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EPIGRAPH

Song to Onions

They improve everything, pork chops to soup,
And not only that but each onion’s a group.

Peel back the skin, delve into tissue
And see how an onion has been blessed with issue.

Every layer produces an ovum:
You think you’ve got three then you find you’ve got fovum.

Onion on on-
Ion on onion they run,
Each but the smallest one some onion’s mother:
An onion comprises a half-dozen other.

In sum then an onion you could say is less
Than the sum of its parts.
But then I like things that more are than profess–
In food and the arts.

Things pungent, not tony.
I’ll take Damon Runyon
Over Antonioni–
Who if an i wanders becomes Anti-onion.
I’m anti-baloney.

Although a baloney sandwich would
Right now, with onions, be right good.

And so would sliced onions,
Chewed with cheese,

Or onions chopped and sprinkled
Over black-eyed peas:

Black-eyed,
grey-gravied,

absorbent of essences,
eaten on New Year’s Eve

peas.

Roy Blount, Jr.
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ABSTRACT OF THE DISSERTATION

Local and Distributed Computation for Large Graphs

by

Olivia Michelle Simpson

Doctor of Philosophy in Computer Science

University of California, San Diego, 2016

Professor Fan Chung Graham, Chair

Graphs are a powerful and expressive means for storing and working with

data. As the demand for fast data analysis increases, data is simultaneously

becoming intractably large. To address these space constraints, there is a need

for graph algorithms which do not require access to the full graph. We consider

such algorithms a number of computational settings. The first is local computation

which does not require the state of the full graph, but rather uses the output of

small, local queries. We then extend methods in this setting to solve problems

for distributed computation, where a graph is stored across processors that can

xv



communicate via communication links in a number of rounds, and a dynamic setting

in which the graph is changing over time.

A key tool for computation in each of these settings is random walks.

Random walks identify vertices which are central in the graph, a critical subroutine

for ranking or clustering algorithms. Random walks on a graph are simple to

simulate with prescribed transition probabilities using lightweight, local queries,

and have the added benefit of being robust to noisy data.

In this dissertation, we give a quantitative analysis of random walks for local

computations on a static, centralized graph and introduce a random walk simulation

method for computing a vertex ranking known as the heat kernel pagerank of the

graph. We then show how to adapt this method to both the distributed and

dynamic setting. With an efficient algorithm for simulating random walks in each of

these computational settings, we design fast graph algorithms for modern, flexible

computational paradigms.

xvi



Chapter 1

Introduction

Our world is complex. As curious beings, it is natural to look for patterns

in what is around us. A powerful yet simple way of capturing complexity while

preserving structure is defining relationships between objects. Graphs have proven

to be an extremely expressive means for storing data with relational properties and

in fact, many data are best expressed as graphs. Consider one of the most prominent

graph representations, that of a social network. Modeling social relationships with

a network offers a lens into the qualities of a society by characterizing properties

of the graph. Similarly, biological systems, road networks, and communication

networks are also well abstracted as graphs. While graphs are a natural way to

compute over network data, such data tends to be heterogeneous, massive, and is

often changing over time. As the demand for fast data analysis grows, there is a

need for graph algorithms that address these constraints.

Graphs are inherently hierarchical, and studying graphs gives a global

understanding of the network at large (a biological system, human society, web

traffic), while there is also opportunity to gain more intimate knowledge of local

areas. Focusing graph analysis on local regions is a meaningful and computationally

efficient way to gain knowledge of underlying structure. It is especially important

when there is limited information available or there is greater interest in a partial

1
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solution rather than a solution over the full graph. Local algorithms are a class

of algorithms which compute properties of small regions of the data, and the best

performing local algorithms are those which focus computation on the particular

area of interest. In essence, the local algorithms we discuss in this dissertation

avoid computing full solutions for partial problems and thereby save unnecessary,

expensive computational effort. In a large network, possibly of hundreds of millions

of vertices, the algorithms we are dealing with and the solutions we are seeking are

usually in terms of the size of the requested output and are independent of the full

size of the network.

In this dissertation, we present local algorithms for massive and complex

networks. We begin with the problems of detecting local clusters in large graphs,

and solving local linear systems. Local cluster detection in a fundamental problem

with a huge range of applications where identifying vertices which are “close” in

some respect is of interest. Laplacian linear systems are useful for identifying

linear relationships between properties of vertices and subset boundaries. For both

of these problems we consider graphs which are fixed in time (static) and space

(centralized).

In the latter part of this dissertation we extend many of these techniques to

graphs in more modern computational settings. Namely, we consider computing

over massive and complex networks which are distributed across processors which

may communicate over specified links, and networks which are evolving over time.

We present algorithms for computing local clusters in a distributed graph, as well

as an algorithm for detecting big local changes in an evolving graph.

A key tool for computation in each of these algorithms, and indeed in each of

these computational frameworks, is random walks. Random walks identify vertices

which are central in a graph with respect to some initialization. They are the
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critical ingredient for ensuring that local computation only references local areas of

the graph and keep algorithmic running times in terms of the size of the local area

of interest. In the results of this dissertation, we take advantage of the simplicity

of simulating random walks with lightweight and local queries which do not require

the full state of the graph. However, there is tremendous potential for random

walks in the data mining space beyond the scope of this work. As random walks do

not require the full state of the graph, they are agnostic to network topology and

can thereby organically discover structural properties without the benefit of apriori

assumptions. Furthermore, they are robust to missing and noisy data. Random

walks are effective at capturing large changes among important vertices, while small

changes will not affect results much.

In this dissertation, we give a quantitative analysis of random walks for

approximating a vertex ranking known as heat kernel pagerank. The random

walk-based heat kernel pagerank algorithm is a paramount subroutine for local

computation on centralized, distributed, and evolving graphs, and will be a major

player for the duration of this work. As such, we begin by introducing random

walks on graphs in Chapter 1 and our algorithm for computing heat kernel pagerank

in Chapter 2.

1.1 Results in this Dissertation

We present an algorithm for computing the heat kernel pagerank in Chapter 2

which we call ApproxHKPRseed. This algorithm is premised around sampling a

number of random walks and requires only O
(

log(ε−1) logn
ε3 log log(ε−1)

)
random walk steps on

a graph of size n to compute significant heat kernel pagerank values within an

additive and multiplicative error of ε. In Chapter 3 we present an algorithm for

finding a local cluster in a graph, ClusterHKPR, which calls ApproxHKPRseed for
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approximating heat kernel pagerank as a subroutine. We show that the ranking

induced by heat kernel pagerank will detect clusters with better Cheeger ratio

and with better work/volume ratio as compared to algorithms which use alternate

rankings. Additionally, we demonstrate that the ranking induced by our random

walk approximation algorithm ApproxHKPRseed is not too different from the

ranking induced by an exact heat kernel pagerank.

We present a random-walk based algorithm for solving local Laplacian linear

systems in Chapter 4. This algorithm avoids any matrix computations and returns

an approximation of the local solution in sublinear time. We extend the results of

this chapter to present an algorithm for computing consensus among a network of

agents in Chapter 5 again modeling the network protocol in terms of heat kernel

pagerank and computing a solution with random walks.

In Chapter 6 we present algorithms for computing local clusters in graphs

that are distributed across processors of a computer network which are allowed to

communicate small-sized messages in rounds. Specifically, we present an algorithm

which computes a local cluster in O
(

log(ε−1) logn
log log(ε−1)

+ 1
ε

log n
)

rounds of communication

using heat kernel pagerank where the previously best performing algorithm required

O
(

1
α

log2 n+ n log n
)

rounds.

Finally, in Chapter 7 we present a sampling algorithm which detects large

changes on an evolving graph. Specifically, if the rank of a vertex changes by a

magnitude of δ > 0 over a span of time τ , given a full history of size T we show

that sampling O( T
τδ

log n) random walks is enough to capture this change with high

probability.
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1.2 Graphs as Operators and Data Structures

At its core, a graph is a structure of pairs of points. This mathematical model

has been a useful abstraction for storing data with some well-defined relationship

between data points and has been enthusiastically adapted as a fundamental data

structure.

Definition 1. A graph, G = (V,E) is a data structure consisting of a set of

vertices, V , corresponding to data points and a set of edges between pairs of

vertices, E ⊆ V × V .

When the edges are always between distinct vertices, the graph is said to

contain no self-loops. When the edges have direction, the graph is said to be

directed . Otherwise the graph is undirected and the edge notation (vi, vj) does not

imply an ordering (that is (vi, vj) is equivalent to (vj, vi)). We denote the size of

the graph by |V | = n and |E| = m.

For the purpose of this dissertation we will consider undirected graphs which

contain no self-loops nor isolated vertices unless otherwise specified.

We may discuss the “size” of a vertex by the number of neighbors it has. That

is, if vi ∈ V is a vertex in the graph, its neighbors are Ni = {vj ∈ V | (vi, vj) ∈ E}

and the degree of vertex vi is di = |Ni|. For an arbitrary vertex v we will sometimes

use dv to denote the degree. The volume of a set of vertices S ⊆ V is the total

degree of its vertices, vol(S) =
∑

vi∈S di. Degree sequences of graphs have important

implications in diffusive and connective properties of graphs, which motivate the

following definitions concerning graphs induced by subsets of vertices.

For a subset of vertices, S ⊂ V , we refer to the edges whose removal separate

S from the rest of the graph SC as the edge boundary , ∂(S) of S, ∂(S) = {(vi, vj) ∈

E | vi ∈ S, vj ∈ Sc}. Similarly, the vertex boundary , δ(S), is the set of vertices not
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in S which border S, δ(S) = {vi ∈ SC | vi ∈ N (vj) for some vj ∈ S}.

1.2.1 Linear Algebra on Graphs

How does one reference a graph? A common representation is a matrix,

where rows and columns correspond to vertex indices. For example, the adjacency

matrix , A ∈ {0, 1}n×n, indicates edges by Ai,j = 1 if and only if (vi, vj) ∈ E.

Before going deeper into graph introduction, we will take a moment to fix

some notation. When considering a real vector x defined over the vertices of G, we

say x ∈ Rn. Since we will consider vectors both as functions over V and data arrays,

we will use x(vi) to indicate the ith element of the vector x which synonymously

references the output of the function on the vertex vi, and the value of the vector

for vertex vi. The support of x is denoted by supp(x) = {vi ∈ V : x(vi) 6= 0}. For a

subset of vertices S ⊆ V , we say σ = |S| is the size of S and use x ∈ Rσ to denote

vectors defined over S. When considering a real matrix M defined over V , we say

M ∈ Rn×n. We reference an element (i, j) of a matrix M by Mij. We use MS to

denote the submatrix of M with rows and columns indexed by vertices in S. Namely,

MS ∈ Rσ×σ. Similarly, for a vector x ∈ Rn, we use xS to mean the subvector of x

with entries indexed by vertices in S. We also define x(S) =
∑

vi∈S x(vi). Finally,

we use xT and MT to denote vector and matrix transposes, respectively.

Let D be a diagonal matrix whose entries Di,i = di are degrees of vertices.

Then a matrix with important spectral properties is the combinatorial Laplacian,

L = D − A. The normalized Laplacian is the matrix L = D−1/2LD−1/2. It is an

operator on the space of functions f : V → Rn defined by

Lf(vi) =
1√
di

∑
vj∈N (vi)

(
f(vi)√
di
− f(vj)√

dj

)
.
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Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L and Pi be the projection to

the ith orthonormal eigenvector of L. All of the eigenvalues of L are nonnegative,

and λ1 = 0. Then, when restricting to the space orthogonal to P1 corresponding to

λ1, we have that

L =
n∑
i=2

λiφi.

When considering a subset S of vertices that induces a connected subgraph,

we have

LS =
σ∑
i=1

λiPi, (1.1)

where LS is the Laplacian matrix restricted to the rows and columns corresponding

to vertices of S, and these λi are the eigenvalues of LS, and Pi is the projection to

the ith orthonormal eigenvector of LS. Here, we note that each of the λi satisfy

0 < λi ≤ 2.

The normalized Laplacian is the subject of [21]. Here we give a few important

facts.

Lemma 1 ([21]). For a graph G on n vertices,

1.
∑

i λi ≤ n, where equality holds if and only if G has no isolated vertices.

2. If G is connected, λ2 > 0. If λi = 0 and λi+1 6= 0, then G has exactly i

connected components.

3. For all i ≤ n, λi ≤ 2.

4. The set of eigenvalues of a graph is the union of the set of eigevalues its

connected components.
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1.2.2 Random Walks

A random walk is a Markov chain on the vertices of the graph where each

successive state is a uniform random neighbor of the current state. This models the

process of a “random walker” which moves about the graph by randomly choosing

edges to traverse.

For some given initial distribution on the vertices, s ∈ Rn, the distribution

after k random walk steps is sTP k where P is the transition probability matrix

P = D−1A. If the graph is connected and non-bipartite, this amounts to the

Markov chain being irreducible and aperiodic, and thus there exists a stationary

distribution of this process.

In this dissertation we will be considering slight modifications of the standard

random walk mentioned above, examining the distributions known as PageRank

and heat kernel pagerank. Each of these distributions will depend on the initial

distribution. A common initial distribution we will be discussing is that with all

probability on a single entry corresponding to one vertex. For this we will use the

notation of an indicator vector χv:

χv(vi) =


1 if v = vi

0 otherwise.

Then if we discuss initial distributions in this way we might set s := χv.

Random walks can be used to model different processes on graphs and

to discover local graph structure. For instance, we can imagine random walkers

simulating the diffusion of heat on a graph. That is, if we choose an initial

distribution as χv for some fixed vertex v and allow random walkers to move about

the graph from this initial distribution, the resulting distribution will model how
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heat has dispersed in the graph. We can leverage this idea to induce a ranking

on the vertices. That is, the amount of heat that has accumulated at a particular

vertex can be used as a measure of how significant this vertex is with respect to the

initial distribution. This idea will prove to be useful in a number of the ranking

algorithms we discuss.



Chapter 2

Local Computation with Heat
Kernel Pagerank

In the quest for unearthing local structure in large graphs, heat kernel

pagerank is a powerful tool for designing precise, efficient algorithms with great

control over locality.

Heat kernel pagerank was first introduced in [22] as a variant of personalized

PageRank [18] and there are many parallels between the two notions. For instance,

PageRank can be viewed as a geometric sum of random walks, and the heat kernel

pagerank is an exponential sum of random walks. An alternative interpretation of

the heat kernel pagerank is related to the heat kernel of a graph as the fundamental

solution to the heat equation. As such, it has connections with diffusion and mixing

properties of graphs and has been incorporated into a number of graph algorithmic

primitives.

In this chapter we define heat kernel pagerank and offer a few meaningful

interpretations. In particular, one important consequence of heat kernel pagerank

is a mechanism for controlling diffusion on a graph. As such, heat kernel pagerank

is a key device for limiting local computation to local areas of interest.

10
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2.1 Previous Work on Computing Heat Kernel

and the Approximation of Matrix Exponen-

tials

There is a relatively recent history of efficient heat kernel computation and

applications to graph cuts. Orecchia et al. use a variant of heat kernel random

walks in their randomized algorithm for computing a cut in a graph with prescribed

balance constraints [77]. A key subroutine in the algorithm is a procedure for

computing e−Mv for a positive semidefinite matrix M and a unit vector v in time

Õ(m). They show how this can be done with a small number of computations of the

form M−1v and applying the Spielman-Teng linear solver [88]. Their main result is

a randomized algorithm that outputs a balanced cut in time O(m polylog n). In a

follow up paper, Sachdeva and Vishnoi [84] reduce inversion of positive semidefinite

matrices to matrix exponentiation, thus proving that matrix exponentiation and

matrix inversion are equivalent to polylog factors. In particular, the nearly-linear

running time of the balanced separator algorithm depends upon the nearly-linear

time Spielman-Teng solver.

Another method for approximating matrix exponentials is given by Kloster

and Gleich in [49]. They use a Gauss-Southwell iteration to approximate the Taylor

series expansion of the column vector eP ec for transition probability matrix P and

ec a standard basis vector. The algorithm runs in sublinear time assuming the

maximum degree of the network is O(log log n).

A number of Monte Carlo algorithms for PageRank-like computations are

given in [9, 17, 36]. An important result of each of these works is that as the

number of random walk samples tends to infinity, Monte Carlo-based estimates

converge to the true values at an exponential rate. In particular, it is shown in [36]
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that the correct ranking can be preserved with a much more conservative number

of samples.

2.2 Heat Kernel and Heat Kernel Pagerank

The heat kernel pagerank is related to the heat kernel of the graph, Ht,

which can be defined as a fundamental solution to the heat equation:

∂u

∂t
= −Lu, (2.1)

and given by Ht = e−tL.

It will be useful to consider a matrix similar to the heat kernel, Ht =

D1/2HtD
−1/2 = e−t(I−P ). The matrix ∆ := I − P is sometimes known in the

literature as the Laplace operator . We can view L and H as symmetric versions of

∆ and H, respectively.

For a given vector s ∈ Rn and value t ∈ R+, the heat kernel pagerank ρt,s is

defined:

ρt,s = sTHt

= sT e−t(I−P ). (2.2)

Note that the heat kernel pagerank will always be understood as a row vector.

We discuss two important properties of heat kernel pagerank. First, we see

from (2.1) that the heat kernel pagerank satisfies the equation:

∂

∂t
ρt,s = −ρt,s(I − P ). (2.3)

Second, we can reinterpret the heat kernel pagerank from (2.2) in terms of distribu-
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tions of random walks:

ρt,s =
∞∑
k=0

e−t
tk

k!
sTP k. (2.4)

Naturally, although the definition holds for any arbitrary vector s, the random

walk interpretation only holds for a stochastic vector whose entries all sum to 1.

In this case, the vector s is known as the preference vector and allows for random

walk personalization. For instance, if we assign s to be a stochastic vector with

uniform probability over all vertices in the graph, then random walks will reveal

global properties.

A more useful choice for the purposes of controlling locality is a vector with

probability concentrated on a single “seed” vertex. In this context, the amount of

probability which diffuses from the seed can be viewed as a measure of relative

importance and the induced ranking by heat kernel pagerank values can be applied

in a number of contexts.

We can compare the heat kernel pagerank to the personalized PageRank

vector, given by

prα,s = α
∞∑
k=0

(1− α)ksTP k. (2.5)

In this definition, α is often called the jumping or reset constant, meaning that at

any step the random walk may jump to a vertex drawn from s with probability

α. When preference is given to a single seed vertex, the random walk is “reset” to

that vertex. We note that, compared to the personalized PageRank vector, which

can be viewed as a geometric sum, we can expect better convergence rates from

the heat kernel pagerank, defined as an exponential sum.
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2.3 Computing Heat Kernel Pagerank

Here we describe an algorithm for computing heat kernel pagerank. Specif-

ically, we give a probabilistic approximation algorithm for computing a vector

that yields a ranking of vertices close to the heat kernel pagerank vector. The

approximation algorithm, ApproxHKPRseed, works by simulating random walks and

computing contributions of these walks for each vertex in the graph. As a matter

of simplification, in this chapter we strictly address heat kernel pagerank with a

single vertex as a seed – an analogy to Personalized PageRank with total preference

given to a single vertex. Note that heat kernel pagerank with a general preference

vector is a combination of heat kernel pagerank with a single seed vertex.

We begin our discussion of heat kernel pagerank approximation with an

observation. Each term in the infinite series defining heat kernel pagerank in (2.4)

is of the form e−t t
k

k!
sTP k for k ∈ [0,∞). The vector sTP k is the distribution after

k random walk steps with starting distribution s where s := χv for a specified

seed vertex v. Then, if we perform k steps of a random walk given by transition

probability matrix P from starting distribution s with probability pk = e−t t
k

k!
, the

heat kernel pagerank can be viewed as the expected distribution of this process.

This suggests a natural way to approximate the heat kernel pagerank. That

is, we can obtain a close approximation to the expected distribution with sufficiently

many samples. Our algorithm operates as follows. We perform r random walks to

approximate the infinite sum, choosing r large enough to bound the error. We also

use the fact that very long walks are performed with small probability. As such,

we limit the lengths of our random walks by a finite number K. Both r,K depend

on a predetermined error bound ε.

In our analysis we will use the following definition of an ε-approximate
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vector.

Definition 2. Let G be a graph on n vertices, and let s ∈ Rn be a vector over

the vertices of G. Let ρt,s be the heat kernel pagerank vector according to s and t.

Then we say that ν ∈ Rn is an ε-approximate vector of ρt,s if

1. for every vertex v ∈ V in the support of ν,

(1− ε)ρt,s(v)− ε ≤ ν(v) ≤ (1 + ε)ρt,s(v),

2. for every vertex with ν(v) = 0, it must be that ρt,s(v) ≤ ε.

