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Towards cascading genetic risk 
in Alzheimer’s disease

Andre Altmann,1 Leon M. Aksman,2 Neil P. Oxtoby,3 Alexandra L. Young,3

ADNI, Daniel C. Alexander,3 Frederik Barkhof,1,4,5 Maryam Shoai,4,6 John Hardy4,6

and Jonathan M. Schott6,7

See M-Carlgren (https://doi.org/10.1093/brain/awae237) for a scientific commentary on this article.

Alzheimer’s disease typically progresses in stages, which have been defined by the presence of disease-specific bio
markers: amyloid (A), tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the 
ATN framework, in which each of the biomarkers can be either positive (+) or negative (−). Over the past decades, 
genome-wide association studies have implicated ∼90 different loci involved with the development of late-onset 
Alzheimer’s disease. Here, we investigate whether genetic risk for Alzheimer’s disease contributes equally to the pro
gression in different disease stages or whether it exhibits a stage-dependent effect.
Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the 
Alzheimer’s Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A−T− status, 
we used Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond 
APOE) to convert to A+T− status (65 conversions). Furthermore, we repeated the analysis in 290 participants with 
A+T− status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses 
were adjusted for age, sex and years of education.
For progression from A−T− to A+T−, APOE-e4 burden showed a significant effect [hazard ratio (HR) = 2.88; 95% con
fidence interval (CI): 1.70–4.89; P < 0.001], whereas polygenic risk did not (HR = 1.09; 95% CI: 0.84–1.42; P = 0.53). 
Conversely, for the transition from A+T− to A+T+, the contribution of APOE-e4 burden was reduced (HR = 1.62; 95% 
CI: 1.05–2.51; P = 0.031), whereas the polygenic risk showed an increased contribution (HR = 1.73; 95% CI: 1.27–2.36; 
P < 0.001). The marginal APOE effect was driven by e4 homozygotes (HR = 2.58; 95% CI: 1.05–6.35; P = 0.039) as opposed 
to e4 heterozygotes (HR = 1.74; 95% CI: 0.87–3.49; P = 0.12).
The genetic risk for late-onset Alzheimer’s disease unfolds in a disease stage-dependent fashion. A better under
standing of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of 
the transition between ATN stages and a better understanding of the molecular processes leading to Alzheimer’s 
disease, in addition to opening therapeutic windows for targeted interventions.
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Introduction
Alzheimer’s disease is characterized, at the neuropathological 
level, by the build-up of two proteins: amyloid plaques and 
neurofibrillary tangles of phosphorylated tau.1 Both these patho
logical features can be observed long before the memory loss and 
decline in executive function that is characteristic of patients 
with Alzheimer’s disease. Accumulation of amyloid plaques 
in the brain predates the clinical symptoms of Alzheimer’s 
disease by two decades,2 whereas the spatial distribution of tau 
tangles reflects more closely the reported cognitive deficits and 
neurodegeneration.3

The amyloid cascade hypothesis postulates that the deposition 
of the amyloid-β protein (the main component of the amyloid 
plaques) is the cause of Alzheimer’s disease and that neurofibrillary 
tangles, cell loss, vascular damage and dementia are a direct conse
quence.4 In keeping with the amyloid cascade hypothesis, a theo
retical framework for the progression of biomarkers during the 
course of Alzheimer’s disease has been developed.5 Here, amyloid 
pathology is the first to appear, followed by tau pathology, neuro
degeneration and, finally, cognitive decline. Support for this the
oretical framework comes from a number of lines of evidence, 
including a variety of data-driven modelling approaches based on 
biomarker data.6-10 In an attempt to operationalize this, a simplified 
ATN model has been proposed.11 The components of the ATN 
model refer to the status of three different key biomarkers in 
Alzheimer’s disease: amyloid (A), tau (T) and neurodegeneration 
(N). In this approach, each of the three biomarkers can be either 
positive or negative. Exceeding the centiloid threshold in amyloid 
PET imaging would place a participant into the A-positive (A+) 
group, whereas a scan slightly below the threshold would be con
sidered amyloid negative (A−). One practical advantage (but also a 
major source of criticism) of this model is that the biomarker status 
can be assessed using a variety of methods: wet biomarkers (CSF or 
plasma) or brain imaging (centiloids or visual reads).12 Although the 
progression from A−T−N− to A+T−N− to A+T+N− to A+T+N+ would 
be the most typical progression in Alzheimer’s disease and in 
keeping with the theoretical framework of biomarker progression, 
all combinations of biomarker statuses emerge in observational 
cohorts.13,14

