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Abstract

Neutrophils constitute the largest class of leukocytes and are the front line of

cellular immune defense. They are able to sense and migrate up concentration gradients

of chemoattractants in search of primary sites of inflammation in a process termed

chemotaxis. Chemoattractants include formylated peptides, complement factors, and

various chemokines. Each chemoattractant binds to a specific receptor that activates a

number of responses including chemotaxis. While there is much information on the

molecular interactions and signaling pathways that respond to these stimuli, how the

pathways process multiple signals to effect migration in the appropriate direction is not

understood. The primary motivation behind the work presented here is to understand the

engineering rules by which neutrophils combine multiple signals to choose a direction to

move and efficiently locate a target in a complex environment.

For this purpose, we have developed an assay system and novel image processing

techniques, along with a modeling framework in which to compare the results. We used

the micropipette assay for generating the gradients and tracked changes in cell densities

over time. This represents the first use of the micropipette assay toward studies of

neutrophil chemotaxis in multiple chemoattractant gradients. The modeling framework is

based on an Ornstein-Uhlenbeck (OU) process which has been successfully used to

describe neutrophil migration paths in uniform chemoattractant concentrations. We

modified the OU process by including a term to describe chemotactic bias resulting from

chemoattractant gradients. We assumed that this bias is the result of a vector sum of

multiple gradients as sensed by neutrophils through their receptors. In developing the



model we compared experimental results and applied these results toward parameter

estimation and model validation.

Using this framework, we were able to relate experimentally observable cell

migration paths to the physical principles involved in receptor-ligand binding. Our main

results quantify signal processing and prioritization based on binding parameters such as

receptor quantities and dissociation constants. Overall, this dissertation represents a tight

coupling of experimental and modeling techniques toward understanding how neutrophil

chemotaxis has been engineered by evolution.

Professor Adam Arkin, Graduate Adviser
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Chapter 1

Background on Neutrophil Chemotaxis

1.1 Introduction

Chemotaxis is the directed movement of cells in response to a concentration

gradient of a chemoattractant and plays an important role in many cellular processes

including development, wound healing, angiogenesis, immunity, and metastasis. It

enables amoebae of Dictyostelium discoideum to hunt bacterial prey or aggregate into

multicellular fruiting bodies under starvation conditions. It is also used in the mating

response of the budding yeast Saccharomyces cerevisiae. One area of particular

importance in humans is the neutrophil chemotactic response to chemical signals released

by invading bacteria or damaged cells. Neutrophils, the most abundant of the phagocytes

in the innate immune system, rapidly attach to activated endothelial cells near sites of

infection and migrate through the endothelial layer in a process termed diapedesis. Once

in the tissue, neutrophils process and respond to a variety of diffusing and adherent

signals to hunt and phagocytose their targets. The mechanisms by which neutrophils

perform these functions likely involve hundreds of proteins and small molecules and

thousands of reactions. The development and coordination of these reaction events has

been engineered by evolution over millions of years to produce a robust response that is

critical to host immune protection. Reverse engineering these mechanisms to gain a

detailed understanding of how neutrophils perform their functions will require a wide

range of biophysical, biochemical, and computational techniques. This dissertation



presents a modeling framework incorporating many different techniques toward reverse

engineering the mechanisms that enable neutrophils to correctly process and respond to

multiple chemoattractant gradients.

Before developing the modeling framework, we present in this chapter a concise

review of the experiments and models that have moved us closer to an engineering level

understanding of neutrophil chemotaxis. We begin with a brief discussion of the main

observations and primary components of the chemotaxis network. We then review the

experiments that have identified key players in the network and have highlighted their

roles in regulating cell polarity, a requirement for chemotaxis. We follow this review

with a presentation of models of signal transduction, focusing on how these models have

assisted in uncovering the mechanistic details. We then discuss phenomenological

models and the link between these high level descriptions of chemotaxis and the lower

level biochemistry. Finally, we turn to the work presented in this dissertation, discussing

how it advances an engineering level understanding of neutrophil chemotaxis. The main

questions that we address include: What are the control laws that allow a cell to use

gradient information to find a target? For multiple signals representing different target

priorities, what are the optimal ways a cell can read these signals to efficiently find the

target in complex environment? How do the molecular networks of signal transduction

components implement a controller that is necessary and optimal?

1.2 Main Observations

Figure 1.1 displays a polarized cell migrating in response to a chemoattractant. In

their response, neutrophils develop a distinctive polarized morphology with a wide actin



Figure 1.1: A polarized neutrophil-differentiated HL-60 cell migrating in the direction of
the lower right corner of the frame.

rich leading edge, or lamellipod, in the front and a contractile tail, or uropod, in the back.

In a gradient of chemoattractant, a neutrophil aligns its polarity with the gradient; if the

concentration is uniform, the polarity is oriented in a random direction. This response is

initiated by binding of chemoattractant molecules to receptors embedded in the cell

membrane and displayed on the surface. Chemoattractants include formylated peptides

such as fMLP, secreted by infecting bacteria, complement factors such as C5a, which

opsonize foreign particles, and chemokines such as interleukin-8 (IL-8) and the lipid

leukotriene B4 (LTB4), which are secreted by activated host cells. These signals play

different roles in guiding neutrophils through the blood vessel wall and to their targets.

Each chemoattractant binds to a more or less specific receptor that activates a variety of

responses including chemotaxis. These receptors all fall into an important category of

receptors known as G protein-coupled receptors (GPCRs). It is estimated that 3% of all

genes in the human genome encode GPCRs [Bourne and Meng, 2000) and a large



majority of all pharmaceuticals on the market today target GPCRs in some way

[Lefkowitz, 2004].

Two common traits shared by all GPCRs are that they consist of 7 helical

transmembrane regions and they bind to and activate heterotrimeric G proteins. G

proteins consist of an alpha, a beta, and a gamma subunit. In the inactive form, the alpha

subunit binds a molecule of the nucleotide guanosine diphosphate (GDP). In response to

binding of chemoattractant, a conformational change is induced in the receptor that

propagates through to the alpha subunit and causes it to release the GDP. The GDP is

quickly replaced by a molecule of guanosine triphosphate (GTP) which is present in

much higher concentrations inside the cell. The receptor thus acts as a guanosine

nucleotide exchange factor (GEF). The G protein is subsequently released from the

GPCR and dissociates into alpha and beta-gamma subunits which then activate a wide

variety of downstream effectors. The signal is shut off when the alpha subunit (a GTPase)

cleaves the GTP into GDP and phosphate and rebinds to the beta-gamma subunit and

GPCR, thus completing the cycle. Several of the downstream effectors activated by the

alpha and beta-gamma subunits propagate signals that converge on the actin cytoskeleton,

inducing polarity and regulating cell migration and chemotaxis.

Observations made almost 30 years ago by Sally Zigmond showed that

neutrophils could orient correctly in gradients as shallow as a 1% difference in

chemoattractant concentration across their bodies [Zigmond, 1977]. Optimal gradient

detection occurs when the mean concentration is approximately equal to the receptor

dissociation constant. Further observations showed that correct orientation occurs over a

range of concentrations that correspond to binding to a saturable receptor [Zigmond and



Sullivan, 1979]. The level of orientation was observed to be proportional to the difference

in the number of bound receptors across the cell after correcting for receptor down

regulation [Zigmond, 1981]. Once polarized, neutrophils display an increased sensitivity

in the front and a decreased sensitivity in the back [Zigmond et al., 1981]. Rather than

reforming the leading edge when exposed to a change in the direction of the gradient,

neutrophils migrate in wide U-turns to point their existing leading edge up the gradient.

These observations led to many questions that are still being explored today: How does a

neutrophil transduce a shallow external chemoattractant gradient into a dramatic internal

gradient of actin and myosin? How does a neutrophil maintain a sensitive front and an

insensitive back and still manage to detect small changes in the direction of a

chemoattractant gradient?

1.3 The Chemotaxis Network

Cell migration has been described as a continuous cycle of three main occurrences

[Alberts et al., 2002]. First, actin polymerization against the membrane at the leading

edge of the cell causes a lamellipodial protrusion that extends the cell forward. Second,

adhesive contacts are formed between the substratum and the newly extended lamellipod.

Finally, contraction of myosin II along actin filaments at the trailing edge pulls the cell

forward and releases focal adhesions from the back of the cell. These events are tightly

coordinated and highly regulated, enabling neutrophils to migrate rapidly to sites of

infection.

Recent experiments using human neutrophils, Dictyostelium discoideum, and HL

60s, a myeloid leukemia that can be differentiated into a neutrophil-like state [Collins et



al., 1977; Hauert et al., 2002], have identified aspects of the chemotaxis network that are

responsible for pointing cells in the appropriate direction and regulating their motility.

We present here a brief review of the key experiments that have highlighted these

components. The interested reader is referred to a number of excellent reviews for more

detailed information [Devreotes and Zigmond, 1988; Parent and Devreotes, 1999; Rickert

et al., 2000; Devreotes and Janetopoulos, 2003; Ridley et al., 2003].

What are the initial components of the chemotaxis network that cause

polarization? Chemoattractant receptors and G proteins tagged with green fluorescent

protein (GFP) maintain a uniform distribution around the cell during chemotaxis [Xiao et

al., 1997; Servant et al., 1999]. Several proteins containing pleckstrin homology (PH)

domains show strong asymmetric localization during chemotaxis [Parent et al., 1998;

Meili et al., 1999; Servant et al., 2000]. These proteins reside in the cytoplasm of

unstimulated cells and are transiently localized to the inner leaflet of the plasma

membrane in cells exposed to uniform chemoattractant concentrations. Once these

transients have decayed, or in response to stimulation with chemoattractant gradients,

these proteins preferentially localize to the leading edge [Postma et al., 2003]. This

localization is independent of actin polymerization since it still occurs in cells exposed to

latrunculin-B, a toxin that sequesters monomeric actin [Parent et al., 1998; Servant et al.,

2000]. Localization does depend, however, on the activity of one or more Rho GTPases

[Servant et al., 2000]. The Rho GTPases Rac, Cdc42, and Rho are important mediators of

signaling to the actin cytoskeleton [Xu et al., 2003]. It also depends on the activity of

phosphatidylinositol (PI) 3’ kinase (PI3K) as indicated by studies using pišk-null D.

dictyostelium mutants or the PI3K inhibitor LY294002 [Servant et al., 2000; Funamoto et

º
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al., 2001]. Activation of PI3K leads to production of the phospholipid PI 3,4,5-

triphosphate (PIP3) in the plasma membrane, which is bound by PH domains. Thus PI3K

and its lipid product appear to be the initial components of the chemotaxis network that

display polarity. But how is this polarity generated and how is it regulated?

Evidence suggests that the reciprocal activity of PI3K and the PIP3 phosphatase,

PTEN, regulate polarization of PIP3 [Iijima and Devreotes, 2002; Funamoto et al., 2002;

Iijima et al., 2004; Janetopoulos et al., 2004; Li et al., 2005]. In an unstimulated cell,

PTEN is uniformly distributed on the inner leaflet of the plasma membrane, bound to

PIP2 through an N-terminal binding motif, while PI3K resides in the cytoplasm. In

response to a chemoattractant gradient, PTEN localizes to the back and sides of the cell

where it inhibits production of PIP3, while PI3K moves to the leading edge and produces

PIP3. The resulting polarization of PIP3 is further amplified by a positive feedback loop

that acts through PI3K and one or more Rho GTPases [Weiner et al., 2002]. The

distribution and activity of PTEN are regulated by RhoA and its downstream effector

RhoA-associated kinase (Rock) [Li et al., 2005], which have been shown to regulate

myosin contraction at the trailing edge of migrating cells [Xu et al., 2003]. But what

causes PI3K and PTEN and their mediators to develop this reciprocal activity?

The data indicate that there are divergent, opposing “frontness” and “backness”

signals that are generated in chemotactic cells in response to a chemoattractant gradient

[Xu et al., 2003]. The frontness signal acts through the Gi G protein, PI3K and PIP3, Rac

and F-actin, and the backness signal acts through the G12 and G13 G proteins, Rho,

Rock, and myosin II. The protrusive and contractive structures are functionally

incompatible which causes them to segregate into separate domains in the front and back



of the cells, respectively. The stability of the leading edge is regulated by Cdc42

[Srinivasan et al., 2003]. Inhibition of PI3K and actin polymerization [Wang et al., 2002],

or Rho and Rock activity [Xu et al., 2003] disrupts the segregation of these two signaling

pathways, leading to cells that cannot polarize as effectively and migrate in jerky

trajectories.

Multiple chemoattractant gradients

In vivo, neutrophils are often confronted with complex and conflicting arrays of

chemoattractant signals emanating from endothelial cells lining the capillary wall,

activated cells near sites of inflammation or sources of inflammation. The response to

these signals depends on where they converge in the biochemical processing machinery.

In many cases, the response arises from a simple summation of the signals [Foxman et

al., 1997]. Neutrophils have been shown, however, to prioritize chemotactic signals such

as fMLP by migrating up gradients of these chemoattractants against gradients of IL-8,

LTB4, or C5a [Foxman et al., 1997; Campbell et al., 1997; Foxman et al., 1999; Heit et

al., 2002]. Although this prioritization may be attributable to a weighted sum of the

signals, as explored in more detail in Chapter 4, several alternative hypotheses have been

advanced.

One set of experiments demonstrated that the response to fMLP is generated

along a MAPK pathway, whereas the response to IL-8 is generated along a PI3K pathway

[Heit et al., 2002]. Activation of the MAPK pathway led to a reduction in the level of

phosphorylation of the signaling protein Akt generated by the PI3K pathway. In the

presence of fMLP, IL-8, and a MAPK inhibitor, however, Akt phosphorylation was

greater than with IL-8 alone. The presence of IL-8 also enhanced migration toward



fMLP, suggesting further interplay between these pathways. The role of Akt in

chemotaxis is currently unclear, and it may serve only as a read-out of up-stream

processes. In contrast, observations on HL-60 cells showed sensitivity of fMLP-generated

chemotaxis to PI3K inhibitors [Wang et al., 2002]. Richardson et al. (1995) showed that

the receptors for IL-8 (IL8R) and C5a (C5aR) are phosphorylated in response to fMLP

while the formylated peptide receptor (fBR) is not phosphorylated in response to IL-8 or

C5a. Receptor phosphorylation has been demonstrated to lead to desensitization in other

G protein-coupled receptors, such as the fl-adrenergic receptor [Lefkowitz et al., 1992],

but does not seem to play a role in chemotaxis. Interestingly, the results of Richardson et

al. also show that the Ca" mobilization response is cross-inhibited between all three

chemoattractants. Calcium, however, has been shown to be unimportant for chemotaxis

[Zigmond et al., 1988]. The results outlined here suggest several interesting questions

regarding the processing machinery for different signals and cellular functions. How does

this machinery enable a cell to efficiently find a target? How does signal prioritization

occur and how might it be different for other responses that are important for neutrophil

function? What are the control laws that govern these processes and how are they

implemented?

1.4 Models of Signal Transduction

Many models have been created that are quite useful in shedding light on the

inner workings of the neutrophil chemotaxis machinery. These models take a bottom-up

approach, offering the detailed, low level engineering descriptions similar to those that

one might find for a car to describe the operation of the cooling system or carburetor.



They catalog key experimental observations, providing a platform on which to compare

future mechanistic models and hypotheses. They also enable a simple exploration of the

interplay between controllable and observable variables that can be useful during

experimental design.

Adams et al. (1998) describe a deterministic model that includes receptor

desensitization and G protein activation to explain experimental observations regarding

ligand binding and actin polymerization dynamics such as peak concentrations and

response times. Using a few dozen rate parameters obtained from the literature, they fit

the model to the responses by adjusting six remaining parameters. The model is analyzed

to attempt to validate the hypothesis that a percentage of the receptors exist in a state pre

bound to G proteins. They could not, however, get values for the six parameters that led

to model agreement with all of the experimental observations and instead had to make

‘compromise’ fits. This compromise indicates that either their hypothesis or the

parameters they obtained from the literature are incorrect. Nevertheless, it highlights one

of the key difficulties in modeling: parameter estimation. Often these parameters are

obtained from studies on different types of cells under widely different conditions.

Lauffenburger and Linderman (1993) discuss several methods for minimizing some of

these errors, using thermodynamic relations, for instance, to account for temperature

effects on the rate parameters, but often the only way to guarantee good estimates is

through the judicious combination of models and experiments under relevant conditions

that isolate the parameters.

Riccobene et al. (1999) highlight another difficulty in modeling cellular responses

to ligands. They use a model similar to that of Adams et al., focusing on the ligand
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specific rates of receptor desensitization and conformational selectivities to explain dose

response curves for the alpha-adrenergic, mu-opioid, and dopamine D1 receptors of

several species. Their results suggest that full or partial agonists and antagonists differ

predominantly in their conformational selectivities. The difficulty arises when they try to

model the effects of two different formylated peptides on the oxidant production response

in human neutrophils. The independently measured parameters do not lead to agreement

between their model’s prediction and experimental observations. While they admit that

temperature effects may play a role, they offer up the possibility that downstream

mechanisms are responsible for the discrepancy. In the models discussed so far, these

mechanisms are largely ignored. These investigators use a series of nonlinear hyperbolic

functions, or stimulus response chains [Trzeciakowski, 1996], to represent the

downstream signaling cascade and clear up the disagreement. These chains, however, are

not mechanistic and neglect potentially important dynamics such as feedback.

Both of the models discussed above do not account for spatially segregated events

and are thus unable to describe polarization and chemotaxis observed in migrating

neutrophils. The models that do account for polarization make a number of simplifying

assumptions regarding the intracellular environment. Although often unstated, they

mainly consider the components of interest to exist within well-mixed, not very

concentrated aqueous solutions.

Rather than deal with the actual biochemical mechanisms, Meinhardt (1999) first

postulates a set of reactions that lead to key behaviors observed in eukaryotic chemotaxis.

These behaviors include a sensitivity to signal asymmetry that is independent of the

absolute concentration of signal, adaptation to changes in the signal orientation, and

:
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formation of polarization in the absence of signal. The reactions include a self-enhancing

activator, providing amplification, coupled to a globally-diffusing inhibitor, providing

adaptation, and a local inhibitor with a longer time constant, providing sensitivity to

directional changes. This set illustrates a minimal realization of the observed behaviors.

The actual biochemical mechanisms behind the behaviors must agree with this set of

reactions. Indeed, many of the models that have come out since, that deal specifically

with gradient sensing and biochemical polarization do in fact agree with this minimal

realization.

Narang et al. (2001) base their model of polarization on phosphoinositide

dynamics. Inositol, the global inhibitor, stimulates the reduction in membrane

phosphoinositides, which act as the self-enhancing activator by stimulating their own

production, amplifying the external asymmetry. Local inhibition occurs via depletion of

phosphoinositide precursors in the endoplasmic reticulum. These investigators show that

the shape of the peak in membrane phosphoinositides on the up-gradient side of the cell

is invariant to different external signal concentrations and relative gradients but does

depend on the production and decay rates. Slower decay produces a broader peak and

leads to increased sensitivity of the cell to smaller gradients. Postma and Van Haastert

(2001) formally define the ability of a second-messenger to amplify a gradient based on

its dispersion range. Small dispersion ranges, resulting from either low diffusivities or

high decay rates, provide greater amplification. Based on available evidence, they suggest

that membrane lipids, such as phosphoinositol, fit the criteria for this second messenger.

Further amplification is achieved through binding and activation of a diffusive

component that further stimulates production of second messenger. Sensitivity to ever

12
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Smaller gradients can occur by including additional diffusing second messenger

stimulators, similar to the stimulus-response chains discussed above. Global inhibition

occurs via depletion of the first diffusive second messenger stimulator. While these

authors do not discuss sensitivity to directional changes in the gradient, they do

incorporate receptor-ligand complexes in the activation of the second messenger, thus

preventing signal-independent amplification. Levchenko and Iglesias (2002) have

incorporated a specific circuit-breaking mechanism in their model using a substrate

supply-based positive feedback to prevent signal-independent amplification. The readout,

membrane-bound PIP3, leads to production of its substrates PIP and PIP2 through small

G proteins such as the Rho GTPases. In the presence of a chemoattractant gradient, the

substrates amplify the PIP3 gradient. When the gradient is absent, production of PIP3 is

halted, and its substrates gradually decay. Global inhibition occurs via the rapid diffusion

of the PIP3 phosphatase, PTEN. This model led to experiments in D. discoideum showing

that fluorescently labeled PTEN is distributed uniformly throughout the membrane except

in the lamellipod, where it is excluded [Iijima et al., 2002; Funamoto et al., 2002]. Recent

evidence shows a similar role for PTEN in neutrophils [Li et al., 2005]. Rappel et al.