This definition guarantees that for vertices with significant heat kernel

pagerank values, we achieve an approximation of the value with an additive and

multiplicative error of ε. On the other hand, we can be assured that vertices with

an approximate value of 0 are not significant in terms of heat kernel pagerank.

In the following algorithm, we approximate ρt,s by an ε-approximate vector

which we denote by ρ̂t,s. The running time of the algorithm is O
(

log(ε−1) logn
ε3 log log(ε−1)

)
.

The method and complexity of the algorithm, ApproxHKPRseed, are similar to the

ApproxRow algorithm for personalized PageRank given in [17].

Theorem 1. Let G be a graph and let v be a vertex of G. Then, the algorithm

ApproxHKPRseed(G, t, v, ε) outputs an ε-approximate vector ρ̂t,s of the heat kernel

pagerank ρt,s for 0 < ε < 1 with probability at least 1 − ε. The running time of

ApproxHKPRseed is O
(

log(ε−1) logn
ε3 log log(ε−1)

)
.

Proof. Consider the random variable which takes on value sTP k with probability

pk = e−t t
k

k!
for k ∈ [0,∞). The expectation of this random variable is exactly ρt,s.

Heat kernel pagerank can be understood as a series of distributions of weighted
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Algorithm 1. ApproxHKPRseed(G, t, v, ε)

input: a graph G, t ∈ R+, seed vertex v ∈ V , error parameter 0 < ε < 1.
output: ρ, an ε-approximation of ρt,s.

1: initialize a 0-vector ρ of dimension n, where n = |V |
2: r ← 16

ε3
log n

3: K ← c · log(ε−1)
log log(ε−1)

for any choice of c ≥ 1
4: for r iterations do
5: Start
6: simulate a P random walk from vertex v where k steps are taken with

probability e−t t
k

k!
and k ≤ K

7: let v be the last vertex visited in the walk
8: ρ(v)← ρ(v) + 1
9: End
10: end for
11: return 1/r · ρ

random walks over the vertices, and the weights are related to the number of steps

taken in the walk. The series can be computed by simulating this process, i.e.,

draw k according to pk and compute sTP k with sufficiently many random walks of

length k.

We approximate the infinite sum by limiting the walks to at most K steps.

We will take K to be K = log(ε−1)
log log(ε−1)

. These interrupts risk the loss of contribution

to the expected value, but can be upper bounded by e−ttK

K!
≤ ε

2
provided that

t > K/ logK. This is within the error bound for an ε-approximate heat kernel

pagerank. If t ≤ K/ logK, the expected length of the random walk is

∞∑
k=0

e−ttk

k!
· k = t < K/ logK.

Thus we can ignore walks of length more than K while maintaining ρt,s(v)− ε ≤

ρ̂t,s(v) ≤ ρt,s(v) for every vertex v.

Next we show how many samples are necessary. For k ≤ K, our algorithm

simulates k random walk steps with probability e−t t
k

k!
. To be specific, for a fixed



17

v, let X i
k be the indicator random variable defined by X i

k = 1 if a random walk

beginning from vertex v ends at vertex vi in k steps. Let X i be the random variable

that considers the random walk process ending at vertex vi in at most k steps.

That is, X i assumes the vector X i
k with probability e−t t

k

k!
. Namely, we consider the

combined random walk

X i =
∑
k≤K

e−t
tk

k!
X i
k.

Now, let ρ(k)t,s be the contribution to the heat kernel pagerank vector ρt,s

of walks of length at most k. The expectation of each X i is ρ(k)t,s(vi). Then, by

Lemma 2,

Pr(X i < (1− ε)ρ(k)t,s(vi) · r) < exp(−ρ(k)t,s(vi)rε
2/2)

= exp(−(8/ε)ρ(k)t,s(vi) log n)

< n−4

for every component with ρt,s(vi) > ε, since then ρ(k)t,s(vi) > ε/2. Similarly,

Pr(X i > (1 + ε)ρ(k)t,s(vi) · r) < exp(−ρ(k)t,s(vi)rε
2/4)

= exp(−(4/ε)ρ(k)t,s(vi) log n)

< n−2.

We conclude the analysis for the support of ρt,s by noting that ρ̂t,s(vi) = 1
r
X i, and

we achieve an ε-multiplicative error bound for every vertex vi with ρt,s(vi) > ε with

probability at least 1−O(n−2).

On the other hand, if ρt,s(vi) ≤ ε, by the third part of Lemma 2, Pr(ρ̂t,s(vi) >

2ε) ≤ n−8/ε2 . We may conclude that, with high probability, ρ̂t,s(vi) ≤ 2ε.



18

For the running time, we use the assumptions that performing a random

walk step and drawing from a distribution with bounded support require constant

time. These are incorporated in the random walk simulation, which dominates

the computation. Therefore, for each of the r rounds, at most K steps of the

random walk are simulated, giving a total of rK = O
(

16
ε3

log n · log(ε−1)
log log(ε−1)

)
= Õ(1)

queries.

The above analysis relies on the usual Chernoff bounds as stated below.

Lemma 2 ([17]). Let Xi be independent Bernoulli random variables with X =
r∑
i=1

Xi. Then,

1. for 0 < ε < 1, Pr(X < (1− ε)rE(X)) < exp(− ε2

2
rE(X))

2. for 0 < ε < 1, Pr(X > (1 + ε)rE(X)) < exp(− ε2

4
rE(X))

3. for c ≥ 1, Pr(X > (1 + c)rE(X)) < exp(− c
2
rE(X)).

We conclude this chapter with an important note on an implication of our

definition of approximation. The algorithm ApproxHKPRseed computes estimates of

heat kernel pagerank values for vertices with actual heat kernel pagerank values ≥ ε.

There are at most 1
ε

such vertices, as this is a stochastic vector. The support of an ε-

approximate heat kernel pagerank vector ρ̂t,s is therefore Nρ̂t,s := |supp(ρ̂t,s)| ≤ 1
ε
. A

vector with small support offers computational benefits as we will see in subsequent

chapters.
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Chapter 3

Detecting Local Clusters

In large networks, many similar elements can be identified to a single, larger

entity by the process of clustering. Increasing granularity in massive networks

through clustering eases operations on the network. There is a large literature

on the problem of identifying clusters in a graph ([19, 45, 59, 60, 70, 85]), and

the problem has found many applications. However, in a variation of the graph

clustering problem we may only be interested in a single cluster near one element

in the graph. For this, local clustering algorithms are of greater use.

As an example, the problem of finding a local cluster arises in protein

networks. A protein-protein interaction (PPI) network has undirected edges that

represent an interaction between two proteins. Given two PPI networks, the goal

of the pairwise alignment problem is to identify an optimal mapping between the

networks that best represents a conserved biological function. In [58], a local

clustering algorithm is applied from a specified protein to identify a group similar to

that protein. Such local alignments are useful for analysis of a particular component

of a biological system (rather than at a systems level which will call for a global

alignment). Local clustering is also a common tool for identifying communities

in a network. A community is loosely defined as a subset of vertices in a graph

which are more strongly connected internally than to vertices outside the subset.

20



21

Properties of community structure in large, real world networks have been studied

in [56], for example, where local clustering algorithms are employed for identifying

communities of varying quality.

The goal of a local clustering algorithm is to identify a cluster in a graph near

a specified vertex. Using only local structure avoids unnecessary computation over

the entire graph. An important consequence of this are running times which are often

in terms of the size of the small side of the partition, rather than of the entire graph.

The best performing local clustering algorithms use probability diffusion processes

over the graph to determine clusters. In this chapter we present an algorithm

which identifies a cluster near a specified vertex with simple computations over

heat kernel pagerank.

3.1 Previous Work on Local Clustering Algo-

rithms

Local clustering algorithms were introduced in [88], where Spielman and

Teng present a nearly-linear time algorithm for finding local clusters with certain

balance constraints. Let Φ(S) denote the cut ratio of a subset S that we will later

define as the Cheeger ratio. Then, given a graph and a subset of vertices S such

that Φ(S) < φ and vol(S) ≤ vol(G)/2, their algorithm finds a set of vertices T such

that vol(T ) ≥ vol(S)/2 and Φ(T ) ≤ O(φ1/3 logO(1) n) in time O(m(log n/φ)O(1)).

This seminal work incorporates the ideas of Lovász and Simonovitz [61, 62] on

isoperimetric properties of random walks, and their algorithm works by simulating

truncated random walks on the graph. Spielman and Teng later improve their

approximation guarantee to O(φ1/2 log3/2 n) in a revised version of the paper [89].

The algorithm of [88, 89] improves the spectral methods of [33] and a similar

expression in [3] which use an eigenvector of the graph Laplacian to partition the
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vertices of a graph. However, the local approach of Spielman and Teng allows us to

identify focused clusters without investigating the entire graph. For this reason,

the running time of this and similar local algorithms are proportional to the size of

the small side of the cut, rather than the entire graph.

Andersen et al. [6] give an improved local clustering algorithm using approx-

imate PageRank vectors. For a vertex subset S with Cheeger ratio φ and volume ς ,

they show that a PageRank vector can be used to find a set with Cheeger ratio

O(φ1/2 log1/2 ς). Their local clustering algorithm runs in time O(φ−1m log4m). The

analysis of the above process was strengthened in [5] and emphasized that vertices

with higher PageRank values will be on the same side of the cut as the starting

vertex.

Andersen and Peres [7] later simulate a volume-biased evolving set process

to find sparse cuts. Although their approximation guarantee is the same as that

of [6], their process yields a better ratio between the computational complexity of

the algorithm on a given run and the volume of the output set. They call this value

the work/volume ratio, and their evolving set algorithm achieves an expected ratio

of O(φ−1/2 log3/2 n). This result is improved by Gharan and Trevisan in [38] with

an algorithm that finds a set of conductance at most O(ε−1/2φ1/2) and achieves a

work/volume ratio of O(ςεφ−1/2 log2 n) for target volume ς and target Cheeger ratio

φ. The complexity of their algorithm is achieved by running copies of an evolving

set process in parallel. A summary of previous results and our contributions are

given in Table 3.1.
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Table 3.1. Summary of local clustering algorithms

Algorithm Cheeger ratio of output set Work/volume ratio

[89] O(φ1/2 log3/2 n) O(φ−2 polylog n)

[6] O(φ1/2 log1/2 n) O(φ−1 polylog n)

[7] O(φ1/2 log1/2 n) O(φ−1/2 polylog n)
[38] O(ε−1/2φ1/2) O(ςεφ−1/2 polylog n)

This work O(φ1/2) O(ς−1ε−3 log n log(ε−1) log log(ε−1))

3.2 Using Heat Kernel Pagerank For Finding

Local Clusters

The cluster quality of a cut set can be measured by the ratio of the number

of edges between the two parts of the cut and the volume of the smaller side of the

cut. This is called the Cheeger ratio of a set, defined by

Φ(S) =
|∂(S)|

min(vol(S), vol(SC))
.

The Cheeger constant of a graph is the minimal Cheeger ratio,

Φ(G) = min
S⊂G

Φ(S).

For a given subset S of a graph G, the local Cheeger ratio is defined

Φ∗(S) = min
T⊆S

Φ(T ).

Our local clustering algorithm is derived from a local version of the usual

Cheeger inequalities which relate the Cheeger constant of a graph to an eigenvalue

associated to the graph. Namely, for a subset of vertices S with |S| = σ, define

the restricted Laplacian LS = D
−1/2
S (DS − AS)D

−1/2
S where DS and AS are the

restricted matrices of D and A with rows and columns indexed by vertices in S.
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Then the eigenvalues λS := λS,1 ≤ λS,2 ≤ · · · ≤ λS,σ of LS are also known as the

Dirichlet eigenvalues of S, and are related to Φ∗(S) by the following local Cheeger

inequality [23]:

1

2
(Φ∗(S))2 ≤ λS ≤ Φ∗(S). (3.1)

The inequality (3.1) will be used to derive a relationship between a ranking

according to heat kernel pagerank and sets with good Cheeger ratios.

The premise of the local clustering algorithm is to find a good cut near a

specified vertex by performing a sweep over a vector associated to that vertex, which

we will specify presently. Let p ∈ Rn be a probability distribution vector over the

vertices of the graph of support size Np := supp(p). Then, consider a probability-

per-degree ordering of the vertices where p(v1)/d1 ≥ p(v2)/d2 ≥ · · · ≥ p(vNp)/dNp .

Let Si be the set of the first i vertices per the ordering. We call each Si a segment .

Then the process of investigating the cuts induced by the segments to find an

optimal cut is called performing a sweep over p.

In this section we will show how a sweep over a single heat kernel pagerank

finds local clusters. Specifically, we show that for a subset S with vol(S) ≤ vol(G)/4

and Φ(S) ≤ φ, and for a large number of vertices in v ∈ S, performing a sweep

over the ε-approximate vector ρ̂t,s with v as the seed will find a set with Cheeger

ratio at most O(
√
φ).

The ς-local Cheeger ratio of a sweep over a vector ν is the minimum Cheeger

ratio over segments Si with volume 0 ≤ vol(Si) ≤ 2ς. Let Φς(ν) be the ς-local

Cheeger ratio of segments over a sweep of ν that separates sets of volume between

0 and 2ς.

We will use the following bounds for heat kernel pagerank in terms of local

Cheeger ratios and sweep cuts to reason that many vertices v can serve as good seeds
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for performing a sweep. To be explicit, when we refer to a heat kernel pagerank

with preference vector centered around a particular seed v such that s := χv, we

will use the notation ρt,v.

Lemma 3. Let G be a graph and S a subset of vertices of volume ς ≤ vol(G)/4.

Then the set of v ∈ S satisfying

1

2
e−tΦ

∗(S) ≤ ρt,v(S) ≤
√
ςe−tΦς(ρt,fS )2/4

has volume at least ς/2.

To proof Lemma 3, we begin with some bounds for heat kernel pagerank in

terms of local Cheeger ratios and sweep cuts. For a subset S, define fS to be the

following distribution over the vertices,

fS(vi) =


di/vol(S) if vi ∈ S

0 otherwise.

Then the expected value of ρt,v(S) over v in S is given by:

E(ρt,v(S)) =
∑
v∈S

dv
vol(S)

ρt,v(S)

=
∑
v∈S

dv
vol(S)

(χTvHt)(S)

= fTSHt(S)

= ρt,fS(S). (3.2)

We will make use of the following result, given here without proof (see [23]),

which bounds the expected value of ρt,v(S) given by (3.2) in terms of local Cheeger
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ratios.

Lemma 4 ([23]). In a graph G, and for a subset S, the following holds:

1

2
e−tΦ

∗(S) ≤ 1

2
e−tλS ≤ ρt,fS(S).

Next, we use an upper bound on the amount of probability remaining in S

after sufficient mixing. This is an extension of a theorem given in [23].

Theorem 2. Let G be a graph and S a subset of vertices with volume ς ≤ vol(G)/4.

Then,

ρt,fS(S) ≤
√
ςe−tΦς(ρt,fS )2/4.

To prove Theorem 2, we define the following for an arbitrary function

f : V → R and any integer x with 0 ≤ x ≤ vol(G)/2,

f(x) = max
T⊆V×V,|T |=x

∑
(vi,vj)∈T

f(vi, vj), f(vi, vj) =


f(vi)/di, if (vi, vj) ∈ E,

0, otherwise.

The above definition can be extended to all real values of x,

f(x) = max
T⊆V×V,|T |=x

∑
(vi,vj)∈T

αijf(vi, vj), αij ≤ 1 if (vi, vj) ∈ E,
∑

(vi,vj)∈E

αij = x.

Claim 1. Let Si be a segment according to a vector f ∈ Rn such that x = vol(Si)

and f(v) > 0 for every v ∈ Si. Then

f(x) =
∑
v∈Si

f(v) = f(Si).

Proof. We are considering the maximum over a subset of vertex pairs T of size
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vol(Si). Since we are only adding values over vertex pairs which are edges in G,

this maximum is achieved when

f(x) =
∑
v∈Si

∑
vi∈N (v)

f(v)/dv

=
∑
v∈Si

f(v)
∑

vi∈N (v)

1/dv

= f(Si).

Theorem 2. Let Z be the lazy random walk Z = 1/2(I + P ). Then,

fTZ(S) = 1/2
(
f(S) +

∑
vj∈N (vi),vi∈S

f(vi, vj)
)

= 1/2
( ∑
vi∨vj∈S

f(vi, vj) +
∑

vi∧vj∈S

f(vi, vj)
)

≤ 1/2(f(vol(S) + |∂(S)|) + f(vol(S)− |∂(S)|))

= 1/2
(
f(vol(S)(1 + Φ(S))) + f(vol(S)(1− Φ(S)))

)
.

Let ft = ρt,fS , and let x satisfy 0 ≤ x ≤ 2ς ≤ vol(G)/2 and represent a

volume of some set Si. Then taking cue from the above inequality, we can associate

S to Si, vol(S) to vol(Si) = x and Φ(S) to the minimum Cheeger ratio of a set Si

satisfying vol(Si) = x ≤ 2ς, or Φς(ρt,fS). Then using Claim 1,

ftZ(x) ≤ 1/2(ft(x(1 + Φς(ρt,fS))) + ft(x(1− Φς(ρt,fS)))).
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Now consider the following differential inequality,

∂

∂t
fTt (x) = −ρt,fS(I −W )(x) (3.3)

= −2ρt,fS(I − Z)(x)

= −2ft(x) + 2ftZ(x)

≤ −2ft(x) + ft(x(1 + Φς(ρt,fS)))

+ ft(x(1− Φς(ρt,fS)))

≤ 0. (3.4)

Line (3.3) follows from (2.3), and line (3.4) follows from the concavity of f .

Consider gt(x) to be gt(x) =
√
xe−tΦς(ρt,fS )2/4. Then,

− 2gt(x) + gt(x(1 + Φς(ρt,fS))) + gt(x(1− Φς(ρt,fS)))

= −2gt(x) +
√

1 + Φς(ρt,fS)gt(x) +
√

1− Φς(ρt,fS)gt(x)

= (−2 +
√

1 + Φς(ρt,fS) +
√

1− Φς(ρt,fS))gt(x)

≤ −Φς(ρt,fS)2

4
gt(x) (3.5)

=
∂

∂t
gt(x),

where we use the fact that −2 +
√

1 + y +
√

1− y ≤ −y2/4 for y ∈ (0, 1] in line

(3.5). Now, since ft(0) = gt(0) and ∂
∂t
ft(x)|t=0 ≤ ∂

∂t
gt(x)|t=0,

− 2ft(x) + ft(x(1 + Φς(ρt,fS))) + ft(x(1− Φς(ρt,fS)))

< −2gt(x) + gt(x(1 + Φς(ρt,fS))) + gt(x(1− Φς(ρt,fS))),
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and in particular, ∂
∂t
ft(x) ≤ ∂

∂t
gt(x). Since f0(x) ≤ g0(x), we may conclude that

ft(x) ≤ gt(x) =
√
xe−tΦς(ρt,fS )2/4.

Using Lemma 4 and Theorem 2, we arrive at the following useful inequalities.

Corollary 1. Let G be a graph and S a subset with volume ς ≤ vol(G)/4. Then,

1

2
e−tΦ

∗(S) ≤ ρt,fS(S) ≤
√
ςe−tΦς(ρt,fS )2/4.

We are now prepared to prove Lemma 3.

Lemma 3. Let F be the set of seeds F = {v ∈ S : ρt,v(S) ≤ 2ρt,fS(S)}. Then, by

(3.2),

F = {v ∈ S : ρt,v(S) ≤ 2E(ρt,v(S))}.

Now we consider the set of vertices not included in F ,

E(ρt,v(S) | v /∈ F ) ≥
∑
v/∈F

dv
vol(S)

2E(ρt,v(S))

≥ vol(S \ F )

vol(S)
2
∑
v/∈F

E(ρt,v(S)).

Which implies

vol(S)

2
> vol(S \ F ) or, vol(F ) > ς/2.

We can use Lemma 3 to reason that many vertices v satisfy the above

inequalities, and thus can serve as good seeds for performing a sweep.
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3.3 A Local Graph Clustering Algorithm

It follows from Lemma 3 that the ranking induced by heat kernel pagerank

with appropriate seed vertex can be used to find a cut with approximation guarantee

O(
√
φ) by choosing the appropriate t. To obtain a sublinear time local clustering

algorithm for massive graphs, we use ApproxHKPRseed from Chapter 2 to efficiently

compute an ε-approximate heat kernel pagerank vector, ρ̂t,v, to rank vertices.

