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Abstract
The von Mises distribution, which is also known as the Circular Normal
distribution is a well-studied and commonly used distribution for analyzing
data on a unit circle. It has many properties and similarities to the normal
distribution defined on the real line, making it popular for modeling circular
data. Since it is unimodal, finite mixtures of von Mises distributions may
be used to deal with circular data that may potentially have more than one
mode. In this paper, our goal is to cluster such data sets after approximating
each data set as a finite mixture of von Mises distributions. To accomplish
such clustering we need a distance measure between any two such finite
mixtures. For this, we propose using the Kullback-Liebler and Bhattacharyya
distance measures. The applicability and usefulness of the proposed measures
in identifying clusters present in a data set is first demonstrated through
a simulation study. A real-life application that clusters the surface wind
direction data in five major Indian cities is then studied using the proposed
measures.
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1 Introduction

Directional data represent observations that are directions in two, three,
or higher dimensions, recorded on a unit circle, the unit sphere, or high-
dimensional manifolds respectively. Examples of such data include wind
directions, direction of earth’s magnetic field, etc. Analyses of such data
should employ metrics that take into account the corresponding topological
space, instead of the metrics one uses on Euclidean spaces. This novel area
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has been studied in texts like Mardia and Jupp (2000), Jammalamadaka
and SenGupta (2001), Fisher (1995) etc., and is the subject of active current
research. Among probability distributions defined on a unit circle, the von
Mises (vM) distribution, also called the Circular Normal (CN) distribution,
is the most commonly used distribution to model circular data. This is a two
parameter distribution with the probability density function (pdf) (see e.g.
Jammalamadaka and SenGupta 2001)

f(θ; μ, κ) =
1

2πI0(κ)
eκ cos (θ−μ), 0 ≤ θ < 2π,

where 0 ≤ μ < 2π and κ ≥ 0 denote respectively the mean direction and
concentration parameters, while I0(κ) is the modified Bessel function of the
first kind and of order zero. The vM distribution is symmetric about the
mean direction μ, and is unimodal with the mode at θ = μ. Large values of
κ indicate higher concentration around μ. As stated in Jammalamadaka et al.
(2021), any probability distribution defined on unit circle can be expressed
as a countable mixture of vM distributions, while it can be approximated
by a finite mixture with sufficiently large number of components. Thus, a
finite mixture of vM distributions can be used to model circular data having
more than one mode. The pdf of a mixture of k-von Mises distributions
labelled vMmix(k), with mixing proportions pi and parameters (μi, κi), i =
1, 2, . . . , k is given by

g(θ) =
k∑

i=1

pi
1

2πI0(κi)
eκi cos (θ−μi), 0 ≤ θ < 2π, (1)

where pi > 0, i = 1, 2, . . . , k and
∑k

i=1 pi = 1. Estimation of the parameters
and the mixing proportions can be done using the expectation-maximization
(EM) algorithm—see e.g. Dhillon and Sra (2003) and Banerjee et al. (2009).
Hornik and Grün (2014) implements the EM algorithm in the R statistical
package movMF. As an example, we consider the turtle data set mentioned
in Stephens (1969), which shows the orientation of 76 turtles after laying
eggs. This is shown in Fig. 1 as a circular plot.

It is seen from this plot that there is more than one preferred direc-
tion and hence the data can be modelled using Eq. 1. A fit of Eq. 1 with
k = 2 for the data using movMF() function results in μ1 = 241.2036◦; μ2 =
63.4716◦; κ1 = 8.4465; κ2 = 2.6187; p1 = 0.16; p2 = 0.84. Calderara et al.
(2011) has developed a novel approach for classifying people trajectories by
describing the trajectories as sequence of angles and modelling them through
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Figure 1: Circular plot of orientation of turtles