(2002) model a temporal mechanism whereby the side of the cell that is exposed to

chemoattractant first becomes the leading edge. They use three membrane states:

quiescent, activated, and inhibited. Quiescent membrane becomes activated in response

to an external signal, leading to production of an internal signal that diffuses through the

cell and causes quiescent membrane to become inhibited. There is no polarization in

uniform external concentrations, but gradients lead to an asymmetry that is caused when

the internal diffusive element inhibits membrane at the trailing edge before the external
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signal activates it. Based on these results, the authors suggest an experiment in which two

signals are introduced on opposite sides of the cell at different times. If this time

difference is large, polarization occurs; if it is small, polarization is prevented.

All of the models outlined above present different instantiations of the same basic

behaviors discussed by Meinhardt (1999). While Narang et al. (2001) and Levchenko and

Iglesias (2002) focus more on mapping these mechanisms onto the biochemistry, the

others highlight general principles regarding biochemical polarization. Narang’s model is

the only one that includes receptor dynamics. None of these models account for

observations related to the physical migration of neutrophils such as persistence times

and U-turns. They also do not account for random polarization in a uniform

chemoattractant field, or for neutrophil response to multiple chemoattractant signals. The

physical and molecular basis of a neutrophil’s ability to sense multiple cues, decide on

which direction to move, and actuate the decision through polarization and other

mechanical processes have become far clearer in recent years, and the recent models of

amoeboid chemotaxis have been helpful in suggesting control laws by which the cell

might process chemical cues and generate a response.

1.5 Phenomenological Models

The models presented in this section differ from those presented above in that

they mostly ignore the inner workings of the biochemical machinery and take a top-down

approach, focusing on the overall behavior of cells or populations of cells. These models

are the high level engineering descriptions that show the expected direction of migration

based on phenomenological parameters such as the random motility coefficient (similar
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to a diffusivity) for a population of cells, or cell speed and persistence time for individual

cells. An excellent treatise exists on this work that also describes details on linking the

two levels of models [Lauffenburger and Linderman, 1993].

One of the most widely used mathematical models of chemotaxis, derived from

statistical arguments, uses partial differential equations to describe the density of a

population of cells [Keller and Segel, 1971]. The random motility coefficient u,

describing the cell diffusivity, and the chemotaxis coefficient z, describing the effect of

a chemoattractant gradient on the flux of cells, were introduced in this work and have

served as standard measures ever since. Attempts have been made to improve and expand

on this model and, in general, make it more applicable to experimental results [Alt, 1980;

Othmer et al., 1988]. Several notable studies have developed each of the measures to

relate them to individual cell migration parameters such as speed, persistence time, and

chemotactic index, and even mechanistic parameters such as receptor numbers and

dissociation constants [Tranquillo et al., 1988; Rivero et al., 1989; Farrell et al., 1990].

The persistence time describes the average time a cell spends moving in one direction and

the chemotactic index is the ratio of the distance a cell migrates up a gradient to the total

path length of the cell.

Moghe and Tranquillo (1994) go even further in linking the two levels of models

by specifically modeling stochasticity in receptor dynamics to explain the behavior of

neutrophils as they migrate randomly in uniform concentrations of chemoattractant or

display biased random walks in gradients. These dynamics include multiple-affinity

states between receptors and chemoattractants, as well as receptor internalization and

recycling. As with all models, certain simplifying assumptions are made: the cell
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maintains a distinct polarity, migrates at a fixed speed, and has a leading edge that is

separated into two compartments. Turns in the direction of migration are made according

to the difference in concentration of a downstream diffusive component between the two

compartments, multiplied by a sensitivity factor. The model is analyzed to show the

dependence of observations such as persistence time to the rate constants behind the

receptor dynamics and the level of noise in the sensory system.

An Ornstein-Uhlenbeck (OU) process is a stochastic model describing Langevin’s

Brownian motion and has been used successfully to describe the migration paths of

individual cells [Dunn, 1983; Stokes et al., 1991; Ionides et al., 2004]. This model uses

two terms to describe a change in the velocity of a cell: one for random accelerations and

another for decay in the movement velocity. The position of the cell is found by

integrating the velocity. The two parameters in the OU process (one for each term) are

related to the speed and persistence time via simple equations. Stokes et al. (1991)

expanded on the OU process by including a third term in the description of the change in

velocity that accounts for chemotactic bias. They assumed that this bias was proportional

to the spatial gradient of bound receptors across the cell. The proportionality constant is

called the chemotactic responsiveness. They simplified this model further by assuming

that the number of bound receptors is linearly proportional to the chemoattractant

concentration. They then estimated the two parameters in the original OU process by

fitting an equation derived from the OU process that describes the mean-squared

displacement of a cell [Doob, 1942] to experimental data collected from observations of

microvessel endothelial cells migrating in uniform chemoattractant concentrations. They
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estimated the chemotactic responsiveness by comparing the results of simulations of their

model to experimental observations of cells migrating in gradients of chemoattractant.

1.6 Dissertation Overview

In this chapter, we have presented a concise review of the experiments and

models that have moved us closer to an engineering level understanding of neutrophil

chemotaxis. As discussed, many of the signaling components have been identified and a

number of lower level models have revealed potential ways in which these components

may be interconnected. Phenomenological models have made important advances in

linking these lower level mechanisms to observations regarding neutrophil migration

behavior. Nevertheless, fundamental questions remain: What are the control laws

regulating neutrophil chemotaxis? How are multiple signals processed and prioritized?

How are these functions implemented in the signal transduction network?

The work presented here focuses on understanding how neutrophils process and

prioritize multiple signals. To do this, we expand on the model developed by [Stokes et

al., 1991] in two important ways. We first relax the assumption that the number of bound

receptors is linearly proportional to the chemoattractant concentration. We use a model of

receptor-ligand binding and account for the gradient of bound receptors across the cell

over a wide range of chemoattractant concentrations. We assume that spatial polarization

occurs in response to this gradient. This model enables us to explore the effects on cell

migration caused by shallow chemoattractant gradients, different values for the receptor

ligand binding parameters, and receptor saturation. For the second expansion of the

model, we modify the chemotactic bias term to account for two chemoattractant
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gradients. As discussed in greater detail in Chapter 4, we assume that the chemotactic

bias is the result of a simple vector sum model of signal integration. This assumption

enables us to explore the effects of the relative values of the receptor-ligand binding

parameters for each chemoattractant as well as the spatial positioning and orientation of

the two gradients. The primary goal of this work is to develop a modeling framework in

which to explore hypotheses about how neutrophils process and respond to multiple

chemoattractant gradients. As such, we develop and present experimental methods using

the micropipette assay at each step that are useful for estimating model parameters. We

show how the micropipette assay is superior to previous assays for studying chemotaxis

to multiple chemoattractant gradients. We also perform simulations using parameter

estimates and compare and contrast experimental and simulation results.

We present in Chapter 2 methods and results for estimating the values of speeds

and persistence times for cells performing chemokinesis, which is migration in uniform

chemoattractant concentrations. These values are used in simulations of the simple OU

process without chemotactic bias. The results suggest that speeds and persistence times

may be functionally dependent on the chemoattractant concentration in ways that can

have a significant impact on chemotaxis. In Chapter 3 we include chemotactic bias and

present several methods for estimating the chemotactic responsiveness. We also explore

how different models of the chemoattractant concentration gradient and receptor-ligand

binding can affect the results. The main result here is that our simple descriptions of

chemotactic bias based on receptor-ligand binding cannot completely explain the

experimental data. We present several recommendations for dealing with the

discrepancies. Chapter 4 presents the vector sum model of signal integration, and
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experimental methods and results for cells migrating in two chemoattractant gradients.

We examine here the effects that different spatial arrangements of the gradients and

different values for the receptor-ligand binding parameters have on vector sum migration

or signal prioritization. We also show how the micropipette assay is better suited than

previous assays for studying chemotaxis to multiple gradients because it allows for

dynamic modifications of the gradients. Finally, in Chapter 5, we present our main

conclusions and make specific recommendations for developing the modeling

framework.

:
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Chapter 2
s

Neutrophil Migration in Uniform Chemoattractant
---- *

Concentrations

2.1 Introduction

In this chapter, we begin development of our modeling framework by presenting a

simple version of the OU process along with experimental and computational methods

for exploring chemokinesis, or random migration, using this model. Chemokinesis is

commonly described as a persistent random walk and is amenable to description using

the OU process, as described in the previous chapter. The main purpose of this chapter is

to demonstrate and apply methods to quantify the speeds and persistence times from

experimental traces of cell migration paths so that we can substitute these values into the
- d

l
OU process and simulate these paths. We also wish to explore the functional dependence .* * *

of the speed and persistence time on the chemoattractant concentration.

The OU process uses two terms to describe differential changes in cell velocity as *.

follows

dy =–6Vdl-i-Jad■ ' (2.1.1) c

º *.
~

where W (mm/min) is a two-dimensional velocity and W is a two-dimensional Weiner,

or white-noise, process. The two parameters in this equation, a and ■ º, are related to the
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speed S (um/min) and persistence time P (min) by the equations S = y/a/■ and

P = 1//3 [Stokes et al., 1991]. The first term describes decay in the velocity, while the

second term describes random accelerations. The two-dimensional position of the cell,

X , is found by integrating the velocity over time, to give

t

X = ■ ºdi (2.1.2)
O

The speed of a cell is most simply defined as the distance it migrates divided by

the time it takes to migrate this distance. The difficulty in accurately measuring the speed

of a neutrophil is in choosing an appropriate reference point on the cell. Neutrophils often

migrate in somewhat jerky paths and can form pseudopods at various locations on their

surface that make it difficult to obtain this reference point. Although still somewhat

arbitrary, the centroid of the cell is commonly used and we will use it here [Dunn and

Brown, 1987; Stokes et al., 1991].

Further difficulties arise when measuring the persistence time. The most general

definition of the persistence time is the time that a cell crawls before making a significant

change from its original direction. The degree of significance is arbitrary and an angle of

90° has been used previously [Foxman et al., 1999]. A more rigorous mathematical

definition is that the persistence time is the inverse of the rate of change in the direction

of migration [Dunn, 1983; Othmer et al., 1988]. Methods are available for estimating the

persistence time based on this definition.

21



A more rigorous method for determining the speed and persistence time of a cell

is to use fit equations describing either the mean squared displacement or, alternatively,

the variance of the position via nonlinear regression. These equations have been derived

directly from the OU process and are presented below [Doob, 1942; Gillespie, 1996].

There are two main types of chemokinesis based on the effects of the

chemoattractant concentration on the speed and persistence time [Tranquillo and Alt,

1990]. These may play a significant role in how a cell behaves in a chemoattractant

concentration gradient. The first type, termed orthokinesis, occurs when the speed of the

cell varies with the chemoattractant concentration. If the speed is lower in higher

concentrations, for instance, a cell will spend more time in the higher concentrations

because it will, in essence, become trapped. The second type, termed klinokinesis, occurs

when the persistence time varies with chemoattractant concentration. If the persistence

time is lower in higher concentrations, for instance, a cell will also become trapped in

high concentrations because it will tend to migrate around in circles more. The net effect

of chemokinesis could be to drive cells to higher chemoattractant concentrations. This

would be analogous to temporal gradient sensing in bacterial cells [Berg and Purcell,

1977]. Although the effect of chemokinesis is the same, this behavior is not accurately

described as chemotaxis because it is independent of the concentration gradient. Bacterial

cells adapt their rate of tumbling based on the difference in concentration between two

points. No such mechanism for making these comparisons is known to exist in

neutrophils.
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2.2 Materials and Methods

2.2.1 Cells and chemoattractants

Human neutrophils were isolated from a drop of blood collected by a finger prick,

as in [Zigmond and Sullivan, 1979]. After obtaining approval from the UC Berkeley

Committee for the Protection of Human Subjects (CPHS #2004-11-34), volunteers were

recruited. A drop of blood was obtained using a capillary blood sampling lancet (BD

Biosciences, 23G needle) and allowed to clot on a 70% ethanol-cleaned coverslip (Fisher

Scientific) in a humid chamber placed in a 37 °C, 5% CO2 incubator. The humid chamber

was made by placing a small Petri dish, holding the coverslip, in a larger one containing a

layer of distilled water. An adhesive rubber gasket was stuck to the bottom of the small

Petri dish to make it easier to remove the coverslip. After 45 minutes the coverslip was

removed and placed in a live cell chamber, custom-made in the UC Berkeley machine

shop. The clot was rinsed using modified Hanks Balanced Salt Solution (mHBSS) (150

mM NaCl, 4 mM KCl, 1.2 mM MgCl2, 1.4 mM CaCl2, 10 mg/mL glucose, 20 mM

HEPES, and 10 mg/mL human serum albumin (Sigma-Aldrich)) until the solution was

clear. A layer of HBSS was placed over the neutrophils that remained adhered to the

coverslip. To study chemokinesis, cells were stimulated at room temperature with

uniform concentrations of fMLP. A stock solution containing 10 mM fMLP (Sigma

Aldrich) in DMSO was diluted to the desired concentration. The final concentrations

used were 10 pm, 1 nM, 100 nM, 10 puM, and 100 puM. Control experiments were also

performed in which no chemoattractant was added.

:
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2.2.2 Image acquisition and processing

Phase contrast images were taken with a QImaging Micropublisher 3.3 RTV

camera on a Zeiss Axiovert 25 microscope using a 10x objective. The cells were first

focused and the correct exposure determined using the QCapture software. The images

were acquired every 10 seconds for 1 hour and saved in the tiff format using a program

written in National Instruments LabVIEW 7.1. The raw images were acquired using the

entire area of the CCD and were then sampled using code written in Matlab by taking the

average over 4x4 groups of pixels, resulting in images that were 512 x 384 pixels (sample

code can be found in appendix A.1). This produced images of a more manageable size

and smoothed contrast artifacts resulting from the color CCD. A calibration slide

containing 100 lines/mm was imaged under the same conditions to convert cell paths

from pixels. The size of each pixel was determined to be 0.35 pum and this was multiplied

by 4 for application to the binned image.

2.2.3 Cell tracking

Cells were tracked manually using code written in Matlab (sample code can be

found in appendix A.1). In each image sequence, greater than 50% of the cells did not

move more than one cell diameter. Ten cells were selected for tracking from each

sequence primarily based on their migration distance. While this likely biases the

estimates for speeds and persistence times, the same method was used for each sequence

(concentration) so the effect of the concentration should still be observable. Our attempts

to dilute the cells to prevent interactions were unsuccessful. As such, most, if not all of

the cells tracked interact in some way with neighboring cells. The effect of these

collisions is unclear. For every cell tracked, the images from the sequence were displayed

i
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consecutively with a pause between each to allow for the user to estimate and click on the

centroid position of the cell. The x and y positions of each click were recorded and

stored.

After converting all the tracks to pum from pixels and adjusting them so they

started from the origin, the x and y positions were smoothed in time to eliminate noisy

artifacts introduced by manual tracking. To smooth the positions, a window in time

around each position was fit to a second order polynomial using the Matlab command

polyfit. The corresponding polynomial was then evaluated at each position (sample code

can be found in appendix A.1). A window of 12 points on either side of the position

being evaluated was determined to give the best smoothing without losing important

features. For points close to the ends, the available data was used for the polynomial fit.

Figure 2.1, below, shows 10 cell tracks and the x and y positions over time both before

and after smoothing and converting from pixel units.
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Figure 2.1: The tracks of 10 cells migrating in a uniform concentration of 1 nM of fMLP,
adjusted to start at the origin. The top row shows the raw cell tracks and the bottom row
shows the tracks after smoothing and converting from pixel units.
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2.2.4 Estimating speed and persistence time

The speeds S (um/min) and persistence times P (min) were estimated from the

smoothed cell tracks using three different methods and compared. To further test the

methods, the speeds and persistence times were estimated from simulated cell tracks

using the same methods and compared to the known values used in the simulations.

The first method, outlined in [Stokes et al., 1991], fits an equation first derived by

[Doob, 1942] to data from individual cell tracks. This equation describes the mean square

displacement (D) for the one-dimensional O-U process:

2 2 n. (T –T/P(D )=S P* | ––1 + e (2.2.1)P

For two dimensions, Eq. (2.2.1) is multiplied by 2. The independent parameter T is the

interval time. For a cell track containing 360 points taken at 10 seconds intervals, the

mean square displacement corresponding to an interval of 10 seconds is taken from the

359 available displacements. For an interval of 20 seconds, there are 358 available

displacements to determine the mean and so on until, for the longest interval time of 360

x 10 seconds there is only one displacement to determine the mean. As such, the

experimental and predicted mean square displacements deviate from each other at longer

interval times. To avoid this deviation, the equation is fit for interval times corresponding

to half the total time of the image sequence. We will also pool the data from all cell

tracks here to improve the statistics.

#
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The second method fits a similar equation that describes the variance in the

displacement in one dimension [Lemons, 2002] to the combined cell tracks over the

elapsed time t, rather than the interval time:

t —t 1 –2t/

var{x(t)}=S*P* |#-20- ")+}(-e 2t
') (2.2.2)

This equation and Eq. (2.2.1) can actually be fit separately to the x and y data and the

resulting speeds and persistence times can be compared. This is because the x and y

displacements are assumed to occur independently and can thus be described by two

independent OU processes. Notice that for t << Pand T 3 P in Eq. (2.2.1) these

equations are equivalent and show that the mean square displacement and variance are

both linearly proportional to the elapsed or interval time, respectively. For larger times,

the two equations deviate from each other by a constant value of one half. This deviation

is discussed in more detail below. Both equations above were fit to the data using

Matlab's nlinfit command, which uses the Gauss-Newton method (sample code can be

found in appendix A.2). To use this command, initial estimates of the parameters to be fit

are necessary. The initial estimates used here correspond to literature estimates

suggesting a speed of 10 pum/min and a persistence time of 3 minutes. The standard

deviations on the best fit lines were determined using Matlab's niparci command.

The third and final method for determining the speeds and persistence times is to

calculate them directly from the data using equations similar to those discussed in [Dunn,

1983]. The equation for the speed of the cell is given by
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2 \!/2s-ºn' ) (2.2.3)
r—30 T

where 6 is the distance displaced over the time interval t . Clearly the frame rate will

constrain our ability to take this limit. The important point is that the cell displacement

over smaller intervals will be negligible. With a speed on the order of 10 pum/min and a

cell diameter of approximately 10 pum, we can expect that there will be a displacement of

about 1 cell diameter per minute. At an interval of 10 seconds per frame, we are justified

in using this equation since a displacement of 1/6" of a cell diameter is negligible.

Estimating the centroid by eye can incorporate error up to as much as one half a cell

diameter. This also justifies smoothing the data as described above. The equation for the

persistence time in direction is calculated in a similar manner using

P = lim--- (2.2.4)

where 6 is the angle between subsequent displacements. We are again constrained by the

frame rate in determining the persistence using this equation. As above, we expect small

displacements at small times that will exclude turns of a significant angle. The

persistence time is especially sensitive to the manual tracking method and is further

justification for smoothing the data. The Matlab script used to calculate these values can

be found in appendix A.2 included in the script used for the nonlinear parameter

estimation.
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The random motility coefficient a (um’■ min) found in population chemotaxis

equations described in Chapter 1 is related to the speed and persistence time by

Au = +S*P (2.2.5)

The random motility coefficient was determined from estimates of the speed and

persistence time. The mean free path of a cell is the product of the speed and persistence

time. This value was also calculated from the estimates.

2.2.5 Model simulation

Simulations were performed using approximate updating formulas for the velocity

and position of an OU process [Gillespie, 1996]. The updating formula for the velocity in

the x direction is given by

V
x, i4-1

At At
= V., |1–– |+ SAP-N (0,1 2.2.6º }) P ( ) ( )

where i indicates the step, At is the time step size, and N (0,1) is a normally distributed

random number with a mean of 0 and a variance of 1. Since the velocities can be

described by separate OU processes, a similar updating formula was used for the velocity

in the y direction with an independent normal random number for each step. The x

position of the cell was then determined by numerical integration of Eq. (2.2.6) to give
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Å. = X, + VAt (2.2.7)

A similar formula was used to calculate the y position. Although exact formulas are

available, the error between the approximate and exact formulas is negligible for small

values of the time step size. We set the step size to 0.01 seconds to minimize this error

and sample the results at every 10 seconds to match the experimental sample rate. The

reason for not using the exact formulas here is because the approximate formulas are

more easily related to the speed and persistence time and will be used to describe

chemotaxis in the next chapter by including a bias term on the velocity. The Matlab script

used to simulate the OU process can be found in appendix A.4. The methods used to

estimate the speeds and persistence times are similar to those described above.

