principle, we can determine the LL gaps Δ from 𝑈⊥𝐶 at the LL crossing points, 

where the differences in LL energies are compensated by electrostatic energy. However, 

here 𝑈⊥ is the externally imposed potential bias and will be heavily screened28-30 even in 

the QH regime. Thus, one expects that Δ(B) = 𝑈⊥
𝑆(B) ≪ 𝑈⊥, where 𝑈⊥

𝑆 is the screened 

interlayer potential. Extracting the exact magnitude of Δ from the crossing points is 

nontrivial and will be the focus of future studies. Nevertheless, we do not expect 
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screening to significantly alter the functional dependence of 𝑈⊥(B). Hence insight into the 

nature of the broken-symmetry QH states in the lowest LL can be obtained by examining 

the dependence of 𝑈⊥𝐶 on B. 

To this end, we plot 𝑈⊥𝐶(B) for crossings observed at ν = −2 and −4 in figure 7.8c. 

Interestingly, 𝑈⊥𝐶(B) is linear in B for ν = −2 state but markedly sublinear for the ν = −4 

state. Thus, the data in figure 7.8d suggest that the LL gap of the ν = −2 state scales 

linearly with B, whereas that of the ν = −4 state is sublinear in B. The different scaling 

behaviors in B for the ν = −2 and ν = −4 gaps suggest different mechanisms of gap 

generation. In particular, the remote hopping term 𝛾4 in r-TLG, which is the interlayer 

hopping energy between stacked-unstacked sublattices, may also lead to splitting of the 

orbital degeneracy of the zeroth LL. This effect can be captured in an effective two-band 

model31, evaluated in the perturbation theory: 

𝐻𝛾4 = {√3𝑎𝑣𝐹
ħ

(𝛾4
𝛾1

)} [𝜋
†𝜋 0
0 𝜋𝜋†]    (7.6) 

where a = 0.246 nm is the lattice constant, and 𝜋 = 𝑝𝑥 + 𝑖𝑝𝑦. In the presence of B, 𝐻𝛾4 

leads to a splitting of the N = 0, 1, and 2 LL orbitals. Such splitting of the orbital 

pseudospin has an energy gap ∆𝛾4 that scales linearly with B and leads to QH plateaus at 

ν = ±2, as observed experimentally. In fact, ignoring other remote hopping parameters, 

reasonable agreement between experimental data and LL spectrum can be obtained by 

using 𝛾4 ∼ 0.1𝛾1, though this crude estimate may be modified by other hopping terms and 

by the nonzero potential at the middle layer. On the other hand, the sublinear behavior for 



117 
 

the ν = −4 state suggests an origin of electronic interactions, which lifts the spin-valley 

degeneracy and is expected to scale with 𝐵1/2. 

The contrasting behavior of the in the scaling gaps of the ν = −2 and ν = −4 states 

suggest that both the single particle remote hopping terms and electron−electron 

interactions in the zeroth LL must be included to account for the broken symmetries in 

the zeroth LL. We also find that the addition of the remote hopping terms can 

significantly influence the Hund’s rules determining the Hall plateau sequence of the 

broken symmetry states. Taken together, our data suggest that the ν = −2 and −4 QH 

states are orbital pseudospin polarized canted antiferromagnetic states, whereas the ν = 

−1, −3, and −5 states, resolved only in the presence of finite 𝑈⊥, are layer/spin polarized. 

Further theoretical and experimental studies, such as those using samples with even 

higher quality, or graphene/hexagonal boron nitride heterostructures32 for measurements 

of LL gaps and crossings for large ranges of magnetic field, electric field, and charge 

densities, are needed to understand the mechanism of gap generation in the orbital 

pseudospin indices and to help determine the precise values of remote hopping 

parameters in few-layer graphene. 

 

7.5 Conclusion and references 

Few-layer graphene is shown to be an excellent platform to explore QHE. In 

particular, our QH transport data revealed a trend of strong LL crossings in B-TLG, with 

a robust Q = -2 state, indicative of the so-called ‘2+1’ model in B-TLG, which resembles 

the superposition of both the quadratic bilayer-like and linear monolayer-like sub-bands. 



