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Abstract
It is often argued that biodiversity and ecosystem functioning are linked by both habitat and species composition, and that this
relationship is particularly critical for mobile ecosystem service providers. This may be especially true for pollinators, which are
essential for the reproduction of the majority of flowering plant species, are highly mobile, and can exhibit dramatically different
foraging behaviors across ecosystems. Understanding how habitat and community composition impact pollination is especially
relevant in urban environments where pollinators can promote food security. We examined the relationships between local
resource density, landscape composition, pollinator abundance and richness, and pollination services in an urban agricultural
system spanning >125 km of the California central coast. We used a replicated, experimental approach to evaluate the repro-
ductive success of jalapeño peppers across urban gardens and conducted a greenhouse experiment to evaluate the benefits of
insect-mediated pollination to pepper reproduction. In the greenhouse, we found that jalapeño fruit weight and seed number was
significantly greater with insect-mediated pollination than without. In the field, we found that jalapeño seed number increased
significantly with herbaceous (weed, crop, and ornamental) plant richness and the number of perennial trees and shrubs at the site
level, but decreased with the amount of natural landscape cover. We also found that higher pollinator richness enhanced seed
number in floral-dense gardens, likely due to the greater functional complementarity of a more diverse pollinator community.
Furthermore, there was a positive relationship between pollinator abundance and seed number, but it weakened in gardens with
more flowers, likely through lower per-plant pollinator visitation in the presence of competing floral resources. As in past studies,
we found that mulch had a negative impact on pollinator abundance, highlighting that abiotic factors commonly managed by
gardeners can directly impact ecosystem service providers. This study demonstrates that local conditions can significantly
influence ecosystem service provision and that urban gardeners need to optimize for both pollinator richness and floral resource
availability to achieve optimal pollination.

Keywords Pollination . Urban agriculture . Biodiversity . Ecosystem function

Introduction

Biodiversity is rapidly declining as a result of numerous glob-
al change drivers (Butchart et al. 2010; Tittensor et al. 2014),
threatening ecosystem functioning and services that are essen-
tial for human well-being (Loreau et al. 2001; Hooper et al.
2005; Balvanera et al. 2006; Naeem et al. 2009; Cardinale
et al. 2012). This relationship (biodiversity-ecosystem-func-
tion, or BEF) has been the focus of many studies within rural
agricultural systems that strive to understand food security,
pest suppression, and other ecosystem services. Though these
studies have largely found strong, positive relationships be-
tween biodiversity and ecosystem functioning (Larsen et al.
2005, Tscharntke et al. 2005, Tscharntke et al. 2012, but see
Cardinale et al. 2006), the mechanisms underlying this rela-
tionship are less understood. Further, while ecosystem
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functioning is often mediated by biotic and abiotic factors at
multiple spatial scales (Maire et al. 2012), and by the foraging
patterns of mobile ecosystem service providers (Kremen et al.
2007; Hoehn et al. 2008; Albrecht et al. 2016), the relative role
of local resource levels in shaping animal foraging and
resulting ecosystem services is not typically evaluated.
Specifically, the diversity and abundance of food resources
may serve to either potentially concentrate (Williams et al.
2015; Xie et al. 2019) or dilute (Veddeler et al. 2006) foraging
organisms at resource patches, but this phenomenon is rarely
quantified outside of rural agricultural systems (but see Jha
and Vandermeer 2009).

The relationship between local resources, landscape com-
position, and biodiversity may be particularly important for
pollinators, whose movement patterns directly impact ecosys-
tem service provisioning (Kremen et al. 2007). This is because
pollinators, which are essential for the reproduction of more
than 80% of flowering plant species (Ollerton et al. 2011), are
both highly mobile and exhibit tremendous variation in com-
munity characteristics such as plant visitation behaviors
(Burkle and Alarcon 2011). While pollination service indices,
such as plant reproduction, are often a function of the richness
and abundance of the wild pollinator community (e.g. Gómez
et al. 2007; Lowenstein et al. 2015), the ability to deliver
pollination services may also be contingent on local and land-
scape habitat factors. In rural agricultural systems, pollinator
abundance and richness (e.g. Kennedy et al. 2013; Goulson
et al. 2015), as well as pollination services (e.g. Potts et al.
2010; Cusser et al. 2016), are often mediated by landscape
drivers such as agricultural intensification and natural habitat
cover (e.g. Kim et al. 2006; Kennedy et al. 2013; Blaauw and
Isaacs 2014a).

