
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Anticipation Effect after Implicit Distributional Learning

Permalink
https://escholarship.org/uc/item/6hs8d652

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Authors
Chen, Danlei
Jew, Carol A.
Zinszer, Benjamin
et al.

Publication Date
2017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6hs8d652
https://escholarship.org/uc/item/6hs8d652#author
https://escholarship.org
http://www.cdlib.org/


Anticipation Effect after Implicit Distributional Learning 
 

Danlei Chen (dchen37@u.rochester.edu) 
Carol A. Jew (carol.jew@rochester.edu) 

Benjamin Zinszer (bzinszer@ur.rochester.edu) 
Rajeev D. S. Raizada (rajeev.raizada@gmail.com) 

Rochester Center for Brain Imaging 
Department of Brain and Cognitive Sciences 

University of Rochester 
Rochester, NY 14627 USA 

 
 

Abstract 
 
Distributional learning research has established that humans 
can track the frequencies of sequentially presented stimuli in 
order to infer the probabilities of upcoming events (e.g., Hasher 
& Zacks, 1984). Here, we set out to explore anticipation of a 
stimulus after implicit distributional learning. We hypothesize 
that as people learn the category frequency information 
implicitly, response times will scale according to the relative 
frequency of the stimulus category. Twelve adult participants 
viewed photographs of faces, tools, and buildings while 
performing a simple classification task. We found that response 
times significantly decreased with greater frequencies in the 
distribution of stimulus categories. This result suggested that 
distributional information about the internal representations of 
the stimuli could be learned and indicated the possibility that 
participants anticipated the stimuli proportional to the 
probability of the category appearing and thereby reduced 
response times for the more frequent categories.  
 
Keywords: statistical learning; implicit distributional learning; 
anticipation; classification 

 
Introduction 

Although complicated and dynamic, our sensory 
environment contains regularities distributed both spatially 
and temporally. Previous studies have shown that humans 
can acquire information from a probabilistic structure, and 
they are able to predict the upcoming stimulus using 
distributional knowledge. In this study, we used behavioral 
methods to investigate anticipation prior to object 
classification after distributional learning of the object 
category frequencies.  

People are known to be sensitive to the distributional 
information, and they are able to actively use this information 
to make complex inferences, such as identifying underlying 
structures in sequences. Explicit probabilistic information 
can aid human decision-making in many situations (Arkes, 
Dawes, & Christensen, 1986; Wiggs, 1993; Lin, Kung, & 
Lin, 1997). In addition to explicit distributional learning, in 
fact, it is well established in the fields of human development, 
language acquisition, attention, and perception that people 
are sensitive to implicit distributional information (e.g., 
Attneave, 1953; Fiser & Aslin, 2002; Hasher & Zacks, 1984; 
Saffran, Aslin, & Newport, 1996; Tryk,1968; Turk-Browne, 
Scholl, Chun, & Johnson, 2009; Pelucchi, Hay, & Saffran, 

2009). In these studies, distributional information was not 
explicitly provided to participants, but the results showed that 
participants could track the stimulus input to infer its 
underlying causal structure and therefore make accurate 
predictions or judgments about which stimuli potentially fit 
or violate this structure. Thus, even when these statistical 
relationships are not explicitly presented and the stimuli are 
too numerous to be explicitly counted, people can discover 
an accurate distributional model of the input.  

Particularly, classification tasks have been used to test 
implicit distributional learning (Forster & Chambers, 1973; 
Stanners, Forbach & Headley, 1971; Stanners, Jastrzembski, 
& Westbrook, 1975; Whaley, 1978). Classifying responses 
can reflect distributional learning processes, as learned items 
can be recognized and discriminated from other items faster 
than unfamiliar items can.  For example, Whaley (1978) 
found that response times for word and non-word 
classification were substantially faster with high-frequency 
initial and final consonants than for words with low-
frequency consonants in initial or final position or both. 
Although in the context of language, this finding shed lights 
on the correlation between implicit distributional learning 
and response times, and it demonstrated the methodology of 
using a classification task to test this correlation.  

Response time has been used to measure anticipation in 
many studies (Haith, Hazan, & Goodman, 1988; Hinrichs & 
Krainz, 1970; Todorovic, van Ede, Maris, & de Lange, 2011; 
Turk-Browne, Scholl, Johnson, & Chun, 2010, Poulton, 
1950). Some of these studies have found that when 
participants were instructed to predict the upcoming stimulus, 
response times were faster for correct predictions than for 
incorrect predictions (Bernstein & Reese, 1965; Hinrichs et 
al., 1970). This finding suggests that anticipation of an 
upcoming stimulus influences the response time in the 
subsequent trial.  

