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Abstract
Urban transportation systems are multimodal, sociotechnical systems; however, while their

multimodal aspect has received extensive attention in recent literature on multiplex net-

works, their sociotechnical aspect has been largely neglected. We present the first study of

an urban transportation system using multiplex network analysis and validated Origin-Des-

tination travel demand, with Riyadh’s planned metro as a case study. We develop methods

for analyzing the impact of additional transportation layers on existing dynamics, and show

that demand structure plays key quantitative and qualitative roles. There exist fundamental

geometrical limits to the metro’s impact on traffic dynamics, and the bulk of environmental

accrue at metro speeds only slightly faster than those planned. We develop a simple model

for informing the use of additional, “feeder” layers to maximize reductions in global conges-

tion. Our techniques are computationally practical, easily extensible to arbitrary transporta-

tion layers with complex transfer logic, and implementable in open-source software.

Introduction

Multiplex network analysis [1–11] has emerged as an important method for extracting system-
level insights frommultimodal transportation systems [12–15]. Existing studies have treated
such systems with an exclusive focus on the topology and geometry of transportation infra-
structure, analyzing linkages between road networks, subway maps, bus routes, commuter
train lines, or, at a much larger scale, air traffic networks. However, transportation systems are
intrinsically sociotechnical, and their behavior is dependent on the interaction between infra-
structure and user behavior–especially the structured pattern of user demand.

A standard summary of such demand is the Origin-Destination (OD) matrix, whose entries
give the number of travelers between each possible pairing of origin and destination in the city.
Until recently, ODmatrices were typically prohibitively difficult to construct. As consequence,
many existing system-level models of urban transportationmake an a priori assumption on
the structure of the ODmatrix in the absence of data. Typical assumptions are that the OD
matrix is uniformly and randomly generated in one [16] or both [17] axes, or that the matrix is
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uniform and fixed [12, 15]. However, the advent of mobile telephony has enabled passive col-
lection of massive quantities of human mobile traces, which may be used to construct reliable,
validated ODmatrices [18–20]. The availability of such data has thereby enabled scalable,
data-driven, sociotechnical analysis of urban transportation systems [21–26].

Such analysis contributes two layers of realism when compared to uniform and stochastic
ODmodels. First, system-level indicators such as travel time distributions can be more accu-
rately calculated by incorporating basic facts of urban geometry, especially the prefgerence of
commuters to live closer to their workplace than would be predicted by uniform random
chance [27]. Second, reliable traffic demand data enables the modeling of network congestion,
which can dramatically alter travel time estimates for routes that use popular or under-capaci-
tated network links.While congestion is a fundamental fact of modern transportation, it is cur-
rently discussed only theoretically in multiplex studies [12, 28].

Our contribution is to use empirical OD demand and the tools of multiplex network analy-
sis in the systems-level study of urban transportation under congested travel. As we show, the
incorporation of measured OD demand and congestion effects substantially alters both the
quantitative metrics and qualitative behavior of multiplex systems. We focus on two major
questions that may arise in planning contexts:

1. How does the introduction of a fully newmode of transportation impact commuting flows
at the city level?

2. How can planners prioritize which areas and routes to target for adoption of the metro sys-
tem, for example by providing “feeder” buses?

Our case study is the city of Riyadh, where the construction of a brand newmetro system cur-
rently represents one of the largest urban planning projects in the world. We use data on
Riyadh’s road network structure, the planned metro network, and OD demand for morning
commutes derived from CDR data provided by a major phone service operator. We conduct all
analyses in Python, for which we have developed a multiplexmodule for multiplex trans-
portation analysis with ODmatrices.

In order to focus on methodology in addressing these questions, we simplify the multiplex
model by choosing not to model waiting times [15] or limited metro capacity. We also make
the simplifying assumption that travelers can and do drive both to and frommetro stops,
rather than, e.g. walking or bicycling.While indeed a simplification, this assumption is rela-
tively realistic in Riyadh, where a lack of pedestrian infrastructure [29] and the rising popular-
ity of ride-hailing servicesmake walking and bicycling unusual. For example, a 1989 study
estimates that just 2% of Riyadh citizens walked distances of more than 1km on a daily basis
[30], a figure which is likely even smaller today. However, in cities where alternative transpor-
tation is more widely used, realistic modelingmay require additional multiplex layers for walk-
ing, bicycling, or additional public transit.