Genome-wide association studies (GWASs) have broadened the 
understanding of the genetic basis of late-onset Alzheimer’s dis
ease over the last decades.15 Initially, these studies were restricted 
to cases with a clinical diagnosis of Alzheimer’s disease and 
healthy controls.16-18 Recently, these GWASs have been enriched 
with participants with a family history of Alzheimer’s disease 
(diagnosis-by-proxy),19-21 leading to a drastic increase in sample 
size and expanding the set of genetic risk loci for Alzheimer’s dis
ease to 90.15 These loci have been linked to various molecular pro
cesses, such as immunity, cholesterol processing and endocytosis.22

Further studies investigated the genetic effects on Alzheimer’s 
disease-related biomarkers, ranging from tau and amyloid levels 
in CSF23,24 or in the brain25,26 to MRI-based measures, such as hip
pocampal volume27 and phenotypes derived from disease progres
sion modelling.28 The strongest common genetic risk factor for 
Alzheimer’s disease is the e4 allele of the APOE gene: carriers of 
the e4 allele have a 2- to 4-fold increased risk of developing 
Alzheimer’s disease, and e4 homozygous subjects have an 8- to 
12-fold increased risk.29 The genetic risk outside the APOE region 
is often summarized using polygenic scores, which have been 
shown to improve predictions of clinical diagnosis30 and pathology- 
confirmed cases.31 Likewise, the effect of APOE and the polygenic 
risk on various imaging and non-imaging biomarkers have been in
vestigated,32-35 with ongoing work suggesting that risk accumulated 
along different molecular pathways exerts differential effects on dif
ferent biomarkers in Alzheimer’s disease.35-37

For Alzheimer’s disease and for other disorders, genetic risk is 
often considered as a time-invariant constant. That is, genetic 
risk identified through case–control studies is assumed to affect 
both onset and progression. However, given that Alzheimer’s dis
ease is now understood to unfold in stages, we hypothesized, in 
line with the amyloid cascade hypothesis and the A/T/N frame
work, that genetic risk in Alzheimer’s disease is disease-stage de
pendent; i.e. some genetic risk factors will aid the transition from 
A− to A+, whereas other, distinct genetic risk factors will increase 
the risk to transition from T− to T+.

In this work, we explore whether genetic vulnerability to 
Alzheimer’s disease varies with disease stage. Using longitudinal 
data from the Alzheimer’s Disease Neuroimaging Imitative (ADNI) 
and survival analysis, we show that APOE contributes to progres
sion from A−T− to A+T−, but only marginally from A+T− to A+T+. 
Conversely, polygenic risk contributes to the progression from 
A+T− to A+T+, but not from A−T− to A+T−.

Materials and methods
Data

Data used in the preparation of this article were obtained from 
the ADNI database (http://adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public–private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal of the 
ADNI has been to test whether serial MRI, PET, other biological 
markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cognitive 
impairment and early Alzheimer’s disease. For up-to-date informa
tion, see https://adni.loni.usc.edu/about/. ADNI study data 
were accessed through the R package ADNIMERGE (accessed: 20 
July 2023).
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Preparation of genetic data

The genetic data preparation followed the procedure described by 
Altmann et al.32 The additional genetic data contributed by the 
ADNI-3 cohort was integrated with the existing data using the 
same processing pipeline. Briefly, single nucleotide polymorphism 
(SNP) genotyping data were available for n = 2001 subjects across 
ADNI phases 1, 2, GO and 3. Genotyping was conducted using 
four different platforms: Human610-Quad, HumanOmniExpress, 
Omni 2.5 M and Illumina Infinium Global Screening Array v.2 
(Illumina).38 Prior to imputation, we applied subject-level quality 
control (QC) steps based on call rate (10% cut-off) and concordance 
between chip-inferred sex and self-reported sex separately for the 
four genotyping arrays; all subjects were retained. At the SNP level, 
we conducted standard QC steps ensuring compatibility with the 
reference panel used for imputation [strand consistency, allele 
names, position, reference/alternative allele assignments and min
or allele frequency discrepancy (0.2 cut-off)]. Imputation was car
ried out using the Sanger Imputation Server (https://imputation. 
sanger.ac.uk/), with SHAPEIT for phasing,39 positional Burrows– 
Wheeler transform40 for imputation and the entire Haplotype 
Reference Consortium (release 1.1) reference panel.41 Data from 
the four different genotyping platforms were imputed separately. 
As part of post-imputation QC, multi-allelic variants and SNPs 
with imputation INFO score of <0.3 were removed, and genotype 
calls with a posterior probability of <0.9 were set to missing (i.e. 
hard called). Following the initial QC, genotypes from the four plat
forms were merged. Additional information on the imputation and 
QC process is detailed by Scelsi et al.28,42 Using the merged data, we 
retained SNPs with minor allele frequency ≥ 1% and genotyping 
rate of >0.9.