The ranking induced by ρ̂t,v is not very different from that of a true vector

ρt,v in the support of ρ̂t,v (for an experimental analysis, see Section 3.4). Namely,

using the bounds of Lemma 4, we have

ρ̂t,v(S) ≥ (1− ε)ρt,v(S)− εσ.

In particular,

1

2
(1− ε)e−tΦ∗(S) − εσ ≤ ρ̂t,v(S) ≤

√
ςe−tΦς(ρ̂t,v)2/4 (3.6)

for a set of vertices v of volume at least ς/2.

Additionally, using ρ̂t,v has the benefit of a small support which eases the

work required for a sweep.

Theorem 3. Let G be a graph and S ⊂ G a subset with vol(S) = ς ≤ vol(G)/4,

|S| = σ, and Cheeger ratio Φ(S) ≤ φ. Let ρ̂t,v be an ε-approximate of ρt,v for some

vertex v ∈ S. Then there is a subset St ⊂ S with vol(St) ≥ ς/2 for which a sweep

over ρ̂t,v for any vertex v ∈ St with

1. t = φ−1 log(2
√
ς

1−ε + 2εσ) and

2. Φς(ρ̂t,v)
2 ≤ 4/t log(2)
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finds a set with ς-local Cheeger ratio at most
√

8φ.

Proof. Let v be a vertex in St as described in the theorem statement. Using the

inequalities (3.6), we can bound the local Cheeger ratio by a sweep over ρ̂t,v:

e−tΦ
∗(S) ≤ 2

1− ε
(
√
ςe−tΦς(ρ̂t,v)2/4 + εσ)

which implies

e−tΦ
∗(S) ≤ e−tΦς(ρ̂t,v)2/4

(
2
√
ς

1− ε
+ εσetΦς(ρ̂t,v)2/4

)
,

and by the assumption 2, we have

e−tΦ
∗(S) ≤ e−tΦς(ρ̂t,v)2/4

(
2
√
ς

1− ε
+ 2εσ

)
Φ∗(S) ≥ Φς(ρ̂t,v)

2

4
−

log(2
√
ς

1−ε + 2εσ)

t
.

Let x = log(2
√
ς

1−ε + 2εσ). Then,

Φς(ρt,fS)2 ≤ 4Φ∗(S) + 4x/t.

Since Φ∗(S) ≤ Φ(S) ≤ φ and t = φ−1x, it follows that Φς(ρ̂t,v) ≤
√

8φ. In particular,

a sweep over ρ̂t,v finds a cut with Cheeger ratio O(
√
φ) as long as v is contained in

St.

We are now prepared to give our algorithm for finding local clusters with

heat kernel pagerank. The algorithm takes as input a starting vertex v, a desired

volume ς for the cluster, and a target Cheeger ratio φ for the cluster. Then, to

find a set achieving a minimum ς-local Cheeger ratio, we perform a sweep over an
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approximate heat kernel pagerank vector with the starting vertex as a seed.

Algorithm 2. ClusterHKPR(G, v, σ, ς, φ, ε)

input: a graph G, a vertex v, target cluster size σ, target cluster volume ς ≤
vol(G)/4, target Cheeger ratio φ, error parameter ε.
output: a set T with ς/2 ≤ vol(T ) ≤ 2ς, Φ(T ) ≤

√
8φ.

1: t← φ−1 log(2
√
ς

1−ε + 2εσ)
2: ρ̂← ApproxHKPRseed(G, t, v, ε)
3: sort the vertices of G in the support of ρ̂ according to the ranking ρ̂(v)/dv
4: for j ∈ [1, n] do
5: Sj =

⋃
i≤j vi

6: if vol(Sj) > 2ς then
7: output NO CUT FOUND, break
8: else if ς/2 ≤ vol(Sj) ≤ 2ς and Φ(Sj) ≤

√
8φ then

9: output Sj
10: else
11: output NO CUT FOUND

12: end if
13: end for

Theorem 4. Let G be a graph which contains a subset S of volume at most

vol(G)/4 and Cheeger ratio bounded by φ. Further, assume that v is contained in

the set St ⊆ S as defined in Theorem 3. Then ClusterHKPR(G, v, σ, ς, φ, ε)outputs

a cutset T with ς-local Cheeger ratio at most
√

8φ. The running time is the same

as that of ApproxHKPRseed.

Proof. Since it is given that v ∈ St for t = φ−1 log(2
√
ς

1−ε + 2εσ), and by the assump-

tions on G and S, Theorem 3 states that a sweep over the approximate heat kernel

pagerank ρ̂ will find a set with ς-local Cheeger ratio at most
√

8φ. The checks

performed in line 8 of the algorithm discover such a set.

The computational work reduces to the main procedures of computing the

heat kernel pagerank vector in line 2 and performing a sweep over the vector in

line 4. Performing a sweep involves sorting the support of the vector (line 3) and

calculating the conductance of segments. From the guarantees of an ε-approximate
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heat kernel pagerank vector, any vertex with average probability less than ε will

be excluded from the support. Then the volume of a vector ρ̂ output in line 2 is

O(ε−1), and performing a sweep over ρ̂ can be done in O(ε−1 log(ε−1)) time. The

algorithm is therefore dominated by the time to compute a heat kernel pagerank

vector, and the total running time is O
(

log(ε−1) logn
ε3 log log(ε−1)

)
.

3.4 Quantitative Analysis of the Ranking of

Vertices with Approximate Heat Kernel

Pagerank

The backbone procedure of the local clustering algorithm is the sweep:

ranking the vertices of the graph according to their approximate heat kernel

pagerank values, and then testing the quality of the cluster obtained by adding

vertices one at a time in the order of this ranking. To this end, in this section

we compare the rankings of vertices obtained using exact heat kernel pagerank

vectors with approximate heat kernel pagerank vectors. Specifically, we consider

how accuracy changes as the upper bound of random walk lengths, K, vary.

In the following experiments, we approximate heat kernel pagerank vectors

by sampling random walks of length min{k,K}, where k is chosen with probability

pk = e−t t
k

k!
. We test the values computed with different values of K. Since the

expected value of a random walk length k chosen with probability pk = e−t t
k

k!
is t,

we set K to range from 1 to approximately t for a specified value of t.

In each trial, for a given graph, seed vertex, and value of t, we compute an

exact heat kernel pagerank vector ρt,v and an approximate heat kernel pagerank

vector ρ̂t,v using ApproxHKPRseed but limiting the length of random walks to K

for various K as described above. We then measure how similar the vectors are in
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two ways. First, we compare the vector values computed. Second, we compare the

rankings obtained with each vector. The following are the measures used:

1. Comparing vector values. We measure the error of the approximate vector

ρ̂t,v by examining the values computed for each vertex and comparing to an

exact vector ρt,v. We use the following measures:

• Average L1 error: The average absolute error over all vertices of the

graph,

average L1 error :=
1

n

n∑
i=1

|ρt,s(vi)− ρ̂t,s(vi)|.

• ε-error: The accumulated error in excess of an ε-approximation (see

Definition 2),

ε-error :=
∑

vi∈V,ρ̂t,s(vi)>0

max{|ρt,s(vi)− ρ̂t,s(vi)| − ερt,s(vi), 0}

+
∑

vi∈V,ρ̂t,s(vi)=0

max{ρt,s(vi)− ε, 0}.

2. Comparing vector rankings. To measure the similarity of vertex rankings we

use the intersection difference (see [13, 34] among others). For a ranked list

of vertices A, let Ai be the set of items with the top i rankings. Then we use

the following measures:

• Intersection difference: Given two ranked lists of vertices, A and B,

each of length n, the intersection difference is

intersection difference := dist(A,B) =
1

n

n∑
i=1

|Ai ⊕Bi|
2i

,

where ⊕ denotes the symmetric difference (Ai \Bi) ∪ (Bi \ Ai).
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• Top-k intersection difference: The intersection difference among the

top k elements in each ranking,

top-k intersection difference := distk(A,B) =
1

k

k∑
i=1

|Ai ⊕Bi|
2i

.

Intersection difference values lie in the range [0, 1], where a difference of 0

is achieved for identical rankings, and 1 for totally disjoint lists. In these

experiments, A is the list of vertices ranked according to an exact heat kernel

pagerank vector ρt,v, and B is the list of vertices ranked according to an

ε-approximate heat kernel pagerank vector ρ̂t,v.

In every trial we choose t = φ−1 log(2
√
ς

1−ε + 2εσ) as specified in the local

clustering algorithm stated in Section 3.3. This value depends on several parameters,

including desired Cheeger ratio, cluster size, and cluster volume. Specifics are

provided for each set of trials.

3.4.1 Experiments Illustrating Ranking Accuracy Using
Synthetic Graphs

Random graph models

In this series of trials we use three different models of random graph genera-

tion provided in the NetworkX [42] Python package, which we describe presently.

The first is the Watts-Strogatz small world model [95], generated with

NetworkX. In this model, a ring of n vertices is created and then each vertex is

connected to its d nearest neighbors. Then, with probability p, each edge (vi, vj)

in the original construction is replaced by the edge (vj, vk) for a random existing

vertex vk. The model takes parameters n, d, p as input.

The second is the preferential attachment (Barabási-Albert) model [12].
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Table 3.2. Random graph models used.

Model Source Parameters

small world Watts-Stragatz[95] n, number of vertices,
d, vertex degree,
p, probability of switching an edge.

preferential Barabási-Albert[12] n, number of vertices,
attachment d, vertex degree
powerlaw Holme and Kim [43] n, number of vertices,
cluster d, vertex degree,

p, probability of forming a triangle

Graphs in this model are created by adding n vertices one at a time, where each

new vertex is adjoined to d edges where each edge is chosen with probability

proportional to the degree of the neighboring vertex. This is also generated with

NetworkX. The model takes parameters n, d as input.

The third NetworkX generator uses the Holme and Kim algorithm for

generating graphs with powerlaw degree distribution and approximate average

clustering [43]. It is essentially the Barabási-Albert model, but each random

edge forms a triangle with another neighbor with probability p. The model takes

parameters n, d, p as input.

Table 3.2 lists the random graph models used and their parameters.

Procedure

For every value of K that we test, we generate ten random graphs of each of

the three random graph models. For each graph we choose a random seed vertex v

with probability proportional to degree, and we choose t as t = φ−1 log(2
√
ς

1−ε + 2εσ)

according to the values in Table 3.3. Then for each graph we compare an exact

heat kernel pagerank vector ρt,v and the average of two ε-approximate heat kernel

pagerank vectors ρ̂t,v. The results we present are the average over all trials for each

K and each type of graph. We use d = 5 and p = 0.1 in every trial, and n = 100 for
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Table 3.3. Parameters used for random graph generation and to compute t for
vector computations.

Model |V | d p ε Target φ Target σ Target ς t

small world 100 5 0.1 0.1 0.05 100 500 84.9
500 5 0.1 0.1 0.05 100 500 84.9

preferential 100 5 - 0.1 0.05 100 500 84.9
attachment 500 5 - 0.1 0.05 100 500 84.9
powerlaw 100 5 0.1 0.1 0.05 100 500 84.9
cluster 500 5 0.1 0.1 0.05 100 500 84.9

the first set of trials (Figure 3.1) and n = 500 for the second (Figure 3.2). These

parameters are outlined in Table 3.3.

Discussion

For each graph and value of K, we measure the ε-error, the average L1 error,

the intersection difference and the top-10 intersection difference of an approximate

heat kernel pagerank vector as compared to an exact heat kernel pagerank vector.

Figure 3.1 plots the above measures for graphs over n = 100 vertices, while Figure 3.2

plots these measures for graphs over n = 500 vertices. In both Figures 3.1 and 3.2,

each subplot charts a different notion of error (from top left, clockwise: ε-error,

average L1 error, intersection difference and top-10 intersection difference) on the

y-axis against K on the x-axis.

In both sets of plots and for every measure of error, we see that in the

preferential attachment and powerlaw graphs the error is minimized after limiting

random walks to only length K = 10, regardless of the size. We observe a shallower

decline in ε-error, average L1 error, and intsersection differance for the small world

graphs. In particular, we note that the intersection difference drops significantly

after 10 random walk steps for all random graphs on both 100 and 500 vertices.

For ε = 0.1, K = 4 · log(ε−1)
log log(ε−1)

≈ 11.04 is enough to approximate the rankings for
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Trials on 100-vertex random graphs.

Figure 3.1. Different measures of error for random graphs on 100 vertices when
approximating heat kernel pagerank with varying random walk lengths.
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Trials on 500-vertex random graphs.

Figure 3.2. Different measures of error for random graphs on 500 when approxi-
mating heat kernel pagerank with varying random walk lengths.
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the purpose of local clustering.

3.4.2 Experiments Illustrating Ranking Accuracy Using
Real Graphs

Network data

For the experiments in this section, and later in Section 3.5, we use the

following graphs compiled from real data. The network data is summarized in

Table 3.4.

1. (dolphins) A dolphin social network consisting of two families [64]. The

seed vertex is chosen to be a prominent member of one of the families.

2. (polbooks) A network of books about US politics published around the time

of the 2004 Presidential election and sold on Amazon [53]. Edges represent

frequent copurchases.

3. (power) The topology of the US Western States Power Grid [95].

4. (facebook) A combined collection of Facebook ego-networks, including the

ego vertices themselves [57].

5. (enron) An Enron email communication network [48], in which vertices

represent email addresses and an edge (vi, vj) exists if an address vi sent at

least one email to address vj.

The network data for graphs 1, 2, and 3 were taken from Mark Newman’s

network data collection [69]. The network data for graphs 4 and 5 are from the

SNAP Large Network Dataset Collection [55].
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Table 3.4. Graphs compiled from real data.

Network Source |V | |E| Avg. degree

dolphins Dolphins social network [64] 62 159 5
polbooks Political books copurchase

network [53]
105 441 8.8

power Power grid topology [95] 4941 6594 2.7
facebook Facebook ego-networks [57] 4039 88234 43.7
enron Enron communication net-

work [48]
36692 183831 10

Table 3.5. Parameters used to compute t for vector computations.

ε Target φ Target σ Target ς t
0.1 0.05 100 1000 95.6

Procedure

In this series of experiments, the seed vertex v was chosen to be a known

member of a cluster with good Cheeger ratio. As before, t was chosen according

to t = φ−1 log(2
√
ς

1−ε + 2εσ) with the values in Table 3.5. For each graph and for

each value of K we compare an exact heat kernel pagerank vector ρt,v with an

ε-approximate heat kernel pagerank vector ρ̂t,v. Specifically, we consider the average

L1 distance and the intersection difference. We again choose K to range from 1 to

t.

Discussion

Figure 3.3 plots the average L1 error on the y-axis against different values of

K on the x-axis for each of the dolphins, polbooks, and power graphs. Figure 3.4

plots the intersection difference on the y-axis against K on the x-axis.

First we discuss the average L1 error. The dolphins and the polbooks graphs

exihibit properties of both the small world graphs and the preferential attachment

graphs of the previous section (Figures 3.1 and 3.2). Like the preferential attachment
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Figure 3.3. Average error in each component for ε-approximate heat kernel
pagerank vectors when allowing varying random walk lengths.

Figure 3.4. Intersersection difference of the ranked lists of vertices computed
by exact and ε-approximate heat kernel pagerank vectors when allowing varying
random walk lengths.
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models, there is a significant drop in average L1 error after K = 5, and like the

small world model the error continues to drop for larger values of K, approaching a

minimum error of ≈ 0.003. The average L1 error in the power graph, on the other

hand, is small for all values of K. We remark that, representing a power grid, the

graph has very small average vertex degree, so few random walk steps are enough

to approximate the stationary distribution.

As for the intersection difference, we observe a smaller variance in values for

the three graphs. Regardless of the size or structure of the graph, the intersection

difference drops sharply from K = 1 to K = 5. For values larger than K = 10 <

4 · log(ε−1)
log log(ε−1)

, where ε = 0.1, the intersection difference decreases only marginally.

The purpose of these experiments was to evaluate how error and differences

of ranking change in heat kernel pagerank approximation when varying K, the

upper bound on number of steps taken in random walks. We found that setting

an upper bound for random walk lengths to K = 10 < 4 · log(ε−1)
log log(ε−1)

with ε = 0.1

according to Theorem 1 yields approximations which satisfy the prescribed error

bounds. This value is independent of the size of the graph and t, and depends

only on ε. Namely, we observed that choosing K this way results in a significant

decrease in both average L1 error and intersection difference as compared to smaller

values of K, and only slight decrease in average L1 error and intersection difference

for larger values of K as demonstrated in Figures 3.1, 3.2, 3.3, and 3.4. Further, we

tested graphs of various size, random graphs generated from various models, and

graphs from real data representing social networks, copurchasing networks, and

topological grids. We found this choice of K was optimal for every graph regardless

of size or structure. That is, the cutoff for random walk lengths does not depend

on the size of the graph.

It is also worth mentioning that the most striking outlier among the subject
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graphs is the small world graph, or expander graphs. This is due to the fact that

the graph consists of a single cluster, which makes local cluster detection ineffective.

3.5 Performance Analysis of Local Clustering

Algorithms

The goal of this section is to analyze the quality of local clusters computed

with a sweep over an approximate heat kernel pagerank vector. We consider two

objectives for analysis.

The first objective is to validate the statement of Theorem 4. To do this,

we show that the Cheeger ratios of local clusters computed with sweeps over

approximate heat kernel pagerank vectors are within the approximation guarantees

of Theorem 4. We use a slightly modified version of ClusterHKPR to compute these

clusters. We call this modified algorithm εHKPR, and it is described in the list

below.

The second objective is to compare clusters computed with sweeps over

different vectors. Namely, for a given graph and seed vertex, we compare the local

clusters computed using the following sweep algorithms:

1. (εHKPR) A sweep over an ε-approximate heat kernel pagerank vector is

performed. The segment S with volume vol(S) ≤ vol(G)/2 of minimal

Cheeger ratio is output. This is the ClusterHKPR algorithm with the following

modification: we allow segments of volume up to vol(G)/2 rather than limiting

the search to segments of volume < 2ς, twice the target volume.

2. (HKPR) A sweep over an exact heat kernel pagerank vector is performed.

The segment S with volume vol(S) ≤ vol(G)/2 of minimal Cheeger ratio is

output. This algorithm was outlined, but not stated explicitely, in [23].
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Table 3.6. Algorithms used for comparing local clusters.

Algorithm Sweep vector Algorithm parameters Sweep parameters

εHKPR ρ̂t,u φ, target Cheeger ratio t = φ−1 log(2
√
ς

1−ε + 2εσ)

s, target cluster size u, seed vertex
ς, target cluster volume ε, error parameter

HKPR ρt,u φ, target Cheeger ratio t = 2φ−1 log s
s, target cluster size u, seed vertex

PR prα,u φ, target Cheeger ratio α = φ2/255 ln(100
√
m)

u, seed vertex

3. (PR) A sweep over a Personalized PageRank vector (2.5) is performed.

The segment S with volume vol(S) ≤ vol(G)/2 of minimal Cheeger ratio is

output. This is an adaptation of the algorithm PageRank-Nibble[6] with

the following modifications: (i) rather than performing a sweep over an

approximate PageRank vector, perform a sweep over an exact PageRank

vector, and (ii) allow segments only as large as vol(G)/2.

We summarize the algorithms and parameters below in Table 3.6.

Each trial will resemble Procedure 3, as stated below.

Procedure 3. Compare Clusters

Let G be a graph and u a seed vertex

Choose parameters φ, s, ς, ε

Let SA be a local cluster computed using the algorithm εHKPR

Let SB be a local cluster computed using the algorithm HKPR

Let SC be a local cluster computed using the algorithm PR

Compare SA, SB, SC .

The following sections describe the experiments in more detail.
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Table 3.7. Algorithm parameters used to compare local clusters.

Model |V | d p ε Target φ Target σ Target ς

small world 100 5 0.1 0.1 0.1 20 100
500 5 0.1 0.1 0.1 100 500
800 5 0.1 0.1 0.1 100 500
1000 5 0.1 0.1 0.1 100 500

preferential 100 5 - 0.1 0.1 20 100
attachment 500 5 - 0.1 0.1 100 500

800 5 - 0.1 0.1 100 500
powerlaw 100 5 0.1 0.1 0.1 20 100
cluster 500 5 0.1 0.1 0.1 100 500

800 5 0.1 0.1 0.1 100 500

3.5.1 Experiments Illustrating Cheeger Ratio Quality
Using Synthetic Graphs

In this section, we use graphs generated with three random graph models:

Watts-Strogatz small world, Barabási-Albert preferential attachment, and Holme

and Kim’s powerlaw cluster as described in Section 3.4.1.

