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Surface electromyography 
evaluation for decoding hand 
motor intent in children with 
congenital upper limb deficiency
Marcus A. Battraw1, Justin Fitzgerald2,3,4, Eden J. Winslow2, Michelle A. James5,6,  
Anita M. Bagley5,6, Wilsaan M. Joiner3,7 & Jonathon S. Schofield1

Children born with congenital upper limb absence exhibit consistent and distinguishable levels of 
biological control over their affected muscles, assessed through surface electromyography (sEMG). 
This represents a significant advancement in determining how these children might utilize sEMG-
controlled dexterous prostheses. Despite this potential, the efficacy of employing conventional sEMG 
classification techniques for children born with upper limb absence is uncertain, as these techniques 
have been optimized for adults with acquired amputations. Tuning sEMG classification algorithms 
for this population is crucial for facilitating the successful translation of dexterous prostheses. To 
support this effort, we collected sEMG data from a cohort of N = 9 children with unilateral congenital 
below-elbow deficiency as they attempted 11 hand movements, including rest. Five classification 
algorithms were used to decode motor intent, tuned with features from the time, frequency, and time–
frequency domains. We derived the congenital feature set (CFS) from the participant-specific tuned 
feature sets, which exhibited generalizability across our cohort. The CFS offline classification accuracy 
across participants was 73.8% ± 13.8% for the 11 hand movements and increased to 96.5% ± 6.6% 
when focusing on a reduced set of five movements. These results highlight the potential efficacy of 
individuals born with upper limb absence to control dexterous prostheses through sEMG interfaces.

Unilateral congenital below-elbow deficiency (UCBED) is the absence of an upper limb that occurs at the 
anatomical region between the proximal to distal segments of the forearm1. To those afflicted, this condition 
can pose significant challenges in psychosocial and physical functioning while they interact within their daily 
environments2. The naturalistic motor control of advanced dexterous prosthesis utilizing surface electromyography 
(sEMG, the measurement of the residual muscle’s electrical activity) has yet to be fully investigated for children 
with UCBED. As these children were born never having actuated a hand, and their muscles and limbs never 
fully developed, prosthesis control presents with a variety of considerations that are unique from adults or other 
children that acquired their limb absence later in life. For example, there has been very limited study on how 
the muscle activity of their affected limbs may manifest especially when attempting to move the missing hand 
for prosthetic control purposes3. This presents a limitation in the effective implementation of dexterous upper 
limb devices and drives the need to explore, adapt, and leverage current adult-based technologies to improve the 
motor control possibilities for prostheses offered to children with UCBED.

Previous work has shown that children with UCBED have a degree of biological control over their affected 
musculature i.e., when they attempted various missing hand movements there was measurable consistency and 
distinguishability of sEMG muscle excitation4. Furthermore, through the use of an emerging prosthetic control 
modality, namely ultrasound, it has also been shown that children with UCBED generate distinct patterns 
of muscle deformation that can be classified to decode motor intent5. Although these results are exciting, 
ultrasound-based control technology is not mature or commercially available and therefore lacks a translational 
component. Current state-of-the-art dexterous control utilizes sEMG classification algorithms to decode motor 

1Department of Mechanical and Aerospace Engineering, University of California, Davis, CA, USA. 2Department of 
Biomedical Engineering, University of California, Davis, CA, USA. 3Department of Neurobiology, Physiology and 
Behavior, University of California, Davis, CA, USA. 4Clinical and Translational Science Center, University of California 
Davis Health, Sacramento, CA, USA. 5Shriners Children’s – Northern California, Sacramento, CA, USA. 6Department 
of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, USA. 7Department of Neurology, 
University of California Davis Health, Sacramento, CA, USA. email: jschofield@ucdavis.edu

OPEN

Scientific Reports |        (2024) 14:31741 1| https://doi.org/10.1038/s41598-024-82519-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-82519-z&domain=pdf&date_stamp=2024-12-19


intent and therefore drive a prosthesis. However, little work has addressed how to effectively translate the 
currently available sEMG classification technologies to the pediatric UCBED population.

In contrast, extensive research has been focused on identifying which sEMG features and/or classifiers are 
most effective in decoding hand motor intent from the static contraction activity of forearm muscles6–10, to 
name a few. Additionally, studies have also investigated feature selection and window length for early transient 
detection of motor intent11–13. However, most of this work was done with adult able-bodied individuals, and 
thus it is often assumed that top-performing feature sets and classifier combinations will translate effectively 
to those with acquired amputations14; however, these assumptions are often not tested rigorously in affected 
populations. In studies that do employ cohorts of adults with acquired amputations, classification of missing 
limb movements from sEMG data typically ranges from 81 to 97% depending on the hand movement, feature 
set, classifier, etc.15. In a small cohort of adults with UCBED (N = 4), these values were significantly lower when 
simply applying a feature set developed for those with acquired limb loss (Hudgins set) with performance in 
the range of 52.1% ± 15.0% accuracy for 11 missing hand movements (including rest)16. Moreover, a small 
cohort of children (N = 4, less than 18 years old) and adults (N = 3) with UCBED have been studied utilizing a 
commercially available sEMG classification system, again developed for adults with acquired limb amputations3. 
The children achieved classification accuracies ranging from 80% ± 16.0% for 3 degrees of freedom3. As of our 
knowledge, only these two studies3,16 have examined individuals with UCBED, with the notable distinction that 
one investigated pediatric participants3. Importantly, neither study systematically adjusted the feature sets and 
classifiers to address the unique conditions that UCBED affected muscles may present.

The aim of this study was to investigate the extent that children with UCBED exhibit unique features and 
classification algorithms. Furthermore, if implemented, how might sEMG classification techniques enhance 
prediction accuracy while maintaining low training and testing times. To accomplish this, we assessed 
individual features and feature set performance for 31 time domain features, 9 frequency domain features, and 
9 time–frequency domain features. Top-performing feature sets were evaluated over five different classification 
algorithms (classifiers). We then proposed a new generalized feature set for this unique population and 
compared this to two feature sets commonly implemented for adults with acquired amputation; the Hudgins 
feature set (HDS)17,18 and (2) a newly established efficient feature set (EFS)6. We hypothesized that a unique set 
of algorithmic parameters (i.e., features and classifiers) and attempted hand movements could be identified that 
would provide an effective balance between classification accuracy and computational time.

Methods
Participants
Nine participants with UCBED (8 male and 1 female, mean age of 14  years ± 4.4  years) completed the 
experimental protocol following relevant guidelines and regulations4. Written informed consent and assent were 
obtained from participants and their legal guardians. This study received approval from the Institutional Review 
Board at Shriners Children’s – Northern California. Participants had varying experiences of prosthesis use in 
addition to a wide range of affected limb lengths and circumferences, 8–18 cm and 15–23.5 cm, respectively 
(Table 1). All the children that participated in this study were clinically screened to ensure no other atypical 
development aside from UCBED.