118 
 

The QH transport data in r-TLG was observed to be remarkably different than B-TLG, 

with an intrinsic insulating state and evidence of multicomponent QH ferromagnetism. 

Furthermore, investigations of the QH states in r-TLG as a function of out-of-plane 

electric field provided information on the order of symmetry-breaking processes, and that 

both single particle hopping parameters and electron-electron interactions must be 

included in the zeroth LL to account for the broken symmetries observed. 
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Chapter 8: Conclusion and outlook 

8.1 Conclusion 
 

In this thesis, we have investigated the electronic and mechanical properties of 

suspended few-layer graphene (FLG) membranes through in situ scanning electron 

microscope (SEM) imaging and low temperature electronic transport measurements. In 

situ SEM imaging of graphene membranes suspended over pre-defined trenches revealed 

that electrostatically-induced deflection is reversible and elastic with minimal hysteresis, 

up until the point at which graphene irreversibly collapses, and that this parabolic 

deformation causes inhomogeneous strain and charge carrier density n. Also, due to its 

negative thermal expansion coefficient, graphene expands at low temperature, creating 

ripples in the bulk and butterfly features on the free-standing edges. 

The electrical studies of rhombohedral-stacked few-layer graphene (r-FLG) 

samples are motivated by their peculiar energy dispersions that, at low energies, scale as 

𝑘𝑁 for N number of layers. Fabricated by a multi-level electron beam lithography process 

and wet etching in HF, the FLG membranes are suspended between electrons, below an 

“air-bridge” top gate and above a Si back gate. This dual-gated geometry allows us to 

decouple the out-of-plane electric field 𝐸⊥ and n. High mobility r-FLG devices are 

intrinsically insulating in the absence of external fields, with gap sizes of 2, 40, and 80 

meV in BLG, rhombohedral-stacked tri- (r-TLG) and tetralayer graphene (r-4LG), 

respectively. This insulating state is consistent with a layer antiferromagnetic (LAF) 

phase which breaks time reversal symmetry, which transitions or crosses over to quantum 

valley Hall and ferromagnetic states under sufficiently-large 𝑈⊥ and 𝐵⫽, respectively. 
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These results underscore the strong electronic interactions and rich physics in high 

quality FLG devices in the low density limit. 

 

8.2 Outlook 
 

Despite progress made in this thesis, several questions remain unanswered. For 

instance, will the trend of increasing gap size with number of layers terminate; if so, at 

which thickness? Is LAF the ground state in r-FLG? Can other phases be achieved? 

Further experimental and theoretical studies are necessary to address these questions. 

Since the discovery of graphene, the field has expanded to include other 

monolayer or few-layer two dimensional (2D) materials, such as transition metal 

dichalcogenides or black phosphorus. The procedures described in chapter three to 

fabricate suspended graphene devices can be extended to other 2D materials as well. 

New, suspended device structures may be adopted from these fabrication recipes, such as 

p-n junctions through split top gates, electronic Vaselago lenses, quantum dots, and 

photo-thermoelectric devices. Our in situ SEM imaging techniques can be adopted for 

similar studies and electrical, mechanical, thermal and strain engineering in similar 

devices. Another development in the field is the use of hexagonal boron nitride (hBN) as 

substrates or encapsulating layers, for fabricating robust and high mobility samples. A 

number of interesting phenomena has been observed, including Coulomb drag1-3, electron 

tunneling through thin hBN tunnel barriers4, gate-tunable negative differential resistance 

in hBN-encapsulated single- and bilayer graphene5,6, and Shubnikov-de Haas oscillations 
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in TMDs7 and fractional quantum Hall effect in graphene8 encapsulated in hBN. Many 

new materials and heterostructures await exploration. 
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Appendix A: RGS value of hexagonal boron nitride and 
transport statistics 
 
A.1 Thickness dependence of the RGS value of hexagonal boron 
nitride 
 

In chapter three, a correlation was found between the relative green shift (RGS) 

value and the number of layers of graphene, as shown in equation 3.1 and table 3.1. This 

correlation was readily observed using optical contrast under an optical microscope. 

