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Abstract

We report targeted sequencing of 63 known prostate cancer risk regions in a multi-ancestry study 

of 9,237 men and use the data to explore the contribution of low-frequency variation to disease 

risk. We show that SNPs with minor allele frequencies (MAFs) of 0.1–1% explain a substantial 

fraction of prostate cancer risk in men of African ancestry. We estimate that these SNPs account 

for 0.12 (standard error (s.e.) = 0.05) of variance in risk (~42% of the variance contributed by 
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SNPs with MAF of 0.1–50%). This contribution is much larger than the fraction of neutral 

variation due to SNPs in this class, implying that natural selection has driven down the frequency 

of many prostate cancer risk alleles; we estimate the coupling between selection and allelic effects 

at 0.48 (95% confidence interval [0.19, 0.78]) under the Eyre-Walker model. Our results indicate 

that rare variants make a disproportionate contribution to genetic risk for prostate cancer and 

suggest the possibility that rare variants may also have an outsize effect on other common traits.

More than 220,000 men are expected to be diagnosed with prostate cancer and more than 

27,000 are expected to die of the disease in the United States alone in 2015 (ref. 1). 

Approximately 58% of risk for prostate cancer has been estimated to be due to inherited 

genetic factors2–6. Thus far, genome-wide association studies (GWAS) have identified more 

than 100 common risk variants for prostate cancer that explain ~33% of the familial risk7–25, 

leaving the majority of risk unexplained. Because GWAS have primarily investigated 

common variants (MAF >1%) for association with prostate cancer risk, an unexplored 

hypothesis is that part of the ‘missing heritability’ is attributable to rare variants (MAF 

<1%). To address this hypothesis, we focused on examining rare variation at known 

susceptibility regions that are only partially tagged by GWAS arrays. The rationale for 

investigating known risk-associated regions is that, (i) unlike in the rest of the genome, 

genetic variation in these regions has been established to confer risk and (ii) there are 

examples of rare and low-frequency variation at known GWAS-identified risk regions being 

important for a number of common diseases, including prostate cancer (8q24)26–29.

We carried out targeted sequencing of known prostate cancer GWAS loci to investigate the 

contribution of low-frequency and rare variation to prostate cancer risk. We targeted all 63 

autosomal risk regions for prostate cancer that were known to us at the time of study design 

(since then, an additional 37 loci have been discovered). For each region, we started with the 

index SNP previously associated with prostate cancer by GWAS and attempted to tile 

Agilent SureSelect baits to cover all nucleotides within a block of strong linkage 

disequilibrium (LD) around the SNP (plus exons and conserved elements within 200 kb of 

the SNP). We constructed individually barcoded next-generation sequencing libraries for all 

of the samples, pooled these into sets that typically contained 24 libraries each, and then 

performed in-solution hybrid enrichment. After removal of duplicated molecules, we 

achieved an average coverage of 9.3× in 9,237 cases and controls across four ancestry 

groups (4,006 African, 1,753 European, 1,770 Japanese and 1,708 Latino). We identified 

197,786 variants that were present in all ancestry groups, imputed genotypes into all 

individuals, and then correlated the genotypes to prostate cancer risk.

First, we show that sequencing-based association analysis is able to study a substantially 

larger fraction of the genetic risk for prostate cancer than studies of common variants alone, 

as we find that the variance explained in the trait by all the sequenced variants is 

significantly larger than the variance explained by known GWAS variants at the same loci. 

Second, we find evidence of genetic heterogeneity by ancestry in risk for prostate cancer. 

Third, we use variance-components methods to partition the SNP heritability across different 

variant frequency classes and find that a large amount of SNP heritability comes from the 

rare variant class in men of African ancestry; that is, variants with 0.1% ≤ MAF < 1% 
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explain a point estimate of 0.12 of variance in the trait as compared to an estimate of 0.17 

for variants with MAF ≥ 1%. Third, we used the SNP heritability assigned to the rare variant 

class to make the first relatively precise estimate of the strength of coupling between 

selection and allelic effect for a common trait. Finally, we replicated association signals at 

known GWAS loci and used an approach that combines epigenetic annotation (e.g., 

localization of androgen receptor binding sites in a prostate adenocarcinoma cell line) with 

the association signal to identify plausible causal variants at some of these loci.

RESULTS

Experimental strategy

To explore the contribution of rare and low-frequency variation to risk of prostate cancer, we 

targeted 90 index SNPs at 63 autosomal regions that had been associated with prostate 

cancer risk by GWAS at the time that this study was designed (October 2011). For each 

index SNP, we used Haploview30 (HapMap release 24) to visualize the surrounding LD 

block in European-ancestry individuals. We then manually identified boundaries for target 

capture on the basis of the region where LD as measured by the absolute value of 

Lewontin’s D′ fell precipitously (Supplementary Table 1 and Supplementary Data Set 1). 