SNPweights43 was used to infer genetic ancestry from genotyped 
SNPs. The reference panel comprised Central European, Yoruba 
Africans and East Asian samples from HapMap 344 and native 
Americans from Reich et al.45 For this study, only participants 
with predicted central European ancestry of ≥80% were retained 
(n = 1851). Next, using the imputed and merged data genetic related
ness between central European participants was computed. Initially, 
the SNP content was restricted to SNPs with minor allele frequency  
≥ 5%, and linkage disequilibrium (LD) pruning was carried out in 
PLINK v.1.9 (–indep-pairwise 1000 50 0.1). The genetic relatedness 
matrix was computed using the remaining autosomal SNPs, and 
the dataset was trimmed to remove subects with relatedness of 
>0.1 (–rel-cutoff 0.1), leading to n = 1833 unrelated participants.

Definition of genetic risk

In this study, we focused on two sources of genetic risk: (i) the risk 
conferred through the APOE gene based on the genetic markers for 
APOE-e2 and APOE-e4; and (ii) the polygenic risk conferred by the 
remaining genome. As described previously,32 polygenic risk scores 
(PRSs) were computed using the software PRSice v.2.1.9.46 As base 
GWAS, the stage 1 results of the Alzheimer’s disease GWAS featur
ing a clinically defined Alzheimer’s disease phenotype was used.18

For PRS computation, SNPs with minor allele frequency ≥ 5% were 
considered, and SNPs were selected using LD clumping (1000 kb, 
R2 of 0.1 and P-value threshold of 1.0) within the ADNI cohort, 
missing SNPs were simply ignored at the subject level (using the 
setting –missing SET_ZERO), and the APOE region was excluded 
(hg19 coordinates chr19 from 44 400 000 to 46 500 000). For this 
study, we used only the P-value cut-off of 1.0 × 10−8 to build the 
PRS (Supplementary Table 1). PRSs were computed for all ADNI 

participants with genome-wide genotyping data. Of the remaining 
subjects, n = 417 ADNI-1 participants who contributed to the 
Alzheimer’s disease GWAS18 were excluded from the analysis to 
ensure independence between training and application dataset 
for PRS. Thus, n = 1416 unrelated participants with central 
European ancestry were eligible for inclusion in the study.

Definition of amyloid status

For this project we relied on two modalities to define amyloid sta
tus: amyloid-β PET using the 18F-florbetapir and 18F-florbetaben 
PET tracers, and CSF measures of amyloid-β(1–42) using the Roche 
Elecsys® immunoassay. We used data processed by ADNI for 
both modalities. Detailed information on the PET processing 
is available elsewhere (https://adni.loni.usc.edu/methods/pet– 
analysis)47; and information on CSF amyloid-β(1–42) processing 
is detailed by Bittner et al.48 and Hansson et al.49 For CSF 
amyloid-β(1–42) we used the cut-off of 880 pg/ml,49 and for 
amyloid-β PET we used the tracer-specific standardized uptake va
lue ratio (SUVR) (whole cerebellum reference) cut-offs of 1.11 and 
1.08 for 18F-florbetapir and the 18F-florbetaben,50 respectively.

A participant’s visit was labelled as A+ if either the PET result or 
the CSF result indicated a positive amyloid finding (i.e. in cases 
where the results were discordant, the visit would be labelled 
as A+). Visits with only negative amyloid findings were labelled 
as A−, and visits without any information on amyloid (i.e. neither 
a PET nor a CSF result) were labelled as ‘amyloid missing’.

Definition of tau status

In keeping with our definition of amyloid positivity, we used avail
able data from CSF and PET imaging to define the tau status. More 
precisely, we used the Phospho-Tau(181P) CSF Roche Elecsys® im
munoassay and PET imaging using the 18F-flortaucipir tracer. 
Details on the processing are available elsewhere (https://adni. 
loni.usc.edu/methods/pet–analysis).48,49,51 For CSF we used phos
phorylated 181P tau (pTau) with a cut-off of 34.61 pg/ml, and for 
tau PET we used the cut-off of 1.42 in the meta temporal region of 
interest comprising the amygdala, entorhinal cortex, fusiform 
gyrus, inferior and middle temporal gyri52 when normalized to 
the inferior cerebellar grey matter.53 Both cut-offs were data driven: 
(i) the tau PET cut-off corresponds to a z-score of 2.0 in the cogni
tively normal participants in ADNI (n = 506) and is close to the 
‘high tau’ cut-off of 1.43 defined by Jack Jr et al.54; and (ii) the pTau 
cut-off was set to maximize the Youden’s index between CSF 
pTau and tau PET (at the 1.42 cut-off) in (n = 502) ADNI participants 
with concurrent CSF and PET measurements. The same labelling 
scheme as for amyloid was applied: a visit was labelled as T+ if ei
ther the CSF or the PET indicated a positive finding, T− if there were 
only negative tau findings, and ‘tau missing’ if neither data on CSF 
pTau nor on tau PET were available.