Similarly, a correlation has been discovered in measuring the thickness of several layers 

of hexagonal boron nitride (hBN). Figure A.1 plots the thickness of hBN measured with 

an atomic force microscope (AFM) versus the RGS value of the hBN flakes measured 

with a standard optical microscope, using equation 3.1. 

  

Figure A.1. RGS dependence on the thickness of hBN: Thickness of hBN measured 
with an AFM v. RGS value. A linear fit, y = mx + b, is made using 38 data points, with 
fitting parameters m = 43.92 ±3.99 and b = 0.75 ±1.07. 
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Performing a best linear fit on the scatter plot of 38 data points in figure A.1, a 

relation is determined to estimate the thickness of exfoliated hBN: 

𝑡ℎ𝐵𝑁 = 𝑅𝐺𝑆 𝑥 44 (𝑛𝑚)    (A.1) 

where 𝑡ℎ𝐵𝑁 is the thickness of hBN, measured in nm. Note that this relation is expected to 

be most accurate at low thicknesses (<50 nm), because thicker flakes were not measured 

and the RGS value is expected to be periodic at larger thicknesses. Also, the slope of the 

RGS-dependence will vary with different optical filters and substrates used. Here, hBN 

was mechanically-exfoliated with scotch tape onto Si/SiO2 wafers with a 300-nm surface 

oxide layer. The relation found in equation A.1 is useful to crudely estimate the thickness 

of hBN, and thus bypass the necessity of an AFM when the knowledge of the precise 

thicknesses of hBN flakes is not required. 

 

A.2 Statistics of few-layer graphene transport data 

 In this section, statistics of few-layer graphene transport data at low temperature 

are shown. In these data, we measure the two-terminal differential conductance 𝐺 =

𝑑𝐼𝐷 𝑑𝑉𝑆𝐷
𝐴𝐶⁄ , where we apply a 50 PV signal across the source (S) and drain (D) terminals. 

We measure G at low AC frequencies on the order of 100 Hz. Data are gathered from 

suspended trilayer- (TLG), tetralayer- (4LG) and pentalayer graphene (5LG) devices, and 

plotted versus various parameters. We categorize our statistics in two groups: Annealing 

current density statistics, and bias spectroscopy statistics. 
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A.2.1 Annealing current density statistics 

 Current annealing is performed post-fabrication to improve device quality by 

burning off impurities through Joule heating. We perform current annealing at typical 

sample temperatures of T = 1.6K in a vacuum-pumped cryomagnet. Before and after 

every annealing cycle, we investigate the back gate response G(𝑉𝐵𝐺) by sweeping the 

back gate voltage 𝑉𝐵𝐺 by ~ ±6V, recording the position of the Dirac point in back gate 

voltage 𝑉𝐵𝐺
𝐷 , and the electron 𝜇𝑛 and hole 𝜇𝑝 moblities. If the device is insulating or near 

insulating, we also check the features of G(𝑉𝑆𝐷), by measuring G and sweeping a DC 

source-drain bias voltage 𝑉𝑆𝐷, to investigate the presence of an interaction-induced gap at 

low temperature in the absence of external fields. 