Experimental protocol
This study uses data collected from the experimental protocol outlined in our previous work on understanding 
the affected muscle activity of children with UCBED4. Accordingly, participants were first introduced to the 
experiment which included an overview of the hand motions they would attempt, the equipment used, an 
explanation of sEMG, and general goals of the experiment. Then, seven wireless Trigno Mini sEMG electrodes 
from a Delsys Trigno EMG Research System (Delsys, USA) were adhered circumferentially19–21 around the 
participants’ affected forearm with double-sided adhesive (except for SHR-A who had only four sEMG electrodes 
due to limb size constraints). Given the unique anatomy of each child’s limb difference, electrode placement was 
guided by palpation of the ventral side of the affected forearm to identify the region presenting with the most 
muscle bulk. Here the first electrode was placed with the remainder placed equidistant circumferentially from 
this location19.

Subject ID Age Sex Affected Limb
Length
(cm) Circumference (cm) Type of Prosthesis Used

SHR-A 20 Male Left 13 15 PA

SHR-B 8 Male Right 14 20 PA

SHR-C 11 Male Right 18 18 None

SHR-D 9 Male Left 12.5 18.5 None

SHR-E 18 Male Right 15 21 BP†

SHR-F 16 Female Left 11.5 23.5 PA

SHR-G 19 Male Left 13 21.5 Myo & PA

SHR-H 14 Male Left 8 23 BP

SHR-I 12 Male Right 10 21 BP

Table 1. Participant demographics. PA passive, BP body-powered, Myo myoelectric, †Activity specific device.

 

Scientific Reports |        (2024) 14:31741 2| https://doi.org/10.1038/s41598-024-82519-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Participants were situated in a chair with their affected and unaffected limbs in a comfortable position by 
their side. Afterward, they were instructed to perform a sequence of 10 repetitions for the same missing hand 
movement, divided into two groups of five. Participants performed simultaneous movements with both their 
affected and unaffected limbs to support the mental visualization and execution of missing hand movements. 
The order of hand movements was randomized to reduce any potential biases. A metronome was used to ensure 
consistency in the repetition of movements by indicating when to execute each specified movement. Each 
movement was held for 3 s followed by a 4-s relax phase. A depiction of the sEMG data for the first five repetitions 
and a participant attempting the motion is shown in Fig. 1a. The hand movements performed represented those 
most commonly used during activities of daily living22, wrist movements, and individual digit gestures. These 
motions are depicted in Fig. 1b which included: index flexion (IF), key pinch (KP), pulp pinch (PP), index point 
(IP), cylindrical wrap (CW), cylindrical wrap wrist rotate (CR), tripod pinch (TP), wrist extension (WE), wrist 
flexion (WF), and wrist rotation (WR).

Data processing
As participants attempted the series of missing hand motions, the sEMG electrodes recorded the electrical 
activity and data were transmitted to the Delsys System where they were reconstructed, band-pass filtered from 
20-450Hz23,24, and output as an analog signal. This analog signal was then read by a National Instruments USB 
6210 data acquisition system through MATLAB (R2022a, MathWorks, Inc, USA) sampling at 6 kHz. After all 
data were collected, formatting and feature extraction were performed offline. Movement contraction data were 
isolated, with 15% cropped from both the beginning and end of each contraction to capture the static muscle 
state. Notably, the relaxed rest phase contained more data because each movement repetition was followed by 
an associated rest phase; however, to maintain equal data across all movements, only the rest phase from index 
flexion was used. The 4-s rest phases were trimmed to 3  s to match the movement data and then processed 
similarly to ensure equal data amounts. While this approach may have introduced discrepancies, our previous 
study using the same dataset found that during all attempted missing hand movements, the rest phase exhibited 
minimal muscle excitation compared to the attempted movements4. After isolating all the relevant data, it was 
concatenated for each missing hand movement to create a single data set which consisted of all 10 repetitions. 
Then sEMG data were segmented (section “Data segmentation”), features were extracted (section “Feature 
extraction”), and classifiers were trained (section “Pattern classification”) to evaluate optimal feature sets (section 
“Feature evaluation”). Evaluation was done with a custom MATLAB script that called functions in BioPatRec 
software25.

Fig. 1. Experimental protocol. (a) Depicts a participant during a cylindrical wrap (CW) contraction and 
relaxation phase of the experiment along with the sEMG data across channels. (b) Displays the 10 different 
hand motions participants were instructed to attempt. The figure was adapted from4.
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Data segmentation
Data segmentation specifies a window and time increment in which sEMG data is separated for feature extraction 
and classification. The typical range for window lengths is 100 to 300 ms6,26 and cannot exceed 300 ms as this 
threshold is perceived as a noticeable control delay if present in real-time prosthetic control applications27. 
However, in an attempt to minimize the time-intensive nature of the feature selection methodology (further 
described in section “Individual domains and combined domains”), a window length of 300  ms and a time 
increment of 150 ms were employed. Although this choice would not be realistic for real-time control applications 
due to latency concerns, it does not compromise the validity of our results as supported by literature suggesting 
that window lengths between 150 and 550 ms provide no significant difference in classification accuracy26.

Feature extraction
Feature extraction is the process of identifying relevant sEMG signal characteristics (features) to be classified28, 
which consists of discretized sEMG signals obtained from the time domain, frequency domain, or time–frequency 
domain. Here we utilized the features provided in BioPatRec and added additional ones to the software package 
after an extensive search of the literature. These included in total: 31 time domain features, 9 frequency domain 
features, and 9 time–frequency domain features, a summary of which are provided in Table 2.

Pattern classification
Classification algorithms use sEMG features to identify patterns across the multiple sEMG electrode channels 
and predict the corresponding movement intent. After a review of the literature, five classifiers were selected 
based on their classification accuracy and typical training and testing times and are described as follows.

Linear Discriminant Analysis (LDA) is a common technique used to decode motor intent from muscle 
activity6,10,16,25,29–34 in which the variance within the movements feature space is minimized while the difference 
between the mean of movements is maximized, creating linear boundaries between each movements feature 
space data. LDA was selected due to its simplicity of implementation, computational demands, and ease of 
training28. We updated LDA in BioPatRec using MATLAB’s fitcdiscr function with the discriminant type set to 
linear.