Statistical modelling

We used Cox proportional hazards models to investigate the genet
ic contribution of progressing (i) from A−T− to A+T−; and (ii) from 
A+T− to A+T+. For (i), we included every eligible participant with 
genetic data and who was A−T− based on their biomarker results 
as described above. This earliest A−T− visit was considered the 
‘start’ visit (i.e. the status of previous visits was ignored). A subject 
was considered a converter when the available biomarkers indi
cated A+T− at a later visit. The time of the first A+T− biomarker 
finding after their initial A−T− visit was used as the conversion 

2682 | BRAIN 2024: 147; 2680–2690                                                                                                                         A. Altmann et al.

https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awae176#supplementary-data
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/


time. For non-converters, we recorded the last visit where both 
amyloid and tau biomarker information was available to define 
the maximal follow-up time. Likewise, for (ii) we included every 
participant with genetic data and who was A+T−. This first A+T− 
visit was considered the ‘start’ visit. A subject was considered a 
converter when the available biomarkers indicated A+T+ at a later 
visit. The time of the first A+T+ biomarker finding after their initial 
A+T− visit was used as the conversion time. As before, for non- 
converters we recorded the last visit when amyloid and tau bio
marker information was available as their last point of contact.

For the analyses, the Cox proportional hazards model included 
age at the inclusion visit (i.e. either the A−T− or the A+T− visit), 
sex and education. As variables of interest, we also included genetic 
variables for PRS, in addition to allele counts of APOE-e2 and 
APOE-e4. The proportional hazards assumption was tested for 
each covariate and for the global model using statistical tests and 
graphical diagnostics based on scaled Schoenfeld residuals. As a 
measure of overall model performance, the concordance index 
(C-index) was computed for the following: (i) full models; (ii) models 
without APOE; (iii) models without PRS; and (iv) models without any 
genetics. Statistical tests were carried out in R (v.4.1.0) using the 
survival (v.3.5.5), survminer (v.0.4.9) and rms (v.6.8.0) packages.

Sensitivity analyses

In addition to the two main analyses, we conducted a series of sen
sitivity analyses addressing the conversion definition, biomarker 
cut-offs, biomarker source and polygenic score source.

Conversion definition

To maximize the available data, we relaxed the requirement for 
both amyloid and tau biomarkers to be available at the same visit 
to define conversion. As before, both biomarkers at the same time 
were required to define the ‘start’ visit as either A−T− or A+T−. 
However, for defining progression from A−T− or A+T−, a single 
A+ or T+ visit was sufficient, respectively.

Biomarker cut-offs

We varied the tau PET cut-off from 1.0 to 3.0 standard deviations 
(SDs) above the mean in the cognitively normal ADNI participants. 
Notably, the lowest cut-off resulted in 1.31 and was close to the 
neuropathologically defined cut-off of 1.29 by Lowe et al.55 The 
pTau cut-offs were adjusted accordingly to maximize Youden’s in
dex between CSF pTau and tau PET.

Biomarker source

To maximize data and follow-up time, the main analyses combined 
data from two biomarker sources: CSF and PET. Additional sensitiv
ity analyses relied exclusively on either CSF biomarkers or PET 
biomarkers. For this analysis, pTau cut-offs were varied in the 
range from 22 to 31, covering the values of 24.25 and 29.19, which 
were found to indicate tau PET positivity in Braak III/IV and Braak 
V/VI regions, respectively.56 Tau PET cut-offs were varied, as before, 
from 1.0 to 3.0 SD above the mean in cognitively normal partici
pants (i.e. in the same range as the main analysis).

Polygenic score source

To include more SNPs in the PRS, we explored the summary statis
tics on Alzheimer’s disease and related dementias by Bellenguez 
et al.21 We followed the same PRS pipeline as above and applied a 
P-value threshold of 5.0 × 10−8 (i.e. genome-wide significant), lead
ing to 77 included SNPs (Supplementary Table 2).