2.2.6 Similarity measures

The cell paths resulting from the simulation were compared to the experimental

paths by direct examination of the estimated speeds, persistence times, mean free paths

and random motility coefficients. Further comparisons were made by calculating the

correlation coefficients between the experimental and simulated data for the x and y

positions separately at each time step (Matlab code can be found in appendix A.2). To

test this method, we find the correlations with additional simulated paths using values for

the speed and persistence time equal to half those used in the first simulation. We

compare the results between the two simulations and also compare figures showing the

resulting migration paths to estimate the accuracy of the results.
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2.3 Results and Discussion

Five different concentrations of the formylated peptide fMLP were used in the

neutrophil chemokinesis experiments ranging from 10 pm to 100 puM, along with an

experiment in which there was no chemoattractant. In the absence of chemoattractant, the

neutrophils appeared to ruffle continuously, but did not crawl. In the lowest and highest

concentrations, the cells also ruffled and crawled, but never more than one cell diameter.

Due to the difficulty in getting accurate statistics, cells in these concentrations were not

tracked. The smoothed tracks for 10 cells in each of the three remaining concentrations (1

nM, 100 nM, and 10 puM) are displayed in Figure 2.2, below. All cell paths are adjusted

to start from the origin which is indicated by a small black circle in each plot. Notice that

the scales on the x and y axes are the same for the three different concentrations. In

analyzing this figure, there does not appear to be a clear trend in the migration paths of

the cells based on the chemoattractant concentration. If the speed or persistence time

were dramatically different at different concentrations, for instance, we would expect to

see more significant differences in the overall cell paths. The mean free paths of the cells

may be similar, however, while the speed and persistence time vary. Further analysis is

needed to make this distinction.
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Figure 2.2: The smoothed tracks of 10 cells in each of three different concentrations of
fMLP. The tracks are adjusted to start at the origin which is indicated by a small black
circle.
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Figure 2.3, on the following page, shows the data obtained from the cell paths

used to estimate the speeds and persistence times. Each column corresponds to one of the

three different concentrations and resulting paths shown in Figure 2.2. The top row shows

the mean squared displacement found by pooling data from all cells plotted against the

interval time. The dashed lines are the mean-squared displacements predicted by Eq.

(2.2.1) after fitting the equation to the experimental data to obtain estimates for the

speeds and persistence times. The second and third rows show the variances in the x and

y positions of all cells in each concentration plotted against the elapsed time. The dashed

lines are the variances predicted by Eq. (2.2.2) (and a similar version for the variances

in y) after fitting to the data.

Table 2.1, on the following page, shows the speeds and persistence times and their

standard deviations found by nonlinear parameter estimation as discussed in the Materials

and Methods section. Notice that the fits are much better and the standard deviations are

smaller for the method that uses the mean-squared displacement. This is because the

mean-squared displacement is found by averaging the displacements over 10 cells and

many time intervals. The mean-squared displacement calculated for an interval time of 30

minutes, for example, is found from 10 cells and 59 available 30 minute intervals.
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Figure 2.3: The data obtained from the cell paths used to estimate the speeds and
persistence times. Each column corresponds to a different uniform concentration of fMLP
as indicated at the top of the columns. The first row is the mean-squared displacement
over the interval times. The second and third rows show the variance of the x and y
positions over the elapsed time, respectively. The dashed lines indicate the best fit to the
data.

Table 2.1: The speeds and variances of migrating cells, and standard deviations estimated
from the data. Method 1 uses the mean-squared displacement; method 2x and 2y use the
variances in X and y, respectively; and method 3 uses the direct calculations.

1 nM 100 nM 10 uM
Method S P S P S P

(um/min) (min)
#1 3.44 5.20 3.97 8.4 2.84 29.0

+/–0.02 +/–0.08 +/-0.04 +/-0.3 +/-0.01 +/-0.4
#2 x 2.14 24.6 3.8 5.0 3.73 19.3

+/-0.01 +/- 1.5 +/-0.2 +/-0.6 +/-0.03 +/- 1.3

#2 y 2.56 6.5 4.8 6.3 3.01 11.4
+/–0.15 +/- 1.1 +/-0.1 +/-0.5 +/-0.03 +/-0.5

TH3 3.4 0.3 4.3 0.3 3.4 0.25
+/-0.3 +/-0.3 +/-2.1 +/-0.3 +/- 1.7 +/-0.29
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In contrast, the variance in the x position for an elapsed time of 30 minutes is only found

from the positions of 10 cells at this time point. The standard deviations found using the

Matlab nlparci command are quite low, most notably on the estimates found using the

mean-squared displacement. A more thorough error analysis can be performed by fitting

the equation to the lines corresponding to the mean-squared displacement at each interval

plus or minus one standard deviation.

An examination of the speeds between the different concentrations does not

indicate any trend that would be consistent with an orthokinesis. Note that the speeds

determined from all three methods are fairly consistent. The persistence times, however,

vary dramatically. The persistence times determined from the third method are quite low.

This observation, along with the problems discussed earlier, suggests that this method

may not be suitable for accurate estimation. The persistence time estimated from the 1

nM data using the variance of the x position is also considerably different than that

predicted from the same data using the variance of the y position or the other methods.

By examining the paths in Figure 2.2, we see that there does seem to be a bias toward the

negative x direction that could be causing this. The reason for this bias is unclear. The

conditions are assumed to be isotropic so that there should be negligible difference

between the parameter estimates for the x and y directions. There also appears to be a

higher persistence time for the highest concentration of 10 HM with a significant

difference in the estimates using the various methods. Given that the speeds at this

concentration are similar to the speeds at the other concentrations we would expect to see

a larger mean free path for these cells in Figure 2.2 that would cause them to migrate
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greater distances from their starting points. The discrepancy could be caused by the

estimate of the standard deviation as discussed above.

Table 2.2 displays both the mean free path and the random motility coefficient

calculated from the top three rows displayed in Table 1.1 for each of the three different

concentrations (the fourth row was not included for reasons discussed above). The only

discernible trend comes from looking at the data in the first row. Both the mean free path

and the random motility coefficient increase with increasing concentrations. This is

caused by a similar trend in the first row of Table 1.1 for the persistence times. This is

actually unexpected. Previous results from rat alveolar macrophages show a peak in the

random motility coefficient at intermediate concentrations that drops off on either side

(Farrell et al., 1990). While it is possible that human neutrophils behave differently, it is

difficult to come to any solid conclusions without performing more repetitions over a

wider range of concentrations.

Table 2.2: The mean free paths of migrating cells determined from estimates of the
speeds and persistence times in three different uniform concentrations of fMLP.

1 nM 100 nM 10 uly■

Method | Mean free All Mean free All Mean free All
path (um) | (um''min) path path

#1 17.9 123.1 33.3 264.8 82.4 467.8
#2x 52.6 225.3 19.0 144.4 72.0 537.0

#2y 16.6 85.2 30.2 290.3 22.9 206.6
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To further test the methods used above for estimating the speed and persistence

time, we turn now to simulations of the OU process. For an initial run, we choose a speed

of 4.2 pm/min and a persistence time of 6.5 minutes. These values roughly correspond to

the estimates determined from the data for cells migrating in 100 nM fMLP. Figure 2.4,

on the following page, shows the simulated migration paths of 10 cells and the x and y

positions of the cells over time. Notice that the scales on the x and y axes of the plot

showing the paths are the same as those in Figure 2.2, above. The appearance of the

simulated paths is similar to those of the experimental paths with the notable exception

that at least one simulated cell crawls out of the frame and another crawls very close to

the edge.

Figure 2.5, below, shows the data obtained from the cell paths used to estimate

the speeds and persistence times along with the best fit lines. The first frame uses the

equation for the mean-squared displacement and the second and third frames use the

equation describing the x and y variance, respectively.

Table 2.3 shows the estimated speeds and persistence times and their standard

deviations that correspond to the best fit lines in Figure 2.4. The mean free paths and

random motility coefficients are also displayed. The estimates are all fairly close to the

true value used in the simulations, especially for the estimates obtained using the y

variance. The estimates found using the equation for the mean-squared displacement are

slightly higher. As above, the standard deviations using this method are fairly small and

can probably be more rigorously determined. The mean free path and random motility

coefficient are also similar to those displayed in Table 2.2, above, for the cells migrating

in 100 nM fMLP.
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Figure 2.4: Simulated migration paths of 10 cells starting from the black circle, and the x
and y positions of these cells over time.

*Tº 50

time (mins)
Go 10

Figure 2.5: The data obtained from the simulated cell paths used to estimate the speeds
and persistence times. A) The mean-squared displacement over the interval times. B) The
variance of the x and C) y positions over the elapsed time, respectively. The dashed lines
indicate the best fit to the data.

Table 2.3: The speeds and variances of migrating cells and their standard deviations
estimated from the simulated data, along with the mean free paths and the random
motility coefficients calculated from these estimations. Method 1 uses the mean-squared
displacement and methods 2x and 2y use the variances in x and y, respectively. Compare
to literature estimates suggesting a speed of 10 pum/min and a persistence time of 3
minutes.

Method S P Mean free path All
(um/min) (min) (um) (um''min)

#1 4.49 8.63 38.75 348.0
+/-0.01 +/–0.04

#2x 4.20 7.1 29.8 250.5
+/-0.05 +/-0.3

#2y 4.0 7.0 28.0 224.0
+/-0.1 +/-0.5
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Figure 2.6, below, displays the correlation coefficients that were calculated

between the experimental cell positions and the two sets of simulated cell positions (A

and B) at each point in time. As discussed above, the correlations were determined

separately between the x and y positions. For comparison, the correlation coefficients

were calculated between the two sets of simulated cell positions (C). Each set of

simulations was run using the same seed in the random number generator which likely

contributed to the high correlation. Notice the y-axes in these plots are scaled between

0.75 and 1 to enhance the details. The conclusion from this figure is that we cannot use

the correlation coefficient to make a determination as to the degree of similarity between

the experimental and simulated cell paths. A better test is to visually compare the cell

migration paths directly using Figure 2.7, on the following page. Note that the x and y

axes are similar in each plot for the three sets of migration paths. Clearly the first two sets

are more closely related to each other than either one is to simulation set #2. Parameter

estimates obtained as above for simulation set #2 gave results that were fairly close to the

actual values used in this case.

Experiment and Simulation Set #1 B Experiment and Simulation Set #2 Simulation Sets #1 and #2
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Figure 2.6; A) The correlation coefficients between experimental and simulated cell
positions at each point in time. The blue line corresponds to the x positions and the green
line corresponds to the y positions. B) The correlation coefficients between experimental
and simulated cell positions for simulations using half the speed and persistence time. C)
The correlation coefficients between the two sets of simulated cell positions.
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Figure 2.7: Cell migration paths from an experiment using 100 nM fMLP, and from
simulations using a time step of 0.01 sec. in which the speed and persistence time were
estimated from the experimental data (set #1) or were set equal to half the estimated
speed and persistence time (set #2).

2.4 Conclusions

In this chapter we presented methods for estimating the speed and persistence

time in uniform chemoattractant concentrations. We also demonstrated the substitution of

these estimates into the OU process to simulate cell migrations paths. We do not have

clear evidence to suggest the dependencies of the parameters on the chemoattractant

concentration. As a result, we make no conclusions regarding the types of kineses that

neutrophils exhibit. Evidence suggests that persistence time is a more sensitive

parameter. We have developed a framework to further explore these issues. In particular,

more experimental data is needed to increase the number of samples and our confidence

in parameter estimates and to develop the functional dependencies. Once these functions

are determined they can easily be included in the simulations. We also have not explored

how these parameters may depend on the type of chemoattractant. This raises several

interesting questions: How will the dependence on chemoattractant type be included in

the model? What happens when cells are simultaneously exposed to two chemoattractants

in uniform distributions? We will put these questions aside for future work and turn now

to developing the model to account for single chemoattractant gradients.
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Chapter 3

Chemotaxis in the Micropipette Assay

3.1 Introduction

The purpose of this chapter is to develop the OU process to study neutrophil

migration in chemoattractant gradients. As discussed in Chapter 1, we use a modified

form of the OU process originally proposed by [Stokes et al., 1991] that includes a term

to describe the chemotactic bias. These researchers assumed that this bias was caused by

a gradient of bound receptors across a cell and further assumed that the bound receptor

gradient was linearly proportional to the chemoattractant gradient. We relax this last

assumption to attempt to account for important physical aspects of receptor-ligand

binding such as the receptor quantities and binding affinities that affect saturation and

likely play roles in determining the range of concentrations and gradients in which

neutrophils display sensitivity, as discussed in [Zigmond, 1977].

The modified OU process that we use to account for neutrophil chemotaxis is

given by

dy--4---air ºrd vC (3.1.1)
P VP

where we have substituted o. and ■ º from Eq. (2.1.1) with the speed and persistence time

defined earlier. The bias term on the end is one possible model that accounts for the
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difference in the number of bound receptors across a cell. This difference is the product

of the diameter of the cell, d.º. (pum), and the gradient in bound receptors,cell

VC (#/cell/pum). We develop and examine several possible models based on receptor

ligand binding for the chemotactic bias, obtaining estimates for the binding parameters

from the literature [Zigmond, 1977; Lauffenburger and Linderman, 1993; Adams et al.,

1998]. The proportionality constant k (um/min/#/cell) is defined as the chemotactic

responsiveness and is used as a fitting parameter. Ideally this parameter would be

constant and any observed differences in migration paths would be strictly attributable to

the effects of the chemoattractant concentration on the speed and persistence time or the

resulting gradient of bound receptors.

We use the micropipette assay to study the response of neutrophils to

chemoattractant gradients. This assay has typically been used to study specific

components of the chemotaxis network [Weiner et al., 1999; Iijima and Devreotes, 2002),

and this represents the first attempt that we know of to apply it to a higher level model.

The under-agarose assay is more common in these types of studies [Farrell et al., 1990;

Foxman et al., 1999]. The micropipette assay offers several advantages over the under

agarose assay: it enables real-time monitoring of the chemoattractant gradient via a

fluorescence tracer; it provides more reproducible gradients; it is relatively easy to set up

and use; and it enables an exploration of the temporal response of neutrophils to changing

gradients. We wish to use the experimental results to make estimates of the chemotactic

responsiveness and to develop the structure of the model for chemotactic bias so that we

can, with the speed and persistence time from the previous chapter, predict cell migration

paths in chemoattractant gradients. Although we were unable to estimate the chemotactic

º,
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responsiveness for reasons that are discussed below, we present several methods that can

be used in future studies. We also present novel methods for quantifying the experimental

data.

3.2 Materials and Methods

3.2.1 Cells and chemoattractants

The cells were isolated from a drop of blood collected by a finger prick, as

described in [Zigmond and Sullivan, 1979) and in section 2.2.1, above. All of the

procedures were the same as described in section 2.2.1 with the exception of the

preparation of the chemoattractant. Stock solutions of 10 mM fMLP (Sigma-Aldrich) or

100 mM of the carboxy-terminal agonist analogue of C5a, N-Met-Phe-Lys-Pro-D-Cha

Cha-D-Arg (ChaCha; ElimBio) in DMSO were diluted to the desired concentration and

loaded into a micropipette as described below. In each micropipette, 100 puM of the

fluorophore carboxyfluorescein (FITC), diluted from a 10 mM stock solution in ethanol,

was included to monitor the concentration profile.

3.2.2 Chemoattractant gradients

There are a number of assays available for studying neutrophil chemotaxis

[Boyden, 1962; Nelson et al., 1975; Zigmond, 1977; Li Jeon et al., 2002]. In choosing the

assay, we were constrained by our ability to reproducibly quantify the resulting

chemoattractant gradients. In this section we describe our attempts to use several assays

that showed promise in satisfying this constraint. In the end, we chose to use the

micropipette assay for reasons that will become clear in the later discussion.

Microfluidics devices
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We initially attempted to study chemotaxis of neutrophil-differentiated HL-60

cells using microfluidics devices. Introduced in [Li Jeon et al., 2002] for studying

chemotaxis, microfluidics devices enable reproducible formation of temporally and

spatially stable gradients in a variety of configurations. This is a critical improvement

over previous assays that have proved difficult to control. These devices contain mixing

channels and a main channel, or cell chamber, molded into polydimethylsiloxane

(PDMS) bonded to a glass coverslip. The devices are produced using soft lithography as

outlined in Figure 3.1, below.

1. Photolithography 5. Activation of PDMS 1. Creating a pattern of the device using photolithography.
:* - - - - - - - - - - - - - 2. Negative mold of the channel network is created by Deep Reactive lon

--- -
ºxygen planº Etching (DRIE) to 40pm.

Lahº-■ e l
--------

C- 3. The surface is coated to allow lift of final device.
DRIE

2 4. Soft elastomer, polydimethylsiloxane (PDMS), is poured onto the mold,
—T

-
6. Bonding and allowed cure.

3. Silanizati S- gast ºversip 5. The PDMS device is made hydrophilic and sterilized via oxygen plasma
anization - *S---- treatment. PDMS is widely used in soft lithography fabrication because

E’ it is easily cured at low temperatures; it is moderately stiff. It is also
— - -nontoxic and optically clear to near UV.

4. Casting of PDMS 7. Completed device 6. And placed in contact with a glass substrate, with the open channels in
Pºtºs cº- contact with the glass to form a permanent bond

º-ººººººº- 7. Completed device is fitted with needles and fluid injected using a
syringe pump

Figure 3.1: Outline of the steps involved in making microfluidics devices using soft
lithography. (With Shilpa M. Shroff).

Figure 3.2A, on the following page, shows the entry ports and an upstream

portion of the mixing channels in a microfluidics device before insertion of needles that

allow for introduction of chemoattractant solutions. Figure 3.2B shows a microfluidics

device in operation. Three needles are inserted through the PDMS into the entry ports and

are attached by tubing to syringes containing different concentrations of chemoattractant.

The flow into the device is driven by a syringe pump. A single needle is also connected to

the exit port to allow for drainage. The concentrations used in the syringes determine the
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profile of the concentration gradient ultimately created in the cell chamber. Figure 3.2C

shows a schematic of the channels in the microfluidics device. The three entry ports at the

top allow for injection of the solutions containing different chemoattractant

concentrations. These solutions flow through the mixing channels to produce multiple

streams containing intermediate concentrations that merge in the cell chamber. The

resulting concentration profile is perpendicular to the fluid flow. The floor of the

channels is created by the glass coverslip bonded to the PDMS. Cells are made to adhere

to the coverslip in the cell chamber which is coated with an extracellular matrix (ECM)

protein. A laminar flow rate insures that further mixing between merged streams occurs

via diffusion, thus smoothing the profile downstream. Laminar flow also prevents the

shear stress on the cells from becoming too high.

depth approx. 40 microns
ghannel width:40 microns
input port f cell port diam: 2mm

cell chamber:
width:720 microns
length: 15000 microns

Figure 3.2: A) Entry ports and upstream portion of mixing channels in a microfluidics
device before connecting external tubing. B) A microfluidics device in operation. C). A
schematic of the channels contained in a microfluidics device. (With Shilpa M. Shroff).
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To characterize the devices, we injected three different concentrations of the FITC

and imaged the intensity profiles that developed in the cell chamber. The concentrations

we used were 10 puM, 5 HM and 0 HM which would theoretically produce a linear profile.

The results are displayed in Figure 3.3, on the following page. Figure 3.3A and B show

the intensity image and profiles along a portion of the width of the entrance of the mixing

channels into the cell chamber. Notice that only a portion of the entire width of the cell

chamber is imaged due to limitations on the field of view. The blue lines are the profiles

at various positions within the intensity image 0 – 400 pum downstream of the entrance.

The discrete steps shown in these profiles are caused by the merging of the streams

containing different concentrations of FITC. Figure 3.3C and D show the intensity and

profiles 1400 – 1800 pum downstream. The profile is much smoother here since diffusive

mixing has occurred. The red dots in B and D indicate the theoretically predicted

intensity profiles. The deviations of the experimental profiles from the predicted profiles

are the result of normalizing the intensities based on the maximum intensity in the image.

Again, the entire width of the cell chamber is not imaged.
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Figure 3.3: Fluorescent intensity profiles produced in the cell chamber of a microfluidics
device. The three concentrations of FITC injected in the device were 10 pum■ , 5 HM, and 0
puM. A.) The upstream portion where the mixing channels connect to the cell chamber. B)
The corresponding normalized intensity profile at various positions (solid blue lines), and
the predicted profile (red dots). C) A portion of the cell chamber 1400-1800 pum
downstream of the entrance of the mixing channels. D) The corresponding normalized
intensity profile at various positions (solid blue lines), and the predicted profile (red
dots). (With Shilpa M. Shroff).
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Several difficulties were encountered during our attempts to use the microfluidics

devices to study chemotaxis. The first obstacle involved seeding cells into the devices. To

obtain a good distribution of cells in the cell chamber we had to equalize the pressure

between the various ports. After injecting cells into one of the ports, the pressure had to

be controlled precisely so that cells would first flow into the cell chamber and then stop,

giving them time to settle and adhere. Once we overcame this obstacle (with much

practice) we discovered that we could not get enough cells to remain adhered to the floor

of the chamber. Despite the low shear stresses, once the flow of chemoattractant was

started cells would gradually detach from the surface and flow downstream. We also

noticed that in the process of preparing the devices several of the mixing channels would

become clogged with bits of PDMS or cellular debris. This had a dramatic effect on the

resulting concentration profiles. After many attempts and much deliberation, we finally

decided to put the microfluidics devices aside and attempt another assay.