finite mixture of vM distributions. Using finite mixtures of vM distributions,
Masseran et al. (2013) models the average hourly wind direction data for nine
wind stations located in Peninsular Malaysia. Jammalamadaka et al. (2021)
compares the performance of Euclidean and Kullback-Liebler (KL) distance
between finite mixtures of vM distributions. As they state, although there
is an explicit expression for the KL distance between any single vM model
from any other vM model, there is no such expression for the KL distance
between two finite mixtures of vM distributions, and they then use numeri-
cal integration techniques. In this paper, we propose a matching based lower
bound for the KL divergence between two vMmix(k) distributions. Also, a
close upper bound for the Bhattacharyya divergence between two vMmix(k)
distributions is proposed. These divergence measures can then be utilized
to cluster different sets of circular data each of which is approximated by
vMmix(k) distributions. The rest of the paper is organized as follows. In
Section 2, the motivation for the research problem is explained and the
KL and the Bhattacharyya divergence measures are defined. Bounds to KL
and Bhattacharyya divergence (labelled the ”B divergence” from now on)
measures to compute the distance between two vMmix(k) distributions are
introduced in Section 3. Numerical illustration highlighting the application
of KL and B divergence measures in clustering observations from different
vMmix(k) models is presented in Section 4 through an extensive simulation
study. Application of the proposed vMmix(k) distribution to model the sur-
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face wind direction data of five Indian cities and identifying clusters present
in them, based both on the KL and B divergence, is the topic of Section 5.
We end with brief concluding remarks in Section 6.

2 Motivation and Methodology
Wind energy is a renewable energy that is gaining popularity as a method
used to generate electricity. This is done through wind turbines that convert
the energy from the wind. Positioning the wind turbines in alignment with
the wind direction is very crucial for the optimal generation of electricity. A
proper planning of where to install wind turbines and how many to install
in a given geographical region is necessary for the optimal generation of
wind energy. This involves identifying geographical regions that have similar
wind directions and adopting a plan of action for each group. However, the
wind directions in a geographical region is usually not oriented to a single
direction and it changes during different time points t1, t2, . . . , tp of the day.
Thus, the wind directions can be effectively modeled using a finite mixture
of circular distributions defined on a unit circle. Further, grouping of the
geographical regions based on the wind directions can be made by computing
the distances between the mixture distributions. Considering the circular
distribution to be vM, the problem is to cluster, vMmix(k) distributions in
some L locations, where the number of mixture components need not be the
same for each location. The data template is shown in Table 1.

The main focus of this paper is to define the divergence between two
vMmix(k) mixture-distributions and use them to obtain clusters in circular
data that might be multimodal. Towards this goal, bounds to the KL and B
divergence measures between any two vM mixtures, are proposed.

2.1 KL and B Divergence Measures Let f and g denote two probability
density functions defined on the real line.

1. Kullback-Leibler (KL) divergence (Kullback and Leibler 1951) between
two densities f and g is defined as

KL(f, g) =
∫ ∞

−∞
f(x) log

(
f(x)
g(x)

)
dx

= Ef

(
log

(
f(x)
g(x)

))
.

It is also known as relative entropy and measures the degree of sep-
aration of f and g. KL is non-negative and becomes zero only when



Clustering Circular Data via Finite Mixtures...

Table 1: Data template
Location Wind directions Mixture density
1 θt1 , θt2 , . . . , θtp vM(μi, κi), i = 1, 2, . . . , k1.
2 θt1 , θt2 , . . . , θtp vM(μi, κi), i = 1, 2, . . . , k2.
...

...
...

L θt1 , θt2 , . . . , θtp vM(μi, κi), i = 1, 2, . . . , kL.

f = g. However, it is not a symmetric measure. Jammalamadaka et al.
(2021) has derived the expression for the KL divergence between two
vM distributions with respective densities, f(μ1, κ1) and g(μ2, κ2), and
it is given by

KL(f, g) = log(I0(κ2)) − log(I0(κ1)) + κ1A(κ1) − κ2 cos (μ1 − μ2)A(κ1), (2)

where A(κ) =
I1(κ)
I0(κ)

, I1(κ) =
∂

∂κ
I0(κ).

2. Bhattacharyya Coefficient (Bhattacharyya 1943) between f and g is
defined as

CB(f, g) =
∫ ∞

−∞

√
f(x)g(x)dx (3)

= Ef

(√
g(x)
f(x)

)
.

CB(f, g) measures the degree of overlap between f and g. It has the
following properties.

• 0 ≤ CB ≤ 1.

• CB=1 when f = g.

• CB is symmetric.

For two vM distributions with respective densities, f(μ1, κ1) and
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g(μ2, κ2), the expression for CB(f, g) is given by Calderara et al. (2011)

CB(f, g) =

[√
1

I0(κ1)I0(κ2)
I0

(√
κ2
1 + κ2

2 + 2κ1κ2 cos (μ1 − μ2)
2

)]
.

(4)
The Bhattacharyya divergence between f and g which we will denote
by B(f, g) is defined as

B(f, g) = − log(CB(f, g)),

where CB(f, g) is as given in Eq. 4.