Materials and Methods

From Travel Demand to Network Flows

We constructedOrigin-Destination (OD) matrices for the network using Call Detail Record
(CDR) data representing 2.2 million in an area comprising a population of 5.8 million. To
model the network at its most critical time, the ODmatrix used corresponds to morning peak
commuting flows between 7:30am and 8:30am. To assign routes based on the ODmatrix, we
performed a version of Iterative Traffic Assignment. We divided commuters into six groups,
the first four containing a uniformly-distributed 20% of total flows, and last two containing
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10%.We chose this grouping, rather than the traditional [40%, 30%, 20%, 10%], in order to
avoid unrealistic crowding around metro stations for high metro speeds. The first group of
20% was allowed to choose shortest paths through the network based on estimated free-flow
travel times. Travel times for each segment were then updated in light of congestion according
to the standard BPR formula

t�e ¼ te 1þ A
je

ce

� �B� �

; ð1Þ

where te is the free flow time on segment e, je is the flow through e on the current iteration, and
ce is the capacity of the segment.A and B are tunable parameters; following standard practice,
we set A = 0.15 and B = 4. Since the metro is assumed uncapacitated, travel time on those seg-
ments is always assumed to be equal to the free flow speed.We then allowed the next group to
choose shortest paths through the network based on these updated edge costs, and continued
this process until all groups were assigned.

In order to analyze the dependence of multiplex dynamics on the metro layer, we performed
the above assignment for varyingmetro speeds. Following [12], we model the metro as a net-
work with mean speed vc/β, where β is a variable parameter and vc = 38km/hr is the mean travel
speed on the street layer under congestion in the absence of a metro layer. Lower values of β
correspond to faster metros. For example, at β = 0.5, the metro runs at 76km/hr, which is twice
the mean speed of the street layer without a metro. Based on technical specifications for Riyadh
and previous measurements of operational metro systems [31], we estimate an average effective
metro speed of 47km/h, which corresponds to β = 38/47� 0.8.

Validation of Assigned Flows

To ensure the realism of our modeled flows, we compared our travel time estimates to those
from GoogleMaps. Using a web crawler, we queried GoogleMaps for travel times for the top
679,085 OD pairs by flow volume under free flow and congested scenarios. The comparison
between the ITA-estimated travel times and those of Google are shown in Fig 1. We then scaled
free-flow street speeds to more closely match without-traffic travel-time estimates based on
GoogleMaps, and used these scaled speeds in subsequent computation. While the resulting
match is closer for free flow estimates than congested estimates, we found both to be acceptable
for modeling purposes.

Results

Assigned Flows

Fig 2 shows the spatial distribution of flows for varying levels of β. At each level of β, we have
measured the empirical speed ratio α between the metro and the streets after routes have been
assigned through ITA. While β is a modeling parameter and can be viewed as the (mean) ratio
of “posted speed limits,” α is a systemmeasurement and reflects actual speeds experienceddue
to congestion. The quantity α therefore estimates, on average, how attractive the metro might
be to commuters given realistic congestion conditions, with higher values indicating greater
adoption appeal.

For high β, the metro is not substantially faster than the congested street layer, and adoption
is very low. Our estimated realistic β = 0.8 corresponds to an empirical speed ratio of α = 1.7—
the metro travels significantly faster than the congested streets, resulting in significant adoption
of the metro layer. As β decreases, the benefits of using the metro increase, and progressively
more travelers use the metro for progressively larger portions of their journeys, reducing
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Fig 1. Validation of assigned flows. Our estimated travel times agree quite closely with Google Maps

estimates in the free flow case (left). Some curvature is evident in the congested case, suggesting a small

amount of systematic disagreement between models.

doi:10.1371/journal.pone.0161738.g001

Fig 2. Multiplex flows for varying metro speeds. Jm is the percentage of all person-kilometers which are

traveled through the metro network. For slow speeds (higher β), congestion is concentrated along major

thoroughfares in the downtown area in the center-west. The introduction of the metro at β = 1.4 has small

impact on flows, handling just 2% of total. As effective speed increases, progressively more flow passes

through the metro. Simultaneously, global congestion is reduced, but increases locally near key metro

access points under very high speeds. Maps produced using Python’s networkx package [32] v. 1.10,

using road network data provided by the Arriyadh Development Authority (ADA).

doi:10.1371/journal.pone.0161738.g002
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congestion in most areas. As previously observed, however, congestion is not just reduced but
also dispersed: key roads used to access the metro may becomemore congested than they were
before the metro’s introduction [12].

For very low β, we observe the existence of a limiting behavior, in which 58% of total flow
occurs on the metro network. Because it persists under further increases in metro speed, the
limiting distribution reflects the fundamental geometrical relationship between the metro net-
work and the street network: compared to the street network, the metro network’s spatial reach
is limited. The remaining 42% of flow is irreducible by increases in metro speed, and reflects
flow due to travel to and frommetro stops, or trips for which it would take longer to drive to
and frommetro stops than it would to drive directly to the destination.