In addition to landscape factors, local floral diversity, abun-
dance, and composition can mediate pollination through im-
pacts on pollinator densities (Steffan-Dewenter and Westphal
2008; Williams et al. 2015), foraging dynamics (Kunin and
Iwasa 1996; Kunin 1993), visitation rates (Van Nuland et al.
2013, Veddeler et al. 2006), and pollen deposition (Lortie and
Aarssen 1999; Evans et al. 2017). Classic research in foraging
biology has shown that, when a limited number of foragers
spread out in a high resource patch, it can reduce per-plant
visitation, something called the “dilution effect” (Root and
Kareiva 1984; Yamamura 1999). In contrast, when high re-
source patches recruit more foragers to a site, increasing per-
plant visitation, it is known a “concentration effect” (Sih and
Baltus 1987; Kunin 1993; Totland and Matthews 1998).
Dilution and concentration effects, respectively, reduce or en-
hance forager visitation rates, with implications for plant re-
production. Dilution may also occur when, at high floral den-
sities, co-flowering hetereospecific plants result in inter-
specific competition for pollinators, reducing plant visitation
(Ghazoul 2006). Furthermore, floral fidelity may be relaxed in
communities with high plant diversity, increasing inter-

specific pollen transfer (Fontaine et al. 2008) and inhibiting
pollination (Wilcock and Neiland 2002; Holland and
Chamberlain 2007).

In agricultural systems, both foraging dilution and concen-
tration responses to floral resources are sensitive to scale
(Veddeler et al. 2006, Jha and Vandermeer 2009, Riedinger
et al. 2013, Holzshuh et al. 2016) and pollinator species com-
position (Jha and Vandermeer 2009), likely because pollina-
tors vary in foraging behavior and foraging distance
(Greenleaf et al. 2007; Pisanty et al. 2015). Indeed, beyond
pollinators, there is a strong link between species trait diver-
sity and ecosystem function that has been documented across
taxa and ecological systems (Naeem and Wright 2003;
Cardinale et al. 2004; Cardinale et al. 2006; Hooper et al.
2005; Schleuning et al. 2014). For pollinators, communities
exhibiting a diversity of functional traits provide greater pol-
lination resources (Hoehn et al. 2008; Cadotte et al. 2011;
Gagic et al. 2015), but the relationship between pollinator
diversity and pollination may be dependent on local floral
conditions (Tylianakis et al. 2008). In this study, we experi-
mentally evaluate how pollination services are mediated by
both landscape context and the interactions between local flo-
ral resources and pollinator abundance and richness in an
understudied system, urban agriculture.

Urban systems are compelling habitats in which to inves-
tigate these interactions. Urban gardens are important sites for
food production (McCormack et al. 2010) and serve as impor-
tant refuges for pollinator communities within cities (Fetridge
et al. 2008; Matteson et al. 2008; Frankie et al. 2009;Matteson
and Langellotto 2010; Pardee and Philpott 2014; Burr et al.
2016; Quistberg et al. 2016). A number of studies have found
that local habitat features, like the availability of bare ground,
can positively impact pollinator abundance and richness in
gardens, especially for ground-nesting bees (Quistberg et al.
2016; Ballare et al. 2019). Bare, unpaved ground can also
impact crop fruit set (Bennett and Lovell 2019). While some
urban studies have found that increased floral abundance at
local spatial scales positively impacts pollinator richness
(Pardee and Philpott 2014; Quistberg et al. 2016), pollinator
abundance (Bennett and Lovell 2019) and pollination (Potter
and LeBuhn 2015; Lowenstein et al. 2015), others have found
no beneficial impact of increased floral resources (Glaum et al.
2017); this variation may be a result of the dynamic relation-
ship between floral resources and pollinator foraging, in
which the composition, diversity, and abundance of floral re-
sources is theorized to either concentrate or dilute pollinators
across a landscape (Veddeler et al. 2006). Despite the impor-
tance of crop production within urban systems, the impact of
the interaction between floral resources and pollinator abun-
dance and richness on pollination services has not been quan-
titatively evaluated.