K-Nearest Neighbor (KNN) calculates the distance from a testing point to its k closest neighbors of the 
training data to predict the group a movement belongs to. This established method is another common classifier 
employed to decode hand movements from muscle activity6,24,29,34. We implemented KNN in BioPatRec with 
MATLAB’s fitcknn function. Here the distance type was set to Euclidean with k = 1 and the feature data were 
normalized with the norm-log in BioPatRec25. A k = 1 was chosen, as lower values have been shown to improve 
classification accuracy6,29,35. However, it is important to acknowledge that selecting a low k value may limit the 
generalizability in real-time control applications.

Regulatory Feedback Network (RFN) is a classifier built into BioPatRec that utilizes a connectivity matrix or 
weights constructed from the average of all training feature vectors with predictions produced through outputs 
of a negative feedback system25. The training type was set to mean with the feature normalization set to unitary 
range29.

Support Vector Machine (SVM) is another commonly implemented classifier used to predict upper limb 
motor intent from muscle activity6,24,29–31,33,34,36. We implemented SVM in BioPatRec with MATLAB’s fitcecoc 
function. Here kernels are used to map data onto separable hyper-planes for classification6,29. The SVM had 
the kernel set to the radial basis function with a scale of 5.9, selected after empirical investigation, and a box 
constraint of 1. In BioPatRec, the SVM feature normalization range was set between -1 to 1, corresponding to 
the 0-midrange with 2-range setting29.

Decision Tree (DT) has been studied in the context of decoding hand movements from muscle activity6,29,34 
and we implemented this classifier into BioPatRec with MATLAB’s fitctree function. The decision tree uses 
predictors with greater than or less than criteria to transverse different branches of the tree and make a 
prediction. The maximum number of splits was set to 100 after empirical investigation and the split criterion 
was set to Gini’s diversity index.

Feature evaluation
To understand which features and classifier combinations provided the most effective classification performance 
in predicting attempted hand motions for children with UCBED, a detailed evaluation was performed. Data 
were collected, features were extracted, and evaluation was performed for each of the five classifiers for the 
following cases: individual features (49 in total) described in section “Individual features”, individual domains 
(time, frequency, and time–frequency), and combined domains, both described in section “Individual domains 
and combined domains”. During evaluation, the classification accuracy for each classifier was obtained by a 
random split 60–40 cross-validation, where 60% of the data for each movement was used for training and 40% 
for testing. This process was repeated 100 times, where each iteration randomized the 60–40 training and testing 
datasets, and the results were averaged25. After the feature evaluation was performed, recommendations for a 
generalized congenital feature set (CFS) were provided (section “Generalized congenital feature set”). Data flow 
for the feature evaluation can be seen in Fig. 2.

Individual features
As an essential first step to help us ascertain the potential of decoding important motor information characterized 
by individual features, we trained and tested five classifiers. The individual features were split into three sets, 
one for each domain: time domain, frequency domain, and time–frequency domain. The overall classification 
accuracy for each feature within the specified domain was determined through a 60–40 cross-validation, as 
previously described. In this procedure, the training and testing data were subject to 100 randomizations each 
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Time domain

ID Feature Citation

1 tmabs Mean absolute value 6,8,48,9,16,25,29–31,34,36

2 tstd Standard deviation 6,25,48

3 tvar Variance 6,8,9,25,42,49,50

4 twl Waveform length 6,8,48,50,51,9,16,25,29–31,34,36

5 trms Root mean square 8,9,25,30,31,36,51,52

6 tzc Zero-crossing 6,9,49,50,16,25,29–31,34,36,48

7 tpks Number of peaks over the root mean square 6,25

8 tmpks Mean peaks 6,25

9 tmvel Mean velocity 6,25

10 tslpch Slope changes 6,9,16,25,29,31,34,36,48,50

11 tpwr Power 25

12 tdam Difference absolute mean value 6,25

13 tmfl Maximum fractal length 6,8,25,51,53

14 tfd Fractal dimension 6,25

15 tfdh Fractal dimension Higuchi 6,8,25,53

16 tren Rough entropy 25

17 tcr Correlation coefficient 6,25

18 tcv Co-variance 25

19 tcard Cardinality 25

20 tHmob Hjorth mobility 6,42

21 tHcom Hjorth complexity 6,42

22 tskw Skewness (3rd moment) 6

23 tdasdv Difference absolute standard deviation value 6,9

24 tkurt Kurtosis (4th moment) 6

25 twam Willison amplitude: threshold = 0.01 6,9,49,50,54

26 tmcer Multi-channel energy ratio 6,55

27 tperc75 75th Percentile 6

28 tiabs Integrated absolute value 6,9,49,50

29 thist Histogram: min max voltage with 9 bins 6,9,49,50

30 tssi Simple square integral 9

31 tlogd Log detector 9,54

Frequency domain

1 fwl Wavelength 6

2 fmn Mean 6,36,50

3 fmd Median 6,36

4 fpmn Peak mean above the root mean square 6

5 fpmd Peak median above the root mean square 6

6 fpstd Peak standard deviation above the root mean square 6

7 fmxp Max peak 6

8 fr Frequency ratio: 20–250 Hz & 251–450 Hz 6

9 fe Frequency energy: 10 Hz bins 6,52

Time–frequency domain

1 tfstd Standard deviation – 4th level wavelet coefficients (DWT) 6,56

2 tfvar Variance – 4th level wavelet coefficients (DWT) 6,56

3 tfwl Waveform length – 4th level wavelet coefficients (DWT) 6

4 tfe Energy – 4th level wavelet coefficients (DWT) 48,50

5 tfmxabs1 Maximum absolute value – 4th level wavelet coefficients (DWT) 6,57

6 tfmxabs2 Maximum absolute value – tfmxabs1 & all detail levels (DWT) 57

7 tfzc Zero crossing – 4th level wavelet coefficients (DWT) 50

8 tfmn Mean – 4th level wavelet coefficients (DWT) 6

9 tfmabs Mean absolute value – 4th level wavelet coefficients (DWT) 6

Table 2. Extracted features from the time domain, frequency domain, and time–frequency domain. DWT 
Discrete 4th order Coiflet Wavelet Transform, with 4th level decomposition.
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time producing new movement classification accuracies. The classification accuracies from these randomizations 
were averaged together, and the correct individual movement accuracies were then averaged to produce the 
overall classification accuracy. A count of the top five highest performing individual features for each classifier 
and participant was then obtained (shown in Fig. 2 panel 3).

Individual domains and combined domains
We evaluated sets of features for the individual and combined domains for each classifier in order to 
understand which sets of features may produce the most optimal classification accuracy. The same 
methodology was used to evaluate individual and combined domains as shown in Fig.  2 panels 4 and 
5, respectively. The only difference between the two was that feature sets for individual domains were 
evaluated first to find their optimal sets. Upon evaluation, these optimal sets for the individual domains 
were combined and evaluated to produce the optimal combined-domain feature set. All feature evaluation 
was done on an individual participant basis.