Procedure

We perform twenty-five trials of Procedure 3 and take the averages of Cheeger

ratios and cluster volumes computed. Specifically, we fix a model and algorithm

parameters. Then, generate a random graph according to the model and parameters.

For each random graph, pick a random seed vertex with probability proportional

to degree. Then, for each seed vertex compute local clusters SA, SB, SC using

the algorithms εHKPR, HKPR, and PR, respectively. We then use the average

Cheeger ratio and cluster volume of the SA, SB, SC for comparison. In Table 3.7

we summarize the parameters used for each random graph model.
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Table 3.8. Cheeger ratios of cluster output by εHKPR.

Synthetic graphs
Model |V | φ, Target Cheeger ratio output by

√
8φ

Cheeger ratio εHKPR

small world 100 0.1 0.173557 0.894427
500 0.1 0.47316 0.894427
800 0.1 0.510597 0.894427
1000 0.1 0.519399 0.894427

preferential 100 0.1 0.523929 0.894427
attachment 500 0.1 0.503542 0.894427

800 0.1 0.491046 0.894427
powerlaw 100 0.1 0.517521 0.894427
cluster 500 0.1 0.500312 0.894427

800 0.1 0.494145 0.894427

Discussion

We address the first analytic objective listed in the introduction of this

section by discussing the clusters output by εHKPR. Namely, we compare the

clusters computed with εHKPR to the guarantees of Theorem 4. The results for

each graph are given in Table 3.8. The first three columns indicate the random graph

model and algorithm parameters used for each instance. The last two columns

demonstrate how the (average) Cheeger ratio of clusters computed by εHKPR

compare to the approximation guarantee of Theorem 4. Namely, Theorem 4 states

that the cluster output will have Cheeger ratio ≤
√

8φ with high probability. In

every case the Cheeger ratio is well within the approximation bounds.

The second objective is to compare clusters computed with the three different

local clustering algorithms εHKPR, HKPR, and PR. Table 3.9 is a collection of

cluster statistics for the trials. For each graph instance we list the average Cheeger

ratio and cluster volume of local clusters computed using the PR, HKPR, and

εHKPR algorithms, respectively.

We remark that for each graph there is little variation in Cheeger ratio and
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Table 3.9. Cheeger ratios of clusters output by different local clustering algorithms
on synthetic data.

Synthetic graphs
Model |V | PR HKPR εHKPR

small world 100 0.235159 0.087723 0.173557
(ς = 52.52) (ς = 171.28) (ς = 142)

500 0.244261 0.062263 0.47316
(ς = 190.16) (ς = 943.68) (ς = 206.64)

800 0.246564 0.064599 0.510597
(ς = 162.68) (ς = 1413.6) (ς = 209.6)

1000 0.245612 0.064716 0.519399
(ς = 584.56) (ς = 1907.4) (ς = 225.2)

preferential 100 0.430071 0.512819 0.523929
attachment (ς = 471.2) (ς = 467.16) (ς = 468.16)

500 0.508305 0.51018 0.503542
(ς = 2461.96) (ς = 2459.4) (ς = 2463.28)

800 0.491046 0.496369 0.491046
(ς = 3964.17) (ς = 3971.17) (ς = 3951.83)

powerlaw 100 0.426828 0.505277 0.517521
cluster (ς = 463.4) (ς = 465.44) (ς = 464.88)

500 0.487341 0.507328 0.500312
(ς = 2447.12) (ς = 2460.44) (ς = 2446.28)

800 0.522281 0.513365 0.494145
(ς = 3947) (ς = 3966) (ς = 3947)
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Table 3.10. Graph and algorithm parameters used to compare local clusters.

Network |V | |E| Avg.
degree

ε Target φ Target σ Target ς

dolphins 62 159 5 0.1 0.08 20 100
polbooks 105 441 8.8 0.1 0.05 30 270
power 4941 6594 2.7 0.1 0.05 200 600
facebook 4039 88234 43.7 0.1 0.05 200 2800
enron 36692 183831 10 0.1 0.05 100 1000

volume of clusters computed by the three different algorithms. We also note that

there is no obvious trend as graphs get larger. The small world graphs demonstrate

the greatest variation in cluster quality. However, as mentioned in Section 3.4,

expander graphs, such as small world graphs, consist of one large cluster.

3.5.2 Experiments Illustrating Cheeger Ratio Quality
Using Real Graphs

For these trials we use graphs generated from real data summarized in

Section 3.4.2.

Procedure

We compare clusters computed by each of the three algorithms as outlined

in Procedure 3. In these trials we fix the seed vertex to be a member of a cluster

with good Cheeger ratio. Using this seed vertex, we compare the clusters computed

using the εHKPR, HKPR, PR algorithms.

For each trial we use the parameters listed in Table 3.10. We note that in

each case the target cluster volume is computed to be roughly the target cluster

size times the average vertex degree, and here we use ε = 0.1.
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Table 3.11. Cheeger ratios of cluster output ClusterHKPR.

Real graphs
Network φ, Target Cheeger ratio output by

√
8φ

Cheeger ratio εHKPR

dolphins 0.08 0.083333 0.8
polbooks 0.05 0.052133 0.632456
power 0.05 0.346667 0.632456
facebook 0.05 0.056939 0.632456
enron 0.05 0.036602 0.632456

Discussion

Table 3.11 lists ratios output by εHKPR compared with the approximation

guarantees of Theorem 4. In each case, the Cheeger ratios are well within the

approximation bounds of Theorem 4.

The complete numerical data obtained from the set of the trials are given

in Table 3.12. For each graph we list the Cheeger ratio, cluster volume, and

additionally the cluster size of local clusters computed using each of the algorithms

PR, HKPR, and εHKPR, respectively.

For each graph, the local cluster computed using εHKPR has smaller Cheeger

ratio than the local cluster computed using PR. For the power graph, we observe

that the cluster of minimal Cheeger ratio was computed using the HKPR algorithm,

but it is nearly a third the size of the entire network. The algorithms εHKPR and

PR, on the other hand, each return smaller clusters. We remark that for real graphs,

the clusters computed using sweeps over different vectors have more variation than

for random graphs.

To conclude, we include visualizations of clusters computed in the facebook

ego-network to illustrate the differences in local cluster detection. Figure 3.5 colors

the vertices in a local cluster computed using the εHKPR algorithm, as described

in Table 3.12. Figure 3.6 colors the vertices in a local cluster compted using the
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Table 3.12. Cheeger ratios of cluster output by different local clustering algorithms.

Real graphs
Network PR HKPR εHKPR

dolphins 0.226415 0.163636 0.083333
(ς = 106) (ς = 110) (ς = 96)
(σ = 23) (σ = 24) (σ = 20)

polbooks 0.079518 0.245657 0.052133
(ς = 415) (ς = 403) (ς = 422)
(σ = 48) (σ = 49) (σ = 50)

power 0.375 0.002764 0.346668
(ς = 16) (ς = 4342) (ς = 300)
(σ = 6) (σ = 1564) (σ = 85)

facebook 0.418993 0.001277 0.056939
(ς = 88140) (ς = 67326) (ς = 35266)
(σ = 3063) (σ = 1094) (σ = 258)

enron 0.48797 - 0.036602
(ς = 183612) - (ς = 3579)

PR algorithm.

The numerical data of the last two sections validate the effectiveness and

efficiency of local cluster detection using sweeps over ε-approximate heat kernel

pagerank. The experiments of Section 3.4 demonstrate that sampling a number of

random walks of at most K steps yield a ranking of vertices within the error bounds

of Theorem 1. This ranking in turn is used to compute a local cluster. What is

more, this value K does not depend on parameters other than ε. Specifically, it does

not depend on the size of the graph or the desired cluster volume, size, or Cheeger

ratio. Finally, the data of Section 3.5 validate the statements of Theorem 4. That

is, perfoming a sweep over an approximate heat kernel pagerank vector detects

clusters of Cheeger ratio at most
√

8φ for a desired Cheeger ratio φ. The total cost

of computing this cluster is O
(

log(ε−1) logn
ε3 log log(ε−1)

)
, sublinear in the size of the graph.
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Figure 3.5. Local cluster (colored red) in facebook ego network computed using
the εHKPR algorithm.
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Figure 3.6. Local cluster (colored red) in facebook ego network computed using
the PR algorithm.
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Chapter 4

Solving Local Linear Systems on
Graphs

There are a number of linear systems which model flow over vertices of

a graph with a given boundary condition. A classical example is the case of an

electrical network. Flow can be captured by measuring electric current between

points in the network, and the amount that is injected and removed from the

system. Here, the points at which voltage potential is measured can be represented

by vertices in a graph, and edges are associated to the ease with which current

passes between two points. The injection and extraction points can be viewed as

the boundary of the system, and the relationship of the flow and voltage can be

evaluated by solving a system of linear equations over the measurement points.

Another example is a decision-making process among a network of agents.

Each agent decides on a value, but may be influenced by the decision of other agents

in the network. Over time, the goal is to reach consensus among all the agents, in

which each agrees on a common value. Agents are represented by vertices, and

each vertex has an associated value. The amount of influence an agent has on a

fellow agent is modeled by a weighted edge between the two representative vertices,

and the communication dynamics can be modeled by a linear system. In this case,

55
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some special agents which make their own decisions can be viewed as the boundary.

In both these cases, the linear systems are equations formulated in the graph

Laplacian. Laplacian systems have been used to concisely characterize qualities

such as edge resistance and the influence of communication on edges [86]. There is

a substantial body of work on efficient and nearly-linear time solvers for Laplacian

linear systems ([14, 26, 37, 46, 50, 51, 52, 54, 81, 84, 88, 93], see also [94]).

The focus of this chapter is a localized version of a Laplacian linear solver.

The setup is a graph and a boundary condition given by a vector with specified

limited support over the vertices. In the local setting, rather than computing the

full solution we compute the solution over a fraction of the graph and de facto

ignore the vertices with solution values below the multiplicative/additive error

bound. In essence we avoid computing the entire solution by focusing computation

on the subset itself. In this way, computation depends on the size of the subset,

rather than the size of the full graph. We distinguish the two cases as “global”

and “local” linear solvers, respectively. We remark that in the case the solution is

not “local,” for example, if all values are below the error bound, our algorithm will

return the zero vector – a valid ε-approximate solution.

We show how local Laplacian linear systems with a boundary condition

can be solved and efficiently approximated by using a localized version of the heat

kernel pagerank called the Dirichlet heat kernel pagerank , a diffusion process over

an induced subgraph. We will illustrate the connection between the Dirichlet heat

kernel pagerank and the Green’s function, or the inverse of a submatrix of the

Laplacian determined by the subset. Note that in our computation, we do not

intend to compute or approximate the matrix form of the inverse of the Laplacian.

We intend to compute an approximate local solution which is optimal subject to a

particular definition of approximation.
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4.1 Previous Work on Solving Laplacian Linear

Systems

An early result in scientific computing is the approximation algorithm of

the preconditioned Chebyshev method. In [39], Golub and Overton show that for

a positive, semi-definite matrix M and a preconditioner B, the preconditioned

Chebyshev method finds ε-accurate solutions to the system Mx = b in time

O(m
√
κf (M,B)S(B) log(κf (M)/ε)). Here, S(B) is the time it takes to solve linear

systems in B and

κf (M,B) =

(
max
x:Mx 6=0

xTMx

xTBx

)(
max
x:Mx6=0

xTBx

xTMx

)
.

This can be pretty good with a clever choice of preconditioner matrix B.

A large work on finding fast linear solvers for systems of equations in the

graph Laplacian was presented by Spielman and Teng in 2004 [88]. Spielman and

Teng improve the preconditioned (or inexact) Chebyshev method by exploiting

the insight of Vaidya that matrices of subgraphs serve as good preconditioners.

In the manuscript [93], Vaidya proves that a maximum spanning tree of a matrix

M nm-approximates M and that by adding t2 edges, one can obtain a sparse

graph that O(nm/t2)-approximates M . The result of this is an algorithm for

solving symmetric, diagonally dominant (SDD) linear systems with non-positive

off-diagonal entries of degree d in time O((dn)1.75 log(κf(M)/ε)), where κf(M) is

the ratio of largest to smallest eigenvalue of M . This is a huge improvement from

the previous worst-case O(nm)-time bound for the Chebyshev iterative method.

With these tools, Spielman and Teng’s major result is an m logO(1) n-time

linear solver for SDD matrices where n is the dimension of the matrix and m the

number of non-zero entries.
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Prior to the contributions of Spielman and Teng, Joshi [44] showed how to

recursively apply the results of Vaidya to achieve a O(n log(n/ε)) linear solver. This

was improved for planar linear systems by Reif [83] to O(n1+β logO(1)(κf(M)/ε))

for any β > 0. The above techniques use spanning trees as the preconditioner.

Spielman and Teng later improve upon the results of Boman and Hendrick-

son [15, 16], which apply spanning trees to construct ultra-sparsifiers in time

m1.31+o(1) log(κf (M)/ε) [87].

Koutis et al. [51] give a nearly optimal linear solver for SDD linear systems;

an improvement on the Spielman-Teng linear solver. Their algorithm uses an incre-

mental graph sparsification algorithm as a main tool and outputs an approximate

vector x̂ satisfying ||x̂−M+b||M < ε||M+b||M in time O(m log2 n log(1/ε)). Here

M+ denotes the pseudoinverse of M . In [52], the authors improve this bound

to Õ(m log n log(1/ε))2. The faster run time results from an improvement in the

incremental sparsifier. As mentioned above, the fastest existing iterative method

is O(m log3/2 n
√

log log n log(log n/ε))-time in the unit-RAM model, due to Lee

and Sidford [54]. Their improvement is due to an accelerated randomized coordi-

nate descent method which limits the cost per iteration and also achieves faster

convergence.

An early result is the Monte Carlo method for solving linear systems [37],

in which the inverse of a matrix is computed by translating the system into a

random walk model. Our methods use a similar stochastic process and random

sampling procedure. In [84], Sachdeva and Vishnoi show that the inverse of a

positive semi-definite matrix can be approximated by taking a weighted sum of

matrix exponentials. This method is also closely related to ours. However, rather

than taking matrix exponentials explicitly, we are adding small contributions of the

matrix exponential multiplied with a specified vector. In this way we avoid explicit
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computation of the matrix inverse and spare a final matrix vector multiplication in

computing the solution.

4.2 Local Laplacian Linear Systems with a

Boundary Condition

The examples of computing current flow in an electrical network and consen-

sus in a network of agents typically require solving linear systems with a boundary

condition formulated in the Laplacian L. The problem in the global setting is the

solution to Ly = c, while the solution y is required to satisfy the boundary condition

c in the sense that y(v) = c(v) for every vertex v in the support of c. Because our

analysis uses random walks, we use the normalized Laplacian L. We note that

the solution x for Laplacian linear equations of the form Lx = b is equivalent to

solving Ly = c if we take y = D−1/2x and c = D1/2b. Specifically, our local solver

computes the solution x restricted to S, denoted xS, and we do this by way of the

discrete Green’s function.

Example. To illustrate the local setting, we expand upon the problem of a network

of decision-making agents. Consider a communication network of agents in which a

certain subset of agents f ⊂ V are followers and an adjacent subset l ⊂ V \ f are

leaders (see Figure 4.1). Imagine that the decision values of each agent depend on

neighbors as usual, but also that the values of the leaders are fixed and will not

change. Specifically, let x be a vector of decision values of the agents and suppose

every follower vf continuously adjusts their decision according to the protocol:

x(vf ) = x(vf )−
1√
dvf

∑
vi∈N (vf )

x(vi)√
di
,

while every leader vl remains fixed at b(vl). Then the vector of decision values x
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Figure 4.1. A communication network of agents where leaders (in purple) have
fixed decisions and followers (in red) compute their decisions. The local solution
would be the decisions of the followers.

is the solution to the system Lx = b, where x is required to satisfy the boundary

condition.

In our example, we are interested in computing the decision values of the

followers of the network where the values of the leaders are a fixed boundary

condition, but continue to influence the decisions of the subnetwork of followers.

For a general connected, simple graph G and a subset of vertices S, consider

the linear system Lx = b, where the vector b has non-empty support on the vertex

boundary of S. The global problem is finding a solution x that agrees with b, in

the sense that x(v) = b(v) for every vertex v in the support of b. In this case we

say that x satisfies the boundary condition b.

Specifically, for a vector b ∈ Rn, let S denote a subset of vertices in the

complement of supp(b). Then b can be viewed as a function defined on the vertex

boundary δ(S) of S and we say b is a boundary condition of S. Here we will consider

the case that the induced subgraph on S, denoted GS, is connected.

Definition 3. Let G be a graph and let b be a vector b ∈ Rn over the vertices of G
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with non-empty support. Then we say a subset of vertices S ⊂ V is a b-boundable

subset if

(i) S ⊆ V \ supp(b),

(ii) δ(S) ∩ supp(b) 6= ∅,

(iii) the induced subgraph on S is connected and δ(S) 6= ∅.

We remark that in this setup, we do not place any condition on b beyond

having non-empty support. The entries in b may be positive or negative.

We note that condition (iii) is required in our analysis later, although the

general problem of finding a local solution over S can be dealt with by solving the

problem on each connected component of the induced subgraph on S individually. It

is worth pointing out a number of additional ways our methods can be generalized.

First, we focus on unweighted graphs, though extending our results to graphs

with edge weights follows easily with a weighted version of the Laplacian. Second,

we require the induced subgraph on the subset S be connected. However, if

the induced subgraph is not connected the results can be applied to components

separately, so our requirement on connectivity can be relaxed. Finally, we restrict

our discussion to linear systems in the graph Laplacian. However, by using a linear-

time transformation due to [40] for converting a symmetric, diagonally dominant

linear system to a Laplacian linear system, our results apply to a larger class of

linear systems.

The global solution to the system Lx = b satisfying the boundary condition
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b is a vector x ∈ Rn with

x(vi) =


∑

vj∈N (vi)

x(vj)√
didj

if vi ∈ S

b(vi) if vi 6∈ S
(4.1)

for a b-boundable subset S. The problem of interest is computing the local solution

for the restriction of x to the subset S, denoted xS.

Recall that the eigenvalues λS := λS,1 ≤ λS,2 ≤ · · · ≤ λS,σ of LS are

the Dirichlet eigenvalues of S where σ = |S|. It is easy to check (see [21]) that

0 < λi ≤ 2 since we assume δ(S) 6= ∅. Thus L−1
S exists and is well defined. Also,

assuming the induced subgraph is connected it is also a known fact ([21]) that

λS ≥
1

diameter(GS)vol(S)
≥ σ−3. (4.2)

However, rarely will graphs come close to achieving this extreme. For example,

consider the connected subgraph on S. In this case, the volume will be great,

σ(σ − 1), but the diameter is constant 1. As another extreme, consider the line

graph. Here, the diameter is maximized, but the volume is 2σ− 2. In both extreme

cases we have that λS ≥ O(σ−2), and we believe that in most graphs this will be

much larger. However, for the remainder of the analysis we use the bounds of (4.2).

Let AS,δS be the σ × |δ(S)| matrix by restricting the columns of A to δ(S)

and rows to S. Requiring S to be a b-boundable subset ensures that the inverse L−1
S

exists [21]. Then the local solution is described exactly in the following theorem.

Theorem 5. In a graph G, suppose b is a nontrivial vector in Rn and S is a

b-boundable subset. Then the local solution to the linear system Lx = b satisfying
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the boundary condition b satisfies

xS = L−1
S (D

−1/2
S AS,δSD

−1/2
δS bδS). (4.3)

Proof. The vector b1 := D
−1/2
S AδSD

−1/2
δS bδS is defined over the vertices of S by

b1(vi) =
∑

vj∈N (vi)∩δ(S)

b(vj)√
didj

. (4.4)

Also, the vector LSxS is given by, for vi ∈ S,

LSxS(vi) = x(vi)−
∑

vj∈N (vi)∩S

x(vj)√
didj

. (4.5)

By (4.1) and (4.3), we have

xS(vi) =
∑

vj∈N (vi)∩S

x(vj)√
didj

+
∑

vj∈N (vi)∩δ(S)

b(vj)√
didj

,

and combining (4.4) and (4.5), we have that xS = L−1
S b1.

4.3 Solving Local Systems with Green’s Func-

tion

For the remainder of this chapter we are concerned with the local solution

xS. We focus our discussion on the restricted space using the assumptions that the

induced subgraph on S is connected and that δ(S) 6= ∅. In particular, we consider

the Dirichlet heat kernel , which is the heat kernel pagerank restricted to S.