In this study, we use a replicated experimental approach to
evaluate the reproductive success of jalapeño peppers in
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gardens spanning more than 125 km of urban habitat to quan-
tify the links between pollinators and pollination function
across heterogeneous landscapes. Urban gardens are impor-
tant places for the evaluation of pollination services given
their ecological, cultural, and economic value to humans
(Bellows et al. 2003; Baker 2004; Freeman et al. 2012;
Goddard et al. 2013). We used jalapeño peppers as a model
system because they are commonly cultivated in urban gar-
dens and may benefit from insect visitation (Delaplane and
Mayer 2000), though the benefit of this visitation has not been
investigated across heterogeneous field conditions. While past
experiments in urban garden studies have focused on bee-pol-
linators, non-bee pollinators are important contributors to crop
production (Rader et al. 2009), so we include both bee and
non-bee pollinators in our study. Non-bees include flies
(Diptera), which are often generalists that visit multiple plant
species (Kearns 2001). Although butterflies (Lepidoptera) and
wasps (Hymenoptera) are often considered inefficient pollina-
tors, visitation rates to crop plants by pollinators are often
mediated by complex, indirect interactions between species
(Primack and Inouye 1993). The pollination success of
insect-pollinated plant species is therefore usually not depen-
dent on single, highly specialized pollinator species, but rather
on a diverse community of pollinators (Greenleaf and Kremen
2006, Steffan-Dewenter and Westphal 2008, Albrecht et al.
2012 Garibaldi et al. 2016).

In this study, we evaluate three hypotheses: 1) successful
reproduction of jalapeño peppers requires insect-mediated
pollination, 2) local floral resources and bare ground cover
drive pollinator richness and abundance, 3) and jalapeño pol-
lination success is positively related to the interactions be-
tween local floral resource availability and pollinator abun-
dance and richness.

Methods

Field study: Characterization of the study sites

The field study was conducted in July 2016 in 21 urban com-
munity gardens, 16 of which have been investigated for urban
ecological studies for multiple years (e.g. Otoshi et al. 2015;
Quistberg et al. 2016; Egerer et al. 2017). The 21 gardens are
separated by a minimum of 21 km and range in size from from
444 m2 to 15,525 m2 (mean 4419.4 ± SD 3884.5 m2) and are
distributed across three counties (Monterey, Santa Clara, and
Santa Cruz) in the California central coast (Fig. 1). Each gar-
den is a community garden managed in allotments or collec-
tively and each garden contained vegetable and fruit crops and
had been actively cultivated between 5 and 49 years. We
evaluated both local and landscape characteristics of all the
gardens. At the local (within-garden) scale, we measured hab-
itat characteristics within a 20 × 20 m plot placed at the center

of all 21 gardens between July 8th and July 13th of 2016.
Specifically, we measured garden size and canopy cover with
a convex spherical densiometer at the center of the plot, and
10 m to the N, S, E, andW.We also counted and identified all
trees and shrubs as the number of woody plants in the plot. In
each plot, we randomly selected eight 1 × 1 m quadrats within
which we identified all herbaceous flowering plants (forbs) to
morphospecies, measured height of the tallest non-woody
vegetation, counted the total number of flowers, and assessed
percent ground cover from bare soil, grass, herbaceous plants
(crops, weeds, and ornamentals), leaf litter, rocks, and mulch.
When counting the number of flowers, we counted flowers
inside inflorescences as individual flowers regardless of size.

At the landscape scale, we classified land cover types with-
in 2 km buffers surrounding each garden with data from the
2011 National Land Cover Database (NLCD, 30 m resolu-
tion) (Homer et al. 2015). We selected 2 km buffer zones
given that bee abundance responds significantly to habitat
composition at a 2 km scale (as Kremen et al. 2004). Based
on known bee nesting preferences and classification systems
used in past studies (e.g., Ritchie et al. 2016; Quistberg et al.
2016; Cohen et al. 2017), we created four land-use categories:
1) natural habitat (including deciduous, evergreen, mixed for-
ests, dwarf scrub, shrub/scrub, and grassland/herbaceous), 2)
open habitat (including lawn grass, parks, and golf courses),
3) urban habitat (including low, medium, and high intensity
developed land), and 4) agriculture habitat (including pasture/
hay and cultivated crop). Other land cover types that covered
<5% of the total area were not included. We assessed land
cover with ArcGIS v.10.1.