Fig. 2. (1) Feature evaluation flow diagram. (2) Features were extracted for the time domain, frequency 
domain, and time–frequency domain. (3) Individual features were then evaluated across classifiers and the top 
five features were highlighted. (4) Feature sets within individual domains were evaluated via the two wrapper 
methods (4a) followed by the filter method (4b) to select the optimal feature set (4c). (5) The optimal feature 
sets produced from the individual domains were then combined and (4ab) were repeated to produce the 
optimal combined feature set (5a). (6) Recommendations for a generalized congenital feature set were then 
made.
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We identified top-performing feature sets within the individual and combined domains using two wrapper 
methods (i.e., feature selection algorithms), namely sequential forward search and sequential backward search, 
as depicted in Fig.  2 panel 4a7,37. The classification accuracies were produced as follows: the classification 
accuracy of every movement was computed for the 100 randomized datasets; then those 100 datasets were 
averaged together; and finally, the average across all the movements from that averaged dataset was determined. 
The sequential forward search method loops through all the features and selects the one that produces the 
average highest classification accuracy. It then loops through the remaining features, each time combining it 
with the previously chosen feature, ultimately selecting the two features that produce the highest accuracy. This 
process is then repeated until all the features have been selected, thereby ordering the features based on their 
contribution to the prediction accuracy. Inversely, the sequential backward search starts with all the features 
and removes one at a time. Then, the feature that produces the highest classification accuracy when removed is 
discarded from the total feature set. This process is repeated with the remaining features until only one is left. 
The feature evaluation process was computationally intensive, requiring approximately six days to complete each 
participant’s dataset. This was due to the 100 randomizations at each step of the sequential forward and backward 
search algorithms, repeated across all classifiers and feature domains. After these methods were completed, two 
datasets were produced: one for sequential forward search and one for sequential backward search. Then for any 
given classifier and domain, we extracted the feature set containing the top five features produced from each of 
the two search methods for further analysis.

It should be noted that the two feature sets produced from the forward and backward wrapper methods were 
not necessarily identical and required a filter method to determine the optimal feature set as depicted in Fig. 2 
panels 4b and 4c. Here, we employed the Mahalanobis distance, a typical feature space analysis method that 
provides a measure for the separability of attempted hand movements i.e., the separability index (SI)38–41. This 
process involved calculating the feature space Mahalanobis distance from one movement to all the remaining 
movements. The minimum distance among these was then tabulated. This procedure was repeated for each 
movement, and the average was taken as the SI. This was used as a measure of robustness for the feature sets. A 
larger SI indicates increased spatial distinction between motions while a smaller SI indicates a decreased spatial 
distinction38. In this way, the optimal set between the search methods was chosen as the one with a larger SI.

The modified SI was defined as the average minimum one-half Mahalanobis distance from the centroid μj 
of the jth class to the centroid μi of the remaining i classes, where Sj is the covariance matrix of jth class38. The 
inverse of the covariance matrix Sj was obtained with the Moore–Penrose pseudoinverse to ensure its existence. 
This was done because some features were linear combinations of others, and threshold methods such as the 
Willison amplitude (twam) were defined with a single value for all participants, which could have caused sparse 
feature vectors. Taken together, linear combinations and sparse feature vectors could create noninvertible 
matrices, which could be addressed by using the pseudoinverse and calculating the magnitude. The modified SI 
is therefore defined by Eq. (1).

 
SI = 1

11
∑11

j=1

(
min

i=1,...j−1,j+1,...11

1
2

√
(µj − µi)T S−1

j (µj − µi)
)

 (1)

Generalized congenital feature set
After the feature sets were produced for the individual domains, they were combined and reevaluated to produce 
an optimal feature set from the combined domains (Fig. 2 panel 5). The optimal feature sets across classifiers 
and participants were aggregated to make a recommendation based on a count of the unique number of times 
each feature occurred (Fig.  2 panel 6). The top five unique features that occurred most often were taken as 
the generalized congenital feature set (CFS): correlation coefficient (tcr), multi-channel energy ratio (tmcer), 
log detector (tlogd), Hjorth mobility parameter (tHmob), and integrated absolute value (tiabs). The calculation 
methods for these features are detailed by Abbaspour et al. and Phinyomark et al.6,9.

Analysis
Feature set comparisons
To determine which feature sets may be most suitable for children with UCBED, a comparison across domains 
and feature sets was performed on an individual participant basis to produce a unique feature set for each 
domain and classifier. The unique feature sets for each domain are referred to as the following: time domain 
feature set (TMS), frequency domain feature set (FQS), time–frequency domain feature set (TFS), and combined 
domain feature set (CDS). Additionally, generalized feature sets described previously in adult literature were 
also used for comparison. There are a number of proposed feature sets that have been suggested to provide high 
classification accuracy in able-bodied individuals and adults with acquired limb loss, including ‘the Efficient 
Feature Set’ (EFS)6 and ‘the Hudgins Set’ (HDS)17. The EFS consists of the following features: waveform length 
(twl), correlation coefficient (tcr), and the Hjorth parameters42 (i.e., activity/variance (tvar), mobility (tHmob), 
and complexity (tHcom)6). Additionally, HDS, contains the following features: mean absolute value (tmabs), 
waveform length (twl), slope sign changes (tslpch), zero crossing (tzc), and difference absolute mean value 
(tdam)17. Finally, our generalized CFS feature set, produced from an aggregate across participants in this work, 
was used for comparison.

We analyzed differences in prediction accuracy between the seven feature sets for each of the five classifiers 
using the non-parametric Friedman test43,44. Here, the improved Friedman statistic (FF) was then used as 
described by44. The null hypothesis, H0, was that all feature sets had the same rank (i.e., the average classifier 
accuracy across movements will be the same regardless of the feature set). We selected a significance level of 
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α = 0.05 and determined the critical value of F(6,60) = 2.25 to evaluate statistical differences. If the improved 
Friedman statistic was greater than the critical value (FF > 2.25) then the null hypothesis was rejected. When this 
occurred, we proceeded with pairwise comparisons of the seven feature sets for a given classifier utilizing the 
post-hoc Nemenyi test45. The critical distance value of 2.72 was determined for the two-tailed Nemenyi test at a 
significance level of α = 0.05, as described by Demšar et al.44. If the difference in ranked classification accuracy 
between any pair of feature sets exceeded the critical distance, it was deemed statistically significant.