Zigmond chamber

The Zigmond chamber was the first assay to allow direct visualization of cells

responding to chemoattractant gradients [Zigmond, 1977]. A picture of the chamber is

displayed in Figure 3.4A, on the following page, and a side and top view of the device in

operation is displayed in Figure 3.4B. A coverslip with adherent cells is clipped into the

device so that the cells rest over the bridge which resides between the two channels. A

chemoattractant solution is placed in one groove and a media is placed in the other

groove. The resulting difference in concentration drives diffusion and sets up a

concentration gradient over the bridge. The profile evolves in time as the concentration

equilibrates between the two grooves, as described in [Lauffenburger et al., 1988].
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Figure 3.4: A) A picture of the Zigmond chamber (from http://www.neuroprobe.com).
B) A schematic of the Zigmond chamber in operation, showing both side and top views.

Figure 3.5, on the following page, shows fluorescence intensity images and

profiles taken at different times from an experiment to measure the gradient across the

bridge. We used 0.2 pum diameter PC-Red beads as the fluorophore in this experiment.

The higher concentration of beads was placed in the groove on the right in these images.

Notice the peak in intensity that occurs along the left side in the images. This peak is

caused by the integration of fluorescence throughout the depth of the channel. Over time

this peak decreases and spreads out as the fluorophore diffuses throughout the channel.

We also noticed a significant amount of convection, evidenced here by the visible

blurring in the image taken at 0 minutes. Analysis of the corresponding movie shows that

this convection periodically reverses due to unknown reasons. The concentration profiles,

shown in Figure 3.5B, indicate that this convection may have a significant effect on the

resulting gradient. After many failed attempts to correct this behavior, we decided to

discard the Zigmond chamber and attempted to use the micropipette assay.

º
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Figure 3.5: A) Intensity images taken at different times of 0.2 pum diameter PC-Red
beads diffusing across the bridge in the Zigmond chamber. B) The corresponding
intensity profiles along the width of the images, superimposed over a drawing of the
bridge. The higher concentration was placed in the groove on the right side of these
images.

Micropipette assay

Micropipettes were pulled from a borosilicate capillary with an outer diameter of

1.0 mm and an inner diameter of 0.5 mm containing a microfilament using a model P-97

Flaming/Brown Micropipette Puller (Sutter Instruments, Novato, CA). The two main

conflicting constraints for choosing settings on the puller were that the tip had to have a

small enough opening to enable precise control over the flow rate, but not so small that

the micropipette would be susceptible to clogging. The settings that gave good results

were as follows: step 1: heat = 660, pull = 50, velocity = 10, time = 250; step 2: heat =

600, pull = 70, velocity = 50, time = 250. The micropipettes were held in a vertical

position and loaded by placing a 2 pull drop of a chemoattractant/FITC solution on one

end. After several minutes, the drop moved to the tip by capillary forces. This method of

loading excluded air bubbles. To insure that there was no particulate matter that would
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clog the tip, the chemoattractant/FITC solutions were centrifuged for approximately 10

minutes before loading. Adherent neutrophils were obtained as described above and
-

placed in the custom live-cell chamber discussed in section 2.2.1, above. After focusing - *

on the plane containing the cells, the micropipette was positioned using a

micromanipulator (Narishige). The flow rate of the chemoattractant solution into the live

cell chamber was controlled through a pressure line connected to a 0-15 psi Precision

Pressure regulator (McMaster). A picture of the live cell chamber and micropipette in

operation is displayed in Figure 3.6, below. In several experiments, micropipettes were

changed mid-experiment either to test a different concentration or to replace a clogged

micropipette.

Figure 3.6: The micropipette assay in operation.
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3.2.3 Image acquisition

All images were taken with a CoolsnapHQ camera (Photometrics) on a Zeiss

Axiovert 200 using a Zeiss Plan-Neofluar 10x/0.3 NA objective at bin 3. The condenser

had a 26 mm working distance and a 0.55 NA. The fluorescent images were taken using

FITC cube filters (Ex D470/40 Em D535/40). Phase contrast and fluorescent images were

taken every 15 seconds over a range of times that depended on the response. Images were

captured using Metamorph (Molecular Devices Corporation, Sunnyvale, CA).

3.2.4 Image processing

In migrating to the micropipette tip, neutrophils interact and overlap much more

than in the chemokinesis assay discussed in Chapter 2. As such, it was difficult to

manually track individual neutrophils, thus necessitating the use of other methods for

quantifying the data. In this section, we discuss several novel methods we developed for

tracking an approximation of the cell density. All the image processing was performed

using Matlab's Image Processing toolbox, version 3.1 (The Mathworks, Natick, MA).

Samples of all processing code can be found in appendix A.1.

The goal in quantifying this data is to correlate cell migration with the

chemoattractant concentration and concentration gradient. One of the issues we faced in

developing suitable methods was that there was significant convection in the micropipette

assay. This resulted in intensity profiles that, rather than being uniformly distributed in

two dimensions around the micropipette tip, often contained long tails in random and

occasionally fluctuating directions. While convection in the Zigmond chamber caused us

to discard that assay, we were able to develop methods for dealing with convection in the

micropipette assay.

:
.
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For the first method, we account for non-uniformities in the concentration profile

by averaging the intensities over time to produce a single intensity image. This method

effectively accounts for persistent non-uniformities and averages out rapid fluctuations

that we assume have little effect over the time scales of cell migration. From this

averaged intensity image, we produced a contour plot showing regions of similar

intensities. We used this contour plot to produce a series of masks; each mask

corresponds to one of the contours. For instance, for the mask corresponding to a certain

intermediate intensity value which we will call IS, each pixel in the mask is set equal to 1

if that pixel’s intensity in the averaged intensity image falls within a certain range of Ig.

Otherwise the pixel value in the mask is set equal to 0. Figure 3.7, on the following page,

shows a contour plot Superimposed on an averaged intensity image, along with three of

the masks produced using this method. The number of masks is an adjustable parameter

in the processing code and is set to 20 here. The masks define the regions in which we

tracked the density of cells over time, as discussed below. Notice that a portion of several

masks will be attributable to the micropipette; we neglect these effects here.

Figure 3.8, on the following page, shows an example that outlines the steps taken

in processing the phase contrast images. We began with a raw 16-bit image of the cells

(A; this image is frame 236 out of 266 in the time-lapse sequence). We first needed to

correct for variations in the intensity within the frame. We began by converting the 16-bit

image to a double, producing pixel values that fell between 0 (black) and 1 (white). Using

the imadjust command, we normalized the contrast by stretching the existing grayscale

values over the entire range of allowable grayscale values. We then performed a

:
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Figure 3.7: A) A contour plot superimposed on an intensity image averaged over 266
frames. B, C, D) Masks created from three of the contours in A.

. . . . * ***.* .
- * -

Figure 3.8: The steps taken in processing phase contrast images. A) A raw image. B) The
same image after normalizing the intensity and subtracting the background. C) The
thresholded image. D) The image after multiplication using one of the region-defining
masks.

:
;
2

53



background subtraction. The background was determined by using the strel function to

exclude all objects that could not completely contain a disk of a certain radius. After trial

and error, we determined that a disk with a radius of 5 pixels gave the best results. The

result from these operations performed on the image in (A) are displayed in (B). We then

applied thresholding to the image, setting the pixel values to 1 if they had intensity values

greater than 0.3, and 0 if they had intensity values less than 0.3 (C). Finally, we

multiplied the thresholded image by each mask in the set defined above (D shows the

results from one mask). The density in each region defined by a mask was calculated by

summing all the pixel values from the masked, thresholded image and dividing by the

total number of pixels in that region. After performing these operations on each image in

the time-lapse sequence, we plotted the density in each region over time. Note that the

densities are only approximate since the cells may overlap in many of the images,

reducing the number of pixels that are occupied by cells.

The idea behind this method of quantifying the data was that it would allow us to

distinguish regions where the chemoattractant concentration and concentration gradient

were optimal and would lead to the greatest cellular response. Cells within these regions

would crawl up the gradient, moving into and increasing the density of new regions while

reducing the densities in the regions from whence they came.

One of the problems with the method of mask production described above is that

it produces large regions far from the micropipette tip, such as the one shown in Figure

3.7B, and small regions near the tip where the fluorescence intensity changes more

dramatically. This greatly reduces the resolution for tracking density changes. The second

method we used for quantifying the data is similar to the first method, but overcomes this
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issue by defining annular regions based a series of concentric circles around the tip of the

micropipette. As shown if Figure 3.9, below, this method enables us to track the densities

with greater resolution, but it suffers from losing any relevance to the convective patterns

displayed by the fluorescence intensity images. We will present and discuss, below,

results from both methods.

Figure 3.9: Concentric circles defining regions for tracking cell density superimposed on
an intensity image averaged over 266 frames.

3.2.5 Parameter estimation

In the absence of data providing individual cell paths in chemoattractant

gradients, it becomes difficult to estimate the chemotactic responsiveness parameter in

the bias term of the modified OU process. Nevertheless, we present two measures here

for use in future work for quantifying this parameter. We can also use these measures for

exploring differences between simulations run under various conditions. To compare

experimental results with model predictions we rely on qualitative similarity measures, as

discussed in more detail below.

The first measure is the chemotactic index, discussed briefly in Chapter 1, defined

as the ratio of the distance a cell migrates up a concentration gradient to the total path
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length [McCutcheon, 1946]. This index takes values between -1, for a cell migrating

directly against the gradient, to +1, for a cell migrating directly up the gradient. In ideal

conditions of chemoattractant concentration and concentration gradient, we would expect

the chemotactic index to be high. In non-optimal conditions, we would expect the index

to be closer to 0, indicating that the cell has no directional preference.

The second measure is the correlation between the vector pointing in the direction

of cell migration and the vector pointing in the direction of the chemoattractant gradient.

This is fairly similar to the chemotactic index in that it will take a value of -1 for

migration directly down the gradient and +1 for migration directly up the gradient. The

advantage of this measure is that it can be used when there are changes in the

chemoattractant gradient, caused either by experimental design or convective

fluctuations.

To estimate the value of the chemotactic responsiveness we would apply the

method described in [Stokes et al., 1991]. We first run a number of simulations using

different values for the chemotactic responsiveness. We then calculate the simulated

chemotactic indices or correlations and plot them against the chemotactic responsiveness.

Once we have experimental data, we can calculate the measures above and reference the

figures from the simulations to estimate the value of the parameter.

The parameters used in the model of receptor-ligand binding were obtained from

literature estimates.
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3.3 Experimental Results

The methods described above to process the experimental images were designed

to provide objective measures that would be amenable to presentation and comparison

with model predictions. While these methods were mostly successful, we include our

interpretation of the results based on a qualitative analysis of the time-lapse sequences.

One of the primary goals in performing these experiments was to estimate the

chemotactic responsiveness in the bias term of the modified OU process. In light of the

difficulties discussed above, we were unable to perform this task. We could, however,

achieve another goal which was to qualitatively determine the degree of response in

different concentrations and gradients. This is important for comparing the results to

model predictions and for designing experiments to test the chemotactic response in

multiple chemoattractant gradients, as will be discussed in the following chapter.

We measured the neutrophil chemotactic response in 10 experiments using

different concentration of either fMLP or the C5a analogue Chacha. The results for an

experiment using 100 pm fMLP are displayed in Figure 3.10, on the following page.

Each column corresponds to one of the methods discussed above for producing masks

that define the regions in which cell densities were tracked. In (A) a contour plot of the

fluorescence intensity is superimposed over the average fluorescence intensities from 77

frames taken with 15 second intervals. Each contour defines a region and the density in

each region is tracked over time in (B). The ordinate of this plot does not give absolute

values of the density, but is designed to enable comparisons of the relative densities in

each region over time. The lines are ordered to correspond with the intensity values, so

that the lowest line tracks the density in the largest and weakest intensity region and the
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Figure 3.10: Results from an experiment to measure neutrophil migration to a
micropipette releasing 100 pm fMLP. A.) A contour plot of the fluorescence intensity
superimposed on the average of 77 frames. B) The density of cells (features) over time in
each of the contours. The ordinate is not absolute but is designed to enable easy
visualization of the relative changes in densities. The lowest line corresponds to the
weakest intensity contour, and the highest corresponds to the strongest intensity contour.
C) The change in feature density between the first and last frames for each contour. D)
The annular regions superimposed on the final thresholded image of the sequence. E) The
density of features over time in each of annular regions. F) The change in feature density
between the first and last frames for each annular region. Note that the behavior mirrors
that in (C) because of how the regions are defined.
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highest line tracks the density in the strongest intensity region. Notice that the biggest

changes in density occur in the high intensity regions at the micropipette tip. This

indicates that cells accumulated here. The total density change between the first and last

frames in each region is plotted in (C). This figure shows more clearly that the cells

accumulated in the region at the micropipette tip. There is also a significant density

increase in a slightly weaker intensity region corresponding to 2000. This illustrates one

of the difficulties in using this method: we are unsure of the position of this contour in the

field without making a more detailed examination.

Figure 3.10 D-F shows the results when using the annular regions. In (D) the

annular regions are superimposed over the final thresholded image. Notice that the

feature (or cell) density in the smallest region at the micropipette tip appears to be high.

The density in each annular region is plotted over time in (E) using the same style

ordinate as in (B), except that the lowest line corresponds to the annular region with the

smallest diameter near the micropipette tip and the highest line corresponds to the annular

region with the largest diameter. Notice that the density in every region is relatively flat

over time, except for the one with the smallest diameter. In (F), the density change

between the first and last frame is plotted as a function of the radius of the circle defining

the annular region. The result is an approximate mirror image of (C) because of the

definitions of the regions in each case. This is perhaps the clearest figure, showing that

the cell density increases right near the tip. There is also a slight decrease in the densities

of a few regions just outside that may correspond to cells leaving these regions to crawl

to the tip. In the regions farther from the tip there is a negligible response. The key result

from this experiment is that at this concentration the response is confined to an area right
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near the tip where the gradient and concentration is sufficiently large enough to generate

a response. This was the lowest concentration in which we observed a response.

Figure 3.11, on the following page, displays the density changes between the first

and last frames in the annular regions for four experiments in which different

concentrations of fMLP were used in a micropipette. The plot in (D) for 1 mM of fMLP

is representative of three different experiments using this same concentration. Notice that

the y-axes are scaled differently in each plot. There appears to be an increasing trend

between 10 nM and 100 nM and then a drop for the remaining experiments. Although

this may be of significance, indicative of some sort of sensitivity of neutrophils, we did

not perform enough replicates to predict a trend with any confidence. The plot in Figure

3.10F, above, uses a lower concentration than Figure 3.11A and shows a larger change in

feature density, throwing off the small trend that we observe here. We did notice,

however, that the response seemed to be the greatest when using 100 nM. This will be

important in the next chapter. Note also that the total elapsed times over which the

densities were tracked were different for each experiment. The results displayed above

using 100 pm were measured from a time-lapse sequence over 19 minutes. The results

displayed below were measured from sequences over 100 minutes for 10 nM, 86 minutes

for 100 nM, 48 minutes for 1 HM, and 68 minutes for 1 mM. In general, we noticed a

qualitative trend suggesting that the responses were faster at lower concentrations. This

may be related to the increase in the number of bound receptors, as discussed in

[Zigmond and Sullivan, 1979].
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Figure 3.11: The changes in feature densities between the first and last images in the
annular regions for four different experiments using A) 10 nM, B) 100 nM, C) 1 HM, and
D) 1 mM of fMLP in a micropipette.

The trend we focused on in analyzing these sequences and developing the model

is the region of sensitivity. At low concentrations, cells near the source crawled to the º

micropipette tip, while cells farther away ruffled but had little or no displacement. This sº
º

can be seen in Figure 3.11A, B, and C where the peak density change occurs in the cº

Smallest annular region. As the concentration increases, the region in which the cells 2.

responded moved outward. This can be seen above by comparing the points where the º
largest peak first crosses the x-axis. At the highest concentration tested, 1 mM, the cells ºº

near the source either did not move or migrated in random directions, while the cells that º
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were farther away migrated inward. These inwardly migrating cells would seem to lose

their sense of direction or stop when they got within a certain distance of the micropipette

tip. Notice that the greatest response in (D) occurs in the region farthest from the

micropipette tip, while there is a low response at the tip. The reason for the low response

may be due to receptor saturation. Figure 3.12, below, shows the final thresholded images

from the experiments using 100 nM (A) and 1 mM (B) with the annular regions

superimposed and further demonstrates the trend we observe. The smallest circle is very

dense with cells in (A) and nearly empty in (B). The maximum density in (B) appears to

fall in the 6" region from the micropipette tip.

º - º *º - *** e

Fºr sº The final mºme from the sequences using A) 100 nM and B) 1
mM fMLP with the annular regions superimposed.

We could only observe a response to ChaCha at the highest concentration tested,

which was 10 mM. This may indicate that the optimal concentration is actually higher.

There is some indication in the literature that other C5a analogues sharing a similar

sequence to Chacha can act as partial agonists or even antagonists. This would indicate

that they have a lower affinity for the C5a receptor, which would explain our results. The

i
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response consisted of cells near the source crawling to the micropipette tip, much as they

did for the lower fMLP concentrations used above.

3.4 Model and Simulation

In this section we develop the OU process to account for chemotaxis in a single

chemoattractant gradient. We begin with a model of the chemoattractant gradient and

compare this model to experimental data. We then present several models for the

chemotactic bias term, looking strictly at the deterministic behavior in light of the physics

involved in receptor-ligand binding. Finally, we add the bias term to the OU process and

simulate migration paths of cells in a chemoattractant gradient.

3.4.1 The concentration profile

Chemoattractant release from a micropipette can be modeled as a point source of

in three dimensions. For this model, we will neglect any effect on the concentration by

the presence of the micropipette or by convection. Due to spherical symmetry, we only

consider the radial dimension. To describe the resulting concentration profile and

gradient we start with the steady state diffusion equation in spherical coordinates, given

by

#(º)-0 (3.4.1)Or Or

where L (nM) is the chemoattractant concentration and r (um) is the radial distance from

the source. The concentration is Lo (nM) within the point of radius ao (pum) and decays to

:
:

63



zero in the limit as the radius goes to infinity. Under these boundary conditions, the

solution to Eq. (3.4.1) is

(3.4.2)

If we define q (mole/s) as the rate of flow of chemoattractant from the micropipette and

set it equal to 47t■ )Loa, where D (um’■ s) is the chemoattractant diffusivity, we get the

equivalent statement [Berg, 1993]

L =–4 (3.4.3)
47. Dr

We are interested in finding the concentration and concentration gradient

experienced by a cell that is crawling in a plane within the three dimensional field. To

account for the barrier to diffusion caused by this plane we use the Method of Reflection

and Superposition [Crank, 1975]. This method, which is outlined in Figure 3.13 on the

following page, places an imaginary point source on the opposite side of and equidistant

from the plane, i.e. the reflection of the real source within the plane. The concentration at

any point is then found by summing the concentrations resulting from the real and

imaginary point sources. The net result is that Eqns. (3.4.2) and (3.4.3) are multiplied by

a factor of 2. Since we only consider the two dimensional plane, we will fix z, the

distance between the source and the plane, so that r varies only with the x and y

coordinates.

º
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(0,0)

Figure 3.13: Method of mirror images used to calculate the chemoattractant
concentration and concentration gradient on a plane resulting from a point source above
the plane.

For clarity, we will limit our examination at this point to a line within the plane. We

define this line as the x-axis and place the origin of the axis directly below the source so

that r = Vx +z along the line. Figure 3.14 on the following page, shows a diagram of

this model. The ligand concentration along the line is then given by

2Loao
Nx* + 2*

L = (3.4.4)

The gradient of ligand along the line is found by differentiating Eq. (3.4.4) to give

dL – 21 odox (3.4.5)
* (WIF)
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X H
Figure 3.14: Model schematic in one dimension.

Before proceeding, we validate this model against experimental data obtained

from a fluorescent image. Figure 3.15A, below, shows an image with a vertical line

drawn through the intensity peak. The intensity along this vertical line (with the

background intensity subtracted) is plotted as a solid blue line in Figure 3.15b. The

dashed red line superimposed over the blue line is the intensity predicted by Eq. (3.4.4)

when we substitute I (the intensity) for L and set a, to 4.5 pm and z to 9 pm. The

peak intensity Io, determined from the data, is equal to 3567.

i 2000

-E-F-H------,
Vertical position

Figure 3.15: A) A fluorescent image of carboxyfluorescein diffusing from a
micropipette. The vertical blue line is drawn through the intensity peak. B) The intensity
along the vertical line in (A) is plotted against the vertical position as a solid blue line.
The dashed red line is the intensity predicted by the model.
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By measuring the fluorescence intensity at various points within the field over time, we

can also examine the assumptions behind the use of the steady state diffusion equation.