However, the effect of adult observers’ use of implicit 
distributional learning on anticipation of the category of an 
upcoming stimulus remains largely unexplored. Most studies 
have focused on effect of frequency information about 
stimulus-stimulus association (e.g. Conway & Christiansen, 
2005; Kirkham, Slemmer, Johnson, 2002; O’Brien & 
Raymond, 2012; Olson & Chun, 2001; Turk-Browne, Jungé, 
Scholl, 2005), and little research have looked into the effect 
of the overall distributional information about the internal 
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representation of the stimuli (e.g. the categorical 
representation of the object).  

Here, we aimed to establish evidence for anticipatory 
representations of the category of the upcoming stimulus 
emerging from distributional learning. Turk-Browne et al. 
(2010) investigated implicit anticipation triggered by 
probabilistic information. Their behavioral result showed that 
when the participants observed and made classification 
responses to every trial, the participants reacted faster to the 
trials that can be predicted from their immediate preceded 
trials. Based on this finding, in the experiment, we measured 
participants’ anticipation of an object category by measuring 
the response times in a sequential classification task. We 
examined the anticipatory effects of the underlying 
distribution and predicted that response times for 
classification would decrease with greater category 
frequencies, suggesting that as people learned the category 
distributional information implicitly, anticipation was scaled 
according to the probability of the category appearing. 

Methods 
Participants  
Twelve participants were recruited (mean age = 20 years; SD 
= 1.7 years; 7 females, 5 males) and were compensated $10 
per hour. All participants were undergraduate students at the 
University of Rochester. All participants reported being 
right-hand dominant. The experiment took around 45 minutes 
to complete. The study procedures were approved by the 
Institutional Review Board of the University of Rochester, 
and participants received an informed consent document 
prior to the study.  

Materials 
We chose three categories of stimuli: faces, buildings, and 
tools.  Each category has specific brain areas that reliably 
respond to one of these categories but not the others (Epstein 
& Kanwisher, 1998; Kanwisher, McDermott, & Chun, 1997; 
Chao & Martin, 2000). The images from each of these 
categories were grey-scaled and edited to be the same size 
(640 × 480 pixels) using Preview software in Mac OSX. The 
images appeared in the middle of a 27ʺ iMAC monitor with 
1920 × 1080 resolution. The images appeared in the middle 
of the screen against a white background. Face images were 
acquired from the Chicago Face Database (Ma, Correl, & 
Wittenbrink, 2015); Building images were downloaded by 
Google Image search with the keywords “building” and 
“house”; Tool images were obtained from the BOSS database 
(Brodeur, Dionne-Dostie, Montreuil, & Lepage M, 2010). 

The frequency of each category (60%, 30%, or 10%) was 
counterbalanced across six different distributional conditions 
using Latin Squares (Winer, 1962). This manipulation 
counterbalanced carryover effects between conditions and 
ensured that participants see each of the conditions in the 
study. We chose 60%, 30%, and 10% as frequencies 
considering the number of trials in each block (30 trials) and 
condition (90 trials). These frequencies produce integer 
instead of the decimal number of trials in each condition. The 

complete information about these six conditions is shown in 
Table 1. 

Three adjacent buttons on the computer keyboard were 
marked as “F”, “H” and “T”. To exclude the motor-related 
confounds that were the interest of this study, the key 
mapping was counterbalanced across subjects. Subjects were 
asked to always use the same three fingers (index, middle, 
and ring fingers) for the same keys. 

 
Table 1: Distribution of categories in each condition 

 Faces Buildings Tools 
Num. of 

Trials 
Condition 1 60% 30% 10% 90 
Condition 2 60% 10% 30% 90 
Condition 3 10% 60% 30% 90 
Condition 4 30% 60% 10% 90 
Condition 5 10% 30% 60% 90 
Condition 6 30% 10% 60% 90 

Num. of 
Trials 180 180 180 540 
 

Procedure   
Subjects were asked to perform a simple classification task. 
The presentation of stimuli was programmed using 
MATLAB Psychophysics toolbox (Brainard, 1997; Kleiner, 
Brainard, Pelli, Ingling, & Murray, 2007; Pelli, 1997). The 
experiment took place in a behavioral testing cubicle. During 
each condition, the participants were instructed to press a 
designated key to indicate the category of each presented 
stimulus. A score was given based on the reaction time 

Figure 1: Illustration of the experiment experimental 
protocol of first three trials in one condition. After 

participants read the instructions, images appeared on the 
screen and participants responded accordingly by pressing 

corresponding buttons. A score would appear above the 
picture after the participant pressed a button. 
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immediately after each response (zero for inaccurate or 
missing trials), and a total score was presented after each 
condition. The scores were presented in order to provide 
feedback and motivate participants to give faster and more 
accurate responses, and they were not used in the analysis. 
Stimulus-onset asynchrony (SOA; 2000, 4000, and 6000 ms) 
was varied to prevent participants from predicting when the 
next stimulus would appear on the screen. Each trial had a 
fixed image duration of 1000 ms, and the image would not 
disappear after a response was recorded. Inter-trial interval 
(ITI) varied based on the SOA of that trial. Each subject went 
through all 6 conditions. Each condition had 3 blocks, and 
each block displayed 30 images. In total 90 images were 
presented in each condition, and 540 images in the whole 
experiment. The breaks between blocks were 15000 ms, and 
the breaks between conditions were two minutes. Instructions 
between each condition were designed to cue the participants 
to the new distributional information of the next condition: 
“Thank you for finishing the task. Please take a short break. 
A new but similar task will start in two minutes.” The 
illustration of the experiment experimental protocol of first 
three trials in one condition is shown in Figure 1. 