Figure 2 depicts the line plots of the divergence between f(μ1, κ1) and
g(μ2, κ2). The divergence measures are computed taking κ1 = 1, κ2 = 2
and varying the difference between the mean directions μ1 and μ2.

One should keep in mind that this expression for B(f, g) as well as the
expression for KL(f, g) given in Eq. 2 are for single vM components. We
now deal with such divergence measures for mixtures.

3 KL Divergence Between 2 vM Mixtures

Let f =
∑p

i=1 αifi and g =
∑q

j=1 βjgj be respectively a vMmix(p)
and a vMmix(q) distribution, where fi = vM(μi, κi), i = 1, 2, . . . , p and

Figure 2: Line plots of KL and B divergence measures between two vM
distributions
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gj = vM(μj , κj), j = 1, 2, . . . , q. Here the {αi} and {βj} denote the mixing
proportions such that

∑p
i=1 αi = 1 and

∑q
j=1 βj = 1. The KL divergence

between such f and g is given by

KL(f ,g) = Ef

(
log

(
f
g

))

= Ef

(
log

( ∑p
i=1 αifi∑q
j=1 βjgj

))
.

Similarly, the Bhattacharyya coefficient between f and g is given by

CB(f ,g) = Ef

(√ ∑p
i=1 αifi∑q
j=1 βjgj

)
.

Since the vM distribution is not closed under addition, an explicit expres-
sion for KL(f ,g) and CB(f ,g) is not available for these mixtures. However,
they can be obtained using fairly accurate approximations. We do this by get-
ting a matching based bound for KL(f ,g) and an upper bound for CB(f ,g).

3.1 Matching Based Bound for KL(f ,g) This type of bound has been
originally proposed and studied in Goldberger and Gordon (2003) to com-
pute the KL divergence between two Gaussian mixtures, in a very similar
context. This bound is based on the idea that one particular component in
g is closer (dominates) than all the other components of f. In the context
of divergence between mixtures of two circular distributions, the matching
based bound for KL divergence assumes that an arc (say component 1) in the
first mixture distribution is closer to the other arcs of the second mixture
distribution. As an illustration, consider the rose diagram of observations
from two mixture densities f and g depicted in Fig. 3. It can be observed
from Fig. 3 that one petal in g is closer to (overlaps) all the other petals in
f. Thus, the matching based bound for KL(f,g) is computed based on the
component in g that is closer to the components in f.

Thus

KL(f,g) =
∫

f log
(
f
g

)
dθ

=
∫ p∑

i=1

αifi log
(
f
g

)
dθ
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Figure 3: Superimposed rose plot from two mixture densities

=
p∑

i=1

αi

∫
fi log(f)dθ −

p∑

i=1

αi

∫
fi log(g)dθ

=
p∑

i=1

αi

∫
fi log

(
p∑

i=1

αifi

)
dθ −

p∑

i=1

αi

∫
fi log

⎛

⎝
q∑

j=1

βjgj

⎞

⎠ dθ

≥
p∑

i=1

αi

∫
fi log(αifi)dθ −

p∑

i=1

αi max
j

∫
fi log(βjgj)dθ

=
p∑

i=1

αi

∫
fi log(αifi)dθ +

p∑

i=1

αi min
j

∫
−[fi log(βjgj)dθ]

=
p∑

i=1

αi min
j

(
KL(fi, gj) + log

(
αi

βj

))
.

Define π(i) = arg min
j

(KL(fi, gj) − log(βj)) , where π(i) denotes the

matching function. The matching based bound for KL(f,g) is given by

KL(f,g) ≥
p∑

i=1

αi

(
KL(fi, gπ(i)) + log

(
αi

βπ(i)

))
.
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We define the matching based KL divergence (KLmatch) between f and
g as

KLmatch(f,g) =
p∑

i=1

αi

(
KL(fi, gπ(i)) + log

(
αi

βπ(i)

))
. (5)

We then use the expression for the KL divergence between any two vM
distributions given in Eq. 2 to compute KL(fi, gπ(i)) in Eq. 5. This pro-
vides an efficient and easy way to compute such KL divergence instead of
resorting to completely numerical methods. However, deriving a mathemat-
ical expression for the approximating error bound of (KLmatch) is difficult.
But the accuracy of (KLmatch) to the true KL divergence (KLtrue) can be
examined by considering the difference between them. Following (Goldberger
and Gordon 2003), we define the error between (KLtrue) and (KLmatch) as

error =
|KLtrue − KLmatch|

KLtrue
.