Figure 3.16A, below, shows another fluorescent image. The intensities at four points,

each marked by a colored x, are tracked over the time course of an experiment and the

results are plotted using corresponding colors in Figure 3.16B. The x-axis in this figure is

the frame number from a time sequence taken with 15 second intervals. As shown, we

see that there is no significant buildup of fluorescence over time, indicating that the

dimensions of the device in which these images were taken are large enough to justify

diffusion to an infinite radius. Notice the point and corresponding line marked by the

number 1 in this figure. The fluctuations in the intensity correspond to convection that

occurred over the course of this time sequence. As mentioned above, we neglect this

convection in the model.

| -
*

* ...****
50 100 150 200 250

Frame #

Figure 3.16: A) A fluorescent image of carboxyfluorescein released from a micropipette.
B) The intensities at each of the four points marked in (A) are plotted for each frame of a
time-lapse sequence of images taken at 15 second intervals.
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3.4.2 Models for chemotactic bias

To model gradient sensing by neutrophils we use a simple description of receptor

ligand binding, as follows

k

R+L==C (3.4.6)

where R (#/cell) is the number of free receptors, L (nM) is the concentration of ligand,

C(#/cell) is the number of bound receptors, and k, (nM's') and k, (s") are the binding

and unbinding rate constants, respectively. The species in this reaction depend on both

time and space. Since we only consider one spatial dimension, the number of bound

receptors is technically described as C(x,t). For simplicity we will drop this explicit

description.

The rate of change in the number of bound receptors is described using mass

action kinetics to give

# = k, RL–k,C (3.4.7)t

We neglect other dynamics such as receptor desensitization and internalization so that we

can describe the total number of receptors, R tot (#/cell), as the sum of free and bound

receptors, as follows

R., - R+C (3.4.8)

68



Using the initial condition that C(x,0) = 0, we solve Eq. (3.4.7) to give

=# (l-cº) (3.4.9)k,L-k,

The time constant, (k, L4 k, )" (s), gives the time at which the number of bound

receptors is equal to 63% of its steady state value. Given values for k, on the order of 0.1

nM.' s", k, on the order of 1 s' [Adams et al., 1998], and L on the order of 100 nM, we

calculate a time constant of 0.1 S. The average speed of a neutrophil is 10 pum/min and its

diameter is 10 pm, so we expect that it will crawl about 1/600" of its diameter in one

time constant. With this small value we are justified in neglecting transients in the species

concentrations, and we can thus describe the number of bound receptors as

C = –14– (3.4.10)

where we have used the dissociation constant Ko = k, /k, (nM).

We assume that the cell detects the chemoattractant gradient by measuring the

difference in the number of bound receptors across its length, as discussed in [Zigmond,

1981]. We will define the magnitude of this difference as the sensitivity and use both

terms interchangeably. To determine the difference, the gradient of receptors along the x
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axis is first found by differentiating Eq. (3.4.10) with respect to L and then multiplying by

the ligand gradient given in Eq. (3.4.5) above. The result is

6C - ÖC dl – 2K.Kolodoxtof

- - - - - 2 (3.4.11)
ôx 6L dx (K, + L) r”

The difference is then found by multiplying this equation by the diameter of the cell,

d.ºn, to givecell 2

AC = d.º. 6C (3.4.12)
Ox

The sensitivity is just the absolute value of the difference defined by this equation. The

diameter of the cell acts here as an amplification factor and suggests that larger cells can

detect smaller gradients. Small cells, such as bacteria, may not be able to detect a spatial

gradient across their diameters and may use a temporal sensing mechanism instead [Berg

and Purcell, 1977; Dusenbery, 1998; Thar and Kuhl, 2003].

Figure 3.17A on the following page, shows the resulting difference in the number

of bound receptors across a cell at different positions along the x-axis for three different

source concentrations of chemoattractant. The parameter values we used are presented in

Table 3.1 (Matlab code can be found in appendix A.3). We assume that the cell migrates

in the direction indicated by the difference: when the difference is positive, as occurs to

the left of the origin, the cell migrates in the positive x direction; when the difference is

negative, as occurs to the right of the origin, the cell migrates in the negative x direction.

*#
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By examining this figure in light of the experiments discussed in section 3.3, above, we

find a partial similarity with our desired outcome. On the low end of concentrations we

see that there is a small region around the origin that directs cells to the source. Although

not pictured here, at even lower concentrations the difference in bound receptors is

reduced so that eventually it will be so small that the cell will be unable to accurately

sense the gradient. Based on observations in [Zigmond, 1977], we assume that the

minimum difference in the number of bound receptors is approximately equal to 10. As

the concentration is increased to 100 nM, the region around the source expands outward

and the difference increases.

Table 3.1: Parameter values used in the models of chemotactic bias.
Parameter Value Parameter Value

Lo 1 nM, 100 nM, 10 puM R. 1000/cell

do 4.5 pum K, 10 nM

2 9 pum d.º. 10 pum
Q, 0.0008 um.” P7 1.2

0.95 - 10 um 100 nM 1 nM

0 g -

| 0O 885
0.75H

*TI.T.T.T.T.T.T.T.TFo 07–––––H–H º d

X X

Figure 3.17: A) The difference in the number of bound receptors that would occur across
a cell located at points along the x-axis for three different source ligand concentrations.
B) The normalized difference from (A) for the same three concentrations in a smaller
region along the x-axis.
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We do not find agreement with experimental results at higher concentrations. We

expect the sensitivity to be low near the source due to receptor saturation and higher with

a larger range away from the source. We see instead that the sensitivity decreases

uniformly and may fall below the minimum detectable level. Figure 3.17B shows a

portion of the x-axis with sensitivities for the different concentrations normalized by

dividing through by their maximum values along the axis. Although we do not know of a

mechanism by which this normalization would occur, we see that this gives greater

similarity with experimental observations. If, for instance, the cell requires a minimum

normalized difference of 0.7, the smallest value on the ordinate in this figure, then the

sensitivity is lower near the source and higher with a larger range away from the source.

The sensitivity near the source is still too high, however, and as the concentration is

increased even further in the model, an asymptotic limit is reached that is close to the line

shown for 10 HM in Figure 3.17B.

Another model that was suggested in [Zigmond, 1981] suggests that neutrophils

perform gradient detection by sensing the relative difference in the number of bound

receptors across their length. The relative difference is found by dividing the absolute

difference from Eq. (3.4.12) by the total number of bound receptors from Eq. (3.4.10),

giving

AC 2Kox
c "Túz.II); (3.4.13)

.
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Figure 3.18: A) The relative difference in the number of bound receptors that would
occur across a cell located at points along the x-axis for three different source ligand
concentrations. B) The normalized relative difference from (A) for the same three
concentrations in a smaller region along the x-axis.

Figure 3.18A shows the relative difference along the x-axis for the same three

chemoattractant concentrations used previously. We see here that the sensitivity is

highest at the lowest concentration and decreases as the concentration increases. The

region of sensitivity follows a similar trend. This does not agree with experimental

results. Figure 3.18B shows a portion of the axis with normalized relative sensitivities. In

comparing this with Figure 3.17B, we see that this normalization again achieves greater

similarity with experimental observations. Note also that the locations of the peaks have

shifted away from the source relative to those in Figure 3.17B. While we may be safe in

rejecting gradient detection via a strictly relative difference, the normalized relative

difference remains a viable option. As above, we do not know of a mechanism by which

this can occur.

Another consideration for possible models of gradient detection is similar to the

first model with an additional mechanism for receptor desensitization. We replace R, intot

Eq. (3.4.10) with R. (#/cell), the number of available receptors for binding, given by

:
3
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R. K." -T
= —4– 3.4.14

R, K" + L" ( ) -->

*_2:

This functional form is based on intuition: at high chemoattractant concentrations we 4

expect more receptors to become desensitized so that fewer are available for binding and

downstream signaling. The Hill coefficient, n, allows us to tune the level of
*

desensitization. The number of bound receptors in this desensitization model, C, , is then º:
given by I |

,”:
-

T]. I
C, -º (3.4.15) —

Kp + L * →

ºº

The gradient of bound receptors is found here, as above, by differentiating Eq. (3.4.15)

with respect to L and multiplying by the chemoattractant concentration gradient to give 3.
. *

n " – ■ m – n — ºn Int! **-*# e. ºD

s

The absolute difference is then found by multiplying by d.º. c

Figure 3.19.A shows the difference in the number of bound receptors across the º
. . ."

cell along the x-axis with desensitization for the three different chemoattractant

concentrations examined above. We see here an odd twist that is not surprising on further

examination of this model. At low concentrations we get the expected behavior: cells
S.
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D.

**.
near the origin migrate inward. As the concentration is raised, however, the direction of

º
migration is reversed; cells will move away from the source. Figure 3.19B shows the -

normalized results over a smaller region of the axis. The reason this reversal is not ~
–0.

surprising is that the end of the cell closest to the source is exposed to a higher

chemoattractant concentration and will have fewer receptors that are available for binding

and signaling due to greater desensitization. The gradient of bound receptors is thus

inverted, causing the cells to migrate away from the source. The concentration at which

this inversion occurs depends on the particular value for n that we choose. Unlike the

previous results, the normalized difference in Figure 3.19B does not provide greater

similarity with experimental observation.
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Figure 3.19; A) The difference in the number of bound receptors that would occur across
a cell located at points along the x-axis for three different source ligand concentrations c
when a simple sigmoid function for receptor desensitization is included. B) The

normalized difference with desensitization from (A) for the same three concentrations in ://

a Smaller region along the x-axis. i.

º
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The final model we consider here uses the first receptor-ligand binding scheme

described by Eq. (3.4.10) with a modified description of the ligand concentration. The

ligand concentration is given by

L = L, e."" (3.4.17)

where a, (um”) is a scaling factor related to the chemoattractant diffusivity. Although

this equation does not solve the diffusion equation and does not provide the best fit with

experimental data from the fluorescent images, it does roughly approximate our previous

description of the ligand concentration, as shown in Figure 3.20, below. Notice that the

peak has a greater spread and the concentration decays more quickly.

=

- *--
-- **---

150 200

Figure 3.20: Comparison of two models for the chemoattractant concentration profile.
The dashed red line is the model derived from the diffusion equation. The blue line is the
exponential approximation.

:
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The difference and normalized difference in the number of bound receptors across

the cell for this model are displayed in Figure 3.21. This model agrees with experimental

results in that the sensitivity increases with increasing concentration. There should,

however, be an upper limit on this sensitivity based on the number of receptors; this limit

is exceeded at very high concentrations (not shown). Nevertheless, the region of

sensitivity does move outward at higher concentrations and is low near the source. This is

caused by the inflection point in the exponential model for the chemoattractant

concentration. The peak in the sensitivity actually occurs at the same position as the

inflection point. While this model does not entirely agree with the experimental results, it

does provide important insight that can be used in future development. A combination of

this result with the relative difference or desensitization models described above may

provide better agreement.

300 H. 10 M
-

10 M 100 nM 1 nM
0.95 -

200 H 100 nM

0 9 -

100 H. 1 nM

9. 0 i 85

[. 8 -

0.75 -
-300 H.

*Tº Tºº Tº TTTTTFTETTE) 0.5–H–H sº E. º 35 d

X X

Figure 3.21: A) The difference in the number of bound receptors that would occur across
a cell located at points along the x-axis for three different source ligand concentrations
that have exponential profiles. B) The normalized difference from (A) for the same three
concentrations in a smaller region along the x-axis.
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The ligand concentration described by Eq. (3.4.17) cannot be derived from the steady

state diffusion equation and does not agree with the fluorescence data, but the

assumptions we made in developing the first concentration model may be incorrect. It is

possible that we need to account for differences between the fluorescence and

chemoattractant profiles. We may also need to account for effects on the concentration

caused by the micropipette, convection, and/or injection of chemoattractant.

3.4.3 Simulating chemotaxis using the OU process

In spite of the difficulties discussed in the previous section for achieving

agreement between the model for the chemotactic bias and the experimental results, we

develop here a simulation of the modified OU process described by Eq. (3.1.1). While we

do not make a detailed examination, it is possible that closer agreement can be attained

by accounting for a dependence of the speed and persistence time on the chemoattractant

concentration. The basic framework presented here enables an integrated exploration of

the effects of the physical processes presented thus far on chemotaxis.

The basic steps for simulating the modified OU process are fairly similar to those

steps used for simulating the simple OU process. In Chapter 2, we used Eqs. (2.2.6) and

(2.2.7) to update the x components of the velocity and position, respectively, and similar

equations to update the y components of the velocity and position. In the modified OU

process, we include updating equations for the states involved in the chemotactic bias

term. These states include the chemoattractant concentration, the number of bound

receptors, and the x and y components of the chemoattractant concentration gradient and

bound receptor gradient. Depending on the model we use for the chemotactic bias we

might also include the number of available receptors. While the velocity and position

:
- *º3.

2. *
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depend on their previous values, these additional states depend only on the current

position of the cell. The values of the states are calculated based on the equations

described above and the result is fed into the modified OU process via the chemotactic

bias.

Figure 3.22, on the following page, shows the results of simulations run using the

above algorithm for 10 cells in three different chemoattractant concentrations over 17

minutes (Matlab code can be found in appendix A.4). The model is the normalized bound

receptor gradient resulting from an exponential chemoattractant concentration, as shown

in Figure 3.21B, above. The parameter values correspond to the speed and persistence

used in the simulations in the previous chapter and those displayed in Table 3.1. The

value for the chemotactic responsiveness was set to 2 x 10° pm/s/#/cell. The cells started

from the green dot in each plot and the sources were located at the red dot. Note the

concentration dependence on the cell migration paths. At the lowest concentration of 1

nM (A), the cells seem to be unable to sense the gradient and migrate randomly. At the

middle concentration of 100 nM (B), most of the cells sense and migrate up the gradient.

At the highest concentration of 10 HM (C), the cells from (B) that migrated to the point

do not migrate as closely due to receptor saturation. Those cells that remained at a

distance from the source in (B) are more attracted to the higher concentration in (C)

because they are located within the range of greatest sensitivity which has moved

outward at this higher concentration.
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Figure 3.22. Simulated migration paths of 10 cells over 17 minutes in three different
chemoattractant concentrations using the OU process with chemotactic bias. The green
dots are the starting locations and the red dots are the chemoattractant source locations.
The model for the chemotactic bias is the normalized bound receptor gradient resulting
from an exponential chemoattractant concentration.

3.5 Conclusions

In this chapter we have developed the modeling framework based on the OU

process to account for neutrophil chemotaxis in single chemoattractant gradients using a

combination of experiments and models. We presented three different experimental

assays that can be used to study chemotaxis: microfluidics devices, the Zigmond

chamber, and the micropipette assay. While we were unable to use the microfluidics

devices and Zigmond chamber for reasons we discussed, we have outlined their operation

and have characterized fluorescent gradients generated within them. We focused our

experimental lens on the micropipette assay, developing novel image processing methods

for quantifying cell density changes and relating these changes to the chemoattractant

gradient as monitored by inclusion of a fluorescent tracer. Although we were unable to

track individual cells in these experiments, we present several methods for estimating

model parameters based on cell migration paths that may be of use in the future. Using

the experimental results which we obtained using the density tracking methods we

examined several hypotheses for gradient sensing based on the physical principles

-
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involved in receptor-ligand binding. While we were unable to achieve complete

agreement between the experiments and the models, we did show partial agreement that -:

provides important insight toward future development. Finally, we added a model of TX;

chemotactic bias to the OU process and demonstrated how simulations can be performed.



Chapter 4

Neutrophil Chemotaxis in Multiple Chemoattractant

Gradients

4.1 Introduction

As discussed in Chapter 1, neutrophils are able to process and respond to

conflicting gradients of chemoattractants in search of primary sites of inflammation.

While much of the focus of research in this field has been on the molecular interactions

and signaling pathways involved in the response to single gradients, how these pathways

process multiple signals to effect migration in the appropriate direction is not understood

and is an important line of questioning for understanding the organization and

functioning of these signaling pathways. Although there are still numerous questions

about how neutrophils respond to single gradients, as discussed in Chapter 3, we present

here our efforts to expand the OU process to enable an examination of possible

mechanisms behind multiple signal processing. In particular, we focus on effects on the

direction of migration caused by differences in receptor-ligand binding parameters

between two different chemoattractants. We assume that the chemotactic response is

generated along the vector sum of bound receptor gradients and that this vector sum is

weighted by differences in receptor-ligand binding.

The organization of this chapter largely parallels that of Chapter 3. We describe

experimental methods for generating conflicting chemoattractant gradients and adapt
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techniques presented earlier for processing experimental images. We demonstrate the

application of these techniques and interpret the results from a couple of experiments. We

then present models for the chemotactic bias and explore the effects of different binding

parameters on the vector sum migration. Finally, we add the chemotactic bias to the OU

process and simulate cell migration paths in multiple chemoattractant gradients. We

discuss questions arising from this examination and make recommendations on how to

further develop this modeling framework.

4.2 Materials and Methods

Most of the methods described in the previous chapter were used here without

modification. The exceptions were in the micropipette assay and the image processing

techniques, as discussed below.

4.2.1 Chemoattractant gradients

Microfluidics devices

Before discarding the microfluidics devices for reasons discussed in the previous

chapter, we characterized opposing linear gradients of the fluorophores Texas Red and

FITC. To generate opposing linear gradients, we fed 10 puM solutions of FITC and Texas

Red into the opposite two outer entry ports of the device (see Figure 3.2), and a solution

containing 5 puM of both fluorophores into the central entry port. The results are

displayed in Figure 4.1. Note that, as in Figure 3.3, only a portion of the entire width of

the main chamber is visible under 10x magnification. In (A), an overlay of two

fluorescent images taken from different channels is displayed. The intensities are plotted

across the width of the channel in (B).
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Figure 4.1: A) Overlay of two fluorescent images taken from different channels showing
opposing gradients in a microfluidics device. B) The superimposed fluorescence intensity
profiles measured from (A).

Micropipette assay

Micropipettes were pulled and loaded as described in the previous chapter.

Micromanipulators were placed on either side of the microscope stage, and two

micropipettes containing fMLP or ChaCha were positioned in the plane of focus. The

release rates were controlled by separate pressure regulators. We occasionally increased

or decreased the pressure on one or both lines to achieve good profiles that were fairly

identical. We were also able to adjust the positions of the micropipettes dynamically,

offering a significant advantage over previous assays used to study migration in multiple

chemoattractant gradients. Although we do not examine these temporal effects here, the

results presented below were obtained by actively positioning the micropipettes relative

to each other until we were satisfied that a population of cells could sense both gradients.

4.2.2 Image processing

We used two methods, similar to the methods presented in the previous chapter,

to generate masks to define regions for tracking cell densities. Examples of both methods

2
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are presented in Figure 4.2. For the first method, displayed in (A), we calculated the time

averaged intensity image and produced a contour plot, just as above. Each mask

corresponded to one of the contours. The difference here is that, rather than tracking the

cell density throughout the entire image, we focused on a smaller rectangular region,

outlined in red in (A), covering the area between the two micropipettes. This allowed us

to confine our observations to cells that, we felt, would be more fully impacted by both

gradients. In developing the second method, we decided that the circular regions from the

previous chapter would be insufficient due geometrical constraints. Instead, we formed a

series of rectangular regions between the two micropipettes, as displayed in (B). For both

methods, we defined and tracked the cell density in each of 20 different regions. The

density in each region was calculated as described in Chapter 3. Matlab code

implementing these techniques is included in appendix A.1.

Figure 4.2: Methods for defining regions in which cell densities were tracked. A) A
contour plot in a rectangular region covering the area between the micropipettes
superimposed on a time-averaged fluorescence intensity image. Each contour defines one
region. B) The area between the two micropipettes in (A) is divided into smaller
horizontal rectangular regions that are approximately parallel to the gradients. These
regions are superimposed on the final thresholded image in a time-lapse sequence.
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4.3 Experimental Results

Figure 4.3 shows the results from an experiment using micropipettes containing 1

puM of fMLP and 10 mM of Chacha, separated by a distance of approximately 400 pum.

Each column corresponds to a method and image displayed in Figure 4.2. The fMLP was

on the left and the ChaCha was on the right. In (A), the density is tracked in each contour

over time. Note that these results come from a 20 minute experiment. The ordinate is not

the absolute density but provides easy comparison between contours. The highest

intensity contours, on the top, increased in density, and the lowest intensity contours

stayed relatively flat. This indicates that cells crawled to one or both micropipettes.