Results 
In total, 6480 responses were recorded (M = 521 ms; SD = 
107 ms; Accuracy = 0.948). For analysis, we excluded the 
trials with incorrect responses or no responses. And across all 
participants, 336 out of 6480 trials (0.05%) were excluded for 
this reason. Paired two-tailed t-tests showed that for all 
twelve subjects, mean response times of block 2 for each 
condition were significantly less than those of block 1, 
t=2.255, p=0.038<0.05; average response times of block 3 for 
each condition were significantly less than those of block 1, 
t=2.585, p=0.019<0.05; but average response times of block 
3 for each condition were not significantly less than average 
response times of block 2, t=-0.683, p=0.504. It is possible 
that subjects needed several trials to acquire the distributional 
information of the current condition and to replace the 
carryover distributional information from previous 
conditions. And after obtaining the current distributional 
information, the participants were able to perform the task 
using this knowledge. Thus, we excluded all trials from block 
1 of each condition. The analyses only contained correct 
responses from block 2 and block 3. Mean, standard 

deviation, and accuracy of response times for each category 
in each frequency are shown in Table 2.  

Using linear mixed-effects models in R, we compared 
response times for different stimuli in each distribution. We 
first used a 3-way interaction model (SOA × category × 
frequency), but did not find any significant 3-way interaction. 
Instead, a reduced 2-way interaction model (category × 
frequency + SOA × category + SOA × frequency) was 
estimated and reported in Table 3. Face was chosen as the 
arbitrary baseline category by R to prevent multi-collinearity 
in the indicator variables for the stimulus category. 

SOA did not significantly interact with Frequency, and 
only marginally varied across Category (p = 0.07). A main 
effect of SOA was also significant (p = 0.006). Therefore, 
although SOA was not a variable of particular interest, we 
retained it in the model to control for the possible effects of 
the pre-stimulus waiting period on the anticipatory 
representation and thus on the change in response times. 

Similarly, no main effect for Category was found, but we 
retained this term due to its significant interaction with 
Frequency (see below) and to account for Category-specific 
differences in baseline response rate (e.g., participants 
responded to faces faster than tools and buildings).  

The main effect of frequency was highly significant (p < 
0.001), consistent with our hypothesis that response times 
would differ as a function of the stimulus distribution. The 
post-hoc paired t-tests on subject-level mean response times 
found that response times indeed significantly decrease as the 
frequency of the stimulus category increased (60% vs. 30%: 
t(11) = -6.08, p < 0.001; 30% vs. 10%: t(11) = -5.01, p < 
0.001). 

The interaction between frequency and condition was also 
significant, so we examined the frequency effects specific to 
each category of the stimuli. We found that within each of the 
categories, response times generally decreased as its 
frequency increased (see Figure 2 for the summary of tests), 
although many of these tests would not survive correction for 
multiple comparisons. With the results from the linear mixed-
effect models and the t-tests, we can conclude that this effect 
is in line with our hypothesis that participants’ response times 
reduced proportionally to the increasing frequency of the 
category. 

We also looked at the estimated slopes for the frequency × 
category interaction in the model (Figure 3), which was 

Table 3: ANOVA performed on linear mixed-effects model with 2-way interactions 

 SS MS Num. DF Den. DF F p-value  

SOA 0.38 0.38 1 6119.5 7.644 0.006 ** 
Category 1.63 0.82 2 6119.3 0.676 0.509  
Frequency 4.72 4.72 1 6119.5 40.628 <0.001 *** 
Category × Frequency 0.34 0.17 2 6119.2 6.224 0.002 ** 
SOA: Category 0.14 0.07 2 6119.3 2.574 0.076 . 
SOA: Frequency 0.05 0.05 1 6119.5 1.963 0.161  

Notes. . p < .1; * p < .05; ** p < .01; *** p < .001	
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highly significant in the ANOVA. Steeper slopes indicate a 
stronger influence of frequency on that category. It is clear 
that frequency influenced face more than it influenced tool, 
and it influenced tool more than it influenced building 
(slope(face) = -2.123; slope(building) = -1.156; slope(tool) = 
-1.395).  