We also targeted all exons (defined on the basis of RefSeq annotation) within 200 kb of each 

index SNP together with all conserved noncoding sequences (defined on the basis of a 29-

mammal alignment31) within 5 kb of each exon and elements >100 bp in length or with 

conservation scores >75 within the 200-kb window centered on each index SNP. Outside of 

the targeted GWAS loci, we also included exons and conserved elements of MYC and PVT1 
because of their potential importance in prostate cancer. We designed and ordered Agilent 

SureSelect32 in-solution enrichment probes to target a total of 12 Mb in two rounds of target 

design. The total span of the regions we wished to target was 16.7 Mb, but we were not able 

to design probes for 4.7 Mb owing to the presence of repetitive elements that needed to be 

masked during probe design (Supplementary Table 1).

We produced a total of 9,237 next-generation Illumina sequencing libraries from four 

ancestry groups (4,006 African, 1,753 European, 1,770 Japanese and 1,708 Latino) using a 

high-throughput library construction strategy previously described in ref. 33 (Online 

Methods). The results of the sequencing are presented in Table 1, where information on the 

mean coverage and the total number of variants discovered is provided for each ancestry 

group. The total number of megabases targeted, the mean coverage, the number of sites 

discovered and other metrics for each region are provided in Supplementary Table 2. The 

average coverage across samples was 9.3×, with s.d. of 5.4 across individuals and 5.4 across 

targeted table 1 sizes for each ancestry group and the coverage and standard deviation in 

nucleotides. We identified a total of 197,786 variants, of which 44% were not identified in 

the 1000 Genomes Project (Supplementary Table 3). The coverage we obtained for the great 

majority of samples was high enough in theory to obtain reliable diploid genotype calls after 

imputation at most targeted bases34. To assess the accuracy of sequencing, we measured the 

Pearson correlation of these genotype calls with those made using arrays (roughly half of the 

samples had also been assayed using GWAS arrays). The correlation between the genotype 
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calls from sequencing and arrays was r2 = 0.84 before imputation, increasing to 0.92 after 

imputation (Supplementary Fig. 1).

Sequencing explains additional variance beyond GWAS SNPs

To explore the value of sequencing in explaining additional variance in prostate cancer risk, 

we fit the genetic data to variance-components models to estimate the contribution of all 

genetic variants at the sequenced risk loci to the underlying liability of prostate cancer. First, 

we used simulations starting from the real genotype data to quantify potential biases in 

variance-components estimation. Consistent with findings of previous studies35, our 

simulations show that the approach of using two variance components—one for rare variants 

(0.1% ≤ MAF < 1%) and one for common variants (MAF ≥ 1%)—estimated from dosage 

data and fitted jointly using restricted maximum likelihood (REML) as implemented in 

GCTA36 produces the least amount of bias when estimating SNP heritability 

(Supplementary Figs. 2–9 and Supplementary Table 4). We also investigated the 

performance of fitting the REML equations with AI-REML, a Newton-style approach, 

versus an EM-based approach, EM-REML, as implemented in GCTA, with AI-REML 

attaining the least bias in our data (Supplementary Fig. 10, Supplementary Tables 5 and 6, 

and Supplementary Note). We considered the effect of estimating SNP heritability from 

best-guess calls rather than imputed dosages and found that these approaches give 

statistically indistinguishable results. Lastly, we explored the role of adjustment for LD in 

estimating the genetic relationship matrix (GRM) and observed upward bias for LD-adjusted 

GRMs when the underlying heritability explained by rare variants ℎg,rare
2  was set to 0 in our 

simulations. This upward bias was also reflected in estimates made using real phenotype 

data (Supplementary Table 7). Similar results were obtained over a variety of simulated 

disease architectures with various amounts of contribution from rare variation and total 

numbers of underlying causal variants (Supplementary Note).

Motivated by our simulation findings, we estimated the contribution of rare and common 

variation to risk of prostate cancer by fitting two variance components in GCTA while 

correcting for the top ten principal components and age; we report heritability estimates on 

the liability scale (Online Methods; see Supplementary Fig. 11 for the principal-component 

analysis plot). We find that the total variance explained by all variants at these loci (SNP 

heritability ℎg
2 = ℎg, rare

2 + ℎg, common
2 ) is larger than what is explained by the index variants 

alone (Table 2). For example, we estimate the variance explained by all variants in the 

African-ancestry sample at 0.30 (s.e. = 0.06), which is significantly larger (P < 0.05) than 

the variance explained by all 84 index variants present in these data (0.06, s.e. = 0.01) (six of 

the 90 SNPs targeted were not covered by reads passing our analysis filters). This finding is 

consistent across all ancestry groups, thus emphasizing the usefulness of sequencing in 

recovering additional signal beyond index GWAS variants37.