Quantifying Multiplex Flow Effects

Fig 3 summarizes the behavior of flows under increasingmetro speeds.Metro usage increases
monotonically with the relative speed α of the metro to the street layer; however, this increase
approaches an asymptotic boundary of Jm = 58%. The impact on travel times is more complex.
Quantitatively, mean travel times reducemonotonically with metro speed down to a minimum

Fig 3. Behavior of multiplex flows with variable metro speed. (a) For very high speed ratios, proportional flow through the metro approaches

a limiting value of 58%, reflecting the partial geographic extent of the metro network. (b) As metro speed increases, total travel times decrease

monotonically. However, most of the reduction in time spent on the road is achieved for relatively slow metro speeds, indicating that

environmental returns to very fast metro schemes may be limited. (c) Dependence of travel time distributions on metro speed. A small number of

travelers have very long commutes even for low β, corresponding to origins or destinations that are far removed from the metro network. (d)

Increasing the metro speed also changes the qualitative structure of travel time distributions, as the metro smooths out heterogeneities

introduced by empirical OD travel demand by linking distant areas of the city.

doi:10.1371/journal.pone.0161738.g003
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of 43% of their original value. However, the amount of time spent driving rapidly levels off: over
85% of the total reduction in time spent on the road is realized when β = 0.6, which is 33% faster
than our estimated realistic β = 0.8. The speed β = 0.6 also marks the speed at whichmaximum
reduction in time spent in congestion is achieved. These two factors are of substantial interest
for mitigating the environmental impact of urban transit. This result suggests that metro speeds
slightly faster than currently planned could produce positive environmental impact, but that
there may be diminishing returns to increasingmetro speeds beyond that. Determining the pre-
cise rate at which returns diminish would require a more detailed transportationmodel.

Metro speed impacts not only mean travel times, but also their standardized (qualitative)
distribution. This qualitative shift reflects the fact that the fast metro fundamentally alters the
geometrical structure of the urban transportation network, closely connecting areas that were
previously remote.

Prioritizing Transportation Adoption

The introduction of the metro network tends to reduce global congestion, but also disperse
congestion to the periphery for sufficiently high speeds. In practice, cities may be able to further
reduce congestion by operating “feeder” networks—such as buses—with the goal of making
the main network more accessible to residents throughout the city. Implementing such a net-
work may require substantial resources, however, underscoring the need for efficiency. The
multiplex model can also shed light on how areas within the city can be prioritized for such ser-
vice, with an eye toward reducing total congestion.
QuantifyingCongestion Contributions. Let j be vector whose eth component is the flow

along edge e under a given assignment of flows. Then, the total time lost to congestion under
the assignment j is

TcðjÞ ¼
X

e2E

jeteðjeÞ ; ð2Þ

where te ¼ t�e � te is the time lost to congestion on a given edge as a function of flow through
that edge.We can quantify the impact of small changes in flow on Tc(j) using the gradient of
Tc, whose eth component is

½rTcðjÞ�e ¼ teðjeÞ þ je
@te

@j je

:

�
�
�
� ð3Þ

The vector −rTc(j) may be interpreted as the steepest descent direction in the unconstrained
minimization of Tc(j).

To analyze the impact of changes in flow along a route, let p be a path (sequence of edges)
through G and let ep be the vector whose eth component is 1 iff e 2 p. Then, the quantity

Dp ¼ � rTcðjÞ � ep ð4Þ

approximates the impact of removing a single unit of flow from p on the global congestion
functionTc. Let Δod = Δp if p is the shortest path between origin o and destination d.
Congestion-BasedPrioritization. Importantly, the distribution Δod is spatially structured

and highly heterogeneous. Fig 4 shows the spatial distribution of Do ¼
1

J

P
djodDod—the mean

congestion contribution of travelers from origin o—and Dd ¼
1

J

P
ojodDod—the mean conges-

tion contribution of travelers to d. It is clear that there are specific regions that make large con-
tributions to global congestion, such as origins in the residential area in the southwest and
destinations in the downtown area in the center-west. Furthermore, this spatial structure per-
sists for all levels of β, though the magnitude of the differences vary.

Demand and Congestion in Multiplex Transportation Networks
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The persistent, heterogeneous distribution of Δod presents an opportunity to efficiently
reduce global congestion by prioritizing these high-impact origins and destinations for public
transportation access. To model such prioritization, we computed the congestion impact Δod

for each route, and then deleted the flow in the ODmatrix along the 50,000 routes with the
highest values of Δod. The deleted flow accounts for 15% of the total represented in the data.
This deletionmodels perfect adoption of public transportation by these congestion contribu-
tors. We then performed ITA to assign the modified travel demand to the road network. As a
comparative baseline, we also deleted 15% of flow from the ODmatrix at random, and per-
formed ITA. We repeated this procedure at varyingmetro speeds as measured by β.