Field study: Pollinator survey

To compare pollinator richness and abundance across 21 sites
with different local and landscape features, we conducted vi-
sual pollinator surveys in July 2016 along four 4 × 20 m tran-
sects that ran E-W in each plot, starting at 0, 5, 10, and 15 m
from the southern edge at all sites. Surveys were conducted by
one observer and occurred for 30 min between 0:900 and
16:00 on sunny days with less than 50% cloud cover.
During each survey we walked the four transects in the 20 ×
20 m plot, at a pace of approximately 3.5 min per transect.
Because pollination experiments were running at the time of
the survey (see below) we did not collect pollinators. Given
that active sampling and observational data for pollinator sam-
pling are often highly correlated (e.g. Mandelik et al. 2012),
and that observational data is useful for reflecting community-
level changes in abundance over space (Kremen et al. 2011),
we visually recorded all pollinating insects visiting any flower
in the garden, including bees, flies, wasps, and butterflies, and
identified each individual to the finest resolution possible
(family, tribe, genus, and species). To guide in-field identifi-
cations, we brought a box of representative physical
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specimens with us to the field that were previously collected in
the same system (see Quistberg et al. 2016); in addition, we
consulted online resources (Ascher and Pickering 2017), im-
age databases (e.g. Packer and Ratti 2007), books (Michener
2007), and dichotomous keys (Michener et al. 1994; Gibbs
2010) to create a visual field reference. In-field identifications
were conducted by researchers trained in bee identification
and systematics according to Michener et al. (1994) at the
2014 Bee Course (American Museum of Natural History).
Because visual counts may be subject to observer bias and
sampling effort, they were conducted by one individual.

Field study: Pollination experiment

We examined pollination of C. annuum jalapeño peppers in a
subset of 15 gardens (Fig. 1). We used the ‘Jalapeño’ cultivar
of the species Capsicum annuum (Solanaceae) as a focal plant
because it is an annual crop commonly grown in urban gar-
dens, it has multiple hermaphroditic flowers per plant opening
from June-Aug, and because it is attractive to a wide variety of
pollinators, including bees (Dialictus spp., Augochlora spp.,
Exomalopsis spp., Bombus spp., Halictus spp., Dialictus spp.,
Hylaeus spp. (Raw 2000). C. annum cultivars are also

Fig. 1 Map of urban garden field sites along the central coast of California
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pollinated by flies in the syrphid (Jarland et al. 1997) and
tephritid (Vargas and Mitchell 1987) families, as well as by
wasps (Bosland and Votava 2000).

We planted C. annum from organic seed in standard soil
mixes and grew them in one-gallon pots for 105 days under
standard growing and irrigation conditions in a covered out-
door greenhouse at the University of California, Santa Cruz,
located within the same geographic region as the study. Upon
budding, we placed mesh insect exclusion bags on all peppers
until they were utilized for lab or field experiments. Every
evening, we tied colored strings on all unopened flowers of
all plants in order to record and identify flowers that had
opened in the previous 12 h (hereafter ‘recently opened’) at
the time of the experiment.

At each garden site we temporarily installed six plants. We
placed the six bagged, potted-plants all together as a cluster in
random location within the 20 × 20 m plot. We did not place
pots in beds, but adjacent to them. The six pepper pots were
clustered together in two rows of 3 pots per row, and at a
distance of ~20 cm apart from one another. Upon placement
in gardens, we randomly assigned three plants into one of
three treatments: open (O), open outcross (OO), or a closed
(C) treatment to evaluate the importance of outcross pollen to
seed and fruit production (Cusser et al. 2016). The remaining
plants had bags removed and served as pollen donor plants.

In the open (O) treatment, the bag was opened and one
recently opened, virgin flower was randomly selected from
the plant and marked, and the entire pepper plant was left
unbagged in the field for 48 h to allow visitation by insect
pollinators. In the closed (C) treatment, the bag was opened,
one recently opened, virgin flower was randomly selected
from the plant and marked, and then immediately rebagged
for use as a ‘control’ to evaluate the impact of no insect visi-
tation and the experimental manipulation of the bags. The
open outcross (OO) treatment received the “maximum” polli-
nation service, a combination of insect visitation and hand-
pollination, so that we could evaluate relative pollination lim-
itation in open treatments across the sites (Cusser et al. 2016).
In this treatment, the bag was opened, and we randomly se-
lected one recently opened flower and hand-pollinated using
flowers from donor plants. Specifically, for the donor plants,
we randomly selected four anthers from two randomly select-
ed pollen donor plants (2 anthers per pollen donor). Anthers
were removed from the donor using forceps and manually
rubbed in a circular motion on the receptive stigma of the
closed outcross pollination treatment flower for 2 s each.
Plants in this treatment were maintained unbagged in the field
for 48 h to allow for insect visitation. After 48 h in the field,
plants were picked up, rebagged, and returned to standard
sterile indoor greenhouse growing conditions, and then after
another 48 h (to ensure that all experimental flowers were
completely closed), bags were removed and plants were main-
tained in greenhouse conditions, free from insect pollinators.