The Dirichlet heat kernel is written by HS,t and is defined as HS,t = e−tLS .

It is the symmetric version of HS,t, where HS,t = e−t(IS−PS) = D
−1/2
S HS,tD

1/2
S .
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Recall from (1.1) that the spectral decomposition of LS is

LS =
σ∑
i=1

λiPi,

where Pi are the projections to the ith orthonormal eigenvectors. The Dirichlet

heat kernel can be expressed as

HS,t =
σ∑
i=1

e−tλiPi.

Let G denote the inverse of LS. Namely, GLS = LSG = IS. Then

G =
σ∑
i=1

1

λi
Pi.

Then we see that

1

2
≤ ||G|| ≤ 1

λS
,

where || · || denotes the spectral norm. We call G the Green’s function, and G can

be related to HS,t as in the following lemma.

Lemma 5. Let G be the Green’s function of a connected induced subgraph on S ⊂ V

with σ = |S|. Let HS,t be the Dirichlet heat kernel with respect to S. Then

G =

∫ ∞
0

HS,t dt.
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Proof. By our definition of the heat kernel,

∫ ∞
0

HS,t dt =

∫ ∞
0

( σ∑
i=1

e−tλiPi
)

dt

=
σ∑
i=1

(∫ ∞
0

e−tλi dt
)
Pi

=
σ∑
i=1

1

λi
Pi

= G.

Equipped with the Green’s function, the solution (4.3) can be expressed

in terms of the Dirichlet heat kernel. As a corollary to Theorem 5 we have the

following.

Corollary 2. In a graph G, suppose b is a nontrivial vector in Rn and S is a

b-boundable subset. Then the local solution to the linear system Lx = b satisfying

the boundary condition b can be written as

xS =

∫ ∞
0

HS,tb1 dt, (4.6)

where b1 = D
−1/2
S AS,δSD

−1/2
δS bδS.

The computation of b1 takes time proportional to the size of the edge

boundary.
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4.4 A Local Linear Solver Algorithm with

Dirichlet Heat Kernel Pagerank

In the previous section, we saw how the local solution xS to the system

satisfying the boundary condition b can be expressed in terms of integrals of

Dirichlet heat kernel in (4.6). In this section, we will show how these integrals can

be well-approximated by sampling a finite number of values of Dirichlet heat kernel

(Theorem 6) and Dirichlet heat kernel pagerank (Corollary 3). All norms || · || in

this section are the spectral (L2) norm.

Theorem 6. Let G be a graph and L denote the normalized Laplacian of G.

Let b be a nontrivial vector b ∈ Rn and S a b-boundable subset, and let b1 =

D
−1/2
S AS,δSD

−1/2
δS bδS. Then the local solution xS to the linear system Lx = b

satisfying the boundary condition b can be computed by sampling HS,tb1 for r =

γ−2 log(σγ−1) values. If x̂S is the output of this process, the result has error bounded

by

||xS − x̂S|| = O
(
γ(||b1||+ ||xS||)

)
with probability at least 1− γ.

We prove Theorem 6 in two steps. First, we show how the integral (4.6)

can be expressed as a finite Riemann sum without incurring much loss of accuracy

in Lemma 6. Second, we show in Lemma 7 how this finite sum can be well-

approximated by its expected value using a concentration inequality.

Lemma 6. Let xS be the local solution to the linear system Lx = b satisfying the

boundary condition b given in (4.6). Then, for T = σ3 log(σ3γ−1) and R = T/γ,
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the error incurred by taking a right Riemann sum is

||xS −
R∑
j=1

HS,jT/R
T

R
b1|| ≤ γ(||b1||+ ||xS||),

where b1 = D
−1/2
S AS,δSD

−1/2
δS bδS.

Proof. First, we see that:

||HS,t|| = ||
∑
i

e−tλiPi||

≤ e−tλS ||
∑
i

Pi||

= e−tλS (4.7)

where λi are Dirichlet eigenvalues for the induced subgraph S. So the error incurred

by taking a definite integral up to t = T to approximate the inverse is the difference

||xS −
∫ T

0

HS,tb1 dt|| = ||
∫ ∞
T

HS,tb1 dt||

≤
∫ ∞
T

e−tλS ||b1|| dt

≤ 1

λS
e−TλS ||b1||.

Then by the assumption on T the error is bounded by ||xS−
∫ T

0
HS,tb1 dt|| ≤ γ||b1||.

Next, we approximate the definite integral in [0, T ] by discretizing it. That

is, for a given γ, we choose R = T/γ and divide the interval [0, T ] into R intervals
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of size T/R. Then a finite Riemann sum is close to the definite integral:

||
∫ T

0

HS,tb1 dt−
R∑
j=1

HS,jT/Rb1
T

R
|| ≤ γ||

∫ T

0

HS,tb1 dt||

≤ γ||xS||.

This gives a total error bounded by γ(||b1||+ ||xS||).

Lemma 7. The sum
R∑
j=1

HS,jT/Rb1
T
R

can be approximated by sampling γ−2 log(σγ−1)

values of HS,jT/Rb1 where j is drawn from [1, R]. With probability at least 1 − γ,

the result has multiplicative error at most γ.

A main tool in our proof of Lemma 7 is the following matrix concentration

inequality (see [24], also variations in [2, 28, 41, 76, 92]).

Theorem 7 ([24]). Let X1, X2, . . . , Xm be independent random n× n Hermitian

matrices. Moreover, assume that ‖Xi − E(Xi)‖ ≤ M for all i, and put v2 =

‖
∑

i var(Xi)‖. Let X =
∑

iXi. Then for any a > 0,

Pr(‖X − E(X)‖ > a) ≤ 2n exp

(
− a2

2v2 + 2Ma/3

)
,

where || · || denotes the spectral norm.

Proof of Lemma 7. Suppose without loss of generality that ||b1|| = 1. Let Y be

a random variable that takes on the vector HS,jT/Rb1 for every j ∈ [1, R] with

probability 1/R. Then E(Y ) = 1
R

R∑
j=1

HS,jT/Rb1. Let X =
r∑
i=1

Xj where each Xj is a

copy of Y , so that E(X) = rE(Y ).

Now consider Y to be the random variable that takes on the projection

matrix HS,jT/Rb1(HS,jT/Rb1)
T for every j ∈ [1, R] with probability 1/R, and X is
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the sum of r copies of Y. Then we evaluate the expected value and variance of X

as follows:

||E(X)|| = r||E(Y)||

||Var(X)|| = r||Var(Y)|| ≤ || r
R

R∑
j=1

HS,jT/Rb1(HS,jT/Rb1)T ||HS,jT/Rb1||2||

≤ r||E(Y)||.

We now apply Theorem 7 to X. We have

Pr
(
||X− E(X)|| ≥ γ||E(X)||

)
≤ 2σ exp

(
− γ2||E(X)||2

2Var(X) + 2γ||E(X)||M
3

)

≤ 2σ exp

(
−γ

2r2||E(Y)||
r + 2γrM/3

)
≤ 2σ exp

(
−γ

2r

2

)
.

Therefore we have Pr
(
||X−E(X)|| ≥ γ||E(X)||

)
≤ γ if we choose r ≥ γ−2 log(σγ−1).

Further, this implies the looser bound:

Pr
(
||X − E(X)|| ≥ γ||E(X)||

)
≤ γ.

Then E(Y ) = 1
r
E(X) is close to 1

r
X and

||
R∑
j=1

HS,jT/Nb1
1

R
− 1

r
X|| ≤ γ||

R∑
j=1

HS,jT/Rb1
1

R
||

||
N∑
j=1

HS,jT/Rb1
T

R
− T

r
X|| ≤ γ||

N∑
j=1

HS,jT/Rb1
T

R
||

with probability at least 1− γ, as claimed.

Proof of Theorem 6. Let X be the sum of r samples of HS,jT/Rb1 with j drawn
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from [0, R], and let x̂S = T
r
X. Then combining Lemmas 6 and 7, we have

||xS − x̂S|| ≤ γ
(
||b1||+ ||xS||+ ||

R∑
j=1

HS,jT/Rb1
T

R
||
)

≤ O
(
γ(||b1||+ ||xS||)

)
.

By Lemma 7, this bound holds with probability at least 1− γ .

The above analysis allows us to approximate the solution xS by sampling

HS,tb1 for various t. The following corollary is similar to Theorem 6 except we use

the asymmetric version of the Dirichlet heat kernel which we will need later for

using random walks. In particular, we use Dirichlet heat kernel pagerank vectors.

Dirichlet heat kernel pagerank is also defined in terms of a subset S whose induced

subgraph is connected, and a vector s ∈ Rσ by the following:

ρS,t,s = sTHS,t. (4.8)

Corollary 3. Let G be a graph and L denote the normalized Laplacian of G.

Let b be a nontrivial vector b ∈ Rn and S be a b-boundable subset. Let b2 =

(D
−1/2
S AS,δSD

−1/2
δS bδS)TD

1/2
S . Then the local solution xS to the linear system Lx = b

satisfying the boundary condition b can be computed by sampling ρS,t,b2 for r =

γ−2 log(σγ−1) values. If x̂S is the output of this process, the result has error bounded

by

||xS − x̂S|| = O
(
γ(||b1||+ ||xS||)

)
,

where b1 = D
−1/2
S AδSD

−1/2
δS bδS, with probability at least 1− γ.

Proof. First, we show how xS can be given in terms of Dirichlet heat kernel
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pagerank.

xTS =

∫ ∞
0

bT1HS,t dt

=

∫ ∞
0

bT1 (D
1/2
S HS,tD

−1/2
S ) dt

=

∫ ∞
0

b2HS,tD
−1/2
S dt, where b2 = bT1D

1/2
S

=

∫ ∞
0

ρS,t,b2 dt D
−1/2
S ,

and we have an expression similar to (4.6). Then by Lemma 6, xTS is close to
R∑
j=1

ρS,jT/R,b2
T
R
D
−1/2
S with error bounded by O

(
γ(||b1|| + ||xS||)

)
. From Lemma 7,

this can be approximated to within O(γ||xS||) multiplicative error using r =

γ−2 log(σγ−1) samples with probability at least 1− γ. This gives total additive and

multiplicative error within O(γ).

We present an algorithm for computing a local solution to a Laplacian linear

system with a boundary condition.

Theorem 8. Let G be a graph and L denote the normalized Laplacian of G. Let b be

a nontrivial vector b ∈ Rn, S a b-boundable subset, and let b1 = D
−1/2
S AS,δSD

−1/2
δS bδS.

For the linear system Lx = b, the solution x is required to satisfy the boundary

condition b, and let xS be the local solution. Then the approximate solution x output

by the LocalLinearSolver algorithm has an error bounded by

||xS − x|| = O (γ(||b1||+ ||xS||))

with probability at least 1− γ.

Proof. The correctness of the algorithm follows from Corollary 3.
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Algorithm 4. LocalLinearSolver(G, b, S, γ)

input: graph G, boundary vector b ∈ Rn, subset S ⊂ V , solver error parameter
0 < γ < 1.
output: an approximate local solution x with additive and multiplicative error γ
to the local system xS = Gb1 satisyfing the boundary condition b.

1: σ ← |S|
2: initialize a 0-vector x of dimension σ
3: b1 ← D

−1/2
S AS,δSD

−1/2
δS bδS

4: b2 ← bT1D
1/2
S

5: T ← σ3 log(σ3γ−1)
6: R← T/γ
7: r ← γ−2 log(σγ−1)
8: for i = 1 to r do
9: draw j from [1, R] uniformly at random
10: xi ← ρS,jT/R,b2
11: x← x + xi
12: end for
13: return T/r · xD−1/2

S

The algorithm involves r = γ−2 log(σγ−1) Dirichlet heat kernel pagerank

computations, so the running time is proportional to the time for computing

b2e
−T (IS−PS) for T = σ3 log(σ3γ−1).

In the next sections, we discuss an efficient way to approximate a Dirichlet

heat kernel pagerank vector and the resulting algorithm GreensSolver that returns

approximate local solutions in sublinear time.

4.5 Computing Dirichlet Heat Kernel Pagerank

The definition of Dirichlet heat kernel pagerank in (4.8) is given in terms

of a subset S and a vector s ∈ Rσ. Our goal is to express this vector as the

stationary distribution of random walks on the graph in order to design an efficient

approximation algorithm.

Dirichlet heat kernel pagerank is defined over the vertices of a subset S as
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follows:

ρS,t,s = sTHS,t = sT e−t∆S = sT e−t(IS−PS)

=
∞∑
k=0

e−t
tk

k!
fTP k

S .

That is, it is defined in terms of the transition probability matrix PS – the restriction

of P where P describes a random walk on the graph. We can interpret the matrix

PS as the transition probability matrix of the following so-called Dirichlet random

walk : Move from a vertex vi in S to a neighbor vj with probability 1/di. If vj is not

in S, abort the walk and ignore any probability movement. Since we only consider

the diffusion of probability within the subset, any random walks which leave S

cannot be allowed to return any probability to S. To prevent this, random walks

that do not remain in S are ignored.

Similar to the general heat kernel pagerank, consider a Dirichlet random walk

process in which the number of steps, k, are taken with probability pt(k) = e−t t
k

k!
.

Then, the Dirichlet heat kernel pagerank is the expected distribution of this process.

In order to use random walks for approximating Dirichlet heat kernel pager-

ank, we perform some preprocessing for general vectors s ∈ Rσ. Namely, we

do separate computations for the positive and negative parts of the vector, and

normalize each part to be a probability distribution. Given a graph and a vector

s ∈ Rσ, the algorithm ApproxDirHKPR computes vectors that ε-approximate the

Dirichlet heat kernel pagerank ρS,t,s satisfying the criteria of Definition 2. When s

is a general vector, an ε-approximate Dirichlet heat kernel pagerank vector has an

additional additive error of ε||s||1 by scaling, where || · ||1 denotes the L1 norm.

The time complexity of ApproxDirHKPR is again given in terms of random

walk steps and the analysis assumes access to constant-time queries returning the
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Algorithm 5. ApproxDirHKPR(G, t, s, S, ε)

input: a graph G, t ∈ R+, vector s ∈ Rσ, subset S ⊂ V , error parameter 0 < ε < 1.
output: ρ, an ε-approximation of ρS,t,s.

1: σ ← |S|
2: initialize 0-vector ρ of dimension σ
3: s+ ← the positive portion of s
4: s− ← the negative portion of s so that s = s+ − s−
5: s′+ ← s+/||s+||1 . normalize s+ to be a probability distribution vector
6: s′− ← s−/||s−||1 . normalize s− to be a probability distribution vector
7: r ← 16

ε3
log n

8: for r iterations do
9: choose a starting vertex v1 according to the distribution vector s′+
10: choose k with probability e−t t

k

k!

11: k ← min{k, t/ε}
12: simulate k steps of a P = D−1A random walk
13: if the random walk leaves S then:
14: do nothing for the rest of this iteration
15: else
16: let v′1 be the last vertex visited in the walk
17: ρ(v′1)← ρ(v′1) + ||s+||1
18: end if
19: choose a starting vertex v2 according to the distribution vector s′−
20: choose k with probability e−t t

k

k!

21: k ← min{k, t/ε}
22: simulate k steps of a P = D−1A random walk
23: if the random walk leaves S then:
24: do nothing for the rest of this iteration
25: else
26: let v′2 be the last vertex visited in the walk
27: ρ(v′2)← ρ(v′2) + ||s−||1
28: end if
29: end for
30:

31: ρ← ρ/r
32: return ρ
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destination of a random walk step, and a sample from a distribution.

Theorem 9. Let G be a graph and S a proper vertex subset such that the induced

subgraph on S is connected. Let s be a vector s ∈ Rσ, t ∈ R+, and 0 < ε < 1. Then

the algorithm ApproxDirHKPR(G, t, s, S, ε) outputs an ε-approximate Dirichlet heat

kernel pagerank vector ρ̂S,t,s with probability at least 1 − ε. The running time of

ApproxDirHKPR is O
(
ε−4t log n

)
, where the constant hidden in the big-O notation

reflects the time to perform a random walk step.

Proof. For the sake of simplicity, we provide analysis for the positive part of the

vector, s := s+, noting that it is easily applied similarly to the negative part as

well.

The vector s′ = s/||s||1 is a probability distribution and the heat kernel

pagerank ρ′S,t,s = ρS,t,s/||s||1 can be interpreted as a series of Dirichlet random walks

in which, with probability e−t t
k

k!
, s′TP k

S is contributed to ρ′S,t,s. The probability of

taking k steps such that k ≥ t/ε is less than ε by Markov’s inequality. Therefore,

enforcing an upper bound of K = t/ε for the number of random walk steps taken

is enough mixing time with probability at least 1− ε.

For k ≤ t/ε, our algorithm approximates s′TP k
S by simulating k random

walk steps according to P as long as the random walk remains in S. If the random

walk ever leaves S, it is ignored. Then, for random walks remaining in S, the

analysis is identical to the proof of Theorem 1.

When s is not a probability distribution, the above applies to s′ = s/||s||1.

Let ρ̂′S,t,s be the output of the algorithm using s′ = s/||s||1 and ρ′S,t,s be the

corresponding Dirichlet heat kernel pagerank vector ρS,t,s′ . The full error of the
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Dirichlet heat kernel pagerank returned is

||ρS,t,s − ρ̂S,t,s||1 ≤ || ||s||1ρ′S,t,s − ||s||1ρ̂′S,t,s ||1

≤ ||s||1||ρ′S,t,s − ρ̂′S,t,s||1

≤ ε||s||1||ρ′S,t,s||1

= ε||s||1.

For the running time, we use the assumptions that performing a random

walk step and drawing from a distribution with finite support require constant

time. These are incorporated in the random walk simulation, which dominates the

computation. Therefore, for each of the r rounds, at most K steps of the random

walk are simulated, giving a total of rK = O
(

16
ε3

log n · t/ε
)

= Õ(t) queries.

4.6 Computing Local Solutions With Random

Walks

Here we present the main algorithm, GreensSolver, for computing a solu-

tion to a Laplacian linear system with a boundary condition. It is the LocalL-

inearSolver algorithmic framework combined with the scheme for approximating

Dirichlet heat kernel pagerank. The scheme is an optimized version of the algo-

rithm ApproxDirHKPR with a slight modification. We call the optimized version

SolverApproxDirHKPR.

Definition 4. Define SolverApproxDirHKPR(G, t, s, S, ε) to be the algorithm

ApproxDirHKPR(G, t, s, S, ε) with the following modification to lines 11 and 21:

k ← min{k, 2t}.

Namely, this modification limits the length of random walk steps to at most 2t.
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Theorem 10. Let G be a graph and S a subset of size σ. Let T = σ3 log(σ3γ−1),

and let R = T/γ for some 0 < γ < 1. Suppose j is a random variable drawn

from [1, bRc] uniformly at random and let t = jT/R. Then if ε ≥ γ, the algorithm

SolverApproxDirHKPR returns a vector that ε-approximates ρS,t,s with probability

at least 1− ε. Using the same query assumptions as Theorem 9, the running time

of SolverApproxDirHKPR is O (ε−3t log n).

We will use the following Chernoff bound for Poisson random variables.

Lemma 8 ([67]). Let X be a Poisson random variable with parameter t. Then, if

x > t,

Pr(X ≥ x) ≤ ex−t−x log(x/t).

Proof of Theorem 10. Let k be a Poisson random variable with parameter t. Similar

to the proof of Theorem 9, we use Lemma 8 to reason that

Pr(k ≥ 2t) ≤ e2t−t−2t log(2t/t)

= et(1−2 log 2)

≤ ε,

as long as t ≥ log(ε−1)
1−2 log 2

.

Let E be the event that t < log(ε−1)
1−2 log 2

. The probability of E is

Pr

(
jT/R <

log(ε−1)

1− 2 log 2

)
= Pr

(
j <

log(ε−1)

γ(1− 2 log 2)

)
=

log(ε−1)

(1− 2 log 2)σ3 log(σ3γ−1)
,

which is less than ε as long as ε ≥
(
γ
σ3

)(1−2 log 2)εσ3

. This holds when ε ≥ γ.

As before, the algorithm consists of r rounds of random walk simulation,
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where each walk is at most 2t. The algorithm therefore makes r · 2t = ε−332t log n

queries, requiring O (ε−3t log n) time.

Below we give the algorithm GreensSolver. The algorithm is identical

to LocalLinearSolver with the exception of line 10, where we use the ap-

proximation algorithm SolverApproxDirHKPR for Dirichlet heat kernel pagerank

computation.