Congenital feature set assessment
Our new congenital feature set was isolated in our analyses to further examine its efficacy as a generalized set for 
children with UCBED. This included comparisons of its accuracies across classifiers to understand which classifier 
may provide the highest performance (section “Classifier comparisons”). An investigation of training and testing 
times was also performed to understand the computational expense (section “Computational expense”), an 
important aspect for future applications of real-time control. Additionally, we employed movement reduction 
techniques to identify a subset of high-performing missing hand motions (section “Movement reduction”); 
this is a practical consideration for prosthetic control in which identifying a subset of highly accurate hand 
movements may be most useful in executing activities of daily living.

Classifier comparisons
Classifier comparisons were performed with the Friedman test as previously described in section “Feature set 
comparisons”. The null hypothesis, H0, was that all classifiers have the same rank, that is, the accuracy across 
movements was the same regardless of the classifier algorithm. We selected a significance level of α = 0.05 and 
calculated the critical value of F(4,40) = 2.60 to assess statistical differences. As before, if the improved Friedman 
statistic (FF) was greater than the critical value, then the null hypothesis was rejected, namely, that the rank-based 
classifier accuracies across movements was not the same for all classifiers. Subsequently, we performed pairwise 
classifier comparisons using the post-hoc two-tailed Nemenyi test at a significance level of α = 0.05. The critical 
distance value of 1.84, calculated following Demšar et al.44, was used to determine statistical significance. This 
significance was defined as the difference in the ranked classification accuracies between any pair of classifiers 
that exceeded the critical distance.

Computational expense
The training and testing times for the generalized CFS were then obtained for each classifier and participant to 
understand the computational expense. These computational demands were assessed on a Lenovo PC with the 
following specifications: a 64-bit Windows 11 operating system with 32 GB of RAM and an Intel core i7-8550U 
at 1.80 GHz (Intel Corp, USA). The first computational demand, training time, is defined to be the duration to 
train a classifier and tune hyperparameters. The second computational demand is testing time, which is defined 
as the transitory period for the offline classifier to predict the labels (missing hand movements). The testing time 
was used as a metric to assess the potential for real-time control since any value exceeding the 300 ms threshold 
results in diminished prosthetic control27.

Movement reduction
Movement reduction was performed for each classifier on the CFS feature set. The reduction procedure involved 
training a classifier with all attempted hand movements and discarding the movement that produced the lowest 
classification accuracy. The remaining movements were then used to retrain the classifier, and this process 
was repeated until only two movements were left. In this way, we identified how the classification accuracy 
increased with a decrease in attempted hand movements. This is significant because individuals using multi-
grasp prostheses will typically employ a limited subset of hand movements. Notably, research has shown that 
6–9 hand movements can account for nearly 80% of daily activities22,46. Therefore, we propose investigating a 
subset of five movements for children with UCBED and identifying those subsets that surpass the minimum 
threshold of 85% classification accuracy needed to promote device usability28. It is important to note that the 
rest state was not considered part of the movements to be discarded because it is an essential state for prosthetic 
control. Consequently, with every reduction, the rest state was always included, even when there were only two 
movements remaining, i.e., rest and one other movement were present at the end.

Results
Individual features
We identified and counted the top five performing individual features for a given participant and classifier. This 
process was performed for each feature domain and repeated for every participant and classification algorithm. 
The total possible occurrences for one feature across the five classifiers and nine participants was 45. Therefore, 
a higher count for an individual feature would indicate that it was more often among the top features for each 
participant (Fig. 3). Here, we highlight four of the top-performing features for the time domain: tmabs (34/45), 
tiabs (32/45), tlogd (29/45), and tcr (26/45). Similarly, the top-performing features for the frequency domain 
were: fwl (45/45), fpmn (45/45), fpstd (45/45), fpmd (43/45). Finally, in the time–frequency domain, the top-
performing features included: tfwl (45/45), tfstd (45/45), tfmabs (44/45), and tfvar (31/45). It is important to 
note that when examining classifiers, KNN demonstrated numerically higher classification accuracies for each 
participant’s top-performing individual features, while RFN exhibited the lowest accuracies. Figure 3 illustrates 
the cumulative count of domain-specific features for each classifier, obtained by counting the top five high-
performing features that occurred for each participant. Detailed tables showcasing the classification accuracies 
of all individual features for each participant are provided in the Supplementary Tables online.
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Generalized congenital feature set
In the assessment of optimal combined domains, as detailed in section “Individual domains and combined 
domains”, distinct sets of five features were generated for each participant and classifier. Aggregating these 
results as displayed in Fig. 4, we identified five features—tcr, tmcer, tlogd, tHmob, and tiabs—that occurred most 
frequently, forming the recommended generalized congenital feature set (CFS). Moreover, the CFS accounted 
for 60% of the total occurrences across participants, classifiers, and features. These results highlight the prevalent 
features present among the majority of participants, suggesting potential generalizability.

Feature set comparisons
To identify the feature sets that have higher classification accuracy for children with UCBED, we performed 
feature set comparisons with the Friedman test, followed by the post-hoc Nemenyi test. For one participant and 
one classifier, we performed pairwise comparisons of the seven feature sets, this was then repeated for each of 
the classifiers, and then for every participant. Statistical significance between any pair of the seven feature sets 
is discernible when the displacement between the pair exceeds the critical distance of 2.72. As demonstrated 
in participant SHR-I (Fig. 5), we found higher classification accuracies and few to no statistical differences in 
the pairwise comparisons of TMS, CDS, CFS, and EFS feature sets for each classifier. Overall, TFS, FQS, and 
HDS feature sets had lower classification accuracies and exhibited the majority of statistical differences when 
compared to the remaining feature sets, with few exceptions. The detailed results for each participant can be 
found in the Supplementary Figures online.

In general, the feature sets decreased in numerical accuracy in the following order: CDS, TMS, CFS, EFS, 
HDS, FQS, and TFS, as illustrated in Fig. 5 and the Supplementary Figures online. Upon further investigation, 
we found that the KNN, SVM, and LDA classifiers had numerically higher accuracies, while RFN had the lowest, 
followed by DT (see Fig. 5 and the Supplementary Figures online). Here, we highlight classification accuracies for 
the optimal combined domain feature set (CDS) which ranged from 63.87% – 95.37%, 62.61% – 92.86%, 57.33% 
– 92.87%, 50.79% – 83.19%, and 38.46% – 79.62% for KNN, SVM, LDA, DT, and RFN, respectively. Participant 
SHR-F had the highest CDS feature set classification accuracy for all the classifiers. Participant SHR-B had the 
lowest values for LDA and RFN, while SHR-D had the lowest values for KNN, SVM, and DT. In this context, it’s 
important to highlight that the chance accuracy for decoding the 11 movements is approximately 9%, and it’s 

Fig. 3. Cumulative count of domain-specific high-performing individual features. The top five high-
performing features were identified and counted for a given participant and classifiers. This process was then 
repeated for every participant, with the results highlighted for the various classification algorithms. The top 
panel displays the count for the time domain, while the bottom left panel shows the frequency domain, and the 
bottom right panel shows the time–frequency domain. A count of 45 means that the given feature was in the 
top five for all nine participants and five classifiers.
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noteworthy that all accuracies recorded were above this threshold. Collectively, these results indicate that feature 
sets, in combination with key classifiers, can be tuned and generalized for children with UCBED to provide 
higher classification accuracy.