Next, we searched for genetic heterogeneity by ancestry in prostate cancer risk using a 

bivariate REML analysis38. Briefly, we computed a single GRM for each unique pair of 

ancestry groups over the set of SNPs common to both ancestry groups (Online Methods) and 

estimated the genetic correlation using GCTA36. We then tested the hypotheses that there is 

no shared genetic liability (SNP rg = 0) and that liability is completely shared (SNP rg = 1) 
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(Online Methods). We find significant heterogeneity (after accounting for the six pairs 

tested) for the African and European ancestry groups (SNP rg = 0.56, s.e. = 0.15; P value 

(SNP rg = 1) = 2.42 × 10−3; Table 3) and nominally significant heterogeneity (P value = 

0.04) for the Latino and African ancestry groups (Table 3).

Having established evidence of heterogeneity, we quantified the contribution to SNP 

heritability of variants across the MAF spectrum in each ancestry group independently. Rare 

variants explained a significant amount of SNP heritability ℎg
2  in African-ancestry 

individuals ℎg, rare
2  = 0.12, s.e. = 0.05; P = 2.29 × 10−3); indeed, the heritability explained by 

these rare variants is comparable to the heritability explained by common variants at these 

loci (ℎg
2, common = 0 17 s.e. = 0.03; P = 7.08 × 10−13; 

ℎg, rare2

ℎg2
 = 0.42, s.e. = 0.11; Online 

Methods). We did not observe significant contribution of rare variation to heritability in the 

other ancestry groups, although, given the limited sample sizes for the other groups, we 

cannot exclude the possibility that the fraction of prostate cancer heritability attributable to 

rare variants is the same in the other groups. In most of the analyses of heritability stratified 

by variant frequency that follow, we focus on people of African ancestry, as we had the 

highest power to carry out these studies.

We investigated whether the large contribution from rare variants in men of African ancestry 

was an artifact of data quality (Supplementary Note). We estimated ℎg, rare
2  = 0.13 (s.e. = 

0.06) for the African-American ancestry group after removing any SNPs whose rate of 

missing data before imputation was associated with the trait (P ≤ 0.01) (Supplementary 

Table 8). We obtained similar results when estimating SNP heritability directly from the 

hard genotype calls before imputation, both with and without the differentially missing 

SNPs for the African-American group (ℎg, rare
2  = 0.11., s.e. = 0.05; Supplementary Table 9). 

To quantify whether hidden relatedness influenced our results, we estimated heritability at 

various relatedness thresholds; differences in relatedness did not significantly influence the 

SNP heritability explained by rare variants (ℎg, rare
2  = 0.13., s.e. = 0.06; GRM < 0.05; 

Supplementary Table 8; see Supplementary Fig. 12 and Supplementary Table 10 for 

distribution of pairwise relatedness values; see Supplementary Tables 11–18 for results for 

other ancestry groups). We also explored the role of sequencing coverage and estimated SNP 

heritability from GRMs computed after removing SNPs at various levels of coverage. 

Overall, we found no significant decrease in ℎg, rare
2  until a large fraction of the SNPs were 

discarded (coverage ≥7×; Supplementary Table 19). To rule out potential tagging of signal 

by other loci in the genome, we repeated the SNP heritability estimation including a third 

variance component that constitutes genotype calls from arrays for the rest of the genome; 

this approach yielded similar results for ℎg, rare
2  (Supplementary Tables 20 and 21; see 

Supplementary Tables 22–27 for results for other ancestry groups). To account for possible 

confounding from population substructure, we re-estimated the variance attributable to the 

rare frequency class in the African-ancestry sample, stratifying on the basis of Ugandan and 

non-Ugandan ancestry as well as the 8q24 locus, which is known to make a large 

contribution to risk of prostate cancer. Overall, we found no significant difference in ℎg, rare
2
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for the African-American subsets with and without the 8q24 region included in the 

estimation (Supplementary Table 28). We also considered bias in our initial estimates of ℎg
2

resulting from potential misspecification of the GRM. Specifically, we estimated variance 

components using non-standardized genotype data35 (thereby reducing the impact of rare 

variants in GRM computation) and found a similar contribution from the rare variant 

spectrum (Online Methods). We also standardized the GRM on the basis of the expected 

variance rather than the sample estimate and found no significant change (ℎg, rare
2  = 0.12., s.e. 