Algorithm 6. GreensSolver(G, b, S, γ, ε)

input: graph G, boundary vector b ∈ Rn, subset S ⊂ V , solver error parameter
0 < γ < 1, Dirichlet heat kernel pagerank error parameter 0 < ε < 1.
output: an approximate local solution x to the local system xS = Gb1 satisyfing
the boundary condition b.

1: σ ← |S|
2: initialize a 0-vector x of dimension σ
3: b1 ← D

−1/2
S AS,δSD

−1/2
δS bδS

4: b2 ← bT1D
1/2
S

5: T ← σ3 log(σ3γ−1)
6: R← T/γ
7: r ← γ−2 log(σγ−1)
8: for i = 1 to r do
9: draw j from [1, R] uniformly at random
10: xi ← SolverApproxDirHKPR(G, jT/R, b2, S, ε)
11: x← x + xi
12: end for
13: return T/r · xD−1/2

S

Theorem 11. Let G be a graph and L denote the normalized Laplacian of G.

Let b be a nontrivial vector b ∈ Rn and S a b-boundable subset, and let b1 =

D
−1/2
S AS,δSD

−1/2
δS bδS. For the linear system Lx = b, the solution x is required

to satisfy the boundary condition b, and let xS be the local solution. Then the

approximate solution x output by the algorithm GreensSolver satisfies the following:

(i) The error of x is ||xS − x|| = O (γ(||b1||+ ||xS||) + ε||b2||1) with probability at

least 1− γ,
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(ii) The running time of GreensSolver is O
(
γ−2ε−3σ3 log2(σ3γ−1) log n

)
where

the big-O constant reflects the time to perform a random walk step, plus

additional preprocessing time O(|∂(S)|), where ∂(S) denotes the edge boundary

of S.

Proof. The error of the algorithm using true Dirichlet heat kernel pagerank vectors

is O
(
γ(||b1||+ ||xS||)

)
by Corollary 3, so to prove (i) we address the additional error

of vectors output by the approximation of SolverApproxDirHKPR. By Theorem 10,

SolverApproxDirHKPR outputs an ε-approximate Dirichlet heat kernel pagerank

vector with probability at least 1− ε. Let ρ̂S,t,s be the output of an arbitrary run of

SolverApproxDirHKPR(G, t, s, S, ε). Then ||ρS,t,s − ρ̂S,t,s|| ≤ ε(||ρS,t,s′||1 + ||s||1) =

ε||s||1 by the definition of ε-approximate Dirichlet heat kernel pagerank vectors,

where s′ = s/||s||1 is the normalized vector s. This means that the total error of

GreensSolver is

||xS − x|| ≤ O (γ(||b1||+ ||xS||)) + ε||b2||1.

Next we prove (ii). The algorithm makes r = γ−2 log(σγ−1) sequential calls

to SolverApproxDirHKPR. The maximum possible value of t is T = σ3 log(σ3γ−1),

so any call to SolverApproxDirHKPR is bounded by O (ε−3σ3 log(σ3γ−1) log n).

Thus, the total running time is O
(
γ−2ε−3σ3 log2(σ3γ−1) log n

)
.

The additional preprocessing time of O(|∂(S)|) is for computing the vectors

b1 and b2; these may be computed as a preliminary procedure.

We note that the running time above is a sequential running time attained

by calling SolverApproxDirHKPR r times. However, by calling these in r parallel

processes, the algorithm has a parallel running time which is simply the same

as that for SolverApproxDirHKPR. Since SolverApproxDirHKPR only promises
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Figure 4.2. Support values of a Dirichlet heat kernel pagerank
vector different values of t. The solid line is the L1 norm and the
dashed line is the absolute value of the maximum entry in the
vector. Note the x-axis is log-scale.

approximate values for vertices whose true Dirichlet heat kernel pagerank vector

values are greater than ε, the

GreensSolver algorithm can be optimized even further by preempting when this

is the case.

Figure 4.2 illustrates how vector values drop as t gets large. The network

is again the dolphins social network and is further examined in the next section.

We let t range from 1 to T = σ3 log(σ3γ−1) ≈ 108739 for γ = 0.01 and compute

Dirichlet heat kernel pagerank vectors ρS,t,s. The figure plots L1 norms of the

vectors as a solid line, and the absolute value of the maximum entry in the vector

as a dashed line. In this example, no vector entry is larger than 0.01 for t as small

as 250.

Suppose it is possible to know ahead of time whether a vector ρS,t,s will have
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negligably small values for some value t. Then we could skip the computation of

this vector and simply treat it as a vector of all zeros.

From (4.7), the norm of Dirichlet heat kernel pagerank vectors are mono-

tone decreasing. Then it is enough to choose a threshold value t′ beyond which

||ρS,t′,s||1 < ε, since any ε-approximation will return all zeros, and treat this as

a cutoff for actually executing the algorithm. An optimization heuristic is to

only compute SolverApproxDirHKPR(G, t, s, S, ε) if t is less than this threshold

value t′. Otherwise we can add zeros (or do nothing). That is, replace line 10 in

GreensSolver with the following:

if jT/N < t′ then

xi ← SolverApproxDirHKPR(G, jT/N, b2, S, ε)

else

do nothing

end if

From (4.7), a conservative choice for t′ is 1
λS

log(ε−1).

4.7 An Example Illustrating the Algorithm

We return to our example to illustrate a run of the Green’s solver algorithm

for computing local linear solutions. The network is a small communication network

of dolphins [64].

In this example, the subset has a good cluster, which makes it a good

candidate for an algorithm in which computations are localized. Namely, it is ideal

for SolverApproxDirHKPR, which promises good approximation for vertices that

exceed a certain support threshold in terms of the error parameter ε. The support

of the vector b is limited to the set of leaders, which is the vertex boundary of the
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Figure 4.3. The values of the boundary vector plotted against
the agent IDs given in Figure 4.1.

subset of followers, l = δ(f). The vector is plotted over the agents (vertices) in

Figure 4.3.

Figure 4.4 plots the vector values of the heat kernel pagerank vector ρt,b′2

over the full set of agents. Here, we use b′2, the n-dimensional vector:

b′2(v) =


b2(v) if v ∈ S,

0 otherwise,

and t = 50.0. The components with largest absolute value are concentrated in the

subset of followers over which we compute the local solution. This indicates that

an output of SolverApproxDirHKPR will capture these values well.

In the following figures, we plot the results of calls to our approximation

algorithms against the exact solution xS using the boundary vector of Figure 4.3.

The solution xS is computed by Theorem 5, and the appromimations are sample

outputs of LocalLinearSolverand GreensSolver, respectively. The exact

values of xS are represented by circles, and the approximate values by triangles in

each case. Note that we permute the indices of the vertices in the solutions so that
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Figure 4.4. The vertex values of the full example communication
network over a sample heat kernel pagerank vector. The red bars
correspond to the network of followers, the purple to the leaders,
and the white to the rest of the network.

vector values in the exact solution, xS are decreasing, for reading ease.1

The result of a sample call to LocalLinearSolver with error parameter

γ = 0.01 is plotted in Figure 4.5. The total relative error of this solution is

||xS−x̂S ||
||xS ||

= 0.02, and the absolute error ||xS − x̂S|| is within the error bounds given

in Theorem 8. That is, ||xS − x̂S|| ≤ γ (||b1||+ ||xS||+ ||xrie||), where xrie is the

solution obtained by computing the full Riemann sum (as in Lemma 6).

The result of a sample call to GreensSolver with parameters γ = 0.01, ε =

0.1 is plotted in Figure 4.6. In this case the relative error is ≈ 2.05, but the absolute

error meets the error bounds promised in Theorem 11 point (i). Specifically,

||xS − x̂S|| ≤ (γ(||b1||+ ||xS||+ ||xrie||) + ε||b2||1) .

General remarks. While we have focused our analysis on solving local linear

systems with the normalized Laplacian L as the coefficient matrix, our methods can

1The results of these experiments as well as the source code are archived at
http://cseweb.ucsd.edu/∼osimpson/localsolverexample.html.

http://cseweb.ucsd.edu/~osimpson/localsolverexample.html


84

Figure 4.5. The results of a run of LocalLinearSolver. Two
vectors are plotted over IDs of agents in the subset. The circles are
exact values of xS, while the triangles are the approximate values
returned by LocalLinearSolver.
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Figure 4.6. The results of a run of GreensSolver with γ =
0.01, ε = 0.1.

be extended to solve local linear systems expressed in terms of the Laplacian L as

well. There are numerous applications involving solving such linear systems. Some

examples are discussed in [25], and include computing effective resistance in electrical

networks, computing maximum flow by interior point methods, describing the

motion of coupled oscillators, and computing state in a network of communicating

agents. In addition, we expect the method of approximating Dirichlet heat kernel

pagerank in its own right to be useful in a variety of related applications.
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Chapter 5

Computing Consensus

The problem of consensus among multi-agent systems has wide applications

in situations where members of a distributed network must agree. For example, the

communication, feedback, and decision-making between distinct unmanned aerial

vehicles (UAVs) [35, 73] is closely related to the consensus problem. In addition

to UAVs, the distributed coordination of networks has important implications

in cooperative control of distributed sensor networks [27], flocking and swarming

behavior [91], and communication congestion control [78]. Further, they form the

foundation of the field of distributed computing [65]. The consensus problem is

studied in [74], and several variations and extensions are examined by [20, 68, 71, 75].

We consider the classical model (see [74]) of agents with fixed, bidirectional

communication channels and associated state. State changes occur continuously,

influenced by communication with neighbors. A consensus algorithm is a continuous

time protocol that specifies the information exchange between agents and provides

a mechanism for systematically computing the consensus value, a unanimous state

and an equilibrium of the system. In this chapter, we focus on an efficient method

for approximating the state values in a network in which agents reach consensus by

following a linear protocol. We give algorithms for two different frameworks. The

first computes a global consensus value involving all the agents in the network and

86
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runs in time sublinear in the size of the network. The second is a local algorithm

to compute a consensus value for a subset of agents under external influence, and

runs in time sublinear in the size of the specified subset. In both, the consensus

value returned is within an error bound of O(ε) for a given 0 < ε < 1.

The algorithms presented in this chapter are extension of the results Chap-

ter 4 for solving a linear system by approximating the heat kernel pagerank of the

network for the purpose of consensus.

5.1 Previous Work on Computing Consensus

In [74], Olfati-Saber and Murray design a linear protocol for agents to reach

a consensus value which is an average of initial states. They consider a network of

agents as an undirected graph and use the Laplacian potential, defined in terms of

the graph Laplacian, as a measure of disagreement among vertices. With this tool,

they transform the the problem of reaching consensus to that of minimizing the

Laplacian potential.

An alternate formulation given in [35] abides by a linear protocol which

favors the values of more highly connected vertices. In this way, agents which

are more visible will have more of an impact on the group decision. Yet another

variation is consensus in a leader-following formation, in which a set of agents called

leaders abide by individual protocol but continue to influence to rest of the network.

This problem has been studied in [71, 82].

In the model we consider, the communication protocol followed by the agents

in the network forms a linear system of equations, and the solution to the linear

system is the state of the network as a function of time. Thus, computing the

consensus value involves solving a linear system.
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5.2 Multi-Agent Systems

A dynamic multi-agent system is given by a tuple Gx = (G, x) where x is

the state of the system and G is the communication network topology, represented

by a graph. Namely, each agent is represented by a vertex and the communication

network between agents is represented by the edge set E. Let xi ∈ R be a real

scalar value assigned to vertex vi such that x(t) = (x1(t), . . . , xn(t))T denotes the

state at time t.

Two vertices vi, vj are said to agree if and only if xi = xj. The goal of

consensus is to minimize the total disagreement among vertices.

Definition 5 (Consensus). Let the value of vertices x be the solution to the

equation

∂u

∂t
= f(x, u), x(0) ∈ Rn. (5.1)

Let X : Rn → R be an operator on x = (x1, . . . , xn)T that generates a decision value

X(x). Then we say all vertices of the graph have reached consensus with respect to

X in finite time T > 0 if and only if all vertices agree and xi(T ) = X(x(0)) ∀ i ∈ I.

We call X(x) := X(x(0)) the consensus value.

One notion of consensus is a weighted average consensus , given by

Xw(x) =

∑
i dixi∑
i di

.

We show (Theorem 12) that any connected undirected graph globally asymptotically

reaches weighted average consensus when each vertex applies the distributed linear

protocol

ui(t) = 1/di
∑
j∈Ni

(xj(t)− xi(t)). (5.2)



89

Again, we assume G is connected.

5.3 Heat Kernel Pagerank for the Weighted-

Average Consensus Problem

In this section we present a linear consensus protocol for a dynamic network

and show how to compute a weighted average consensus for the protocol using heat

kernel pagerank.

We first recall some principles of control theory. Consider the system with

controls as in (5.1). A point xe is an equilibrium point of the system if f(xe, u) = 0,

and xe is an equilibrium point if and only if x(t) = xe is a trajectory. The system

is globally asymptotically stable if, for every trajectory x(t), x(t)→ xe as t→∞.

To check this, two conditions are sufficient.

Definition 6 (Global asymptotic stability). A system is globally asymptotically

stable if

1. it is stable in the Lyapunov sense, and

2. the equilibrium xe is convergent, i.e., for every ε > 0, there is some time T

such that

||x(0)− xe|| < δ means ||x(t)− xe|| < ε

for every time t > T .

In particular, when considering a time-invariant linear state space model

ẋ = −Mx, for some matrix M , condition 1 is satisfied if M is positive semidefinite.

Consider the network of integrator agents with dynamics ∂x
∂t

= ui(t) where

each agent applies the distributed linear protocol (5.2). We can characterize the
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dynamics of the system by the Laplace operator ∆ = I − P for the underlying

graph, as described by the following theorem:

Theorem 12. Let Gx be a dynamic multi-agent system and suppose each vertex

of G applies the distributed linear protocol (5.2). Then the value of x at time t is

given by the solution to the system

∂x

∂t
= −∆x(t), x(0) ∈ Rn. (5.3)

Additionally, this protocol globally asymptotically reaches a weighted average con-

sensus.

Proof. Let xe be an equilibrium of the system ∂x
∂t

= −∆x. Then by definition

of equilibrium, ∆xe = 0 and therefore xe is a right eigenvector associated to the

eigenvalue λ = 0. In particular xe is in the null space of ∆. Since G is connected, ∆

has exactly one zero eigenvalue. Upon consideration, we see that the corresponding

eigenvector is 1, the all-one’s vector, as the row sums of ∆ are all exactly zero.

Thus, xe = α1 for some α ∈ R. Now, note that
∑

i ui = 0 for the protocol (5.2),

and so the weighted average value Xw(x(t)), determined by u(t), is in fact invariant

with respect to t. In other words, Xw(x(0)) = Xw(xe), and

Xw(xe) =

∑
i di(xe)i∑

i di
= α.

Therefore this equilibrium is in fact the weighted average of the initial values of

the vertices, and all vertices reach this value. Also, as the system is time-invariant,

the system is stable since ∆ is positive semidefinite.

By Definition 6, the Theorem is proved.

Now we can summarize the state of the system with a single heat kernel
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pagerank vector.

Theorem 13. Let Gx be a dynamic multi-agent system and suppose each vertex of

G applies the distributed linear protocol (5.2). Let D be the diagonal degree matrix

of G. Then the state of the system is given in terms of heat kernel pagerank by

x(t) = ρT,sD
−1, sT = x(0)TD. (5.4)

Proof. The solution to (5.3) is the evolving state of the system. This solution is

x(t) = e−t∆x(0) = Htx(0). (5.5)

Using the symmetrized version of heat kernel,

x(t) = (D−1/2HtD
1/2)x(0)

x(t)T = x(0)TD1/2(D1/2HtD
−1/2)D−1/2 (5.6)

x(t)T = (x(0)TD)HtD
−1,

where line 5.6 uses the symmetry of D and H. Thus, the values x(t) given by

(5.5) are related to the heat kernel pagerank vector ρt,s with preference vector

sT = x(0)TD.

To compute the equilibrium state at which all agents reach consensus, we

know that time T = O(1/λ1) is an upper bound. Figure 5.1 depicts the results of

computing weighted average consensus with heat kernel pagerank as in Theorem 13

with different values for t. The network is the dolphins network [64] with initial state

values randomly chosen from the interval (0, 1). The chart plots total disagreement

||δ|| for disagreement vector δ(t) = x(t) − χw(x)1, where x(t) = ρt,sD
−1 for
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Figure 5.1. Total disagreement over varying times t. Disagreement is computed
in terms of the weighted average consensus χw(x0). The red line denotes the data
point for t = 1/λ1.

f = x(0)trD. The vertical line corresponds to t = 1/λ1.

Our weighted average consensus algorithm uses an algorithm for computing

an ε-approximate heat kernel pagerank as defined in Definition 2 as a subroutine.

As mentioned in Chapter 2, a general heat kernel pagerank vector can be computed

as a combination of “seeded” heat kernel pagerank vectors. As such, we can simply

adapt the ApproxHKPRseed to compute a general heat kernel pagerank vector by

allowing each random walk to start from a vertex drawn from s. We will refer to

this algorithm ApproxHKPR. We call our algorithm for consensus AvgConsensus.

Theorem 14 (Weighted Average Consensus in Sublinear Time). Let Gx be a
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dynamic n-agent system and suppose each vertex of G applies the distributed linear

protocol (5.2). Then the state of the system can be approximated to within a

multiplicative factor of (1 + ε) and an additive term of O(ε) for any 0 < ε < 1 in

time O
(

log(ε−1) logn
ε3 log log(ε−1)

)
.

Proof. First, the ε-approximate vector x returned by ApproxHKPR is an approxima-

tion of the true state by Theorem 13. Thus we have left to verify the approximation

guarantee and the running time. The total running time is dominated by the heat

kernel pagerank approximation, which is O
(

log(ε−1) logn
ε3 log log(ε−1)

)
by Theorem 1.

Algorithm 7. AvgConsensus(G, x, t, ε)

input: graph G, initial state vector x, t ∈ R+, error parameter 0 < ε < 1.
output: an approximate state x(t).

1: D ← diagonal matrix of vertex degrees
2: sT ← xTD
3: y ← ApproxHKPR(G, t, s, ε)
4: return yD−1

5.4 Heat Kernel Pagerank for Consensus in

Leader-Following Formations

In this section we consider a multi-agent network in which a certain subset

of agents l ⊂ V are leaders, and the rest f = V \ l are dubbed followers. In this

scenario, leaders will adjust their values according to individual protocol, while

followers in the system adjust according to communication channels as usual. The

consensus goal in this case is a leader-following consensus , in which all agents agree

on a value by following the leaders.

Let uf denote the protocol among the set of followers and let ul denote

the control dictated by the leaders and influencing the followers. Similarly, let xf
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denote the state of the followers and xl denote the state of the leaders. The vectors

xf and xl can be understood as the usual state vector x restricted to following and

leading agents, respectively. Then we have the following definition.

Definition 7 (Leader-following consensus). A leader-following consensus of a

system is achieved if for every agent vi there is a local protocol ui such that

xi(T ) = Xlf (x(0)) for some finite time T > 0 and some operator Xlf : Rn → R. In

this case, we call the value Xlf (x(0)) the leader-following consensus value.

For the protocol

ui(t) = 1/di
∑
j∈Ni

(√
di
dj
xj(t)− xi(t)

)
, (5.7)

the value for x is given by the dynamics

u(t) =
∂x

∂t
= −Lx(t).

We let the followers abide by protocol (5.7).

Let Lf be the Laplacian L restricted to rows and columns corresponding

to the followers, and Lfl be L with rows restricted to the followers and columns

restricted to the leaders. Then the dynamics of the followers can be summarized

by:

∂xf

∂t
= −Lfxf (t)− Lflul(t).

Since ∂xf

∂t
is control of the subnetwork induced by the group of followers, this can
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be rewritten

uf = −Lfxf − Lflul or alternatively,

xf = −L−1
f uf + L−1

f Lflu
l.

Indeed, as long as the subgraph induced by the subset of followers is con-

nected, the inverse L−1
f exists. We have arrived at the following.

Theorem 15. Let Gx be a dynamic multi-agent system with proper subsets of

leaders, l ⊂ V , and followers, f = V \ l, such that the induced subgraph on f is

connected. Suppose the followers apply the protocol (5.7), and suppose the leaders

apply some individual protocol ui = f(xi) dictated only by that leader’s state. Then

the followers’ state values xf at time t are given by the solution to the system

Lfxf (t) = b(t), where b(t) = −(uf (t) + Lflul(t)).