The results in Fig 5 show that the targeted approach yields substantial time-savings over the
uniform approach. In aggregate, travelers experience two kinds of reductions in travel time.
First, adoption targeted to reduce congestion leads to substantial reductions in travel time lost
to congestion. Secondly, reductions in congestion along key routes makes these routes more
attractive to some travelers, whomight otherwise have chosen a less-direct route to avoid traf-
fic. Such travelers may therefore experience a reduction in free flow travel time as well.

These results indicate that, regardless of the speed of the metro, prioritizing areas with high
Δod for connecting public transportation service could yield significant benefits for global con-
gestion. Indeed, considering the estimated realistic case β = 0.8, the one minute difference in
mean travel time between uniform and targeted strategies reflects 2.2 million person-minutes—
or 4 person-years—saved everymorning, and again every afternoon. The reduction in time
spent specifically spent in congestion reflects 3.5 fewer person-years spent in congestion each
day, a substantial boon for controlling environmental impact.We emphasize that these

Fig 4. Spatial heterogeneity in contributions to global congestion. The congestion impact Δod is

aggregated over o (top) and d (bottom). The aggregates Δo and Δd can be interpreted as the expected

impact of removing one driver who lives (resp. works) at a location from the streets, without knowing the

details of their route. Importantly, Δod is highly unevenly distributed throughout the city, indicating

opportunities to prioritize those who live in the southwest and northeast, and those who work downtown. The

heterogeneity is reduced by faster metro speeds, but does not vanish, and even increases in the limiting

case of very low β. Maps produced with Python’s networkx package [32] v. 1.10, using road network data

provided by the Arriyadh Development Authority (ADA).

doi:10.1371/journal.pone.0161738.g004
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reductions are in addition to the reduced congestion experiencedby the 15% of flow routed
through public transit, who have been excluded from the analysis but would also benefit from
improved traffic conditions.

Discussion

It is striking that, even for an arbitrarily fast, uncapacitated metro, mean travel times decrease
by just 43%. This is a relatively small drop considering that the metro in the limiting case effec-
tively serves as a teleporter. This phenomenon is due to the spatially-organized, partially-opti-
mal structure of travel demand. A shortest-path-seeking traveler will use the metro system if
and only if the metro offers an improvement on driving directly there. In a model with uniform
demand, commuters are modeled as choosing home and work locations without any prefer-
ences about how long they spend commuting. These models therefore result in a large number
of very long trips. The longer a traveler’s commuting time, the more likely that the metro will
offer a substantial improvement. In contrast, real commuters generally have a strong preference
for a shorter commute. Thus, the average (network) distance between home and work in Riyadh
under a uniform demandmodel is 22.3km, but is barely half that—11.6km—under observed
demand. For a realistic commuter, it is therefore substantially less likely that the metro offers a
substantial improvement in commuting time, leading to dampened effects.Modeling with
observed travel demand thus changes both the quantitative and qualitative multiplex dynamics.

While increases in metro speed in our model lead to steady decreases in total travel time,
the environmental benefits of extreme reduction are limited, as most of the benefit is achieved
for metro speeds around β = 0.6, which is only slightly faster than our estimated realistic speed.
This corresponds to an adoption level of Jm = 39%, which is just two thirds the adoption rate of
a “teleporter” metro with very low β. This finding suggests that extreme levels of adoption may
have fewer environmental benefits than might otherwise be expected.While more sophisti-
cated modeling is necessary, it is intriguing that some subways may already be operating at
speeds close to optimal for mitigating the impact of commuting traffic on emissions.

We have demonstrated a modeling and planning framework for a simplified urban trans-
portationmodel consisting only of automobiles and the metro system. These methods are

Fig 5. Performance evaluation of targeting strategies based onΔod for varying metro speeds β. The

targeted approach achieves substantially shorter travel times, including large reductions in time lost to

congestion. These benefits are persistent across metro speed, indicating that a targeted approach is

beneficial in all cases.

doi:10.1371/journal.pone.0161738.g005
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readily generalizable to more complex cases. For example, it would be possible to add layers for
walking, buses, or other transportationmodes. It is also possible to encode complex transfer
logic by controlling the directionality of transfer edges betweenmultiplex layers. While these
systems posemore complex questions and therefore invite more complex analysis, the underly-
ing methods and software can remain the same.
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