Since vM distribution is not closed under addition, the true KL divergence
between f and g is approximated through Monte-Carlo integration as

KLtrue(f ,g) =
∫

f log
(
f
g

)
dθ

≈ 1
N

N∑

i=1

log
(
f(θi)
g(θi)

)
,

where θ1, θ2, . . . , θN are sampled from f and N denote the number of samples.
KLmatch is computed using Eq. 5. The error is computed for the various
mixture Cases given in Table 2 and are reported in Table 3.

From Table 3, it is seen that the error between the KLtrue and KLmatch

is small. Thus, the proposed matching based KL divergence yield values that
are closer to the true KL divergence measure.

Suppose the component distributions in g are identical except for
their mixing proportions. In this case, the matching function π(i) =
arg min

j
(KL(fi, gj) − log(βj)) is the minimum for the component that has

the highest mixing proportion βj . This is because the contribution of log(βj)
to π(i) becomes smaller as βj approaches one. In this sense, the choice of a
matching function is typically unique.
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Table 3: Error between true KL and matching based KL
Mixture KLtrue KLmatch Error

Case 1 2.4872 2.5054 0.0073
2 2.0373 2.0345 0.0013
3 3.9025 1.5024 0.6150
4 2.7455 2.8625 0.0426

3.2 Bhattacharyya Divergence Between 2 vM Mixtures Consider now
the B divergence between the finite mixtures f and g, defined by B(f,g) =
− log(CB(f,g)). Since

CB(f,g) =

∫ √
fg dθ

=

∫ √√√√( p∑

i=1

αifi
)( q∑

j=1

βjgj
)

dθ

=

∫ √√√√
p∑

i=1

q∑

j=1

αiβjfigj dθ

≤
∫ p∑

i=1

q∑

j=1

√
αiβj

√
figj dθ (∵ √

a1 + . . . + an ≤ √
a1 + . . . +

√
an)

≤
∫ p∑

i=1

q∑

j=1

√
figj dθ

=

p∑

i=1

q∑

j=1

∫ √
figj dθ

=

p∑

i=1

q∑

j=1

CB(fi, gj).

Thus, CB(f,g) ≤ ∑p
i=1

∑q
j=1 CB(fi, gj). If and when this upper bound

exceeds the value one, it can be scaled back below one by dividing with pq.
Therefore,

B(f,g) = − log(CB(f,g))

≤ − log(
p∑

i=1

q∑

j=1

CB(fi, gj)), (6)
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so that Eq. 6 gives an upper bound for the B divergence between two vM
mixture distributions. CB(fi, gj) in Eq. 6 is computed using Eq. 4.

4 A Simulation Study

In this section, a simulation study is carried out to illustrate the computa-
tion of the proposed KL and B divergence between finite mixtures of vM
distributions, and compare their effectiveness in identifying clusters. Obser-
vations from mixture of vM distributions are simulated for varying number
of mixture components and different parameter choices as discussed in Jam-
malamadaka et al. (2021) under four cases. In each case, two finite mixtures
of vM distributions namely, vMmix(2) and vMmix(3) are considered. The
parameter choice considered for the mixture distributions under each case is
given in Table 2.

For each mixture distribution, samples of size 100 are drawn from each
of the component vM distributions. The parameters of the mixture distri-
butions are estimated using the maximum likelihood (ML) method. This
process is repeated for n = 5 times. Thus, under each Case, there are 10
estimated mixture distributions. These 10 estimated mixture distributions
are labelled 1 and 2 respectively based on whether they are vMmix(2) or
vMmix(3) distributions. Let m = (m1, m2, . . . , m10) denote these labels
arranged such that the first five elements correspond to vMmix(2) and
the last five correspond to vMmix(3). i.e., m = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2).
movMF() function in R software is used to simulate the observations from
vM mixture distribution and to estimate the parameters. Methodology as
given in Banerjee et al. (2009) is used to obtain the ML estimates of the
parameters. For each Case, the KL and B divergence between the estimated
mixture distributions are computed using KLmatch and the Bhattacharyya
upper bound (scaled to one) given respectively in Eqs. 5 and 6. Based on
the divergence values, hierarchical clustering of the 10 mixture distributions
under each Case is made. The distances between clusters are computed using
the complete linkage method. A reasonable way to identify the number of
clusters from hierarchical clustering is to cut the dendrogram at various
heights and determine the total within sum of squares of the identified clus-
ters. The final number of clusters is the one for which the total within sum
of squares is the smallest. Fixing the required number of clusters as two
from the dendrogram of hierarchical clustering, the cluster membership of
the mixture distributions based on the KL and B divergence is displayed for
each case in Table 4.
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Table 4: Cluster membership based on hierarchical clustering
Case 1 2 3 4