We use the algorithm GreensSolver for solving the linear system Lfxf = b

with a linear protocol applied to a subset f specified by b. The solution L−1
f b can

be approximated by sampling sufficiently many values of (Ht)fb(t). Further, it

is given that the solution can be approximated in O
(
γ−2ε−3σ3 log2(σ3γ−1) log n

)
time, where σ is the size of the subset of followers.

The running time and approximation guarantees of LFConsensus follow

from the running time of GreensSolver, and we have the following:

Theorem 16. Let Gx be a dynamic multi-agent system with proper subsets of lead-

ers, l ⊂ V , and followers, f = V \l, such that the induced subgraph on f is connected.

Suppose the followers apply the protocol (5.7), and suppose the leaders apply some

individual protocol ui = f(xi) dictated only by that leader’s state. Then the state
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Algorithm 8. LFConsensus(G, x, t, f, l, ul, ε)

input: graph G, initial state vector x, t ∈ R+, subset of followers f , subset of
leaders l, protocol applied by the leaders ul, error parameter 0 < ε < 1.
output: an approximate state x(t).

1: b← B(t)
2: s← |f |
3: T ← σ3 log(σ3γ−1)
4: R← T/ε
5: r ← ε−2 log(σε−1)
6: initialize a 0-vector xf of dimension σ
7: for i = 1 to r do
8: draw j from [1, R] uniformly at random
9: xi ← SolverApproxDirHKPR(G, jT/N, b, f, ε)

10: xf ← xf + xi
11: end for
12: return T/r · xD−1/2

S

Procedure 9. FollowerProt(G, x, t)

for i ∈ l do
uf (i)← ui(t) = 1/di

∑
j∈Ni

(√
di
dj
xj(t)− xi(t)

)
end for
return uf

Procedure 10. B(t)

uf ← FollowerProt(G, x, t)
b← −(uf (t) + Lflul)
return b
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of the system can be approximated to within a multiplicative factor of (1 + ε) and

an additive term of O(ε) for any 0 < ε < 1 in time O
(
γ−2ε−3σ3 log2(σ3γ−1) log n

)
,

where σ is the size of the subset of followers.

The significance of sublinear running times is scalability. The robustness and

efficiency of the algorithms AvgConsensus and LFConsensus are of great impor-

tance for networks too large to fit in memory, and the running time/approximation

tradeoff allows for appropriate tuning. This is especially notable for local algorithms,

which reduce computation over large networks to a small subset. For instance, while

the group of leaders may be small in a leader-following framework, the difference

in complexity for computing consensus in a leader-following formation as opposed

to full group consensus can be significant. The subset of followers influenced by

the leaders may be a small portion of the entire graph, so that s << n, and we are

spared work over the entire graph in the case that we are interested in only a small

area. In these cases, the gain in running times are valueable.



Chapter 6

Distributed Algorithms for Find-
ing Local Clusters

Distributed computation is an increasingly important framework as the

demand for fast data analysis grows and data simultaneously becomes too large to

fit in main memory. As distributed systems for large-scale graph processing such as

Pregel [66], GraphLab [63], and Google’s MapReduce [32] are rapidly developing,

there is a need for both theoretical and practical bounds in adapting classical graph

algorithms to a modern distributed and parallel setting.

A distributed algorithm performs local computations on pieces of input and

communicates the results through given communication links. When processing a

massive graph in a distributed algorithm, local outputs must be configured without

shared memory and with few rounds of communication. A central problem of

interest is to compute local clusters in large graphs in a distributed setting (see

Chapter 3 for background on local cluster detection in a centralized setting).

In this chapter, we present the first algorithms for computing local clusters in

two distributed settings that finish in a sublinear number of rounds of communica-

tion. In the distributed context, we are able to exploit parallelism in our algorithm

for computing the heat kernel pagerank and give a distributed random walk-based

98



99

procedure which requires fewer rounds of communication and yet maintains similar

approximation guarantees as previous distributed algorithms for computing local

clusters. We will describe two distributive models – the CONGEST model and the

k-machine model. We demonstrate in two different distributed settings that a heat

kernel pagerank distribution can be used to compute local clusters with Cheeger

ratio O(
√
φ) when the optimal local cluster has Cheeger ratio φ.

6.1 Previous Work on Distributed Algorithms

Modeling distributed computation has been an important paradigm since

the “many server” model has grown in popularity. Das Sarma et al. [31] give fast

random walk-based distributed algorithms for estimating mixing time, conductance

and the spectral gap of a network. In [30], distributed algorithms are derived for

computing PageRank vectors with O( 1
α

log n) rounds for any 0 < α < 1 with high

probability. Das Sarma et al. [29] give two algorithms for computing sparse cuts in

the CONGEST distributed model. The first algorithm uses random walks and is

based on the analysis of [88]. By incorporating the results of [31], they show that

the stationary distribution of a random walk of length l can be computed in O(l)

rounds. The second algorithm in [29] uses PageRank vectors and is based on the

analysis of [6]. By using the results of [30], the authors of [29] compute local clusters

in O(( 1
φ

+ n) log n) rounds with standard random walks and O( 1
α

log2 n+ n log n)

rounds using PageRank vectors. Finally, Bahmani, Chowdhury, and Goel [10] give

an analysis of the efficiency of Monte Carlo algorithms in estimating PageRank.

6.2 Models of Distributed Computation

We consider two models of distributed computation – the CONGEST model

and the k-machine model. In each, data is distributed across machines of a network
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which may communicate over specified communication links in rounds. Memory

is decentralized, and the goal is to minimize the running time by minimizing the

number of rounds required for computation for an arbitrary input graph G. We

emphasize that local communication is taken to be free.

The first model we consider is the CONGEST model. In this model, the

communication links are exactly the edges of the input graph and each vertex is

mapped to a dedicated host machine. The CONGEST (or standard message-passing)

model was introduced in [79, 80] to simulate real-world bandwidth restrictions

across a network.

Due to how the vertices are distributed in the network, we simplify the

model by assuming the computer network is the input graph G = (V,E) on n = |V |

machines with m = |E| communication links. Each machine has a unique log n-bit

ID. Initially each machine only possesses its own ID and the IDs of each of its

neighbors, and in some instances we may allow machines some metadata about

the graph (the value of n, for instance). Machines can only communicate through

communication links of the network and communication occurs in rounds. That is,

any message sent at the beginning of round r is fully transmitted and received by

the end of round r. We assume that all machines run with the same processing

speed. Most importantly, we only allow O(log n) bits to be transmitted across any

link per round.

The defining difference between the k-machine model and the CONGEST

model is that, whereas vertices are mapped to distinct, dedicated machines in the

CONGEST model, a number of vertices may be mapped to the same machine in

the k-machine model. This model is meant to more accurately simulate distributed

graph computation in systems such as Pregel [66] and GraphLab [63].

We consider computing over massive datasets distributed over machines
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of the k-machine network. The complete data is never known by any individual

machine, and there is no shared memory. Each machine executes an instance of a

distributed algorithm, and the output of each machine is with respect to the data it

hosts. A solution to a full problem is then a particular configuration of the outputs

of each of the machines. The model is discussed in greater detail in Section 6.5.

The two models are limiting and advantageous in different ways, and one is

not inherently better than the other. For instance, since many vertices are mapped

to a single machine in the k-machine model, there is more “local information”

available since vertices sharing a machine can communicate for free. However, since

communication is restricted to the communication links in the computer network,

vertex-vertex communication is somewhat less restrictive in the CONGEST model

since links exactly correspond to edges. The consequences of these differences are

largely observed in time complexity, and certain graph problems are more suited to

one model than the other.

In this chapter we analyze our algorithmic techniques in the CONGEST

model, and then use the Conversion Theorem of [47] to give an efficient probabilistic

algorithm in the k-machine model for computing local clusters.

6.3 Fast Distributed Heat Kernel Pagerank

Computation

The idea of the algorithm is to launch a number of random walks from the

machine hosting the seed vertex v (seed machine) in parallel and compute the

fraction of random walks which end at a machine hosting vertex vi as an estimate

of the heat kernel pagerank values ρt,v(vi).

To be specific, the seed machine initializes r tokens, each of which holds

a random variable k corresponding to the length of its random walk. Then, in
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rounds, the tokens are passed to random neighbors with a count incrementor until

the count reaches k. At the end of the parallel random walks, each machine holding

tokens outputs the number of tokens it holds divided by r as an estimate for the

heat kernel pagerank value of the vertex it hosts. Algorithm 11 describes the full

procedure.

Algorithm 11. DistributedApproxHKPRseed(G, t, v, ε)

input: a graph G hosted by a network in the CONGEST model, a seed vertex v,
a diffusion parameter t, an error bound ε
output: estimates ρ̂t,v(vi) of heat kernel pagerank values for vertices vi hosted in
the network

1: machine hosting seed vertex v generates r = 16
ε3

log n tokens ti

2: K ← c · log(ε−1)
log log(ε−1)

for any choice of c ≥ 1

3: each token ti does the following: pick a value k with probability pk = e−t t
k

k!
,

then hold the counter value ki ← min{k,K}
4: for iterations j = 1 . . . K do
5: every machine performs the following in parallel:
6: for every token ti the machine currently holds do
7: if ki == j then
8: hold on to this token for the duration of the iterations
9: else
10: send ti to a random neighbor as a message over a communication

link
11: end if
12: end for
13: end for
14: let Ci be the number of tokens machine i currently holds
15: each machine with Ci > 0 returns Ci/r as an estimate for ρt,v(vi) of the vertex

vi it hosts

By Theorem 1, an ε-approximate heat kernel pagerank can be computed

with the above procedure by setting r = 16
ε3

log n in the centralized setting. Further,

the approximation guarantee holds when limiting the maximum length of random

walks to K = O
(

log(ε−1)
log log(ε−1)

)
, so that each token is passed for max{k,K} rounds,

where k is drawn with probability pk as described above. In the centralized setting,
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this limit keeps the running time down.

In contrast, the distributed algorithm DistributedApproxHKPRseed takes

advantage of decentralized control to take multiple random walk steps via multiple

edges at a time. That is, through parallel execution, the running time depends only

on the length of random walks, whereas when running the random walks in serial

the running time must also include the number of random walks performed. Thus,

keeping K small is critical in keeping the number of rounds low, and is the key to

the efficiency of our local clustering algorithms. The correctness of the algorithm

follows directly from Theorem 1.

Theorem 17. For any graph G hosted by a network in the CONGEST model,

any seed vertex v ∈ V , and any error bound 0 < ε < 1, the distributed algorithm

DistributedApproxHKPRseed outputs an ε-approximate heat kernel pagerank with

probability at least 1− ε.

The correctness of the algorithm holds for any choice of t, and in fact we use

a particular value of t in our local clustering algorithm (see Section 6.4). Regardless,

it is clear that the running time is independent of any choice of t. In fact, we

demonstrate in the proof of Theorem 18 that it is independent of n as well.

Theorem 18. For any graph G hosted by a network in the CONGEST model,

any seed vertex s ∈ V , and any error bound 0 < ε < 1, the distributed algorithm

DistributedApproxHKPRseed finishes in O
(

log(ε−1)
log log(ε−1)

)
rounds.

Proof. We show that there is no congestion in the network during any round of the

algorithm; i.e., there are never more than O(log n) bits sent over any communication

link in any iteration of the random walk process. The proof then follows since each

step of the random walk requires only one round of communication.
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In any run of the algorithm, 16
ε3

log n tokens are created, each holding a

message ki corresponding to a random walk length. The token contains no other

information. In particular, no machine or vertex IDs are transmitted through the

tokens. Therefore passing a token involves sending a message of constant size

in any iteration of the algorithm. In the worst case, every token is transmitted

through a single link in a single iteration of the algorithm. However, this is still

only O(16
ε3

log n) bits, and so meets the constraints of the model. Namely, even the

worst case of sending every token over one link can be done with a single round

of communication. Therefore any random walk step requires only one round of

communication, and by construction at most O
(

log(ε−1)
log log(ε−1)

)
random walk steps are

performed in the algorithm.

6.4 Distributed Local Cluster Detection

In this section we present a fast, distributed algorithm for the local cluster

detection problem. The algorithm is a distributed version of the sweep algorithm

used for local cluster detection in the centralized setting, which involves investigating

sets of vertices which accumulate in decreasing order of their ρ̂t,v(vi)/di values. The

process is efficient and requires at most one linear scan of the machines in the

network (we actually show that the process can be much faster).

As in the centralized setting, the sweep requires an ordering of the vertices

in decreasing order of ρ̂t,v(vi)/di. Then the majority of the work of the algorithm

is investigating sufficiently many of the n − 1 cuts (Sj, S
C
j ) given by the first j

vertices in the ordering and the last n− j vertices in the ordering, respectively, for

j = 1, . . . , n− 1. However, by “sufficiently many” we indicate that we may stop

investigating the cut sets when either the volume or the size of the segment Sj is
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large. Assume this point is after j = j
¯
. Then we choose the cut set that yields the

minimum Cheeger ratio among the j
¯

possible cut sets.

Algorithm 12. DistributedLocalCluster(G, v, σ, ς, φ, ε)

input: a graph G hosted by a network in the CONGEST model, a seed vertex v,
a target cluster size σ, a target cluster volume ς, an optimal Cheeger ratio φ, an
error bound ε
output: a set of vertices S with Φ(S) ∈ O(

√
φ)

1: t← φ−1 log(2
√
ς

1−ε + 2εσ)
2: ρ̂← DistributedApproxHKPRseed(G, v, t, ε)
3: every machine hosting a vertex vi with a non-zero value for ρ̂[vi] sends ρ̂[vi]/di

to every other machine hosting a vertex in the support of ρ̂ . Phase 1
4: sort the vertices in the support of ρ̂ according to ρ̂[vi]/di . Phase 1
5: compute Cheeger ratios of each of the cut sets with a call of the Distributed

Sweep Algorithm . Phase 2
6: output the cut set of minimum Cheeger ratio . Phase 2

In the centralized setting, this process will take O(n log n) time in general.

The authors in [29] give a distributed sweep algorithm that finishes in O(n) rounds.

We improve the analysis of [29] using heat kernel pagerank. The running time of

our sweep algorithm is given in Lemma 9.

The sweep involves two phases. Let π be the ordering of vertices in decreasing

order of ρ̂[vi]/di. In Phase 1, the goal is for each machine to know the place of its

vertex in π. Each machine can compute the ρ̂t,v(vi)/di value for its hosted vertex

vi locally, and we use O(1
ε
) rounds to ensure each machine knows the π values of

all other vertices (see the proof of Lemma 9). In Phase 2, we use the decentralized

sweep of [29] described presently:

Distributed Sweep Algorithm. Let N := Nρ̂ = |supp(ρ̂t,v)| denote the number

of vertices with a non-zero estimated heat kernel pagerank value after running

the algorithm DistributedApproxHKPRseed. Assume each machine knows the

ordering π after Phase 1. We will refer to vertices by their place in the ordering.
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Define Sj to be the cut set of the first j vertices in the ordering. Then computing

the Cheeger ratio of each cut set Sj involves a computation of vol(Sj) as well as

|∂(Sj)|. Define the following:

• Lπj is the number of neighbors of vertex vj in Sj−1, and

• Rπ
j is the number of neighbors of vertex vj in SCj .

Then the Cheeger ratio of each cut set can be computed locally by:

◦ |∂(Sj)| = |∂(Sj−1)| − Lπj +Rπ
j , with |∂(S1)| = d1 (6.1)

◦ vol(Sj) = vol(Sj−1) + Lπj +Rπ
j , with vol(S1) = d1. (6.2)

We now show that a sweep can be performed in O(N) rounds. Each machine

knows the IDS of its neighbors and thereby knows the degree of its hosted vertex

and the identities of neighboring vertices. After Phase 1 each machine knows the

place of every vertex in the ordering π. Therefore, each machine can compute

locally if a neighbor is in Sj−1 or SCj , and so Lπj and Rπ
j can be computed locally

for each vertex vj. Each machine can then prepare an O(log n)-bit message of

the form (ID, Lπj , R
π
j ). Each of the N messages of this form can then be sent to

one machine using the upcasting algorithm (described in the proof of Lemma 9)

using the π ordering as node rank. We note that the N machines in the ordering

are necessarily in a connected component of the network, and so the upcasting

procedure can be performed in O(N) rounds. Finally, once the first machine in

the ordering is in possession of the ordering π, and the values of (Lπj , R
π
j ) for every

vertex, it may iteratively compute Φ(Sj) locally using the rules (6.1) and (6.2).

Thus, this machine can output the minimum Cheeger ratio φ∗ as well as the j∗

such that Φ(Sj∗) = φ∗ after O(N) rounds.
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Lemma 9. Performing Phases 1 and 2 of a distributed sweep takes O(1
ε
) rounds.

Proof. First we describe how to send N O(log n)-sized messages to a single machine

in O(N) rounds of communication. For this we can use the upcasting algorithm

of [80] (as described in [29]). We first construct a priority BFS tree of the N

machines hosting vertices in supp(ρ̂). We emphasize again that these machines are

necessarily in a connected component of the network, and it is shown in [80] that

such a BFS tree can be constructed in O(N) time. Each node (machine) in the

tree then upcasts its message to the root node through the edges of the tree.

In Phase 1, the vertices need to be sorted according to their (non-zero)

π values. In this case, the machines use the value of ρ̂t,v(vi)/di for their hosted

vertices vi as their tree node rank so that the machine with the highest ρ̂t,v(vi)/di

value is the root of the tree. Then each node upcasts its ρ̂t,v(v)/dv value to the root

through the edges of the tree. The root node locally sorts these values and then

floods all the π values to the nodes through tree edges. The upcast and flooding

process take O(N) rounds to reach each of the nodes in the tree.

Phase 2 consists of the Distributed Sweep Algorithm, where the first

machine in the ordering computes the Cheeger ratio of each segment Sj. In order

to send each of the (ID, Lπj , R
π
j ) messages to the first machine of the ordering we

again upcast through the edges of a priority BFS tree, and in this round we use π

values as node rank. The root node is then able to locally compute Cheeger ratios

and output the cutset of minimum Cheeger ratio after O(N) rounds for upcasting.

Thus Phase 1 requires O(N) rounds for upcasting and flooding values. Phase

2 requires O(N) rounds for upcasting values necessary for locally computing Cheeger

ratios. Since we compute an ε-approximate heat kernel pagerank vector as our

distribution, we know that N is no more than O(1
ε
). This is because we assume∑

v∈V ρt,v(v) = 1, and so no more than 1
ε

vertices can have values at least ε. Thus
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the full sweep takes O(1
ε
) rounds.

We note here that the time required for the sweep may be reduced if there

are size or volume restraints for the local cluster. In this case, an alternative

distributed sweep algorithm may be utilized. As usual, we refer to each machine

by the place of their hosted vertex in the ordering π. Machine 1 begins the sweep

by sending vol(S1), |∂(S1)| to machine 2. Then machines j = 2, . . . , N iteratively

compute Φ(Sj) using the values of vol(Sj−1), |E(Sj−1, S
C
j−1)|, Lπj and Rπ

j , and then

subsequently sending vol(Sj), |∂(Sj)| to the next machine j + 1 in the ordering.

Additionally, each machine can send the minimum Cheeger ratio φ∗ computed

thus far as well as the j∗ such that Φ(Sj∗) = φ∗. Thus the last machine in the

ordering can output Sj∗ . In this algorithm, each iteration j will require d rounds of

communication, were d is the shortest path distance between nodes j − 1 and j.

However, no two machines will ever be at a distance of greater than O( log(ε−1)
log log(ε−1)

)

steps by construction. In this way, the first j Cheeger ratios can be computed in

O(j log(ε−1)
log log(ε−1)

) rounds.

If size or volume restraints are placed on the cluster, we may stop the sweep

at machine j
¯

when the size or volume of Sj
¯

is greater than some specified value.

We output the set Sj∗ for that iteration, and this process requires O(j
¯

log(ε−1)
log log(ε−1)

)

rounds.

The algorithm DistributedLocalCluster (Algorithm 12) is a complete

description of our distributed local clustering algorithm. The correctness of the

algorithm follows directly from Theorem 4.

Theorem 19. For any graph G hosted by a network in the CONGEST model,

suppose there is a set S with vol(S) ≤ vol(G)/4, |S| = σ, and Cheeger ratio

Φ(S) ≤ φ. Then at least half of the vertices in S can serve as the seed v so that for
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any error bound 0 < ε < 1, the algorithm DistributedLocalCluster will find a

set of Cheeger ratio O(
√
φ) with probability at least 1− ε.