= 0.05). We investigated potential bias in GCTA estimates from linkage across variants of 

various frequencies by repeating the analysis with three variance components corresponding 

to rare (0.1% ≤ MAF < 1%), low-frequency (1% ≤ MAF < 5%) and common (MAF ≥ 5%) 

variants; we observed no significant difference in the amount of variance attributable to the 

rare variant class (Supplementary Table 29). As the standard errors reported by GCTA are 

asymptotic, we employed a leave-one-out jackknife to estimate ℎg, rare
2  = 0.13. with s.e. = 

0.06 in the African-ancestry group (Supplementary Table 30). We also randomly sampled 

1,753 individuals of African ancestry (corresponding to the size of the European cohort) 100 

times and found a mean estimate of ℎg, rare
2  = 0.13. (s.e. = 0.06; Supplementary Table 31). To 

further investigate the significance of ℎg, rare
2  in African data, we estimated ℎg, rare

2  in 1,000 

simulated phenotypes starting from the real dosage data where the true ℎg, rare
2  value was set 

to 0 (all causal variants were set to have MAF ≥ 1%). In none of the 1,000 runs did we 

observe an estimate of ℎg, rare
2  ≥ 0.12, giving an empirical P value <1/1,000. Finally, we 

performed variance-components analyses using genotypes obtained from best-guess calls, as 

well as standard unconstrained REML analyses. Overall, we found that most of these 

potential sources of bias are unlikely to significantly change our results (Supplementary 

Figs. 2–9, Supplementary Tables 32–35 and Supplementary Note).

Evidence of coupling between selection and allelic effects

In the case of neutral genetic variation, alleles that have a MAF <1% account for only a few 

percent of genetic variation in the population. However, our empirical results from this study 

show that, at loci known to harbor common variants conferring risk for prostate cancer, 

variants with MAF < 1% account for an order of magnitude larger heritability for the 

disease. The only plausible explanation for this observation is that newly arising mutations 

that confer risk for prostate cancer—especially mutations of strong effect—are often subject 

to selection that is strong enough to prevent them from becoming common.

To quantify the extent to which selection is driving down the frequency of alleles that confer 

risk for prostate cancer, we derived a simulation-based pipeline that uses estimates of ℎg, rare
2

to constrain the value of a parameter τ that Eyre-Walker proposed to measure the coupling 

between selection coefficients and allelic effect sizes39 (Online Methods). Briefly, starting 

from the real genotype data, we simulated phenotypes under Eyre-Walker’s model at various 

values of τ and estimated ℎg, rare
2  in the simulated trait. We then compared the observed 

heritability in the real data to the simulations while accounting for sampling noise (Online 

Methods). We estimated τ = 0.48 with a 95% confidence interval of [0.19, 0.78] for the 
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African-ancestry sample under our mapping procedure (Fig. 1). We obtained similar results 

using a MAF cutoff of 5% in assigning variants to the rare versus common class 

(Supplementary Fig. 13). We found that our procedure was relatively robust to changes in 

parameters. For example, when adjusting the effective population size for African ancestry 

to 7,500, we re-estimated τ = 0.46 with a 95% confidence interval of [0.21, 0.78] 

(Supplementary Table 36). Although the small contribution from rare variants together with 

small sample sizes for the European, Japanese and Latino data sets prohibits us from 

estimating a tight confidence interval for Eyre-Walker’s τ in these populations, the results 

were roughly consistent across populations (Table 3 and Supplementary Fig. 14). For 

example, the estimated mean value of τ for the Japanese cohort was 0.38 with a 95% 

confidence interval of [–0.07, 0.32]. In a meta-analysis over all ancestry groups, we 

estimated τ = 0.42 [0.22, 0.62], which is similar to the African-ancestry estimates 

(unsurprisingly, as the African-ancestry data contribute the most to this analysis).

Single-variant association

An advantage of sequencing data—even with a tenfold lower sample size in comparison to 

the largest current GWAS—is that it interrogates all variants in the analyzed samples and 

thus has the potential to detect causal variants that are not genotyped or imputed in GWAS. 