Figure 4.3B displays the density difference between the last and first frames for each

contour. One of the issues in using this method is that it does not distinguish whether the

cells crawled to the left or to the right, which is the primary information we desire. This

is because many of the regions contain elements near both micropipette tips.

The second method solves this problem. Figure 4.3C shows the density difference

over time in the rectangular regions. The ordinate is the same as in (A). The lower line

indicates the rectangular region on the right in Figure 4.2, while the higher line indicates

the region on the left. The density increases slightly on the ends and appears flat in the

middle. The difference in each region is displayed in (D), where the behavior is more

clearly observed. Since the density decreases in the middle and increases on both ends,

we see that the cells crawled out of the middle and toward each chemoattractant. Since

we do not observe prioritization of fMLP, as discussed in Chapter 1, we can conclude

that it may not occur at all or that it may not occur over the distances used here. We will

explore the distance variable in the models presented in the next section.
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Figure 4.3: The cell feature densities measured from an experiment in opposing gradients
generated from 1 puM of fMLP (on the left in Figure 4.2) and 10 mM ChaCha (on the
right). A) The density over time for each contour. The highest fluorescence intensity
contour corresponds to the top line. The ordinate does not give the absolute density but is
designed to provide clarity in comparing density changes between regions. B) The
difference in density between the last and first frames for each contour. C). The density
changes over time for regions defined by rectangles. The ordinate is the same as in (A).
D) The difference in the density between last and first frames for each rectangle.

Figure 4.4 shows the first (A) and last (B) thresholded images from the same

experiment described in Figure 4.3, with the rectangular regions superimposed. In (A),

we see a cluster of cells in the central region. In (B) this cluster seems to have divided,

with some cells migrating toward the source of fMLP and some migrating toward the

source of ChaCha.
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from

an experiment using 1 puM of fMLP (on the left) and 10 mM ChaCha (on the right). B)
The final thresholded image from the same sequence.

Figure 4.5 shows the results from two experiments using different concentrations

of fMLP and ChaCha, with the micropipettes separated by different distances. In (A), 1

mM of ChaCha is on the left and 100 HM of fMLP is on the right. The micropipettes are

separated by about 295 pum and the elapsed time is 30 minutes. The general trend that we

observe here and in a qualitative examination of the time-lapse sequence is that the cells

appear to prioritize fMLP. Notice that the density in the region closest to the source of

ChaCha decreases. As determined in Chapter 3, neutrophils do not migrate well to 1 mM

ChaCha. The response observed here may be attributable to a weak signal rather than

prioritization. This observation indicates another variable that we explore in the next

section with the models. Figure 4.5B is the result from an experiment using optimal

concentrations of fMLP and Chacha as determined in Chapter 3. We placed 10 mM

ChaCha on the left and 100 nM fMLP on the right, separated by a distance of 188 pum.

The elapsed time is 22 minutes. We very clearly see an indication of prioritization in this

figure. The density in the region near the source of ChaCha decreases, while the density

near the fMLP increases. We turn now to an exploration of this behavior via modeling.

:
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Figure 4.5: A) The difference in the density between the last and first frame for each
rectangular region from an experiment using 1 mM ChaCha (on the left) and 100 puM of
fMLP (on the right). B) The difference in density from an experiment using 10 mM
ChaCha (on the left) and 100 nM fMLP (on the right).

4.4 Models and Simulation

Although we have not yet deduced a mechanism for gradient detection, as

discussed in Chapter 3, we have developed several models based on the physics of

receptor-ligand binding that enable a cursory exploration of the effects of binding

parameters on migration direction. We extend these models here to account for multiple

chemoattractant gradients.

4.4.1 Chemotactic bias

We will focus here on the chemotactic bias using the exponential model for the

chemoattractant concentration profile in Eq. (3.4.17) and the steady state model for

receptor-ligand binding in Eq. (3.4.10) (code can be found in appendix A.3). We include

two forms of each equation, one for each chemoattractant. We will only consider one

dimension. We assume that the direction of migration is given by the difference in the

-

toºtotal number of bound receptors across the cell, AC, (#/cell). Each set of receptors will

be exposed to different concentrations of their specific attractant, will have different

*
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binding affinities, and will contain different quantities, so we need to account for them

separately. Given these constraints, the direction of migration is given by

AC to F dan (VC + VC,) (4.4.1)

where the individual bound receptor gradients are given by a form similar to Eq. (3.4.11),

but modified to account for the exponential chemoattractant concentration profile. After

expanding these we get

AC - - ad Ron Ko L. (x-x.) + Raº Ko, L, (x-x.) (4.4.2)
tot cell (Ko + L. ) (Kp, + L.)

where most of the parameters are as defined above, and we have assumed that the

diffusivity factor a , is equivalent between the two chemoattractants. In the models in

Chapter 3, we assumed that the single source was located at the origin. We introduce two

new variables here, x, and x , , , to indicate the positions of the two sources. These

parameters are implicitly included in the chemoattractant concentrations in Eq. (4.4.2).

The first variable we consider is the spatial separation of the chemoattractant

sources. Figures 4.6A and C show the exponential concentration profiles along the x-axis

for two different chemoattractants. In (A), the sources are located at -100 and 100, while

in (C) they are located at -40 and 40. Figures 4.6B and D show the resulting differences

in the total number of bound receptors across the cell. As in Chapter 3, we assume that
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Figure 4.6: A) The exponential concentration profiles of two different chemoattractants
with sources located at -100 and 100. B) The difference in the total number of bound
receptors across a cell located at positions along the x-axis resulting from the profiles in
(A). The black dots are stable fixed points where the cell will come to rest according to
the migration model. The open black dot is an unstable fixed point. C) The exponential
concentration profiles for sources located at -40 and 40. D) The resulting difference in the
total number of bound receptors. Parameter values can be found in Table 3.1.
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Figure 4.7: A) The difference in the total number of bound receptors across a cell
exposed to the ligand profiles in Figure 4.6C when there are 10 times as many receptors
for ligand 1. B) The difference across a cell when the dissociation constant for ligand 2 is
100 times greater.
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the direction of migration is indicated by the sign on this difference; if it is positive, cells

will migrate in the positive x direction; if it is negative, cells will migrate in the negative

x direction. The parameter values are those presented in Table 3.1. The black circles in

these figures indicate fixed points. The solid circles are stable fixed points to which cells

will be attracted. The open circle is an unstable fixed point. Cells on either side of this

point will move away from it. In (B), the sources are far enough apart that there is

essentially no interaction and the cells will migrate to the closest source. This agrees with

the results in Figure 4.3D. If the sources are closer then there will be interaction, as in

(D). The cells here will move to a position halfway between the sources. This is where

the attraction to each source is equally balanced. The optimum position for detecting the

gradient is based on the dissociation constant, as discussed in [Zigmond, 1977]. On either

side of the central point in (D), the balance between the attractions to each source, based

on the optimum position, shifts to drive the cells back to the center.

Figure 4.7 demonstrates how a cell may prioritize certain chemoattractants based

on binding parameters. In (A), there are 10 times as many receptors for the

chemoattractant on the right. Every other parameter is exactly as in Figure 4.6D. Notice

that the stable fixed point moves to the right, indicating a prioritization of the signal on

the right. In (B), the dissociation constant for the ligand on the left is 10 times higher.

Since the dissociation constant approximates the concentration at which the cells will

optimally detect the gradients and the maximum concentration for the ligand on the left is

100 nM, this chemoattractant is essentially ignored. The fixed point is located almost

exactly at the source of the ligand on the right. Based on our observations discussed

above and in Chapter 3, we determined that the optimal source concentrations for fMLP

2.
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and ChaCha are 100 nM and greater that 10 mM, respectively. Clearly the dissociation

constant for ChaCha is much higher or there is a similar effect caused somewhere

downstream in the signaling pathway. Given higher concentrations of ChaCha, we could

easily test the predictions of this model. If the concentrations are optimal for both

chemoattractants and the sources are close enough, we should not observe prioritization.

4.4.2 Chemotaxis in multiple chemoattractant gradients using the OU process

To simulate cell migration in multiple chemoattractant gradients using the OU

process, we use the method outlined in Section 3.4.3, with additional states to account for

each chemoattractant (see appendix A.4). Since we wish to limit the exploration to the

effects caused by differences in the binding parameters, we assume that there is a single

chemotactic responsiveness term that is multiplied by the vector sum of bound receptor

gradients to give the chemotactic bias. In future work, this chemotactic responsiveness

can be parsed among the two chemoattractants. The relative difference in the chemotactic

responsiveness for each gradient may then provide a certain measure of prioritization.
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Figure 4.8: Simulated migration paths of cells exposed to two different chemoattractants.
The chemoattractant sources are indicate by the red dots. The starting position of the cells
is indicated by the green dot. Parameter values are those used in Chapter 3. A) The
sources are far away from the cell starting point. B) The cells migrate toward the center
of the sources similar to that depicted in Figure 4.6D. C.) With 10 times the number of
receptors for the source on the right, the vector sum is biased in this direction. The results
are similar if the dissociation constant for the ligand on the left is increase 10 times (not
shown).

■
- º

s';Tº

. y

93



Figure 4.8 shows the results of simulations performed using the same parameters

as before, with Eq. (4.4.2) substituted into the chemotactic bias term. In (A), the sources,

indicated by red dots, are too far apart to have any noticeable effect on the migration

paths. Cells, starting at the green dot, migrate randomly exactly as in Figure 3.22A since

the same seed for the random number generator was used. In (B), the sources are closer

together and the cells bias their migration toward the stable fixed point residing between

the sources, as predicted in Figure 4.6D. Noise in the migration paths prevents the cells

from reaching the exact center and several cells migrate farther away, potentially out of

range of any useful interaction between the chemoattractants. In (C), there are 10 times as

many receptors for the ligand on the right, just as in Figure 4.7A. The cells bias their

migration toward this source and signal prioritization occurs. The results are similar if the

dissociation constant for the ligand on the left is 10 times higher.

4.5 Conclusions

In this chapter, we presented our final extension of the modeling framework based

on the OU process to account for neutrophil chemotaxis in multiple chemoattractant

gradients. We demonstrated the use of the micropipette assay to these studies, and we

adapted the novel image processing techniques for tracking cell density developed in

Chapter 3 toward quantifying the experimental results. Using these techniques, we

presented the results of three experiments designed to highlight specific behaviors that

were amenable to further exploration via a mathematical model. We developed a model

of the chemotactic bias based on the physics of receptor-ligand binding and examined the
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model predictions in light of the experimental results. We incorporated this model into

the OU process and simulated cell migration paths.

Key conclusions include: 1. the spatial separation of two chemoattractant sources

relative to their dissociation constants plays an important role in determining the degree

of interaction between two signals by setting the positions at which cells are optimally

attracted to each source. 2. The relative values for the receptor-ligand binding parameters

between two chemoattractants can have a significant impact in the chemotactic bias, even

effecting signal prioritization. Studies designed to measure the neutrophil chemotactic

response in multiple chemoattractant gradients need to account for this phenomenon. 3.

The micropipette assay is superior to the under-agarose assay for performing these types

of studies. It enables dynamic positioning of chemoattractant gradients, allows for real

time monitoring of the gradient, and is fairly reproducible and easy to use. This technique

is especially suited for performing experiments designed to study heterologous

desensitization. Neutrophils would first be made to migrate up a gradient of fMLP. The

micropipette would then be switched to ChaCha or another chemoattractant and the

response would be measured.

The main obstacles in further developing this framework for studies in multiple

gradients include the disagreement between the model predictions and experimental

results with single chemoattractants, and the placement and estimation of the chemotactic

responsiveness in relation to the separate terms for each chemoattractant. The results

presented here offer a solid foundation on which to explore these issues and pursue a

more detailed understanding of the engineering principles behind multiple signal

processing in neutrophil chemotaxis.
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Chapter 5

Conclusions and Recommendations

As discussed in Chapter 1, the application of mathematical models towards

describing neutrophil chemotaxis has largely paralleled experimental advances in the

field. Earlier phenomenological models focused on understanding the migratory behavior

of cells or populations of cells, while more recent models have delved into the

biochemical mechanisms behind signal amplification and polarization. Except for a few

noted exceptions, these two levels of models have largely remained disconnected. We

have expanded on one of the exceptions here to develop a modeling framework to relate

experimentally observable cell migration paths to the physical principles involved in

receptor-ligand binding. This framework is based on a modification of the OU process to

describe persistent random walks biased by chemoattractant gradients.

In Chapter 2, we presented and applied methods for determining the migration

speeds and persistence times of neutrophils crawling in uniform chemoattractant

concentrations. We demonstrated the use of these parameters in the OU process to

simulate cell migration paths that are indistinguishable from experimentally observed

paths. While we were unable to determine if the parameters play a role in chemotaxis, the

methods can easily be applied to future experiments designed to study these effects.

In Chapter 3, we expanded the OU process by including a term describing the

chemotactic bias toward a chemoattractant gradient. We performed experiments using the

micropipette assay and developed novel image processing techniques to extract useful
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information describing the resulting responses. We used this information to examine a

number of models of chemotactic bias based on the physics of receptor-ligand binding.

Using the speeds and persistence times from Chapter 2, we simulated the OU process

with chemotactic bias and suggested methods for comparing results. While we were

unable to achieve agreement between the experimental results and model predictions, we

highlighted key aspects that show potential for further development. These include an

examination of the dependence of the speeds and persistence times on the

chemoattractant concentration and a more detailed derivation of the model for the ligand

concentration profile.

Finally, in Chapter 4, we modified the OU process to account for chemotaxis in

multiple chemoattractant gradients. We assumed that neutrophils respond to the vector

sum of the gradients of bound receptors that form as a result of the individual

chemoattractant gradients, and we showed how differences in receptor-ligand binding

parameters between the two chemoattractants can affect the direction of migration. The

results indicate that a cell can prioritize chemoattractants by increasing the number of

receptors or decreasing the binding affinity relative to competing chemoattractants. After

adapting the micropipette assay and image processing techniques, we were able to

produce a qualitative agreement between experimental results and model predictions.

An important product of this work is the novel application of the micropipette assay for

studying chemotaxis in multiple chemoattractant gradients. This presents a number of

opportunities for future experiments that are impossible using previous assays. In

particular, the responses to temporal changes in chemoattractant gradients can be studied.
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The primary motivation behind the work presented here has been to understand

how neutrophils are engineered to process and respond to multiple chemoattractant

gradients. As presented in Chapter 1, there have been a number of studies on neutrophil

chemotaxis dating back more than 30 that have advanced our knowledge of how the

signaling pathways enable neutrophils to amplify shallow chemoattractant gradients and

organize their motile machinery to move in the appropriate direction. The vast majority

of this work has focused on the response to single chemoattractants. In vivo, neutrophils

are confronted with complex arrays of multiple chemoattractants and other signals that

direct them to their targets. By focusing on the mechanisms behind multiple-signal

processing, we highlight not only conditions more relevant to their natural environment,

but also the organizing principles of signaling pathways that are responsible for

simultaneously affecting multiple cellular functions. Key questions that arise include:

Where in the pathways do the signals converge? How are the signals prioritized and

processed to produce the appropriate responses? What happens when this processing

machinery goes awry? While we have not answered these questions here, we have

developed a modeling framework to study neutrophil chemotaxis in multiple

chemoattractant gradients and pursue these questions more deeply.
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Nomenclature

Symbol Definition
W two-dimensional velocity vector
W two-dimensional Weiner process
S speed
P persistence time
X; two-dimensional position vector
( D') mean-square cell displacement
T interval time

X. position x axis
y position on y axis
t Time

Ö cell displacement
T time interval

Ø angle between displacements at different times
Al random motility coefficient
At time step
N (0, 1) normally distributed random number
V. velocity in x direction at time step i
A. x position at time step i
dW differential Weiner process vector
dy differential change in velocity vector
d.º. diameter of cell

VC gradient of bound receptors
K chemotactic responsiveness
L chemoattractant concentration
Lo source chemoattractant concentration
r radial distance from chemoattractant source

do radius of chemoattractant source

q flow rate of chemoattractant from micropipette
D chemoattractant diffusivity
2. distance between plane and point source
I fluorescence intensity
Io maximum fluorescence intensity
R free receptors
C bound receptors
k, receptor-ligand binding rate constant
k, unbinding rate constant
R total number of receptors

to t

Typical Units
pum/min
min’”
pum/min
min

Hm’
min

min

plm
min

Hmº/min
min

pum/min

minº”

pum/min
pum

#/cell/pum
pum/min/#/cell
nM
nM

|im
pum

pumole/s
Hmº's
|im

#/cell
#/cell
nM.'s"

-l
S

#/cell

º%==: º
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tot

dissociation constant

difference in bound receptors across cell
free receptors after desensitization
Hill coefficient
bound receptors after desensitization
chemoattractant diffusivity factor
total difference in bound receptors across cell
gradient in bound receptors for ligand 1
gradient in bound receptors for ligand 2
x position of source of ligand 1
x position of source of ligand 2

nM

#/cell
#/cell

#/cell

pm”
#/cell

#/cell/pum
#/cell/pum
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Appendices

Matlab Code

A.1 Image processing

Downsample images from uniform concentration experiments

%function out = SampleLargeTiffs()
%UNTITLED1 Summary of this function goes here
% Detailed explanation goes here
cq c.VData\Keith Keith0511 12\control.2

time=[11*3600+39*60+36:((13*3600+3*60+42)-(11*3600+39*60+36))/502:13°3600+3*60+42];

Is=zeros(384,512);
for i=1:503

num=floor(10000*floor(time(i)/3600)+100*floor(mod(time(i),3600)/60)+mod(mod(time(i),3600),60));
while (~exist(['Keith0511 12-,num2str(num,"606d'),'.tif|))

num=num+1;
end

%num=floor(10000*floor(time(i)/3600)+100*floor(mod(time(i),3600)/60)+mod(mod(time(i),3600),60));
I=imread(['Keith051112-',num2str(num,"606d')],'tif);
%else
% time(i)=time(i)+1;
%

num=floor(10000*floor(time(i)/3600)+100*floor(mod(time(i),3600)/60)+mod(mod(time(i),3600),60));
% I=imread(['Keith051112-,num2str(num,"606d')],'tif);
%end

for j=0:383
for k=0:511

Is(j+1,k+1)=sum(sum(I(4*j+1:4*j+4,4*k+1:4*k+4)))/16;
end

end

Is=uint16(Is);

savefile=['UControl2_',num2str(i,"603d'),'.tif);
cd c. Data\Keith Keith051112\control2\Sampled
imwrite(Is,savefile,'tif,'Compression','none');
cd c;\Data\Keith Keith0511 12\control.2

end

Cell tracking

%function [ output args I = TrackCells(input args)
%TRACKCELLS Get x,y coordinates of cell paths
% Set directory, numframes, and sample rate (f).
% Code reads in each frame (check for cells migrating on or off over the
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% course of the stack and start from end or begining accordingly), adjusts
% contrast, and waits for user input consisting of right mouse click on center
% of cell to be tracked. One cell is tracked at a time.
% For first track, uncomment store=[] line and comment out load store..mat
% For subsequent tracks, reverse this.
clear all

cd c.MDocu'ments and Settings\kaericksonVMy' Documents\ResearchVImages\103105\100um

numframes=505;
filename="U100uMpaths.mat';
%for initial cell tracked in sequence, comment out load store..mat
%and uncomment store=[]. For subsequent cells, reverse this
store=[];
%load U100uMpaths.mat;

storex=zeros(numframes, 1);
storey=zeros(numframes, 1);

for i=2:1:numframes%:-1:1

I=imread(['U100uM",num2str(i,"603d')],'tif);
h=figure(2);imshow(I,[]);
truesize(h,■ 2*size(I)]);
hold

plot(storex(1:i-1),storey(1:i-1))
title(num2str(i))
[x y pimpixel
hold

storex(i)=x;
storey(i)=y;

end

store=[store storex storey];

I=imread(['U100uM",num2str(numframes,"603d')],'tif);
figure(3),imshow(I,[])
hold
plot(store(end,(1:2:end]),store(end,(2:2:end]),'gx','MarkerSize', 12, 'LineWidth', 3);
hold

Is=imread('U100uM002','tif);
figure(4),clf,figure(4),imshow(Is,[]),hold
plot(store(2,1:2:end),store(2,2:2:end),'gx','MarkerSize', 12,'LineWidth',3)
hold

Save(filename, 'store');

Smooth experimental cell tracks

function out = SmoothlnMUniform()
%SMOOTH1NMUNIFORM Summary of this function goes here
% Detailed explanation goes her
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%0.35 um/pixel independent of binning since binning doesn't appear to work
%in labview, the labview images are then sampled so that 1 pixel on image
%used to track cells equals 4 pixels on raw image

cd c. Docu'ments and Settings\kaericksonVMy' Documents\Research Images C'ell Paths"Uniform

load U1nMpathsraw.mat
U=store(1:361,…);
U=U(2:end,:)-repnat(U(2,3),size(U,1)-1,1);
t=[0:10:360*10-10);