Mixture Label KL B KL B KL B KL B
distribution
vMmix(2) 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

vMmix(3) 2 2 1 2 2 2 2 2 2
2 2 2 1 2 2 2 2 2
2 2 1 2 2 2 2 2 2
2 1 1 2 1 2 2 2 2
2 2 1 1 2 2 2 2 2

Matching the actual labels of the mixture distribution with the labels
associated with the cluster membership given in Table 4, it is observed that
the clusters obtained using the KL and B divergence measures are similar
for vMmix(2) mixture distributions. However, there are mismatches in the
cluster membership of vMmix(3) mixture distributions. The total number
of mismatches in the cluster membership obtained through KL and B diver-
gence are found to be 3 and 5 respectively. Thus, the proposed KL divergence
using matching based bound performs considerably better than B divergence
in identifying the clusters.

Suppose the parameters of the component vM distributions in f are close.
To see the effectiveness of the proposed KL divergence in identifying the true
clusters in such scenario, the simulation study is repeated for the Cases given
in Table 5 using the proposed matching based KL divergence.

The corresponding dendrogram is displayed in Fig. 4. It is observed that
as the components in vMmix(2) become closer, some observations are mis-
classified as can be seen from the dendrogram for Cases a, b, and c.

5 A Practical Illustration On Wind Directions

In this section, an implementation of the proposed KL and B divergence mea-
sures to compute the distance between mixtures of vM distributions and to
detect clusters is illustrated through a real-life data. The data relate to hourly
surface wind direction available month wise for each day for various districts
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Figure 4: Dendrogram based on matching based KL divergence where
vMmix(2) component distributions are close

and cities of India during the year 2015. The data set is available in https://
urbanemissions.info/blog-pieces/india-meterology-bydistrict/. For the illus-
tration, the surface wind direction related to five cities namely, Chennai,
Visakhapatnam, Trivandrum, Mumbai and Kolkata is considered. The cities
Chennai, Visakhapatnam and Kolkata are on the coastal line of the Bay of
Bengal, and the cities Trivandrum and Mumbai are on the coastal line of
Arabian sea. From the data, the following observations are made.

• In Chennai, between 00:00 to 05:00 hours, the surface wind direction
is concentrated in the interval (00, 900) and (1800, 3000), between 06:00
hours to 08:00 hours it is spread over all the directions. After 08:00 hours
till mid-night, the direction of wind drifts towards (00, 2500).

• In Visakhapatnam, between 00:00 to 05:00 hours, and between 19:00
hours to mid-night, the wind direction is in the interval (00, 900), and
(2000, 3600). During the remaining hours of the day, the wind direction
is concentrated in the interval (900, 2000).

https://urbanemissions.info/blog-pieces/india-meterology-bydistrict/
https://urbanemissions.info/blog-pieces/india-meterology-bydistrict/
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• In Trivandrum, throughout the day, the wind direction is more concen-
trated between (00, 900), and (2000, 3000).

• In Mumbai, between 00:00 to 06:00 hours and between 20:00 hours to
mid-night, the predominant wind direction is in the interval (00, 2500).
Between 06:00 to 20:00 hours, it is spread in the interval (2500, 3600).

• In Kolkata, the wind direction is spread in the interval (00, 3600)
between 00:00 to 10:00 hours, and between 20:00 hours to mid-night.
Between 10:00 to 20:00 hours, it is relatively more concentrated in the
interval (1000, 2500).

Thus the surface wind directions in the cities vary considerably over the
hours of the day. The rose plot for the wind directions for the above regions
is shown in Fig. 5. It can be observed from the rose diagram that the pre-
dominant surface wind directions for Chennai are Northeast and South, for
Visakhapatnam, Northeast, Southeast and West, for Trivandrum, Northeast
and West, for Mumbai, Northwest and Southwest, and for Kolkata, North
and South.