We performed marginal association testing at all sequenced variants (n = 197,786) and 

replicated most of the GWAS-identified loci (Supplementary Tables 37–42). We observed a 

marginal increase in the association signal when including rare variants with 0.1% ≤MAF < 

1% across all populations, as reflected in a decrease in the top –log10 (P value) 

(Supplementary Tables 37–42) and a slight enrichment of low P values in a burden test 

(Supplementary Fig. 15). However, a limitation of the present study is its modest sample size 

in comparison to the sample size of 87,040 individuals in the most recent GWAS meta-

analyses24. For example, of the 84 recovered index variants (six of the 90 targeted SNPs 

were not covered by reads passing our analysis filters), only seven had a P value <1 × 10−8 

(most at 8q24) and only 13 had a P value <1 × 10−4. Thus, even though we can directly 

access alleles not on SNP arrays through our targeted sequencing, the advantage we obtain 

by directly genotyping SNPs is more than counterbalanced by the tenfold larger GWAS 

meta-analysis that has conducted imputation for fine mapping of common alleles at these 

regions. To explore additional signal beyond the known index variants, we performed a 

conditioning analysis (Online Methods) on the index variants and observed no variants with 

P value <1 × 10−8 after conditioning; quantile-quantile plots showed residual signal only in 

the African-ancestry sample, consistent with the hypothesis that there is an additional signal 

beyond that contributed by the known variants at these loci (either due to better tagging of a 

single causal variant or the presence of multiple causal alleles37) (Supplementary Figs. 16–

18).

To investigate sequenced SNPs as plausible causal alleles, we integrated epigenetic and 

genetic data using PAINTOR40 to estimate posterior probabilities for causality at each SNP. 

We used the meta-analysis results for SNPs with MAF ≥ 1.0% (as the Wald statistic is 

unreliable at MAF < 1% and therefore not well suited to estimation within the PAINTOR 

framework). First, we ran PAINTOR independently for each of the 20 functional categories 

that have previously been implicated in prostate cancer41 and found a significant enrichment 
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for causal variants in FOXA1-binding sites assayed in the LNCaP cell lines as well as at 

binding sites for androgen receptor41 (Supplementary Fig. 19). Second, we selected the 

functional categories with significant enrichment (at a nominal level of P ≤ 0.05) for a joint 

PAINTOR model to estimate posterior probabilities that each SNP is causal. Of the 24,840 

common variants found in all ancestry groups, we identified nine variants with PAINTOR 

posterior probability >0.90 as causal. In particular, two variants (rs78416326 and 

rs10486567) exhibited posterior probabilities >0.99 owing to a combination of strong 

association signal and overlap with functional elements (Supplementary Fig. 20 and 

Supplementary Table 43). Although biological causality cannot be proven on the basis of 

statistical association alone, we highlight the variants with high posterior probability for 

follow-up validation.

DISCUSSION

We have used large-scale targeted sequencing to study the contribution of rare variants to the 

heritability of prostate cancer for individuals of diverse ancestry. We find that the total 

variance in the trait contributed by these regions is significantly greater than the variance 

localized to known GWAS variants, thus showing that large-scale sequencing can uncover 

missing heritability. We also provide evidence of heterogeneity by ancestry as well as the 

first direct evidence of which we are aware of rare variants contributing a disproportionate 

fraction of the genetic heritability for a common disease. On first principles, there are 

reasons to think that our results actually underestimate the fraction of heritability due to rare 

variants. First, our study does not have a sample size sufficient to interrogate extremely rare 

variants (frequency << 0.1%). Second, we focused on known GWAS-identified regions that 

were ascertained on the basis of harboring an association with a common variant, thus 

guaranteeing that common variants would be responsible for a substantial fraction of 

prostate cancer risk at these locations.

Our finding that 42% (95% confidence interval = 21–63%) of the genetic risk for prostate 

cancer is due to variants in the MAF range of 0.1–1% is striking, given that only a couple 

percent of neutral variation is due to SNPs in this frequency range. These results suggest that 

selection has placed downward pressure on the frequencies of many alleles contributing risk 

for prostate cancer, and we have quantified this coupling of selection and prostate cancer 

risk. Prostate cancer is a late-onset disease that primarily affects people after reproductive 

age. For diseases with younger onset, it is plausible that the coupling of selection to disease 

risk could be even higher, and we predict that this will be observed for other diseases when 

sequencing studies of large sample size are performed and analyzed using methods like the 

ones we report here that are capable of partitioning heritability by frequency42. Already, 

associations with rare variants have been found at both the gene and individual-SNP 

levels43–45 as well as through sequencing of known GWAS risk loci46. Because we have 

shown that rare variation is capable of explaining a substantial portion of SNP heritability 

for prostate cancer, we expect that it will be useful to incorporate rare variants into statistical 

models for prediction of disease risk. Taken together, these results motivate further large 

sequencing efforts in diverse populations to fully explore the abundance of rare variants that 

might contribute a substantial fraction of the heritability for at least some important human 

phenotypes.
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We conclude with several caveats. Although we genotyped the majority of variants at the 

risk-associated regions in the regions we targeted in sequencing, we were not able to 