%Smoothing
window-25;
half-floor(window/2);
for cell=1:10

for frame=1:360

if frame<=half % Polynomial fit of X and Y position over time
polyx=polyfit(t(1:window), U(1:window,2*cell-1), 2);
Us(frame,2*cell-1)=polyval(polyx, t{frame));
polyy-polyfit(t(1:window), U(1:window,2*cell), 2);
Us(frame,2*cell)=polyval(polyy,t(frame));

elseif frame<=(360-half)
polyx=polyfit(t(frame-half:frame+half), U(frame-half:frame+half,2*cell-1), 2);
Us(frame,2*cell-1)=polyval(polyx, t{frame));
polyy=polyfit(t(frame-half:frame+half), U(frame-half:frame+half,2*cell), 2);
Us(frame,2*cell)=polyval(polyy,t(frame));

else
polyx=polyfit(t(360-window:360), U(360-window:360,2°cell-1), 2);
Us(frame,2*cell-1)=polyval(polyx, t{frame));
polyy-polyfit(t(360-window:360), U(360-window:360,2*cell), 2);
Us(frame,2*cell)=polyval(polyy,t(frame));

end
end

end

Us=Us"4*0.35; %account for calibration of pixel size in ccd

%figures
figure,plot(U(3,1:2:end), U(;,2:2:end),0,0,'ko','MarkerSize',15,'LineWidth',2)
xlabel('X','FontSize',14),ylabel('Y','FontSize',14)
figure,plot(t/60,00:,1:2:end),'LineWidth',2)
xlabel('time (mins)','FontSize', 14),ylabel('X','FontSize',14)
figure,plot(t/60,00:,2:2:end),'LineWidth',2)
xlabel('time (mins)','FontSize', 14),ylabel('Y','FontSize',14)
figure,plot(Us(;,1:2:end),Us(;,2:2:end),0,0,ko','MarkerSize',15,'LineWidth',2)
axis([-150 150-150 150])
xlabel('X','FontSize',14),ylabel('Y','FontSize',14)
figure,plot(t/60,0s(;,1:2:end),'LineWidth',2)
xlabel('time (mins)','FontSize',14),ylabel('X','FontSize',14)
figure,plot(t/60,0s(;,2:2:end),'LineWidth',2)
xlabel('time (mins)','FontSize',14),ylabel('Y','FontSize',14)

U1nMUniformsmooth=Us;

save U1nMUniformsmooth U1nMUniformsmooth;

f

:

i
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out-Us;

Image processing for single chemoattractant gradients

%function [ output args ) = densitycircles(input args)
%DENSITYCIRCLES Summary of this function goes here
% Detailed explanation goes here

cd c.M.)ocu'ments and Settings\'kaerickson'My' Documents\ResearchVImages 101705
[Si, numframes] = tiffread('neutlmMfMLP87sil101705fitc2.stk');
[Sp, numframes] = tiffread('neutlmMfMLP87sil101705phase2.stk');

%numsq=10;
%varea=floor(size(S(1).data, 1)/numsq);
%harea=floor(size(S(1).data,2)/numsq);

Iiavg=zeros(size(Si(1).data));
for i=5:271

Ii-Si(i).data;
Ii-double(Ii);
Iiavg=Iiavg-Hi;

end
Iiavg=Iiavg/(271-5+1);

numregs=20;
maxii-max(max(Iiavg));
minli=min(min(Iiavg));
[maxxIi maxyli)=find(Iiavg=maxli);
fracIi=(maxii-minli)/numregs;
V=[minli:fracIi:maxii);

contmask=zeros([size(Sp(1).data),numregs]);
for j=1:size(Sp(1).data, 1)

for k=1:size(Sp(1).data,2)
Ijk=Iiavg(j,k);
fr=find(abs(V-Ijk)==min(abs(V-Ijk)));
contmask(j,k,fr)=1;

end
end

numcirc=20;
drcirc=maxyli/numcirc;
circrads=[drcirc:drcirc:numcirc"drcirc];
theta=[0:pi/20:pi];
xcirc=circrads”cos(theta);
xcirc=[xcirc flipl"(xcirc)]+maxyli;
ycirc=circrads” sin(theta);
ycirc=[ycirc -ycirc]+maxxIi;

circmask=zeros([size(Sp(1).data),numcirc]);
for i=1:numcirc

for j=1:size(Sp(1).data, 1)
for k=1:size(Sp(1).data,2)
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bigcirc=circrads(i);
if i=1;

smallcirc=0;
else

smallcirc=circrads(i-1);
end
circmask(j,k,i)=(((k-maxyli)^2+(j-maxxIi)^2)<bigcirc~2)&(((k-maxyli)^2+(j-

maxxIi)^2)-smallcirc~2);
end

end
end

Ipdcont=zeros(numregs,271-5+1);
Ipdcirc=zeros(numcirc,271-5+1);

for i=5:271
Ip=Sp(i).data;
Ip=double(Ip);
Ip=mat2gray(Ip);
Ip=imadjust(Ip,stretchlim(Ip),[0,1]);
background=imopen(Ip,strel('disk',5));
Ipb=Ip-background;
Ipt-Ipb>0.3;
%imshow(Ipt)
%flick(i-4)=getframe
for j=1:numregs

Ipdcont(j,i-4)=sum(sum(Ipt.*contmask(;,.,j)))/sum(sum(contmask(;,:,j)));
end
for j=1:numcirc

Ipdcirc(j,i-4)=sum(sum(Ipt.*circmask(;,i,j)))/sum(sum(circmask(;,.,j)));
end
if (i==5)

Ip1=Ip;
Ipb1=Ipb;
Iptl=Ipt;

elseif (i=271)
Ipend=Ip;
Ipbend=Ipb;
Iptend=Ipt;

end
end

Ipddiffcont=Ipdcont(..,end)-Ipdcont(;,1);
Ipddiffcirc=Ipdcirc(..,end)-Ipdcirc(;,1);

figure,imshow(Ipbend),hold on,contour(Ilavg,V,'w'),hold off
figure,imshow(Ipbend),hold on,plot(xcirc',ycirc','w'),hold off

figure,plot([1:271-5+1],Ipdcont)
figure,plot([1:271-5+1],Ipdcirc)

figure,plot(circrads,Ipddiffcirc);
figure,plot(V(1:size(Ipddiff,1))',Ipddiff)
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Image processing for multiple chemoattractant gradients

%function [ output args ) = densitycircles(input args)
%DENSITYCIRCLES Summary of this function goes here
% Detailed explanation goes here

cd c;\Documents and Settings\kaerickson Desktop Complete MultipleGradient MGMovies
[Si, numframes] = tiffread('neutl()mMChal OOnMfMLP102005fitc.stk'); %load fluorescent stack
[Sp, numframes] = tiffread('neutl()mMChal OOnMfMLP102005phase.stk'); %load phase stack

in 1=72; %first frame
in2=161; %last frame

%calculate average intensity over frames of interest
Iiavg=zeros(size(Si(1).data));
for i=in 1:in2

Ii-Si(i).data;
Ii-double(Ii);
Iiavg=Iiavg-Hi;

end
Iiavg=Iiavg/(in2-in 141);

%get positions of highest intensity to draw line between sources
%need to left mouse click on first and then right mouse click on second
figure,imshow(Iiavg,[])
[tipx tipy plimpixel

numregs=20; %number of regions in which to track density

%get coordinates of line connecting sources (defines midpts on ends of roi)
roilx=min(tipx);
roirz=max(tipx);
roiuy=min(tipy);
roily=max(tipy);

L=sqrt{(roirz-roilx)^2+(roily-roiuy)^2); %length of roi
=-acos((roirz-roilx)/L); %angle of line connecting pts wrt horizontal

thl=(thL-pi/2); %- accounts for flip of y-axis in images
w-40; %width of roi

%box defining roi
llcx=roilx+w"cos(thl);
llcy=roiuy-w”sin(thl);
ulcx=roilx-w"cos(thl);
ulcy=roiuy-twº sin(thl);

dx=roirz-roilx;
dy=roily-roiuy;

lrcx=llcx+dz;
lrcy=llcy+dy;
urcx=ulcx+dz;
urcy-ulcy-Fay;

114



x1=linspace(llcz,lrcx);
x2=linspace(lrcx,urcx);
x3=linspace(urcx,ulcx);
x4=linspace(ulcx,llcz);

y1=linspace(llcy,lrcy);
y2=linspace(lrcy,urcy);
y3=linspace(urcy, ulcy);
y4=linspace(ulcy,llcy);

ms=(llcy-ulcy)/(llcx-ulcx); %slope of lines dividing regions
ml=(urcy-ulcy)/(urcx-ulcx);

%make masks
sqmask=zeros(size(Iiavg,1),size(Iiavg,2),numregs);
for i=1:numregs

for x=llcx:urcx
for y=ulcy:lrcy

ys=(y>(ms”(x-(ulcx+(i-1)*.dx/numregs))+ulcy:F(i-1)*dy/numregs))&(y-(ms”(x-
(ulcx+i"dx/numregs))+ulcy-Fi"dy/numregs));

yl=(y>(ml”(x-ulcx)+ulcy))&(y-(ml”(x-llcx)+llcy));
sqmask(y,x,i)=ys&yl;

end
end

end

%define contour regions
Iiavgs=Iiavg(ulcy:lrcy,llcx:urcx)
maxli-max(max(Iiavgs));
minli-min(min(Iiavgs));
maxxIi=tipx(1);
maxyli-tipy(1);
fracIi=(maxIi-minli)/numregs;
V=[minli:fracIi:maxli);

%make contour masks
contmask=zeros(size(Iiavg,1),size(Iiavg,2),numregs);
for j=ulcy:ulcy-size(Iiavgs, 1)

for k=llcx:llcz+size(Iiavgs,2)
Ijk=Iiavg(j,k);
fr=find(abs(V-Ijk)=min(abs(V-Ijk)));
contmask(j,k,fr)=1;

end
end

Ipdcont=zeros(numregs,in2-in 141);
Ipdsq=zeros(numregs,in2-in 141);

%process images and track density
for i=inlin2

Ip=Sp(i).data;
Ip=double(Ip);
Ip=mat2gray(Ip);
Ip=imadjust(Ip,stretchlim(Ip),[0,1]);
background=imopen(Ip,strel('disk',5));
Ipb=Ip-background;

i.
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Ipt=Ipb>0.3;
%track density
for j=1:numregs

Ipdcont(j,i-in 141)=sum(sum(Ipt.*contmask(;,.,j)))/sum(sum(contmask(;,i,j)));
Ipdsq(j,i-inlit 1)=sum(sum(Ipt.*sqmask(;,i,j)))/sum(sum(sqmask(;,.,j)));

end
if (i-inl)

Ip1=Ip;
Ipb1=Ipb;
Iptl=Ipt;

elseif (i-inz)
Ipend=Ip;
Ipbend=Ipb;
Iptend=Ipt;

end
end

%difference in densities between first and last images
Ipddiffcont=Ipdcont(..,end)-Ipdcont(;,1);
Ipddiffsq=Ipdsq(i,end)-Ipdsq(;,1);

%plot final images with contours or circles
figure,imshow(Iiavg,[]),hold on,contour(Iiavg(ulcy:lrcy,llcx:urcx),V,'w'),hold off
figure,imshow(Iptend),hold on,plot(x1,y1,'r',x2,y2,'r',x3,y3,'r',x4,y4,'r')
for i=1:numregs

xt=linspace(ulcx+i"dx/numregs,llcz+i"dx/numregs);
yt=ms”(xt-(ulcx+i"dx/numregs))+ulcy-Fi"dy/numregs
plot(xt,yt,'r')

end
hold off

%plot differences in densities versus square # (for squares) or intensity (for contours)
figure,plot([1:numregs],Ipddiffsq,'LineWidth',2),xlabel('square # (from
right)','FontSize',14),ylabel(\Deltafeature density','FontSize',14)
figure,plot(V(1:size(Ipddiffcont, 1)),Ipddiffcont,'LineWidth',2),xlabel('contour
intensity','FontSize',14),ylabel(\Deltafeature density','FontSize',14)

%plot densities over time
figure,plot([0:15/60:(in2-in 1)*15/60],Ipdsq+repmat([0:0.1:1.9]',1,size(Ipdsq,2)), LineWidth',2);
xlabel('time (mins)','FontSize',14),ylabel('relative feature densities','FontSize',14)
figure,plot([0:15/60:(in2-inl)*15/60],Ipdcont-repniat([0:0.1:1.9]',1,size(Ipdcont.2)), LineWidth',2);
xlabel('time (mins)','FontSize', 14),ylabel('relative feature densities','FontSize',14)

A.2 Parameter Estimation

Estimation of speeds and persistence times

function out = FitEqnslnM()
%FITEQNS1NM Summary of this function goes here
% Detailed explanation goes here
cd c. Docu'ments and Settings\kaericksonVMy' Documents\Research Images Cell Paths"Uniform

load U1nMUniformsmooth.mat
Us=U1nMUniformsmooth;

-
-

.
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t=[0:10:360*10-10]';

%Calculate speeds and persistence times from data
seglenP=sqrt((Us(2:end, 1:2:end)-Us(1:end-1,1:2:end)).”2+(Us(2:end,2:2:end)-Us(1:end-1,2:2:end)).”2);
phip=acos((Us(2:end, 1:2:end)-Us(1:end-1,1:2:end))./(seglenP+0.000000001));
phip=-1*((Us(2:end,2:2:end)-Us(1:end-1,2:2:end))-0).”phip+((Us(2:end,2:2:end)-Us(1:end
1,2:2:end))→=0)."phip;

phidiff=phiP(2:end,.)-phip(1:end-1,...);

S=sqrt(mean(mean(seglenP.”2)))/10;
stdS=std(reshape.(seglenP,size(seglenP,1)*size(seglenP,2),1))/10;

P=2*10/mean(mean(phidiff.”2));
stdP=2*10/std(reshape(phidiff.size(phidiff,1)*size(phidiff,2),1));

%variance in x and y positions
xs=Us(;,1:2:end);
meanxs=mean(xs')';
varxs=mean(xs.”2')'-meanxs.”2;
ys=Us(;,2:2:end);
meanys=mean(ys')';
varys=mean(ys.”2')'-meanys.”2;

%determine mean squared displacement
dT=[10:10:t(end)]";
meansqL)=zeros(size(dT,1), 1);
for i = 1:size(dT,1)

meansqL)(i)=mean(mean((Us(i+1:end, 1:2:end)-Us(1:end-i,1:2:end))."2+((Us(i+1:end,2:2:end)-Us(1:end
i,2:2:end))).”2));
end

%mean squared displacement nonlinear parameter estimation
fun=inline(2*beta(1)^2*beta(2)^2*(x/beta(2)-1+exp(-x/beta(2)))','beta','x');
[fit,r,J)=nlinfit(dT(1:180), meansqL)(1:180),fun, 0.1667 180]);
msdCI=nlparci■ fit,r,J);
msdpred=2*fit(1)^2*fit(2)^2*(dT/fit(2)-1+exp(-dT/fit(2)));

%variance fit nonlinear parameter estimation
fun2=inline('beta2(1)^2*beta2(2)^2*(x/beta2(2)-2*(1-exp(-x/beta2(2)))+(1/2)*(1-exp(-
2*x/beta2(2))))','beta2','x');
[fit2x,r2x,J2x]=nlinfit(t,varxs,fun2,[0.1667 180]);
[fit2y,r2y,J2y]=nlinfit(t,varys, fun2,[0.1667 180]);
varxCI=nlparci(fit2x,r2x,J2x);
varyCI=nlparci(fit2y,r2y,J2y);
varxpred=fit2x(1)^2*fit2x(2)^2*(t/fit2x(2)-2*(1-exp(-t/fit2x(2)))+(1/2)*(1-exp(-2*t/fit2x(2))));
varypred=fit2y(1)^2*fit2y(2)^2*(t/fit2y(2)-2*(1-exp(-t/fit2y(2)))+(1/2)*(1-exp(-2*t/fit2y(2))));

%figures
figure,plot(dT/60,meansqD,'k-',dT/60,msdpred,'k--','LineWidth',2)
xlabel('Interval time (mins)','FontSize',14),ylabel(~D^2>''FontSize',14)
figure,plot(t/60, varxs,'k-',t/60, varxpred,'k--','LineWidth',2)
xlabel('time (mins)','FontSize',14),ylabel('var X','FontSize',14)
figure,plot(t/60,varys,'k-',t/60,varypred,'k--','LineWidth',2)
xlabel('time (mins)', 'FontSize',14),ylabel('var Y','FontSize',14)
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%convert to um/min and min
fit(1)=fit(1)*60;
fit(2)=fit(2)/60;
msdCI(1,i)=msdCI(1,3)*60;
msdCI(2,5)=msdCI(2,;)/60;
msdstd(1)=fit(1)-msdCI(1,1);
msdstd(2)=fit(2)-msdCI(2,1);

fit2x(1)=fit2x(1)*60;
fit?x(2)=fit2x(2)/60;
varxCI(1,i)=varxCI(1,3)*60;
varxCI(2,5)=varxCI(2,;)/60;
varxstd(1)=fit2x(1)-varxCI(1,1);
varxstd(2)=fit2x(2)-varxCI(2,1);

fit2y(1)=fit2y(1)*60;
fit?y(2)=fit2y(2)/60;
varyCI(1,i)=varyCI(1,3)*60;
varyCI(2,5)=varyCI(2,;)/60;
varystä(1)=fit2y(1)-varyCI(1,1);
varystd(2)=fit2y(2)-varyCI(2,1);

out—[fit msdstd'; fit2x varxstd'; fit2y varysta'; S*60 stdS*60; P/60 stdP/60]

Correlation of experimental and simulated cell tracks in uniform concentrations

%function [ output args J = ExpSimStats(input args)
%EXPSIMSTATS Summary of this function goes here
% Detailed explanation goes here

load U100nMUniformsmooth.mat;
load U100nMUniformCU.mat;
load U100nMUniformOUhalf mat

%parse x and y values to ease calculations
xse=U100nMUniformsmooth(:, 1:2:end);
yse=U100nMUniformsmooth(i,2:2:end);

xss=U100nMUniformCU(;,1:2:end);
yss=U100nMUniform()0(;,2:2:end);

xssh=U100nMUniformOUhalf:,1:2:end);
yssh=U100nMUniform()Uhalf(;,2:2:end);

%correlation coefficients
rx12=zeros(size(xse, 1),1);
ry 12=zeros(size(yse, 1), 1);

rx13=zeros(size(xse, 1),1);
ry 13=zeros(size(yse, 1), 1);

rx23=zeros(size(xse, 1),1);
ry23=zeros(size(yse,1),1);

%calculate the correlation coefficients
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for i=1:size(xse, 1)
sortxe=sort(xse(i,i));
sortxs=sort(xss(i,i));
sortxsh=sort(xssh(i,i));

sortye=sort(yse(i,i));
sortys=sort(yss(i,i));
sortysh–sort(yssh(i,i));

numrx12=sum(sortxe.*sortxs)-(1/10)*sum(sortxe)*sum(sortxs);
numry 12=sum(sortye.*sortys)-(1/10)*sum(sortye)*sum(sortys);

denrx12=sqrt{sum(sortxe.”2)-(1/10)*(sum(sortxe))^2)*sqrt(sum(sortks.”2)-(1/10)*(sum(sortzs))^2);
denry12=sqrt{sum(sortye.”2)-(1/10)*(sum(sortye))^2)*sqrt(sum(sortys.”2)-(1/10)*(sum(sortys))^2);

rx12(i)=numrx12/denrx12;
ry 12(i)=numry12/denry12;

numrx13=sum(sortxe.*sortxsh)-(1/10)*sum(sortxe)*sum(sortxsh);
numry 13=sum(sortye.*sortysh)-(1/10)*sum(sortye)*sum(sortysh);

denrx13=sqrt(sum(sortxe.”2)-(1/10)*(sum(sortxe))^2)*sqrt{sum(sortxsh.”2)-(1/10)*(sum(sort&sh))^2);
denry13=sqrt{sum(sortye.”2)-(1/10)*(sum(sortye))^2)*sqrt(sum(sortysh.”2)-(1/10)*(sum(sortysh))^2);

rx13(i)=numrx13/denrx13;
ry 13(i)=numry 13/denry 13;

numrx23=sum(sortxs.”sortxsh)-(1/10)*sum(sortxs)*sum(sortxsh);
numry23=sum(sortys.”sortysh)-(1/10)*sum(sortys)*sum(sortysh);

denrx23=sqrt{sum(sortxs.”2)-(1/10)*(sum(sortxs))^2)*sqrt(sum(sortzsh.”2)-(1/10)*(sum(sort&sh))^2);
denry23=sqrt(sum(sortys."2)-(1/10)*(sum(sortys))^2)*sqrt(sum(sortysh.”2)-(1/10)*(sum(sortysh))^2);

rx23(i)=numrx23/denrx23;
ry23(i)=numry23/denry23;

end

figure,plot([1:size(xse,1)],[rx12 ry12]),xlabel('time','FontSize',14),ylabel('Corr','FontSize',14)
figure,plot([1:size(xse,1)],[rx13 ry13]),xlabel('time','FontSize',14),ylabel('Corr','FontSize',14)
figure,plot([1:size(xse,1)],[rx23 ry23]),xlabel('time','FontSize',14),ylabel('Corr','FontSize',14)
figure,plot(0,0,'ko',xse,yse,'MarkerSize', 10, LineWidth',2),xlabel('X','FontSize',14),ylabel('Y','FontSize',14)
figure,plot(0,0,"ko',xss,yss,'MarkerSize', 10, LineWidth',2),xlabel('X','FontSize',14),ylabel('Y','FontSize',14)
figure,plot(0,0,"ko',xssh,yssh,'MarkerSize', 10, LineWidth',2),xlabel('X','FontSize',14),ylabel(Y','FontSize',1
4)