Theorem 20. For any graph G hosted by a network in the CONGEST model, any

seed vertex v ∈ V , and any error bound 0 < ε < 1, DistributedLocalCluster fin-

ishes in O
(

log(ε−1)
log log(ε−1)

+ 1
ε

)
rounds.

Proof. The only distributed computations are those for computing approximate

heat kernel pagerank values (line 2) and Phase 1 (lines 3 and 4) and Phase 2

(line 5) of the distributed sweep. Computing heat kernel pagereank values takes

O
(

log(ε−1)
log log(ε−1)

)
rounds by Theorem 18, and Phases 1 and 2 together take O(1

ε
)

rounds by Lemma 9. Thus the running time follows.

One possible concern with the algorithm DistributedLocalCluster is

that one cannot guarantee knowing the value of φ ahead of time. Therefore a true

local clustering algorithm should be able to proceed without this information. This

can be achieved by “testing” a few values of φ (and fixing some reasonable values

for σ and ς). Namely, begin with φ = 1/2 and run the algorithm above. If the

output cut set S satisfies Φ(S) ∈ O(
√
φ), we are done. If not, halve the value

of φ and continue. There are O(log n) such guesses, and we have arrived at the

following.

Theorem 21. For any graph G hosted by a network in the CONGEST model,

any vertex v, and any error bound 0 < ε < 1, there is a distributed algorithm that

computes a set S with Cheeger ratio within a quadratic of the optimal which finishes

in O
(

log(ε−1) logn
log log(ε−1)

+ 1
ε

log n
)

rounds.

In particular, when ignoring polylogarithmic factors, the running time is

Õ
(

log(ε−1)
log log(ε−1)

+ 1
ε

)
.
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6.5 Computing Local Clusters in the k-Machine

Model

In this section we consider a graph on n vertices which is distributed across

k machines in a computer network. This is the k-machine model introduced in

Section 6.2.

In the k-machine model, we consider a network of k > 1 distinct machines

that are pairwise interconnected by bidirectional point-to-point communication links.

Each machine executes an instance of a distributed algorithm. The computation

advances in rounds where, in each round, machines can exchange messages through

their communication links. We again assume that each link has a bandwidth of

O(log n) meaning that O(log n) bits may be transmitted through a link in any

round. We also assume no shared memory and no other means of communication

between machines. When we say an algorithm solves a problem in x rounds, we

mean that x is the maximum number of rounds until termination of the algorithm,

over all n-vertex, m-edge graphs G.

In this model we are solving massive graph problems in which the vertices

of the graph are distributed among the k machines. We assume n ≥ k (typically

n � k). Initially the entire graph is not known by a single machine but rather

partitioned among the k machines in a “balanced” fashion so that the vertices

and/or edges are partitioned approximately evenly among the machines. There are

several ways of partitioning vertices, and we will consider a random partition, where

vertices and incident edges are randomly assigned to machines. Formally, each

vertex v of G is assigned independently and randomly to one of the k machines,

which we call the host machine of v. The host machine of v thereafter knows the

ID of v as well as the IDs and host machines of neighbors of v.
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In the remainder of this section we prove the existence of efficient algorithms

for computing heat kernel pagerank and computing local clusters in the k-machine

model. Our main tool is the Conversion Theorem of [47].

Define M as the message complexity , the worst case number of messages

sent in total during a run of the algorithm. Also define C as the communication

degree complexity , or the maximum number of messages sent or received by any

machine in any round of the algorithm. Then we use as a key tool the Conversion

Theorem as restated below.

Theorem 22 (Conversion Theorem [47]). Suppose there is an algorithm AC that

solves problem P in the CONGEST model for any n-vertex graph G with probability

at least 1 − ε in time TC(n). Further, let AC use message complexity M and

communication degree complexity C. Then there exists an algorithm Ak that solves

P for any n-vertex graph G with probability at least 1− ε in the k-machine model

in Õ
(
M
k2

+ TC(n)C
k

)
rounds with high probability.

In the forthcoming theorems, by “high probability” we mean with probability

at least 1− 1/n.

We note that the proof of the Conversion Theorem is constructive, describing

precisely how an algorithm Ak in the k-machine model simulates the algorithm AC

in the CONGEST model. We omit the simulation here but encourage the reader

to refer to the proof for implementation details.

By Theorem 18, we know that heat kernel pagerank values can be estimated

with ε-accuracy in O
(

log(ε−1)
log log(ε−1)

)
rounds. A total of O

(
16
ε3

log n
)

messages are

generated and propagated for at most O
(

log(ε−1)
log log(ε−1)

)
random walk steps, for a total

of O
(

log(ε−1) logn
ε3 log log(ε−1)

)
messages sent during a run of the algorithm. In the first random

walk step, each of the O
(

16
ε3

log n
)

messages may be passed to a neighbor of the
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seed vertex, so the message complexity is O
(

16
ε3

log n
)
. Therefore we arrive at the

following.

Theorem 23. There exists an algorithm that computes an ε-approximate heat

kernel pagerank for any n-vertex graph in the k-machine model with probability at

least 1− ε and runs in Õ
(

log(ε−1)
ε3k log log(ε−1)

( 1
k

+ 1)
)

rounds with high probability.

By Theorem 21, a local cluster about any seed vertex can be computed

in O
(

log(ε−1) logn
log log(ε−1)

+ 1
ε

log n
)

rounds. The message complexity for the heat kernel

pagerank phase is O
((

log(ε−1) logn
ε3 log log(ε−1)

)
log n

)
and for the sweep phase is O

(
1
ε

log n
)
,

for a total message complexity of O
(

log(ε−1) log2 n
ε3 log log(ε−1)

+ 1
ε

log n
)

. The communication

degree complexity is O
(

16
ε3

log n
)

for the heat kernel pagerank phase (as above),

and O(Γ), where Γ is the maximum degree in the graph, for the sweep phase. Thus

the communication degree complexity for the algorithm is the maximum of these

two. We therefore have the following result for the k-machine model.

Theorem 24. There exists an algorithm that computes a local cluster for any

n-vertex graph in the k-machine model with probability at least 1 − ε and runs

in Õ
(

log(ε−1)
ε3k2 log log(ε−1)

+ 1
εk2

+
(

log(ε−1)
k log log(ε−1)

+ 1
kε

)
max

{
1
ε3
,Γ
})

rounds, where Γ is the

maximum degree in the graph, with high probability.
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Chapter 7

Ranking on Evolving Graphs

Graphs are a powerful way of storing data with relational properties. By

studying the graph we are able to reason about quality of relationships and un-

derlying structure of the data. Over the course of this dissertation we have also

seen how to unearth local structure in data by examining local areas of the graph.

However, in studying the data in this way we are ignoring a potentially valuable

quality of data – how it changes over time.

In some respects, graph analysis is an examination of only a most recent

snapshot of the data. There are many cases, however, in which including a more

complete history of the data can illuminate qualities that may otherwise be hidden.

As an example, consider the Wikipedia graph in which links between articles are

represented by directed edges. This graph is far from fixed and its evolution tends

to correspond with major events in politics or pop culture. In 2011, for instance,

comedian and television host Stephen Colbert called upon his fans to edit the

Wikipedia article for “Bell” to reflect an erroneous recount of Paul Revere’s famous

ride as told by former Governor of Alaska, Sarah Palin [1]. After Wikipedia caught

wind of the calculated edits, they locked the page and reverted it to its state before

Colbert’s call. This rapid and arguably notable evolution in the graph would go

unseen without including history.

113
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In this chapter, we present an algorithm for detecting local changes that

occur over time. We measure changes in the graph as changes in rank with respect

to a fixed “seed” vertex. Our method uses random walks on evolving graphs, and

thus is adaptable to graphs which are large, heterogeneous, or noisy. Our method

also allows for varying definitions of passage of time. That is, the amount of time

for which a change should sustain is a parameter of the algorithm and allows for a

mechanism to control complexity. Specifically, we show that for evolving graphs

on n vertices with a history of length T , sampling O( T
τδ

log n) random walks is

enough to detect a change of size δ which sustains for a span of time τ with high

probability. Our methods can be used for detecting changes on scales both large

and small, and have potential for applications in the space of anomaly detection,

fraud detection, and cybersecurity among others.

7.1 Previous Work on Evolving Graphs

The idea of evolving or changing graphs is not new and has been explored in

a number of contexts. Nicosia et al. [72] extend classical graph theoretic definitions

and graph metrics to graphs that evolve over time and, in particular, define

connectedness and components in an evolving graph they refer to as time-varying.

In [4], the authors define a framework for an evolving graph in which in any

particular time step a random edge is removed and a random pair of vertices are

connected by an edge. In this paper they present algorithms for path connectivity

and minimum spanning trees for graphs in this framework. The authors of [90]

precisely define and analyze random walks with various policies on networks which

change over time, and similarly Avin et al. [8] investigate the cover time of random

walks on a graph in which an adversary is adding and removing edges over time.

Finally, Bahmani et al. [11] present a way to compute and update PageRank on an
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evolving graph.

7.2 Evolving Graphs

An evolving graph models data with both relational and temporal dynamics.

Specifically, edges will have clocks attached to them indicating their time of birth

and their time of death. We may alternatively allow for vertices to have separate

temporal dynamics if isolated vertices are allowed. For the purposes of this chapter,

we fix the vertex set and observe evolution on the edge set.

The evolution on the edge set is described by a list of contacts between

vertices along with the time of initial contact and the duration of the contact. That

is, edges are now defined as a four-tuple (v, v′, tb, td) which indicates that vertices v

and v′ were in contact from times tb to td. These times can be viewed as the birth

and death times of the edges, respectively. This brings us to our definition of a

continuous time evolving graph.

Definition 8. Fix a vertex set V and some history of observation [0, T ]. Then a

continuous time evolving graph is a list of contacts among the vertices where each

contact is of the form (v, v′, tb, td) for [tb, td] ⊆ [0, T ] and represents an edge (v, v′)

which exists exactly from time tb to td.

We can characterize an evolving graph by probing it at a specific moment

of time, ti. That is, for a time ti, the graph Gti is the graph on the fixed vertex set

and all edges (v, v′, tb, td) such that tb ≤ ti < td. Such a graph Gti is an aggregation

of contacts that existed at time ti, and a sequence of such graphs is a discrete

notion of the evolving graph given in Definition 8. With this, we give a precise

definition of a discrete time evolving graph.
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Definition 9. Fix a vertex set V . Then a discrete time evolving graph is a sequence

of graphs G = {Gti}Ki=0 at discrete times {ti ∈ [0, T ]}Ki=0.

We allow multiple contacts between a pair of vertices, so that we may have

edges (v, v′, tb, td), (v, v
′, t′b, t

′
d) present in the list of contacts (so long as the intervals

[tb, td], [t
′
b, t
′
d] do not overlap).

An important problem is the best way of discretizing an evolving graph. For

instance, as stated in Definition 9, we may identify a graph in the sequence to a

single time point ti. However, it may be more meaningful to identify a time window

ti := [ti, ti + ε] and aggregate contacts which are active within that time window as

a graph in the sequence. We assume this strategy has already been applied and

that the discretization of the evolving graph reflects this.

7.3 Dynamic Ranking With Random Walks

The goal of this chapter is to develop an algorithm for detecting large

changes on evolving graphs. For a fixed seed vertex v and a point of time ti, we let

ρit,v(vk) be the heat kernel pagerank value for vertex vk at time ti. We will use these

values to “score” the vertices. Then, if |ρit,v(vk)− ρ
j
t,s(vk)| > δ for some specified

δ > 0, we define a large change for vertex vk from time ti to time tj.

We will simplify notation for the purposes of this chapter and let ρi(v) be the

score of vertex v relative to a fixed seed vertex v′ at time ti, so that ρi(v) := ρit,v′(v).

We will always assume a fixed seed vertex and a fixed parameter t for the heat

kernel pagerank computations ρt,v′ so that we refer to the scores only by the graph

Gi and the vertex, v, being scored.

Now we precisely define the problem. Consider some lapse of time T . Our

goal is to detect a local evolution by detecting drastic changes of score that persist
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over some time window, τ := [t0, t
′] ⊆ [0, T ]. That is, we want to detect the

situation:

|ρi(v)− ρj(v)| > δ > 0, tj − ti ≥ τ, (7.1)

in which the score of vertex v changes by at least δ in over the course of τ time.

Let us return to the example of the Wikipedia article graph. Consider the

ranking of Wikipedia articles with respect to the fixed article for Brad Pitt. In

the time preceding the year 2005, we would expect Brad Pitt’s then-wife Jennifer

Aniston to have a high score, and thereby high rank. However, around and after

2005, when Brad Pitt and Angelina Jolie began dating, we will observe that Jolie’s

rank grows while Aniston’s rank drops. If we center the time window τ around the

year 2005, we should be able to see that for some j > i, ρi(aniston) > ρj(aniston)

while ρi(jolie) < ρj(jolie).

Using random walk-based algorithms for scoring is a natural choice as they

model the probability of a random walker reaching a particular vertex. Here we

assume that the time an average readers spends on Wikipedia is much smaller

than the average time for a change in the Wikipedia graph to occur, and that the

choice in evolving graph discretization reflects this. In the above scenario involving

Brad Pitt, Jennifer Aniston, and Angelina Jolie, we model the probability that a

Wikipedia user looking at Brad Pitt’s article and subsequently clicking through

links on Wikipedia at a particular moment in time lands on Aniston’s article or

Jolie’s article. Noticeable changes in the likelihood of landing at Aniston’s article

over time might indicate significant changes in link structure corresponding to fewer

connections between the newly-divorced couple, or even more connections between

the newly-wed couple.
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7.4 Detecting Big Changes on Evolving Graphs

In this section we prove the following statement showing that a sublinear

number of random walkers in the size of the vertex set are enough to capture

situation (7.1) with high probability, should it exist in the data. Note that the

required number of random walkers O( T
τδ

log n) also depends on the parameters δ,

the magnitude of change, and τ the period of time over which the change persists.

Lemma 10. For an evolving graph G and for a fixed seed vertex v′, assume that

for some times ti, tj with tj − ti ≥ τ > 0 the heat kernel pagerank score of a vertex

v changes by |ρi(v)− ρj(v)| > δ > 0. Then this change in score can be detected by

sampling R = O( T
τδ

log n) random walks in G with probability at least 1− o(1).

Proof. First, fix times ti, tj , the personalized starting distribution s = χv′ , the heat

kernel pagerank parameter t, and the evolving vertex v. As we are using heat

kernel pagerank to score vertices, we recall some ideas presented in the proof of

Theorem 1 for computing heat kernel pagerank with random walks. Specifically,

we consider launching a number of random walkers from the seed vertex v′ where

the length of the random walk k is drawn with probability pk = e−t t
k

k!
. For a graph

Gi, define the indicator random variable Xi to indicate that a random walk in

Gi ends at vertex v, and similarly for Xj. Then the expectation of Xi is exactly

E(Xi) = ρi(v) (and similarly E(Xj) = ρj(v)). Define X = Xi − Xj. Then we

have that E(X) = ρi(v) − ρj(v) > δ. Now, let X be R1 independent copies of

X: X =
R1∑
r=1

X and note that 1
R1
E(X) = E(X). Set R1 = 3

ε2δ
log n. Then, by the
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multiplicative Chernoff bounds:

Pr

(
1

R1

X ≥ (1 + ε)E(X)

)
= Pr (X ≥ (1 + ε)E(X))

≤ exp
(
−(ε2/3)R1E(X)

)
≤ exp

(
−(ε2δ/3)R1

)
≤ n−1.

Similarly, we have that

Pr

(
1

R1

X ≤ (1− ε)E(X)

)
≤ exp

(
−(ε2/2)R1E(X)

)
≤ n−3/2.

Now we address how to sample times ti, tj. Assume we are drawing a time

ti uniformly at random from the interval [0, T ]. Then the probability of sampling

from a window of size τ is τ
T

. For R2 independent trials, let Xr = 1 if the rth

sample is in the appropriate window and we count these by X =
R2∑
r=1

Xr. Then

the expected number of samples in the appropriate window is R2
τ
T

. In fact the

expected number of samples in all windows of size τ is R2
τ
T

. Again, we can use the

multiplicative Chernoff bounds to show that by choosing R2 ≥ 2T
ε2τ

log(ε−1),

Pr (X ≤ (1− ε)E(X)) = (1− ε)
(
2ε−2 log(ε−1)

)
≤ ε.

We briefly address the problem of samples being “too clustered” about a

single moment of time so as to not detect a change, even if we have enough samples

in the particular time window. This corresponds to all of the expected number

of samples lying in too small a radius, which we call τ0 < τ . We show that this
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probability is small, especially as we increase our error tolerance, ε.

Pr(∀(i, j), |tj − ti| ≤ τ0)

= 1− Pr(|tj − ti| ≥ τ0 for some (i, j))

= 1−
(
R2

τ
T

2

)(
τ − 2τ0

τ

)
≤ 1−

(
1− 2

τ0

τ

) (
2ε−4 log2(ε−1)− ε−2 log(ε−1)

)
.

Then the total random walk samples (in terms of δ, T, τ, n) are R = R1R2 =

O( T
τδ

log n).

This suggests an algorithm for detecting changes of size at least δ which

persist for at least τ . Namely, we sample from the evolving graph G for R2 times,

giving a collection of R2 graphs Gti . Then, in each sampled graph we simulate R1

random walkers from the seed vertex in order to compute heat kernel pagerank

scores. We outline the algorithm DynamicRanking below.

As mentioned above, the key to Lemma 10 is the control allowed with

the parameter δ, and especially the parameter τ , as we explain in the following

illustrative examples.

Example. (Brangelina.) We first revisit the case of detecting the divorce of Brad

Pitt and Jennifer Aniston and the marriage of Brad Pitt and Angelina Jolie. In

this case, the particular event occurred in 2005 and persisted well beyond that1.

Therefore, we may set our τ parameter to be rather large, resulting in the need

for fewer samples. Then we simply need one sample before the year 2005 and one

sample after 2005 to detect the change.

1We might anticipate further changes concerning the recent divorce of Brad Pitt and Angelina
Jolie.
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Algorithm 13. DynamicRanking(G, v′, t, v, δ, τ, ε)

input: evolving graph G = {Gt}Tt=0, seed vertex v′ ∈ V , heat kernel pagerank
parameter t ∈ R+, evolving vertex v ∈ V , magnitude of change δ > 0, time of
sustained change τ , error parameter 0 < ε < 1.
output: set of times (ti, tj) such that |ρi(v)− ρj(v)| > δ > 0, tj − ti ≥ τ .

1: R1 ← 3
ε2δ

log n
2: R2 ← 2T

ε2τ
log(ε−1)

3: for l = 1 to R2 do
4: sample time tl from [0, T ] uniformly at random
5: for R1 iterations do
6: Start
7: simulate a P random walk from vertex v′ where k steps are taken

with probability e−t t
k

k!

8: let v be the last vertex visited in the walk
9: ρl(v)← ρ(v) + 1/R1

10: End
11: end for
12: end for
13: initialize an empty list times
14: for all pairs i, j do
15: if |ρi(v)− ρj(v)| > δ then
16: add pair (ti, tj) to list times
17: end if
18: end for
19: return times
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Example. (Colbert.) As a reminder, in 2011, Stephen Colbert called upon his fans

to edit the Wikipedia “Bell” article to reflect an erroneous recount of Paul Revere’s

famous ride told by Sarah Palin [1]. After Wikipedia caught wind of the calculated

edits, they locked the page and reverted it to its state before Colbert’s call. In

this case we are concerned with detecting rapid changes in a short period of time.

Therefore, we would set τ to be small, resulting in more samples and more, smaller

windows of time. Then we would see the changes in the window surrounding the

event that are distinct from “normal” evolutionary changes in other windows.

Finally we note that for δ > ε we can use the guarantees of the heat kernel

pagerank approximation algorithm ApproxHKPRseed and replace the random walk

procedure above with the line:

ρl(v)← ApproxHKPRseed(Gl, t, v
′, ε)(v)

and we have the following corollary at our disposal.

Corollary 4. For an evolving graph G and for a fixed seed vertex v′, assume that

for some times ti, tj with tj− ti ≥ τ > 0 the heat kernel pagerank score of a vertex v

changes by |ρi(v)− ρj(v)| > δ > 0. Then this change in score can be detected using

heat kernel pagerank random walks with no more than O (log(ε−1)/ log log(ε−1))

steps for each random walker. Using personalized PageRank requires no more than

O
(

log 1
(1−α)

(4/ε)
)

steps per random walker, where α is the restart constant.

The result on heat kernel pagerank follows from the results of Chapter 2

and the result for personalized PageRank is due to [17].
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