sequence a subset of the regions owing to the fact that the technology we used could not 

enrich for sequences at repetitive regions. Second, the part of the genome we analyzed in 

this study is non-random: we analyzed loci discovered by common variant association 

methods, where the fraction of genetic heritability due to common variants is likely to be 

overestimated owing to the fact that the regions were discovered on account of containing 

common variants. Thus, it is plausible that the true fraction of heritability for prostate cancer 

that is due to rare variants is a conservative underestimate of the true proportion across the 

genome. Third, assaying SNP heritability using variance components makes a number of 

simplifying assumptions; although we could not identify any source of bias that could 

explain our results artifactually, it is important to recognize that the analyses we have 

performed are statistically complex and there might be biases we have not appreciated. An 

important direction for future work will be to carry out whole-genome sequencing studies in 

much larger sample sizes, which will provide sufficient statistical power to allow a direct 

SNP-by-SNP understanding of the contribution of variants in the MAF range of 0.1–1% that 

this study suggests make a major contribution to human genetic risk for prostate cancer.

METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Data sets.

The Multiethnic Cohort.—The Multiethnic Cohort (MEC) consists of over 215,000 men 

and women enrolled from Hawaii and the Los Angeles region between 1993 and 1996 (ref. 

47). Participants are primarily of Native Hawaiian, Japanese, European-American, African-

American or Latino ancestry and were between the ages of 45 and 75 years at baseline when 

they completed a detailed questionnaire to collect information on demographics and lifestyle 

factors, including diet and medical conditions. Over 65,000 blood samples were collected 

from study participants for genetic analysis. To obtain information on cancer status, stage 

and severity of disease, MEC participants were referenced against population-based 

Surveillance, Epidemiology and End Results (SEER) registries in California and Hawaii. 

Unaffected cohort participants with blood samples were selected as controls (for case-

control sample sizes, see Table 1; for stage and grade of cases, see Supplementary Table 44).

Uganda Prostate Cancer Study.—The Uganda Prostate Cancer Study (UGPCS) is a 

case-control study of prostate cancer in Kampala, Uganda, that was initiated in 2011. 

Patients diagnosed with prostate cancer were enrolled from the Urology unit at Mulago 

Hospital, whereas undiagnosed men (controls) were enrolled from other clinics (for 

example, surgery) within the hospital. All consenting patients who satisfied strict inclusion 

criteria (cases, >39 years of age; controls, >39 years of age, PSA level <4 ng/ml to dismiss 

possible undiagnosed prostate cancer) were recruited into the study. Written consent was 

obtained, and two identical informed consent forms translated into Luganda were provided 

to each participant for them to read or to be read to them, sign or thumb print. Descriptive 
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and prostate cancer risk factor information was collected from interviews conducted with 

patients using a standardized questionnaire. Biospecimens were collected using Oragene 

saliva collection kits. The Institutional Review Boards at the University of Southern 

California and at Makerere University approved the study protocol.

Library preparation and target enrichment.

We prepared next-generation sequencing libraries from all DNA samples following a cost-

effective library preparation protocol developed for this study, which makes it possible to 

perform multiplexed hybridization enrichment33. DNA samples from cases and controls 

were randomly distributed over 96-well plates to avoid plate effects confounding the results. 

Each sample was molecularly barcoded during the library preparation stage in 96-well plates 

to allow us to pool many samples for hybrid capture enrichment and subsequent sequencing. 

We typically pooled 24 samples in equimolar ratio per capture reaction using the custom 

SureSelect capture reagent described above. In short, we defined the target region to consist 

of LD blocks surrounding all prostate cancer risk variants known at the time of design 

(October 2011), all coding sequences surrounding the variants within a 200-kb window on 

either side and evolutionarily conserved elements defined by a 29-mammal alignment31. 

This resulted in a total target size of 16.7 Mb, of which probes could be designed for 12 Mb. 

The missing 4.7 Mb constituted non-unique regions of the genome that were filtered out 

according to Agilent design recommendations. An overview table of targeted genes, the 

variants, the size of the targeted region for each variant and the size of the baited region is 

given in Supplementary Table 1. Sequencing was performed at Illumina using HiSeq 2000 

instruments for 100 cycles of paired-end sequencing. Using this approach, we covered 78% 

of the targeted regions (Supplementary Table 2), of which 26 regions (41%) had mean 

coverage ≥10×.

Alignment and genotype calling.