Congenital feature set assessment
We further investigated the performance of the children-specific CFS feature set which included the comparison 
of accuracies across classifiers (section “Classifier comparisons”), the evaluation of computational expense 
(section “Computational expense”), and how classification accuracy improves as we remove the lowest-
performing hand movements (section “Movement reduction”).

Classifier comparisons
All pairwise comparisons between SVM, LDA, and KNN classifiers showed no statistical differences in the 
average ranked classification accuracies and demonstrated consistently high classification (with the exception 
of participant SHR-B). In contrast, DT and RFN classifiers exhibited both lower classification accuracy and 
all other observed statistical differences when compared to KNN, SVM, and LDA. The range of classification 
accuracies for the CFS feature set were as follows: KNN (62.17% – 94.17%), SVM (62.01% – 93.11%), LDA 
(56.22% – 92.80%), DT (50.65% – 82.43%), and RFN (37.07% – 79.74%). Participant SHR-F exhibited the highest 
classification accuracy for each classifier, while SHR-B and SHR-D had the lowest. Friedman test statistics and 
a visual depiction of the post-hoc Nemenyi test are provided in Fig. 6 for all participants. In these graphical 
depictions, pairwise comparisons between classifiers within the CFS are observed, and statistical differences 
were determined by those that exceeded the critical distance of 1.84. A lower rank denotes superior classifier 
accuracy while a higher rank denotes diminished accuracy. The results from pairwise classifier comparisons 
within the CFS suggest that KNN, SVM, and LDA classifiers provide a significant improvement over DT and 
RFN in their current states.

Computational expense
To understand the associated computational expense for the CFS feature set, we obtained the average training 
and testing times for each participant and classifier algorithm. On average, we see the RFN classifier had the 
largest training times ranging from 421 ms – 758 ms, followed by SVM with 560 ms – 637 ms. LDA, KNN, and 
DT had relatively similar training times, all falling within the LDA range of 243 ms – 362 ms. Additionally, all 
testing times fell under the 300 ms threshold for usable real-time control27, and the range of time values are 
provided are follows: SVM (18.61 – 19.45 ms), KNN (3.59 – 3.93 ms), DT (2.03 ms – 2.38 ms), RFN (0.32 ms – 
0.44 ms), and LDA (0.12 ms – 0.15 ms). Training and testing times for the CFS of each participant and classifier 

Fig. 4. Feature count for recommending the generalized congenital feature set (CFS): correlation coefficient 
(tcr), multi-channel energy ratio (tmcer), log detector (tlogd), Hjorth mobility parameter (tHmob), and 
integrated absolute value (tiabs). The maximum occurrence for an individual feature within the combined 
domain feature sets was 45, indicating that a single feature could be present in the feature set for all five 
classifiers and nine participants. The CFS features accounted for 134 occurrences out of the possible 225, 
representing a total of 60%. In this context, the total possible occurrences result from the presence of the five 
features within the combined domain set for each of the five classifiers and all nine participants, totaling 225 
occurrences.

 

Scientific Reports |        (2024) 14:31741 10| https://doi.org/10.1038/s41598-024-82519-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 5. Investigation of feature set classification accuracy for participant SHR-I. The left panel shows the 
pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, with a critical 
value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks significantly differed from 
the mean rank. Classifier F Statistics (KNN: FF = 45.36, SVM: FF = 51.99, LDA: FF = 56.89, DT: FF = 21.63, 
RFN: FF = 4.3) confirmed significant differences within each classifier’s feature sets. A post-hoc Nemenyi 
test with a critical distance of 2.72 at α = 0.05 identified superior feature sets as indicated by pairs outside the 
critical distance marked by the interval bars. Each classifier is color-coded for easy comparison, with lower 
average ranks indicating better classification accuracy. Feature sets significantly different from the highlighted 
congenital feature set (CFS) were marked with an outer black ring. The right panel displays classification 
accuracies, which range from approximately 39% to 79%, alongside the corresponding feature sets, aligning 
them with the ranked accuracy shown in the left panel.
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are shown in Table 3. The low training and testing time results suggest effective employment of the CFS across 
classifiers for future real-time control.

Movement reduction
We eliminated attempted hand movements one at a time, based on the lowest classification accuracy; to examine 
the relationship between the number of movements and classification accuracy. Although we reduced the 

Participants

Training time (ms) Testing time (ms)

LDA KNN RFN SVM DT LDA KNN RFN SVM DT

SHR-A 276 258 421 589 249 0.12 3.65 0.32 18.61 2.38

SHR-B 290 329 752 574 279 0.12 3.84 0.44 18.94 2.28

SHR-C 243 300 644 592 306 0.12 3.59 0.37 19.45 2.08

SHR-D 362 333 758 605 352 0.12 3.89 0.42 19.18 2.35

SHR-E 349 317 640 564 280 0.12 3.73 0.41 18.80 2.14

SHR-F 345 310 587 560 351 0.13 3.92 0.37 18.66 2.21

SHR-G 323 296 560 591 305 0.13 3.65 0.36 18.76 2.19

SHR-H 349 315 657 599 318 0.15 3.91 0.44 18.85 2.03

SHR-I 344 321 661 637 335 0.12 3.93 0.43 19.25 2.31

Table 3. Computational expense of the congenital feature set (CFS) across classifiers.

 

Fig. 6. Congenital feature set classifier comparisons. The Friedman test, with a critical value of F(4,40) = 2.60 
at α = 0.05, indicated all participants rejected the null hypothesis (FF > 2.60) in favor of the alternative, 
suggesting a difference across average rank-based classifier accuracies. Here, a lower average rank indicates 
superior classifier accuracy. Pairwise comparisons were performed using the post-hoc Nemenyi test, with 
a critical distance of 1.84 at α = 0.05. Statistical significance for a specific classifier is denoted by classifiers 
positioned outside the critical distance, as indicated by the interval bars.
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number of movements to two (rest and one other motion), our point of interest was a reduced state of five 
(rest state and four other motions). This was done primarily because prosthesis wearers generally use a smaller 
selection of hand movements to assist in activities of daily living. The other point of interest was a minimum 85% 
classification accuracy threshold, which is needed to mitigate wearer frustration and promote device usability28.