Since the surface wind directions for the cities have different orienta-
tions, it would be of interest to cluster the cities based on the surface wind
directions. Because the cities have more than one predominant surface wind
direction, the surface wind direction data for each city is modelled through
mixture of von Mises distributions. The estimates of the mixing proportions
and the parameters of component mixture densities are obtained through
likelihood estimation using the movMF() function. The number of mixture
components in the model is varied from 2 to 4. The best fitted mixture
model for each city is identified based on the Akaike Information Criterion
(AIC) value. Table 6 presents the best fitted mixture model for each city
and the ML estimates of the mixing proportions and the parameters of the
component von Mises distributions.

From Table 6, it is seen that the surface wind directions of Chennai and
Kolkata have a vMmix(3) mixture model whereas that of Visakhapatnam,
Trivandrum and Mumbai each have a vMmix(4) mixture model. To clus-
ter the cities based on the estimated mixture models, KL and B divergence
(scaled to one) are computed using Eqs. 5 and 6 respectively. Hierarchical
clustering with complete linkage method is performed using the computed
KL and B divergence. The dendrogram of the respective hierarchical clus-
tering is shown in Fig. 6.
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To judge whether the clusters obtained through the KL and B divergence
measures are similar, the cophenetic correlation between them is computed
using the R package clue (Hornik 2005) and is found to be 0.1715. Since the
correlation is low, it can be concluded that the clusters obtained through
the KL and B divergence measures are not similar. However, comparing the

Figure 5: Rose plot of wind direction data
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Table 6: Fit of von Mises mixture distributions
City Mixture μ κ Mixing

proportion
Chennai vMmix(3) -2.6893 (206◦) 0.3197 0.28

0.7258 (42◦) 11.5749 0.32
-3.1338 (180◦) 1.8746 0.4

Visakhapatnam vMmix(4) -2.6220 (210◦) 3.0649 0.25
1.9492 (112◦) 1.6138 0.2
0.8658 (50◦) 5.2434 0.35
-1.4849 (275◦) 4.2588 0.2

Trivandrum vMmix(4) -1.3932 (280◦) 10.8419 0.33
0.9883 (57◦) 71.9861 0.19
0.8126 (47◦) 0.9446 0.21
-2.1305 (238◦) 3.4069 0.27

Mumbai vMmix(4) -2.0974 (240◦) 16.6858 0.18
-0.6694 (322◦) 4.2986 0.27
-2.2368 (232◦) 1.3459 0.22
0.8114 (46◦) 2.3341 0.33

Kolkata vMmix(3) -2.8410 (197◦) 20.1266 0.18
-0.0584 (357◦) 3.0920 0.37
-2.9206 (193◦) 0.9471 0.45

Figure 6: Dendrogram based on the proposed KL and Bhattacharyya mea-
sures
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rose plot in Fig. 5 and the dendrogram in Fig. 6, it can be observed that
the clusters obtained using the matching based KL divergence is fairly good
when compared to that of B divergence. Thus, the five cities can be grouped
into three clusters, namely, Chennai and Visakhapatnam (cluster 1), Kolkata
and Mumbai (cluster 2), and Trivandrum (cluster 3).

6 Concluding Remarks

A methodology that approximates the KL and Bhattacharyya divergence
measures to compute the distance between finite mixtures of von Mises dis-
tributions is proposed. The matching based method yields a lower bound for
the KL divergence between mixtures of vM distributions, while a close upper
bound for the Bhattacharyya divergence between such mixtures is provided.
The performance of the KL and Bhattacharyya divergence measures is then
compared through a simulation study in the context of hierarchical cluster-
ing. From this careful simulation study, it is found that the matching based
KL divergence performs better in detecting clusters when compared to the
Bhattacharyya divergence. A real-life application to clustering the surface
wind directions in 5 Indian cities using the proposed KL and Bhattacharyya
divergence is highlighted.

The main novelty of the paper is that it addresses the applicability of the
KL and Bhattacharyya divergence measures between finite mixtures of von
Mises distributions, to provide a basis for clustering of circular data that may
be multimodal. Computing these divergence measures is challenging because
the von Mises distribution is not closed under addition and thus an explicit
expression for the divergence between any finite mixtures of von Mises distri-
butions, is not available. In this paper, bounds for the divergence measures
are derived and used to make such computations. The alternate method of
employing numerical integration to evaluate the divergences between von
Mises mixtures, as done in Jammalamadaka et al. (2021), requires consider-
ably more computational effort as well as large data sets for better accuracy,
unlike the methods proposed in this work.
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