Sequences were aligned to the human genome reference sequence (hg19) using Burrows-

Wheeler Aligner (BWA) version 0.6.1 (ref. 48). Variants were called using the Genome 

Analysis Toolkit (GATK) bestpractices workflow49, including mapping the raw reads to the 

reference genome, base recalibration and compression, and joint calling and variant 

recalibration. After quality control, 11.3 Mb of autosomal sequence was considered; because 

of complexities in the analysis, we disregarded data on the X chromosome. Starting from the 

GATK likelihoods, we applied LD-aware genotype calling using Beagle50,51 version 3.3.2 

with 1000 Genomes Project v3 data as the reference. Variants that displayed low-quality 

calling (r2 < 0.6) or MAF <0.1% were dropped from the analysis (n = 588,410), resulting in 

197,786 SNPs across all ancestry groups. To take advantage of the lower error rate of the 

GWAS arrays, before LD-aware calling, overlapping sequenced SNPs were replaced with 

their array counterparts. This resulted in 6,028 replaced calls for 2,042 individuals in the 

African group, 5,395 replaced calls for the European group, 2,642 replaced calls for the 

Japanese group and 2,805 replaced calls for Latinos. To compute accuracy of the LD-aware 

calling, we used 1,172 African samples for which we had GWAS array data that was not 

used to replace calls before the LD-aware calling. The first ten principal components for 

each ancestry group were computed using GCTA36 from the sequenced common variants 

(MAF ≥ 1.0%) after LD pruning (r2 < 0.2) (ref. 52).
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Genotype array design.

To capture SNP heritability tagged outside of the targeted regions, we assayed individuals 

using the Illumina 1M-Duo BeadChip for the African-ancestry group, the Illumina 660W-

Quad BeadChip for the Latino and Japanese groups, and the Illumina Human610 BeadChip 

for Europeans. The number of samples genotyped by array was n = 3,078 for the African 

group, 1,627 for the European group, 1,674 for the Japanese group and 1,642 for the 

Latinos. For quality control, we removed any SNP with missingness >0.10. To remove any 

confounding from tagged variants within the targeted sequenced regions, we removed any 

SNP within 0.5 Mb of any region and any SNP with LD >0.2 with respect to index variants. 

We further pruned the set to remove any variants with pairwise LD >0.3. This resulted in n = 

251,919, 182,983, 96,711 and 109,118 array-based SNPs for the Africans, Europeans, 

Japanese and Latinos, respectively (Supplementary Fig. 21).

Association analyses.

Each variant was subjected to an unconditional marginal case-control association test 

adjusting for age, Ugandan ancestry for the African group and the top ten principal 

components under a log-additive model performed by PLINK 1.9 (ref. 53). All reported P 
values are asymptotic estimates from the Wald statistic. We extended the unconditional 

association test by incorporating the known associated variants (index SNPs) as covariates 

for each SNP at a given locus. Conditional association tests were implemented in Python 2.7 

with the package statsmodels version 0.5. A meta-analysis combining individual population 

results was performed using METAL54 version 2011–03-25. Of the 197,786 SNPs analyzed, 

183 were removed from the meta-analysis because they had multiallelic values when 

compared across all populations. To perform SKAT-O tests for the African-ancestry group, 

we used a non-overlapping sliding window approach to group rare SNPs into bins containing 

at most 100 variants across each targeted region, resulting in a total of 601 bins. Tests were 

performed using the software PLINKSEQ version 0.10. To predict the total risk from 

sequenced variants, we performed BLUP prediction in GCTA version 1.24 over a single 

variance component. Predicted effects were partitioned into rare and common variants and 

risk scores computed using the predicted allelic effects with PLINK. Training and prediction 

was performed using tenfold cross-validation over samples for each ancestry group 

(Supplementary Table 45 and Supplementary Note).

Heritability analyses.

We estimated the GRM as A = 1
mZZt, where Z is the standardized genotype matrix and m is 

the number of SNPs. For each sample, two GRMs corresponding to rare (0.1% ≤ MAF < 

1%) and common (MAF ≥ 1%) SNPs were created using GCTA version 1.24. GCTA 

assumes a linear mixed model where the contribution from each SNP is the result of a 

random effect given by y = Xβ + ∑igi + ε where y is a vector of phenotypes, X is a covariate 

matrix (for example, age), β is a vector of fixed effects and gi is a vector of random genetic 

effects for the ith component (we partition into grare and gcommon). The variance of y is given 

by var(y) = Arareσrare2 + Acommonσcommon2 + Iσε2, where Arare and Acommon correspond to the 

GRMs for rare and common SNPs, respectively. Creation of the GRMs was done directly 
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from the dosage data (similar results were obtained using best-guess calls; Supplementary 

Tables 33 and 34). We estimate the SNP heritability contributed from rare variants as

ℎg, rare2 =
σrare2

σrare2 + σcommon2 + σε2
.