Discussion 
In this study, we showed behavioral evidence that response 
times decreased with the higher frequency of occurrence of 
the upcoming stimulus. The evidence consisted of lower 
response times for categories with the higher frequencies of 
occurrence in the input as opposed to the category with lower 
frequencies of occurrence. Higher probability could be 
reasonably more predictable and therefore facilitated 

classification response and reduced response times. This 
result could be explained if the response to each category 
engaged anticipatory processes that completed with the 
overall probability information across all categories. The 
results were in line with our hypothesis that the anticipatory 
representation acquired through distributional learning 
affects responses in a classification task by allowing faster 
response times according to the frequency of a category 
appearing.  

Previous studies have been focused on frequency 
information learning between specific stimulus-stimulus 
associations (e.g. Conway et al. 2005; Kirkham et al. 2002; 
O’Brien & Raymond, 2012; Olson & Chun, 2001; Turk-
Browne et al. 2005). However, no study, to our knowledge, 
has looked into the effect on distributional information about 
the internal representations of the stimuli. And here we 
present robust evidence that implicit distributional 
information about the internal representations of the stimuli 
could be learned, subsequently facilitated responses to trials 
of the more frequent category, and therefore caused the 
anticipation effect.  

We also found that participants could learn new 
distributional information and this new information could 
override the previously learned distribution relatively quickly 
(i.e., within 30 trials or one block of the experiment). 
Although our finding gives a rather coarse estimate of 
distributional learning efficiency due to the use of response 
times as an index of learning with relatively low resolution, 
this result provides strong evidence for on-line learning, 
because the participants were required to give a response on 
every trial. Some previous studies relied on off-line learning 
tests so that they have not been able to study the speed of the 
distributional learning. Other studies that looked into the on-
line learning of probabilistic information also suggested that 
probabilistic information could be obtained quickly (Abla, 
Katahira, & Okanoya, 2008; Turk-Browne et al., 2009), 
although these studies used probabilistic information about 
stimulus-stimulus associations instead of the overall 
distributional pattern of the stimuli.  

Additionally, results showed that building and tool 
categories were less affected by frequency than faces were. 
Humans are highly experienced at recognizing faces for 
evolutionary purposes (Leopold & Rhodes, 2010; Little, 
Jones, & DeBruine, 2010; Sheehan & Nachman, 2014), and 
therefore it is possible that human faces can be more quickly 
recognized and distinguished than other categories can. The 
perception of faces might have a lower minimal response 
time in the high-frequency condition, and thus participants’ 
performance for faces was far faster than the other conditions 
at the 60% frequency.  

At the beginning of the paper, we intended to measure the 
anticipation of the probabilistically distributed category using 
comparisons between response times. The above results, 
using response times as the indication of the anticipation 
effect, showed that the participants successfully learned and 
used the distributional information. However, although 
response time has been used in some studies as an indication 

Figure 3: Frequency × Category Effect 

	
Notes. * p < .05; ** p < .01; *** p < .001;  

ns: no significance 
Figure 2: Average response times for each category in each 
frequency. The error bars were indicated by one standard 

error of the mean. 
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of anticipation (Haith et al., 1988; Hinrichs et al., 1970; 
Todorovic et al., 2011; Poulton, 1950), it does not directly 
measure the neural response to anticipatory effect after 
distributional learning. It is possible that the categories were 
also directly encoded or primed at relative magnitudes in the 
brain as a function of frequency, producing this response time 
effect. This promising result from this behavioral experiment 
points to the possibility of a future experiment using 
neuroimaging techniques (e.g., fMRI) to test the hypothesis 
that probabilistically weighted brain activity also corresponds 
to the category frequencies, and can be found in the neural 
activity immediately prior to each trial.  

Further studies can combine our behavioral results with the 
ability to detect categorical specific activation using fMRI to 
explore the neural basis of anticipation after implicit 
distributional learning. The adaptive nature of human 
categorization assumes that categorization reflects the 
optimal estimates of the probability of unseen features of 
objects (Anderson & Milson, 1989). Turk-Browne et al. 
(2010) identified a neural mediator of anticipation for stimuli 
as a consequence of implicit distributional learning of paired 
and unpaired images using fMRI. A region of interest 
analysis of this study found increased activation of the 
category-specific brain area from the anticipation of that 
category and suppressed activation of the area when the 
predictive stimulus was from another category. These 
findings suggest that category-specific cortical activation due 
to implicit perceptual anticipation after implicit probabilistic 
learning is detectable in the category-specific brain regions 
using fMRI.  

In sum, our study gave behavioral evidence that 
anticipation for the category of the upcoming stimulus is 
proportional to the distribution over all the categories. In the 
future, we hope to see neuroimaging experiment that shows 
anticipation after distributional learning can be measured in 
brain activity, and the representation is proportional to the 
learned distribution. 
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