Results
Out of 16 401 visits recorded in ADNI, 3789 (23.1%) visits had both 
amyloid and tau biomarker data available. Concordance between 
PET- and CSF-based assessment was 80% and 81% for amyloid 
and tau, respectively. For both survival models, we identified 
∼300 subjects in the ADNI database with both biomarkers available 
(Table 1): 312 individuals were A−T−, of whom 65 converted to 
A+T−. The mean age of the A−T− group was 71.3 (6.65) years, and 
there was an almost equal number of males and females (49.4% fe
males). Two hundred and ninety individuals were A+T− at any 
stage, of whom 45 converted to A+T+. The mean age of the A+T− 
group was 73.2 (6.9) years, significantly older than the A−T− group 
(Student’s unpaired t-test: t = 3.50, P < 0.001). The fraction of fe
males in that cohort was lower compared with the A−T− group 
(43.8% females), but not at a significant level (χ2 test; χ2 = 1.65; 
d.f. = 1; P = 0.19). The distribution of APOE-e4 alleles (χ2 test; 
χ2 = 81.1; d.f. = 2; P = 2.4 × 10−18) and APOE-e2 alleles (Fisher’s exact 
test; P = 0.0004) differed significantly between A−T− and A+T−. 
There were more APOE-e2 carriers and fewer APOE-e4 carriers in 
the A−T− group than in the A+T− group. The PRS did not differ be
tween the A−T− and A+T− groups (Student’s two-tailed t-test; t =  
0.84; d.f. = 600; P = 0.39). The cohort with the relaxed conversion cri
terion showed comparable characteristics (Supplementary Table 3).

Table 1 Demographics

Characteristic A−T− A+T−

Total Stable Converter Total Stable Converter

n 312 247 65 290 245 45
Age, mean (SD), years 71.3 (6.65) 71.0 (6.47) 72.2 (7.25) 73.2 (6.9) 73.2 (6.9) 73.1 (6.8)
Sex (% female) 49.4 48.6 52.3 43.8 43.3 46.7
Diagnosis (CN/MCI/AD) 195/113/4 150/94/3 45/19/1 118/153/19 100/128/17 18/25/2
Education, mean (SD), years 16.7 (2.5) 16.6 (2.6) 17.3 (2.2) 16.4 (2.6) 16.6 (2.7) 15.5 (2.4)
Follow-up, mean (SD), years 5.0 (3.1) 4.7 (3.0) 6.4 (3.4) 4.1 (2.6) 3.8 (2.6) 5.6 (2.3)
Time to event, mean (SD), years n/a n/a 4.5 (2.7) n/a n/a 4.4 (2.5)
APOE-e4 (0/1/2) 252/57/3 207/40/0 45/17/3 137/119/34 121/99/25 16/20/9
APOE-e2 (0/1/2) 265/46/1 205/41/1 60/5/0 273/17/0 230/15/0 43/2/0
PRS, mean (SD) 0.013 (0.012) 0.013 (0.012) 0.013 (0.011) 0.013 (0.013) 0.012 (0.013) 0.020 (0.011)

AD = Alzheimer’s disease; CN = cognitively normal; MCI = mild cognitive impairment; PRS = polygenic risk score.
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APOE-e4 influences progression from A−T− to A+T−

The survival analysis showed a significant contribution by APOE-e4 

allele count [hazard ratio (HR) = 2.88; 95% confidence interval (CI): 

1.70–4.89; P = 8.7 × 10−5] but no significant contribution by PRS 

(HR = 1.09; 95% CI: 0.84–1.42; P = 0.53) (Fig. 1). The APOE-e2 allele 

count directionally favoured a protective effect, but this was not 

significant (HR = 0.73; 95% CI: 0.28–1.86; P = 0.51). The Cox propor

tional hazards assumption held for this model (global Schoenfeld 

test, P = 0.24) (Supplementary Fig. 1). The C-indices aligned with 

this pattern: full model (C = 0.612), no APOE (C = 0.525), no PRS 

(C = 0.611) and no genetics (C = 0.531). This pattern of associations 

of APOE and PRS with progression was largely independent of 

the tau PET and pTau thresholds (Supplementary Table 4). 

Furthermore, using the more relaxed conversion criteria (i.e. con
firmed A+ status was sufficient instead of a confirmation of A+T−) 
yielded more conversions (85 instead of 65), but qualitatively the 
same result (Supplementary Fig. 2), i.e. a significant contribution 
by APOE-e4 allele count (HR = 3.34; 95% CI: 2.14–5.22; P = 1.0 × 10−7) 
but not by PRS (HR = 1.06; 95% CI: 0.84–1.34; P = 0.61).

Polygenic risk affects the progression from  
A+T− to A+T+

The survival analysis showed a marginally significant contribution 
by APOE-e4 burden (HR = 1.62; 95% CI: 1.05–2.51; P = 0.031), which 
was mainly driven by APOE-e4 homozygotes (HR = 2.58; 95% CI: 
1.05–6.35; P = 0.039) rather than APOE-e4 heterozygotes (HR = 1.74; 