Given estimates for σg, rare2 , σg, common2 , σε2 and their covariance matrix S, we use the delta 

method55 to approximate the standard error for

σrare2

σrare2 + σcommon2 =
ℎg, rare2

ℎg, rare2 + ℎg, common2

that is, the proportion of total SNP heritability explained by rare SNPs. The SNP heritability 

analysis was performed on the dichotomous case-control phenotype using constrained 

REML in GCTA with a prevalence of 0.19 for the African-ancestry group, 0.14 for the 

European- and Latino groups, and 0.10 for Japanese (SEER; see URLs). Hence, all reported 

values of ℎg
2 are on the underlying liability scale. To estimate the contribution of the known 

index variants to SNP heritability, we computed a GRM restricted to the 84 known variants. 

The covariate matrix for each ancestry group consisted of age and the first ten principal 

components (with an additional binary variable indicating Ugandan ancestry for the African-

ancestry group). LD-adjusted GRMs were computed using LDAK56 version 4.2. P values 

were estimated from a likelihood-ratio test by dropping one component and comparing 

against the reduced model (as implemented in GCTA). To estimate GRMs from array data, 

we removed any SNP within 0.5 Mb of the targeted regions and further pruned for pairwise 

LD >0.2 in addition to any remaining variants in LD with index SNPs (Supplementary Fig. 

22). For bivariate REML analysis, we define the GRM for samples over two ancestry groups 

as

A = 1
m

Z1
Z2

⋅
Z1
Z2

t

where Zi is the standardized genotype matrix for ancestry group i and m is the number of 

SNPs shared by both groups57.

Coupling selection with allelic effect size.

We investigated the relationship between selection and marginal effect sizes on prostate 

cancer risk using the Eyre-Walker model39, which sets allelic effect sizes 

β = 4Ne |s| τ(1 + ε). Here Ne is the effective population size (set to 10,000 for our 

analyses58), s is the selection coefficient of the allele and ε is normally distributed noise (σε 
= 0.5; varying this parameter does not significantly affect underlying rare/common 

variation39). As τ increases, we expect the allelic effects and, thus, the contribution to ℎg
2

from rare variants, to increase as a result of rare SNPs experiencing stronger selective 

pressure than common SNPs (Supplementary Figs. 22–24). To determine how τ has a 
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possible role in the underlying architecture for prostate cancer, we followed a five-step 

simulation procedure: (i) we randomly select a set of 10,000 SNPs to be causal; (ii) we 

assign selection coefficients to each causal variant by mapping their allele frequency to 

selection coefficients59; (iii) we simulate allelic effects under the Eyre-Walker model given 

selection coefficients, τ and σε = 0.5; (iv) we simulate a continuous trait starting from the 

real genotype data with total SNP heritability matching the SNP heritability estimated from 

real data; and (v) we perform joint REML analysis in GCTA to estimate rare and common 

SNP heritability for the simulated trait. We repeated this procedure for 5,000 values of τ 
uniformly distributed over the interval [–0.1, 1.1]. To match the observed results in real data 

to the results from the simulations, we sampled 10,000 values from N ℎg,rare
2 , s . e .  and 

identified the closest estimate observed from the simulation pipeline and recorded its 

simulated value for τ. This enabled us to convert the statistical noise around the estimate of 

the proportion as obtained by GCTA into a variance around τ for each of the ancestry 

samples.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relationship between strength of selection, the coupling parameter τ and allelic effect sizes 

in prostate cancer using heritability partitioning for the African-ancestry sample. (a) The 

density estimate for ℎg, rare
2  obtained from real data. (b) The influence of τ on ℎg, rare

2 . Each 

point represents an estimate of ℎg, rare
2  given phenotypes simulated from real genotypes under 

the Eyre-Walker model. (c) The estimated empirical density of τ. Estimates were obtained 

by matching a sampled value of ℎg, rare
2  from a with the closest point estimate from b.
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Table 4

estimates of τ for each ancestry group under our simulation-based pipeline with MAF partitioning at 1%

Ancestry Sample size Mean τ 95% confidence interval ℎg, rare
2

African 4,006 0.48 0.19, 0.78 0.12 (0.05)

European 1,753 0.28 −0.08, 0.90 0.00 (0.06)

Japanese 1,770 0.38 −0.07, 0.92 0.05 (0.07)

Latino 1,708 0.39 −0.08, 1.05 0.00 (0.06)

Meta-analysis 9,237 0.42 0.22, 0.62 0.05 (0.03)

Meta-analysis results were computed using an inverse-weighted variance approach. Similar results were obtained with MAF partitioning at 5% 
(supplementary Fig. 13).
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