A.3 Models

Model of chemotactic bias in single gradient

%function out = Chemotaxis Model()
%CHEMOTAXISMODELV2 examines three methods for detecting gradients
%based on receptor-ligand binding:
%l. the gradient in bound receptors at the center of the cell
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%2. the absolute difference in bound receptors across the cell
%3. the percent difference in bound receptors across the cell
%The results are plotted for each method along side the normalized values for
%easy comparison between three different source values of chemoattractant concentrations.
%An additional model is plotted using #1, above, with an exponential concentration

%Micropipette parameters
L0=[1 100 10000]'; %max ligand concentration
a0=4.5; %radius of point source
z=9; %distance between point source and plane

dcell=10; %diameter of cell

x=[-500:1:500); %defines the plane
r=sqrt(x^2+z^2); %distance from pt source for each pt in plane

L=2*L0*aO*(1./r); %ligand concentration at each pt in plane
dLdx=-2*L0*aO*x./repmat(r.”3,size(L0,1),1); %x gradient of ligand at each point in plane

%Alternative chemoattractant concentration model
alpha=0.0008;
La=L0*exp(-alpha"r."2);
dLadz=-2*alpha"La.*repmat(x,size(La, 1), 1);

%Receptor binding parameters
Rtot=1000; %total number of receptors
Kd=10; %dissociation constant

C=Rtot*L./(Kd+L); %steady state number of bound receptors

%simple difference%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dCdx=Rtot"Kd./((Kd-L).”2).*dLdx;
dCdxnorm=dCdx./repmat(max(dCdx')',1,size(x,2));
dC-dcell*dCdx; %absolute difference in bound receptors

%relative difference%96%%%%%%%%%%%%%%%%%%%%%%%%%%
dCnorm-dC./repmat(max(dC')',1,size(x,2));%normalized difference in bound receptors
dCpd=d(S./C; %percent difference in bound receptors
dCpdnorm-dCpd./repmat(max(dCpd')',1,size(x,2); %normalized percent difference

%deSensitization%96%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
n=1.2; %hill coefficient
K=10; %
R0=Rtot"Lºn./(Kºn-L.ºn);
Cd=R0.*L./(Kd-L);
dCddx=-Rtot"K^n./((Kd+L).”2.*(K^n+L.ºn).62).”(Kd”K^n-(n-1)*Kd"L.ºn
n*L*(n+1)).”L.*repmat((x./r.”2),size(L0,1),1);
dCd=dcell*dCddx;
dCdnorm-dCd./repmat(max(dCd')',1,size(x,2));

%alternative ligand model.9%%%%%%%%%%%%%%%%%%%%%%%%%
dCadx=Rtot"Kd./((Kd+La).”2).*dLadz;
dCa=dcell*dCadx;
dCanorm—dCa./repmat(max(dCa')',1,size(x,2));

%figures%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

*
*-

%
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figure,plot(x,L,x,La,'LineWidth',2)
figure,plot(x,C,'LineWidth',2)

figure,plot(x,3C,'LineWidth',2),xlabel('X','FontSize',14),ylabel(\DeltaC','FontSize',14)
figure,plot(x,óCnorm,'LineWidth',2),axis([-400 0.71]),xlabel('X','FontSize',14),ylabel('Normalized
\DeltaC','FontSize',14)

figure,plot(x,dCpd,'LineWidth',2),xlabel('X','FontSize',14),ylabel(\DeltaC/C','FontSize',14)
figure,plot(x,dCpdnorm,'LineWidth',2),axis([-400 0.71]),xlabel('X','FontSize',14),ylabel('Normalized
\DeltaC/C','FontSize',14)

figure,plot(x,dCd,'LineWidth',2),xlabel('X','FontSize',14),ylabel(\DeltaC_d','FontSize',14)
figure,plot(x,dCdnorm,'LineWidth',2),axis([-50 0-1 1]),xlabel('X','FontSize',14),ylabel('Normalized
\DeltaC_d','FontSize',14)

figure,plot(x,dCa,'LineWidth',2),xlabel('X','FontSize',14),ylabel(\DeltaC','FontSize',14)
figure,plot(x,6Canorm,'LineWidth',2),axis([-1400 0.71]),xlabel('X','FontSize',14),ylabel('Normalized
\DeltaC','FontSize',14)

Model for chemotactic bias in multiple chemoattractant gradients

%function out = Chemotaxis ModelMultiple()
%CHEMOTAXISMODELMULTIPLE examines gradient detection
%based on receptor-ligand binding in two chemoattractant gradients
%using an exponential model for the chemoattractant concentration and
%a steady state receptor-ligand binding scheme

%Micropipette parameters
L01=100; %max ligand 1 concentration
xs1=100; %ligand 1 location

L02=100; %max ligand 2 concentration
xs2=-100; %ligand 2 location

a0=4.5; %radius of point sources
z=9; %distance between point sources and plane

alpha=0.0008;

%Receptor binding parameters
Rtot1=1000; %total number of receptors for 1
Kdl=10; %dissociation constant for 1

Rtot2=1000; %total number of recptors for 2
Kd2=10; %dissociation constant for 2

dcell=10; %diameter of cell

%

t
*
º

•

s

x=[-500:1:500); %defines the plane
r1=sqrt{(x-xs1)."2+z^2); %distance from pt source 1 for each pt in plane
r2=sqrt{(x-xs2)."2+z^2); %distance from pt source 2 for each pt in plane

Lla=L01*exp(-alpha"r1.62);
dLladz--2*alpha"Lla.*(x-xs1);

%

&
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L2a=L02*exp(-alpha"r2.62);
dL2adx=-2*alpha"L2a.*(x-xs2);

C1a–Rtot1*Lla./(Kd1+L1a);
C2a=Rtot2*L2a./(Kd2+L2a);

%bound receptor difference%%%%%%%%%%%%%%%%%%%%%%%%
dCladz=Rtot1*Kd1./((Kd1+L1a).”2).*dLladz;
dCladznorm—dCladz./repmat(max(dCladz')',1,size(x,2));
dC1a–dcell*dCladz; %absolute difference in bound receptors

dC2adx=Rtot2*Kd2./((Kd2+L2a).”2).*dL2adx;
dC2adxnorm—dC2adx./repmat(max(dC2adx')', 1,size(x,2));
dC2a-dcell*dC2adx; %absolute difference in bound receptors

%vector Sum 96%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dCtota=dcell*(dCladk+dC2adx);
dCtotanorm-dCtota./repmat(max(dCtota')',1,size(x,2));

%figures%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure,plot(x,Lla,'b',x,L2a,'r','LineWidth',2),xlabel('X','FontSize',14),ylabel('L','FontSize',14)

figure,plot(x,&Ctota,'LineWidth',2),hold on,plot(x,zeros(1,size(x,2)),'k--
'),xlabel('X','FontSize',14),ylabel(\DeltaC_t_o_t','FontSize',14)
plot(0,0,'ko','MarkerSize', 10, LineWidth',2),plot(-
100,0,'ko','MarkerSize', 10, MarkerFaceColor','k'),plot(100,0,'ko','MarkerSize', 10, MarkerFaceColor','k'),hol
d off

A.4 Simulation

Simulation of OU process in uniform concentration

function out = OUUniform()
%OUUniform Summary of this function goes here
% Detailed explanation goes here
S=4.2/60; %speed in um/min converted to um/second
P=6.5°60; %persistence time in min converted to seconds

maxtime=60°60; %minutes converted to seconds
dt=.001;
randn('seed',1); %seed random number generator
numcells=10;

time=[0:dt:maxtime-dt;
v=zeros(maxtime/dt,2*numcells); %Vx vy
xy=zeros(maxtime/dt,2*numcells);%x y

i=1;

*

§
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º
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nx=randn(maxtime/dt, 1); %random numbers on x
ny=randn(maxtime/dt, 1); %random number on y

while i*dt-maxtime

%

§
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%velocities
v(i+1,1:2:end)=v(i,1:2:end)*(1-dt/P)+S*sqrt{dt/P)*nx(i); %Vx
v(i+1,2:2:end)=v(i,2:2:end)*(1-dt/P)+S*sqrt{dt/P)*ny(i); %Vy

%positions
xy(i+1,1:2:end)=xy(i,1:2:end)+v(i,1:2:end)*dt; %x
xy(i+1,2:2:end)=xy(i,2:2:end)+v(i,2:2:end)*dt; %y

i=i-1;
end

xys=xy(1:10000:end,.); %sample every 10 seconds

figure,plot(xys(;,1:2:end),xys(;,2:2:end),0,0,ko','MarkerSize', 15,'LineWidth',2)

U100nMUniform()0=xys;

save U 100nMUniformCUU100nMUniformOU;

out—xys;

Simulation of OU process with chemotactic bias

%function out = OUbias(numcells)
%OUBIAS simulates OU process in 2D modified to include chemotactic bias term
%Chemotactic bias is based on receptor-ligand binding
%Each dimension has a separate white noise process

numcells=10;

%speed and persistence time
S=4.2/60; %um/s
P=6.5*60; %s

%time parameters
maxtime=1000; %s
dt=0.01;
randn('seed',2);
i=1; %loop counter
time=[0:dt:maxtime-dt]"; %elapsed time

%parameters for concentration model
L0=10000; %Chemoattractant concentration in micropipette
xs=50; %x location of source
ys=50; %y location of source
zs=9; %distance between source and chemotactic plane
a0=4.5; %radius of source
alphaD=0.0008; %scaling factor on exponential gradient

%parameters for receptor-ligand binding
Rtot=1000; %total number of receptors
Kd=10; %dissociation constant
dcell=10; %diameter of cell
thresh=10; %minimum number of bound receptors across cell for gradient detection
kappa=.000002; %Chemotactic sensitivity
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%preallocate arrays for velocities and positions in both dimensions
cellvXs=zeros(maxtime/dt,numcells);
cellvys=zeros(maxtime/dt,numcells);
cellzs=zeros(maxtime/dt,numcells);
cellys=zeros(maxtime/dt,numcells);

%preallocate receptor-ligand binding states
celll-zeros(maxtime/dt,numcells); %Ligand concentration
cellgradLx=zeros(maxtime/dt,numcells); %ligand gradient in x direction
cellgradLy-zeros(maxtime/dt,numcells); %ligand gradient in y direction
cellC=zeros(maxtime/dt,numcells); %number of bound receptors
celldCdL=zeros(maxtime/dt,numcells); %derivative of bound receptors wrt L
biasz=zeros(maxtime/dt,numcells); %chemotactic bias in x
biasy-zeros(maxtime/dt,numcells); %chemotactic bias in y
biasmag-zeros(maxtime/dt,numcells); %magnitude of bias used to normalize

%precalculate random numbers
wnx=sqrt{dt)*randn(maxtime/dt,numcells); %white noise in x component of velocity
wny=sqrt{dt)*randn(maxtime/dt,numcells); %white noise in y component of velocity

i=1; %loop counter

%main loop
while i*dt-maxtime

celll(i,i)=L0*exp(-alphal”((cell&s(i,j)-xs).”2+(cellys(i,j)-ys)."2+zs"2)); %ligand concentration at
current position

cellC(i,i)=Rtot"cellD(i,i)./(Kd-cellD(i,j)); %number of bound receptors at current
position

celldCdL(i,i)=Rtot*Kd./(Kd-cellL(i,j)).”2; %derivative wrt L
cellgradLx(i,i)=-2*alphal"cell■ (i,i).*(cellzs(i,j)-xs); %Current L gradient in x
cellgradLy(i,i)=-2*alphal” celll(i,i).*(cellys(i,j)-ys); %Current L gradient in y

biasz(i,i)=dcell*celldCdL(i,j).”cellgradLx(i,i); %x gradient in bound receptors
biasz(i,i)=biasz(i,i).*(biasz(i,j)-thresh); %check to see if threshold is met
biasy(i,i)=dcell*celldCdL(i,j).”cellgradLy(i,i); %y gradient in bound receptors
biasy(i,i)=biasy(i,i).”(biasy(i,j)-thresh); %threshold

%this term is used to normalize the bound receptor gradient, the epsilon on end prevents divide by zero
error

%biasmag(i,i)=dcell*sqrt{(celldCdL(i,i).*cellgradLx(i,i))^2+(celldCdL(i,i).*cellgradLy(i,i)).”2)+0.000000
1;

biasmag(i,i)=sqrt{biasz(i,i).”2+biasy(i,i).”2)+0.000000001;

cellvºs(i+1,2)=cellvºs(i,j)*(1-dt/P)+S*sqrt{1/P)*wnx(i,i)+kappa"biasz(i,i)./biasmag(i,j); %update x
velocity

cellvys(i+1,2)=cellvys(i,i)*(1-dt/P)+S*sqrt(1/P)*wny(i,i)+kappa"biasy(i,i)./biasmag(i,i); %update y
velocity

cellzs(i+1,2)=cellzs(i,i)+cellvºs(i,j)*dt; %update x position
cellys(i+1,2)=cellys(i,i)+cellvys(i,i)*dt; %update y position
i=i-1; %update counter

end

%figures
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figure,plot(cell&s,cellys,'LineWidth',2),hold
on,plot(0,0,'go','MarkerFaceColor','g','MarkerSize',10),plot(xs,ys,'ro','MarkerFaceColor','r','MarkerSize',10),
hold off
axis([-100 100-100 100])

%out—[time cellzs cellys);

Simulation of OU process in multiple chemoattractant gradients

%function out = OUbias(numcells)
%OUBLAS simulates OU process in 2D modified to include chemotactic bias term
%Chemotactic bias is based on receptor-ligand binding
%Each dimension has a separate white noise process

numcells=10;

%speed and persistence time
S=4.2/60; %um/s
P=6.5*60; %s

%time parameters
maxtime=1000; %s
dt=0.01;
randn('seed',2);
i=1; %loop counter
time=[0:dt:maxtime-dt]"; %elapsed time

%parameters for concentration model
L01=100; %Chemoattractant concentration in micropipette
L02=100;
xs1=100; %x location of source
ys1=50; %y location of source
xs2=-100;
ys2=50;

zs=9; %distance between source and chemotactic plane
a0=4.5; %radius of source
alphaD=0.0008; %scaling factor on exponential gradient

%parameters for receptor-ligand binding
Rtot1=1000; %total number of receptors
Kd1=10; %dissociation constant
Rtot2=1000;
Kd2=10;

:

s

dcell=10; %diameter of cell
thresh=10; %minimum number of bound receptors across cell for gradient detection
kappa=.000002; %Chemotactic sensitivity

%preallocate arrays for velocities and positions in both dimensions
cellvXs=zeros(maxtime/dt,numcells);
cellvys=zeros(maxtime/dt,numcells);
cellzs=zeros(maxtime/dt,numcells);
cellys=zeros(maxtime/dt,numcells);

.
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%preallocate receptor-ligand binding states
cellll-zeros(maxtime/dt, numcells); %Ligand concentration
cellgradL1x=zeros(maxtime/dt,numcells); %ligand gradient in x direction
cellgradLly=zeros(maxtime/dt,numcells); %ligand gradient in y direction
cellCl=zeros(maxtime/dt,numcells); %number of bound receptors
celldCldL1=zeros(maxtime/dt,numcells); %derivative of bound receptors wrt L

cellD2=zeros(maxtime/dt,numcells); %Ligand concentration
cellgradL2x=zeros(maxtime/dt,numcells); %ligand gradient in x direction
cellgradL2y=zeros(maxtime/dt,numcells); %ligand gradient in y direction
cellC2=zeros(maxtime/dt,numcells); %number of bound receptors
celldC2dL2=zeros(maxtime/dt,numcells); %derivative of bound receptors wrt L

biasz=zeros(maxtime/dt,numcells); %chemotactic bias in x
biasy-zeros(maxtime/dt, numcells); %chemotactic bias in y
biasmag-zeros(maxtime/dt,numcells); %magnitude of bias used to normalize

%precalculate random numbers
wnx=sqrt{dt)*randn(maxtime/dt,numcells); %white noise in x component of velocity
wny=sqrt{dt)*randn(maxtime/dt,numcells); %white noise in y component of velocity

i=1; %loop counter

%main loop
while iºdt-maxtime

cellll (i,i)=L01*exp(-alphal”((cellzs(i,j)-xs1).”2+(cellys(i,j)-ys1).”2+zs"2)); %ligand concentration at
current position

cellC1(i,i)=Rtot1*cellD1(i,j)./(Kd1+cellll(i,j)); %number of bound receptors at
current position

celldCldL1(i,i)=Rtot1*Kd1./(Kd1+cellL1(i,i))^2; %derivative wrt L
cellgradLlx(i,i)=-2*alphal” cellll(i,i).”(cellzs(i,j)-xs1); %Current L gradient in x
cellgradLly(i,i)=-2*alphal” cellD1(i,i).*(cellys(i,j)-ys1); %Current L gradient in y

cellD2(i,i)=L02*exp(-alphaD"((cellzs(i,j)-xs2)."2+(cellys(i,j)-ys2).”2+zs’2); %ligand concentration at
current position

cellC2(i,i)=Rtot2*cellD2(i,j)./(Kd2+cellD2(i,i)); %number of bound receptors at
current position

celldC2dL2(i,i)=Rtot2*Kd2./(Kd2+cellL2(i,i)).’2; %derivative wrt L
cellgradL2x(i,i)=-2*alphal” celll2(i,i).*(cellzs(i,j)-xs2); %Current L gradient in x
cellgradL2y(i,i)=-2*alphal"cellD2(i,i).*(cellys(i,j)-ys2); %Current L gradient in y

biasz(i,i)=dcell*(celldCldL1(i,i).”cellgradL1x(i,i)+celldC2dL2(i,j).”cellgradL2x(i,i)); %x gradient in
bound receptors

biasz(i,i)=biasz(i,i).*(biasz(i,j)-thresh); %check to see if threshold is met
biasy(i,i)=dcell*(celldCldL1(i,i).*cellgradLly(i,i)+celldC2dL2(i,i).”cellgradL2y(i,i)); %y gradient in

bound receptors
biasy(i,i)=biasy(i,i).*(biasy(i,j)-thresh); %threshold

%this term is used to normalize the bound receptor adient, the epsilon on end prevents divide by zerogr y
error

%biasmag(i,i)=dcell*sqrt{(celldCdL(i,i).*cellgradLx(i,i))^2+(celldCdL(i,i).*cellgradLy(i,i)).”2)+0.000000
1;

biasmag(i,i)=sqrt{biasz(i,j)."2+biasy(i,i).”2)+0.000000001;
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cellvKs(i+1,2)=cellvKs(i,i)*(1-dt/P)+S*sqrt{1/P)*wnx(i,i)+kappa"biasz(i,i)./biasmag(i,i); %update x
velocity

cellvys(i+1,2)=cellvys(i,i)*(1-dt/P)+S*sqrt{1/P)*wny(i,i)+kappa"biasy(i,i)./biasmag(i,i); %update y *
velocity

-

cellzs(i+1,2)=cellzs(i,i)+cellvXs(i,i)*dt; %update x position
cellys(i+1,2)=cellys(i,i)+cellvys(i,i)*dt; %update y position -
i=i-1; %update counter

-

end ■ º

%figures
figure,plot(cellºs,cellys,'LineWidth',2),hold
on,plot(0,0,'go','MarkerFaceColor','g','MarkerSize',10),plot(xs1,ys1,'ro',xs2,ys2,'ro','MarkerFaceColor','r','M
arkerSize', 10),hold off
axis([-100 100-100 100])

%out=[time cellzs cellys);
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