Figure 1 Hazard ratios for the conversion from A−T− to A+T−. (A) Forest plot depicting the HRs for all covariates in the model. (B) Estimated survival 
curves stratified by APOE-e4 genotype. (C) Estimated survival curves stratified by PRS percentile (5%, 50% and 95%). APOEe2 = number of APOE-e2 al
leles; APOEe4 = number of APOE-e4 alleles; Edu = years of education; HR = hazard ratio; PRS = polygenic risk score, scaled to zero mean and unit stand
ard deviation.
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95% CI: 0.87–3.49; P = 0.12) (Fig. 2). Furthermore, there was a signifi
cant contribution by PRS (HR = 1.72; 95% CI: 1.27–2.36; P = 0.00057). 
The APOE-e2 allele count again was directionally consistent with 
a protective effect, but this was not significant (HR = 0.41; 95% CI: 
0.09–1.78; P = 0.23). The Cox proportional hazards assumption 
held for this model (Supplementary Fig. 3). The C-indices dropped 
marginally when either APOE or PRS was removed from the model: 
full model (C = 0.657), no APOE (C = 0.634), no PRS (C = 0.615) and no 
genetics (C = 0.549). Moreover, the association pattern of APOE and 
PRS with progression was largely independent of the tau PET and 
pTau cut-offs (Supplementary Table 4). In addition, education 
showed a marginally protective association with conversion to 
A+T+ (HR = 0.89; 95% CI: 0.80–0.99; P = 0.039). Applying the more 

relaxed conversion criteria (i.e. confirmed T+ status was sufficient 
instead of a confirmation of A+T+) yielded more conversions 
(51 instead of 45), but qualitatively the same result (Supplementary 
Fig. 4): a significant contribution by PRS (HR = 1.62; 95% CI: 1.22–2.17; 
P = 0.001) and a marginal contribution by APOE-e4 allele burden 
(HR = 1.56; 95% CI: 1.04–2.35; P = 0.031).

Results are independent of PRS source

Using an the alternative PRS with 77 SNPs led to the same observa
tion of a significant effect by APOE-e4 burden on A−T− to A+T− con
version (HR = 2.84; 95% CI: 1.68–4.82; P = 0.0001) and a lack of 
contribution by the PRS (HR = 0.97; 95% CI: 0.77–1.2; P = 0.80; 

Figure 2 Hazard ratios for the conversion from A+T− to A+T+. (A) Forest plot depicting the hazard ratios for all covariates in the model. (B) Estimated 
survival curves stratified by APOE-e4 genotype. (C) Estimated survival curves stratified by PRS percentile (5%, 50% and 95%). APOEe2 = number of APOE- 
e2 alleles; APOEe4 = number of APOE-e4 alleles; Edu = years of education; PRS = polygenic risk score, scaled to zero mean and unit standard deviation.
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Supplementary Fig. 5A). Conversely, for A+T− to A+T+ conversion, 
the contribution by APOE-e4 was reduced (HR = 1.71; 95% 
CI: 1.09–2.68; P = 0.019), whereas the PRS exhibited a strong contribu
tion (HR = 1.59; 95% CI: 1.19–2.13; P = 0.00163; Supplementary Fig. 5B).

Results are independent of biomarker source

The main analysis combined different biomarker sources to maxi
mize the available data and the observation time for the conversion 
analysis. Relying on PET biomarkers alone, only 7.5% of visits (1237 
of 16 401) had both biomarkers, and it resulted in shorter observa
tion times for A−T− to A+T− conversion [3.62 (SD = 1.07) years] 
and A+T− to A+T+ conversion [2.94 (SD = 1.13) years] compared 
with the main analysis. Relying solely on CSF biomarkers, 19.2% 
of visits (3155 of 16 401) had both biomarkers. Overall, this led to a 
shorter observation time with respect to the main analysis for 
A−T− to A+T− conversion [3.94 (SD = 2.7) years] and A+T− to A+T+ 
conversions [3.6 (SD = 2.38) years]. Furthermore, relying on a single 
source of biomarkers led to reduced sample sizes (from ∼300 in the 
main analyses to 70–250 in the sensitivity analyses) and observed 
conversions (Supplementary Tables 5 and 6). Despite the reduced 
statistical power, these sensitivity analyses confirmed the pattern 
observed in the main analysis: APOE-e4 contributed mainly to the 
A−T− to A+T− conversion, whereas PRS contributed to the A+T− 
to A+T+ conversion (Fig. 3 and Supplementary Tables 5 and 6).

Discussion
This longitudinal survival analysis demonstrated that APOE-e4 
plays an important role for the progression from A−T− to A+T−, 
but APOE is of only marginal importance in A+T− participants 
who progress to A+T+. Conversely, polygenic risk for Alzheimer’s 
disease exhibited the inverse pattern: there was no contribution 
to the progression from A−T− to A+T−, but a significant contribu
tion to faster progression from A+T− to A+T+. This held true for 

an alternative PRS defined using a different genetic study and in
volving a larger number of genetic loci. Notably, when assessing 
covariates, a differential effect of years of education was observed: 
higher education had no effect (Fig. 1) or was marginally harmful 
(Supplementary Fig. 2) for the progression from A−T− to A+T− but 
was protective for the conversion from A+T− to A+T+ (Fig. 2). The 
bisection of the genetic risk by disease stage was largely independ
ent of the applied biomarker cut-offs. Moreover, relying on only a 
single source of biomarkers for defining stage and conversion con
firmed the findings of the main analysis despite reduced sample 
size and observation time.