In figure A.2, we plot the annealing current density 𝐽𝐴, measured as current per 

cross-sectional width W in units of mA/Pm, versus minimum conductance 𝐺𝑚𝑖𝑛 (figure 

A.2a), half the peak-to-peak distance in G(𝑉𝑆𝐷), here, denoted as ' (figure A.2b), and 

electron (figure A.2c) and hole mobility (A.2d), respectively. In these plots, red, green, 

and blue data points correspond to TLG, 4LG and 5LG, respectively. Also, square 

(triangle) data points have a U- (V-) shaped curve in G(𝑉𝑆𝐷), meaning that the square data 

points have well-defined side-peaks in bias measurements, implying a well-resolved 

gapped state. As discussed in chapter three, optimal current densities of 0.2-0.4 

mA/Pm/layer tend to provide the best annealing results. 
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Figure A.2. Annealing current density statistics in suspended few-layer graphene 
devices: (a) Current density versus minimum conductance, 𝐽𝐴(𝐺𝑚𝑖𝑛). (b) Current density 
versus peak-to-peak distance in G(𝑉𝑆𝐷), 𝐽𝐴(∆). (c) Current density versus electron 
mobility, 𝐽𝐴(𝜇𝑛). (d) Current density versus hole mobility, 𝐽𝐴(𝜇𝑝). Red, green, and blue 
data points correspond to TLG, 4LG and 5LG, respectively. Square (triangle) data points 
have U- (V-) shaped curve in G(𝑉𝑆𝐷). 
 

In the plots in figure A.2, we note little to no correlation between 𝐽𝐴 and 𝐺𝑚𝑖𝑛, ', 

𝜇𝑛, and 𝜇𝑝. In figure A.2a, most of the samples have low minimum conductance, while 

only a few have 𝐺𝑚𝑖𝑛 > 100 mS. Although only three 5LG devices were measured, they 

tend to have high 𝐺𝑚𝑖𝑛 and low mobility, indicating that current annealing was not as 
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successful for them as in TLG and 4LG devices. Also, 𝐽𝐴, in mA/Pm, tends to be the 

largest for 5LG and the smallest for TLG, which is expected, as more layers of graphene 

can carry a larger annealing current. 

 

A.2.2 Bias spectroscopy statistics 

 Here, we plot bias spectroscopy results of a large sample of few-layer graphene 

(FLG) devices in figure A.3, with the same color and shape scheme for the data points as 

figure A.2. 𝐺𝑚𝑖𝑛(∆) is plotted in figure A.3a, and we note that samples with low (high) 

𝐺𝑚𝑖𝑛 tend to have U- (V-) shaped G(𝑉𝑆𝐷) curves. In other words, samples with well-

defined side peaks and well-resolved gapped states also have low conductance or are 

insulating. We observe no clear dependence of 𝐺𝑚𝑖𝑛 or ' with number of layers. 

We also observe a trend in the field effect mobility versus half the peak-to-peak 

distance in bias spectroscopy measurements. In figure A.3b (A.3c), we plot 𝜇𝑛 (𝜇𝑝) 

versus '. In both cases for carriers of either negative or positive charge, we observe a 

trend where devices with lower (higher) mobility have a larger (smaller) peak-to-peak 

distance in bias spectroscopy measurements. Moreover, we see a resonance peak in the 

triangular data points with ' ~ 25 meV, whereas the square data points have ' ~ > 40 

meV. Thus, devices with larger peak-to-peak distances in G(𝑉𝑆𝐷) have a well-defined gap 

and lower mobility. We note that 𝜇𝑛 > 𝜇𝑝 for a given device in most cases. The origin of 

this ambipolar effect is unclear, but it may be somehow related to device fabrication or 
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current annealing. Again, we do not see any clear dependence of 𝜇𝑛, 𝜇𝑝, or ' with 

number of layers. 

  

 

Figure A.3. Bias spectroscopy statistics in suspended few-layer graphene: (a) 
Minimum conductance versus half the peak-to-peak distance in G(𝑉𝑆𝐷), 𝐺𝑚𝑖𝑛(∆). (b) 
Electron mobility versus half the peak-to-peak distance in G(𝑉𝑆𝐷), 𝜇𝑛(∆). (c) Hole 
mobility versus half the peak-to-peak distance in G(𝑉𝑆𝐷), 𝜇𝑝(∆). Red, green, and blue 
data points correspond to TLG, 4LG and 5LG, respectively. Square (triangle) data points 
have U- (V-) shaped curve in G(𝑉𝑆𝐷). 
 