The majority of participants across classifiers had accuracies greater than the 85% threshold for the reduced 
set of five movements. For the LDA classifier, participants had accuracies ranging from 91.38% – 99.45% except 
for SHR-B, who had a classification accuracy of 84.49% (less than the 85% threshold). All participants had 
KNN classification accuracies greater than the threshold, ranging from 87.64% – 99.74%. With the exceptions of 
SHR-B (71.86%), SHR-D (81.08%), and SHR-I (81.72%), all other participants had RFN classification accuracies 
greater than 85%, ranging from 93.00% – 98.09%. For the SVM classifier, all accuracies were above the threshold 
and ranged from 87.73% – 98.38%. Finally, for the DT classifier, SHR-B and SHR-D had classification accuracies 
of 77.23% and 83.31%, respectively, while all other participants ranged from 92.95% – 98.45%. Movement 
reduction plots for all participants are provided in Fig. 7.

To identify common movements within the reduced set of five across participants, we first counted the 
frequency of each movement’s occurrence across the five classifiers for a single participant. Consequently, a 
single movement could appear in each of the five classifiers. This process was repeated for all nine participants, 
potentially resulting in a total occurrence of one movement 45 times and for five movements 225 times. The 
rest state, which was kept fixed and not removed to establish a foundation for predicting motor intent, retained 
a total occurrence of 45. Figure 8 depicts a count of the reduced set of five movements for each participant 
and aggregated across all participants. Here, we observed that wrist extension (WE) and wrist flexion (WF) 
accounted for 34 out of 45 (76%) and 24 out of 45 (53%) of the top single-movement occurrences, respectively. 
Aggregating rest, WE, WF, CW, and IF accounted for 148 out of 225 total occurrences (66%). These results 
highlight that some movements may be easier for all participants to envision and attempt.

Discussion
Unique features can be identified for children with UCBED
When we analyzed the individual features and feature sets, unique features were identified for children with 
UCBED. The top-performing individual features identified across classifiers and participants for the time 
domain were: tmabs, tiabs, tlogd, and tcr (Fig. 3). It is interesting to note that three of these top-performing 
individual features (tcr, tlogd, and tiabs) were also observed frequently within the tuned feature sets for the time 
and combined domains across every classifier (see Fig. 4, Fig. 5, and the Supplementary Figures online). These 
three features showed up in the generalized congenital feature set (CFS) which consisted of tcr, tmcer, tlogd, 
tHmob, and tiabs.

Children with UCBED benefit from certain feature sets
Numerous feature sets and classification algorithms have been tuned for adult able-bodied individuals, with the 
common assumption that they will seamlessly translate to those with acquired amputation14. Nevertheless, these 
assumptions are not rigorously tested in affected populations. Unlike individuals with traumatic amputation, 
the unique population studied here presents more uncertainty as they were born with limb absence and, 
consequently, have never actuated an intact hand. Interestingly, the efficient feature set (EFS) developed on 
able-bodied individuals6 performed well for those with congenital limb deficiency. Although not statistically 
significant relative to the EFS, the newly developed generalized congenital feature set (CFS) provided numerically 
higher classification accuracies and was comparable to each participant’s tuned time-domain and combined-
domain feature sets.

When we analyzed the feature sets for each classifier and participant, very few statistical differences were 
obtained for the following feature sets: TMS, CDS, EFS, and CFS (see Fig. 5 and the Supplementary Figures 
online). The majority of pairwise statistical differences that were observed occurred between the previously 
mentioned feature sets and the TFS, FQS, and HDS sets (which had lower classification accuracies). This 
suggests that pure frequency, time–frequency, or even the commonly implemented generalized Hudgins set do 
not provide sufficient information for optimal classification in children with UCBED. Moreover, although the 
CDS feature set was produced from the optimal set of each domain on an individual participant basis, we found 
that the majority of features within the CDS sets ended up being from the time domain. Evidently so, these 
results are in line with previous research that attributes the best performing features to the time domain23, which 
is also the case here for children with UCBED. It is worth noting that the normalization process applied to the 
features varied across classification algorithms, which may have influenced the observed results. This variability 
in normalization could have affected the classification accuracies and thereby the statistical differences. The 
choice of feature normalization is inherently dependent on the classification algorithm used25. The different 
normalization methods were selected for each classifier based on their demonstrated effectiveness in enhancing 
classification accuracy25,29. Given that our study aimed to maximize accuracy, the appropriate selection of feature 
normalization on a classifier basis was warranted.

Interestingly, participant SHR-F had the highest classification accuracy for the CDS feature set of each 
classifier (LDA: 92.87%, KNN: 95.37%, RFN: 79.62%, SVM: 92.86%, and DT: 83.19%). It is important to note 
that this participant exhibited seemingly unlikely factors that would merit good classification accuracy: (1) they 
only reported the use of a passive device as opposed to a myoelectric prosthesis; (2) they were not the oldest, but 
rather in the upper middle age range at 16 years old; (3) neither did they have the largest limb length (11.5 cm) 
or circumference (23.5 cm). Despite these demographics, the only difference between this participant and the 
others was their sex (female). In contrast, the two lowest accuracies for the CDS feature set of each classifier 
were attributed to SHR-B (8 years old) and SHR-D (9 years old), the two youngest participants of the cohort. 
Moreover, the oldest participant SHR-A (20 years old) had the smallest residual limb circumference (15 cm) and 
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had the third lowest scores for LDA, KNN, and DT. It follows that a combined effect of limb size with sex- and 
age-related cognitive demands may impact the ability to decode motor intent, suggesting that further research 
in these areas is warranted.

The congenital feature set is an effective generalized set
The CFS feature set demonstrated generalizability and efficacy in decoding motor intent for our cohort 
of children with UCBED. Notably, the features that comprise the CFS belong to the time domain, with the 
subtle exception of the Hjorth mobility feature (tHmob). This feature is derived as the square root of the ratio 
between the variance of the time domain signal’s first derivative relative to the variance of the original signal42. 
Additionally, the mobility feature can be interpreted in the frequency domain as the standard deviation of the 
power spectrum42. Thus, while all the CFS features were categorized in the time domain, the mobility feature 
offers a direct interpretation in the frequency domain.