The finding of a stronger effect of APOE-e4 earlier in the disease 
progress might explain the observation of stronger genetic effect of 
APOE-e4 on Alzheimer’s disease in the group of 60- to 80-year-old 
people compared with people ≥80 years old.57-59 Given that amyloid 
deposition occurs 10+ years before other Alzheimer’s disease pro
cesses2 and APOE-e4 is the strongest common genetic risk factor 
for amyloid deposition, it would be expected for APOE-e4 to exert 
its maximum effect in younger people. Still, APOE remains the 
strongest risk factor in individuals ≥80 years old.58 Thus, the age- 
dependent heterogeneity of APOE is likely to be compounded by a 
survivor bias: individuals with a very late onset despite carrying 
APOE-e4 might harbour protective variants,60 such as KLOTHO-VS, 
where a protective effect on amyloid deposition and Alzheimer’s 
disease was observed in only 60- to 80-year-olds, but not in the 
80+ group.57,61

The findings from this longitudinal analysis are also in line with 
previous reports in the ADNI cohort of APOE and polygenic risk on 
amyloid and tau. For instance, cross-sectional amyloid biomarkers 
in the CSF and in the brain were mainly driven by APOE, whereas 
cross-sectional CSF tTau and pTau measurements were associated 
with PRS beyond the APOE locus.32 Moreover, APOE was found to 
predict amyloid status, whereas polygenic risk for Alzheimer’s dis
ease improved predictions of diagnosis and of clinical progression 
from mild cognitive impairment to Alzheimer’s disease above 

Figure 3 Survival curves for PET-only and CSF-only analyses. The top row (A–D) is based on results from AT(N) definitions based exclusively on PET 
biomarkers (amyloid and tau), with a cut-off of 1.45 for tau PET. The bottom row (E–H) relied on CSF biomarkers (ABETA42 and pTAU), with a cut-off 
of 26 for pTau. The two left columns (A, B, E and F) display the progression probability from A−T− to A+T− stratified by APOE-e4 genotype and PRS quan
tile (5%, 50% and 95%). The two right columns (C, D, G and H) display the progression probability from A+T− to A+T+.
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APOE alone.35 These observations extend to plasma markers of tau 
pathology: PRSs (that excluded the APOE region) were found to be 
associated only with plasma p-tau181 in A+ participants.62 This as
sociation between polygenic risk (beyond APOE) and CSF tau bio
markers rather than with amyloid and neurodegeneration was 
also observed outside of the ADNI study.63 Polygenic risk (beyond 
APOE) was associated with non-amyloid endophenotypes in a large 
cohort of people with mild cognitive impairment. This suggests 
that these variants are more closely linked with neuronal degener
ation than with Alzheimer’s disease-related amyloid pathology.64

All these previous studies made the connection between existing 
amyloid pathology and correlations between polygenic risk and 
tau pathology using cross-sectional study designs. In a recent longi
tudinal study of tau PET in the ADNI cohort, higher polygenic risk 
for Alzheimer’s disease was associated with accelerated increase 
in tau signal in the brain, and this effect was modulated by amyloid 
pathology: A+ participants showed a stronger effect of PRS on tau 
accumulation.65 Our longitudinal analysis, which combined CSF 
and PET data to maximize the sample size, confirms these observa
tions and indicates that polygenic Alzheimer’s disease risk (out
side the APOE region) contributes to tau pathology in A+ 
participants but has no meaningful contribution in A− partici
pants. The genetic architecture of Alzheimer’s disease, as captured 
by the PRS, involves multiple different pathways, mainly amyloid-β 
processing, tau, immunity and lipid processing.18,21 The PRS that we 
used covers three genes that have been associated with tau binding: 
BIN1, CLU and PICALM. BIN1 mediates Alzheimer’s disease risk by 
modulating tau pathology,66 and BIN1 risk variants increase tau 
PET (but not amyloid PET)67 in an amyloid-dependent fashion.68

Our observations of an amyloid-dependent effect of the PRS align 
with these earlier single-gene studies. Although there are currently 
no mechanistic analyses that explain the amyloid-dependent effect 
of BIN1 on tau pathology, recent data from animal models in 
Alzheimer’s disease suggest a state-dependent effect of genetic 
risk factors related to microglia: deletion of Trem2 in mouse models 
exacerbated tau accumulation and spreading, leading to brain atro
phy, but only in the presence of existing amyloid-β pathology.69

Along the same lines, physical contact between microglia and pla
ques in addition to a functioning TREM2 gene are necessary for 
the appropriate microglial response to amyloid pathology.70 Thus, 
defects in TREM2 can contribute to neurodegeneration only once 
amyloid pathology has been established. Consequently, other 
genes contributing to the PRS might also exert their effect in an 
amyloid-dependent fashion. Our longitudinal analysis presented 
here is the first to support such a state-dependent genetic risk mod
el in humans, and further fine-grained examination of how the 
pathways involved in the PRS contribute to sequential disease pro
gression are needed.

The partition of Alzheimer’s disease genetic risk into APOE- 
related and polygenic risk beyond APOE is a simplification in this 
analysis. Recent works have linked established Alzheimer’s disease 
risk loci outside APOE, such as CR1, to amyloid biomarker levels.23

Conversely, studies of biomarker levels of tau repeatedly highlight 
the APOE locus.23,24 However, if being A+ were a prerequisite to ex
hibit pathological accumulation of tau, then the strong genetic as
sociation with APOE in these GWASs would merely reflect the 
necessary condition rather than a genuine direct molecular process 
that affects tau levels. The strong dependence of tau levels on es
tablished amyloid pathology is supported by mediation analyses 
in recent cross-sectional63 and longitudinal65 studies. Moreover, 
the known Alzheimer’s disease genetic risk variants are contribut
ing differently to molecular pathways,18,21,22 where each pathway 

in turn will exercise differential effects on the Alzheimer’s disease 
biomarkers, including markers for vascular pathology.37 Therefore, 
a pathway PRS comprising only genes associated with the regula
tion of the amyloid precursor protein catabolic process (e.g. Gene 
Ontology term GO:1902991) might contribute significantly to the 
conversion from A−T− to A+T−. Likewise, a pathway PRS using 
only genes known to bind the tau protein (GO:0048156) might ex
hibit an even stronger association with A+T− to A+T+ conversion 
than the general PRS used here.

In addition to the cascading effect of genetic risk in Alzheimer’s 
disease, we also observed a stage-dependent effect of non-genetic 
risk factors. Education has been shown to have a protective effect 
against dementia71: here, we show that higher rates of education 
do not influence transition to amyloid positivity but do slow pro
gression from A+T− to A+T+. Consequently, other non-genetic 
risk factors might show a similarly state-dependent effect on 
the pathological pathway from A−T− to A+T+ and further 
neurodegeneration.

The study has several limitations. First, the present analysis was 
limited to two biomarkers in Alzheimer’s disease: amyloid-β and 
tau. It would be desirable to include neurodegeneration (N; of the 
ATN framework) or, potentially, more fine-grade staging from ad
vanced data-driven disease-progression modelling.7 However, at 
this point adding further stages would reduce the available sample 
size. Second, we partitioned the genetic risk in Alzheimer’s disease 
into two components: APOE and other top variants combined into a 
single polygenic risk score. Further work should explore a more 
fine-grained partition of the polygenic risk into individual SNPs or 
into pathway PRS.37 Third, the study population was of central 
European ancestry; therefore, it is unclear whether the findings 
would generalize to other genetic backgrounds. Finally, although 
the ADNI cohort is a large cohort, the number of subjects who 
were eligible for our analysis was reduced owing to the requirement 
for concordant and longitudinal recordings of multiple biomarkers 
in addition to genetics. The available sample size might have lim
ited statistical power to render the estimated hazards ratios signifi
cant in some settings. However, the two conversion analyses were 
based on similar sample sizes (∼300 participants), thus allowing us 
to make a relative comparison between the genetic effect (of APOE 
or PRS) under two different biomarker-defined disease stages. 
Moreover, uncertainty of the estimated effects might also be in
creased owing to disease heterogeneity in Alzheimer’s disease,72-75

which is likely to be underpinned by differences in genetic archi
tecture. Thus, analyses in further large longitudinal cohorts are 
required to confirm the observation of stage-dependent genetic 
vulnerability in Alzheimer’s disease and to uncover more fine- 
grained associations with Alzheimer’s disease subtypes.

Conclusion
In this work we demonstrated, in a simplified setting, that genetic 
risk for late-onset Alzheimer’s disease unfolds in a disease stage- 
dependent fashion. A better understanding of the interplay 
between disease stage and genetic risk can lead to a better under
standing of the molecular processes leading to Alzheimer’s disease, 
in addition to opening therapeutic windows for targeted interven
tions and personalized approaches to dementia prevention.

Data availability
Data used in the preparation of this article were obtained from the 
ADNI database (http://adni.loni.usc.edu) and are freely available 
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after registration. Analysis scripts are available at: https://github. 
com/andrealtmann/cascading_genetic_risk.
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