Fig. 7. Impact of movement reduction. Movements were reduced from all 11 to a set of 2, as annotated on 
the line plots. Note that the rest state was not removed during this reduction process. The movement with 
the lowest classification accuracy was omitted, and the remaining movements were used to retain the given 
classifier. This process was repeated until only two movements remained: rest and one other. The dashed line 
indicates the suggested usability threshold for device control, set at 85% accuracy28.
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To further assess the practical implications of the CFS feature set, a comparative analysis was conducted 
to evaluate its classification accuracy against other feature sets. This analysis revealed no statistical differences 
in classification accuracy when compared to the individually tuned feature sets TMS and CDS, as well as the 
generalized EFS feature set (with the exception of SHR-B). It is important to note that, in general, the CFS 
exhibited numerically higher accuracy than the generalized EFS. Furthermore, while tuning feature sets (TMS 
and CDS) on an individual participant basis has the potential to improve classification accuracy, the observed 
numerical gains are negligible when contrasted with the generalized CFS. Therefore, we recommend the 
adoption of the CFS feature set for participants with UCBED.

When revisiting participant SHR-F, we found they also exhibited the highest classification accuracy for 
each classifier relative to all other participants, while SHR-B and SHR-D displayed the lowest. Moreover, we 
found that when attempted hand movements were reduced to a set of five (including rest state) the majority of 
participants across classifiers had average accuracies greater than the 85% threshold (Fig. 7). The participants 
that did not meet this threshold in totality were nonetheless able to meet it for at least two classifiers (SVM and 
KNN). For example, participants SHR-B and SHR-D did not meet this threshold for the following values: SHR-B 
(LDA 84.49%, RFN 71.86%, and DT 77.23%) and SHR-D (RFN 81.08%, DT 83.31%). These results further 
highlight the need to study the effects of age and sex in decoding motor intent, given that SHR-B and SHR-D 
were the youngest two participants. Collectively, these findings reveal the efficacy of the generalized CFS feature 
set considering that all participants were able to perform 5 hand movements above the 85% threshold.

What’s more, we found that within the top five reduced hand movements that were aggregated across 
participants, the following gross motor movements emerged (Fig. 8): wrist extension (WE), wrist flexion (WF), 
and cylindrical wrap (CW). This is likely attributed to the fact that participants were born with limb deficiency 
and conceivably did not fully develop fine motor skills, hence why intricate hand movements may have proved 
challenging. It is astounding that the only digit movement, index flexion (IF), emerged following the bulk-
movement sequence (WE, WF, and CW). This discovery comes into view in light of the fact that index flexion 
is unlike any other movement that participants were prompted to attempt, despite being a fine motor skill. 
Perceivably, this muscle activity is uniquely distinguishable from the other movements which can be seen by 
its presence in the top five reduced hand movements. Finally, since the tripod pinch (TP) did not occur in 
any of the five reduced movements observed across participants, we inferred that it shares similarities with the 
pulp pinch, a comparison frequently made by participants during testing. Comprehensively, we can glean that 
notwithstanding the dominance of gross movements, participants had the capacity to actuate unique motions, 
which can thereby be improved with regular prosthesis use and proper training.

We found no statistical differences in the average ranked classification accuracies for the CFS feature set 
when we made pairwise comparisons between SVM, LDA, and KNN classifiers, with the exception of SHR-B 
(Fig. 6). However, the majority of statistical differences were observed from the previously mentioned classifiers 
to DT and RFN. Although the DT exhibited lower classification accuracies, in previous work, it has indicated 
similar performance to the other classifiers6,29. This may suggest that the DT classifier requires additional 
tuning. In general, RFN also produced the lowest classification accuracy across participants, which aligns with 
other comparisons made to this classifier25,29. Additionally, when examining the computational expense of the 
CFS, we found minimal time delays within classifiers across participants (Table 3). Furthermore, all classifier 

Fig. 8. Count of the top five reduced hand movements. In a given column, the individual participant’s 
numerical bar value indicates the cumulative occurrence of the movement across all five classifiers. Notably, 
rest was not removed during reduction and thus occurs in every participant and classifier. The superimposed 
red scatter plot illustrates the overall occurrence of a specific movement across all nine participants and five 
classifiers; therefore, the maximum possible occurrence was 45 (as seen on rest).
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training times were within a reasonable range of less than 758 ms. Similarly, the testing time was also within 
a range suitable for future implementation of real-time control, with all values less than 19.45 ms. From these 
performance results, we deduce that SVM, LDA, and KNN are ideal classifiers for future investigations as 
currently implemented in MATLAB since they produced high accuracies and relatively low training and testing 
times.

Conclusion
To date, we have not found any other studies involving children with UCBED that investigate sEMG classification 
algorithms and tuned feature sets. Our work suggests three crucial points: (1) unique features arise for these 
children, (2) certain feature sets are beneficial for optimal classification, and (3) the newly developed generalized 
congenital feature set (CFS) effectively decodes motor intent. In tandem with these three points, we propose that 
cognitive demands related to age, sex, and limb size may critically influence motor intent. Further investigation 
of these factors with larger cohorts is needed to make definitive conclusions. In general, we found that the range 
of accuracies obtained for the CFS across all movements and classifiers was 73.8% ± 13.8%. However, the use 
of overlapping windows for feature extraction may have resulted in shared information between training and 
testing sets, leading to potential information leakage that could have influenced classification accuracy47. These 
results were further impacted by the difficulty children experienced in attempting repeated hand movements 
to the same degree. Therefore, we suggest that with physical conditioning and training, children may be able to 
effectively control multiple movements of dexterous upper limb prostheses. Moreover, when the 11 movements 
were reduced to a subset of 5, we found that all participants were able to reach the ideal threshold (85%) with 
accuracies of 96.5% ± 6.6%. This is an encouraging discovery since multi-grasp prosthesis wearers generally use 
only a small subset of movements and reaching the ideal threshold would thereby mitigate wearer frustration 
and ensure device usability28. We have found that the limited number of studies that investigate UCBED cohorts 
do not adapt tuned classifiers and feature sets for this unique population. Generally, these studies only apply 
commercially available sEMG control systems or the Hudgins feature set, both of which are tailored to adults 
with acquired amputations3,16. Our work has shown that the Hudgins set often performs statistically worse when 
compared to the generalized CFS feature set or the individually tuned time-domain and combined-domain 
feature sets for each participant. Since the CFS shows promising results as a generalized feature set, further 
endeavors should be undertaken to determine its robustness on both a feature space level and in larger cohorts. 
In conclusion, the results indicate that children with UCBED have the ability to actuate their muscles in ways 
that classifier algorithms can decode and use for control of dexterous upper limb prostheses. Ultimately, there 
is a need to bridge the gap between our offline work performed on pre-recorded datasets and that of real-time 
control. Bridging this gap would enable us to develop effective devices for the unique clinical population.

Data availability
The data that support the findings of this study are available from Shriners Children’s – Northern California but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from the corresponding author upon reasonable request and 
with permission of Shriners Children’s.
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