Each plant was allowed to grow for 69 d, when we measured
fruit weight (g) and seed number for the fruits in each
treatment.

Greenhouse study: Pollination experiment

The greenhouse pollination study was conducted in June–July
2016. BecauseC. annuummay be self-compatible (Pickersgill
1997), we wanted to evaluate the impact of outcross pollina-
tion seed pollination (Parker 1997, Benjamin et al. 2014). We
therefore evaluated the impact of closed self-cross (CS) and
closed outcross (CO) treatments on fruit weight and seed num-
ber in the greenhouse, in tandem with the field experiments.
We randomly selected 24 jalapeño plants for a closed self-
cross (CS) and closed outcross (CO) experiment in the green-
house (12 plants per treatment). In this experiment, closed
refers to the fact that insect pollinators were excluded from
the plants with mesh bags prior to the treatment and we mea-
sured the role of self-pollination on pepper reproduction. In
the closed self-cross (CS) treatment, the bag was opened and
then one recently opened flower was randomly selected from
the plant and hand-pollinated using a sterile q-tip that was
rubbed in a circular motion against the anthers of the flower
for 8 s, then rubbed on the stigma of the same flower in a
circular motion for 8 s (same duration as the closed outcross
treatment), and then the bag was closed immediately after the
treatment. In the closed outcross (CO) treatment, the bag was
opened and then one recently opened flower was randomly
selected from the plant and hand-pollinated for 8 s using
flowers from donor plants. Specifically, we randomly selected
four anthers from two randomly selected pollen donor plants
(2 pollen-laden anthers per pollen donor, of the six anthers
available per flower). Anthers were removed from the donor
flowers using forceps and manually rubbed in a circular mo-
tion on the receptive stigma of the closed outcross pollination
treatment flower for 2 s each, and then the bag was closed
immediately after the treatment. After 48 h the plants were
unbagged to allow for unhindered fruit growth after the period
of pistil receptivity had passed (Aleemullah et al. 2000;
Ofosu-Anim et al. 2006). To further safeguard against any
potential insect vitiation that might bias our treatments, we
maintained the plants in a sterile indoor insect-free greenhouse
space for 69 d. We then measured fruit weight (g) and seed
number for the fruits in each treatment.

Data analysis

We first evaluated the potential role of local and landscape
habitat factors on pollinator abundance and richness. Then,
using just the open treatment of the field experiments (those
which experienced ambient insect pollination), we evaluated
the potential relationship between pollinator abundance and
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richness, as well as local and landscape habitat factors, on fruit
weight and seed number. Finally, we compared the fruit
weight and seed number of the different pollination treatments
for the greenhouse and field experiments.

Impacts of local and landscape features on pollinator
abundance & richness

We used linear models with the lm function in R to examine
relationships between local and landscape variables on both
number of pollinators (abundance) and pollinator richness, as
both pollinator indices met assumptions of normality.
Richness for the pollinator communities was calculated using
the Chao1 estimator (Chao 1984; Chao 2006) in the vegan R
package (Oksanen et al. 2016). Chao1 is an extrapolated mea-
sure of species richness which accounts for undersampling by
estimating higher species richness for samples with more rare
taxa present (Chao 1984). We felt this approach was appro-
priate for our study given substantial variation in pollinator
abundance across urban landscapes (as see in Ballare et al.
2019). Because many local and landscape variables were cor-
related, we prioritized variables previously found to be eco-
logically meaningful in describing pollinator richness in the
same field sites (Quistberg et al. 2016). Using this process, our
full model contained four local vegetation predictor variables
– mulch, herbaceous plant richness, the number of woody
plants, and the number of flowers, as well as one landscape
predictor variable – proportion natural habitat cover (in a 2 km
radius). The herbaceous plant diversity index included crop,
weed, and ornamental species in the garden and was calculat-
ed using the Chao estimator. We then ran tests to identify
collinearity of predictors in all of our linear models by calcu-
lating a variance inflation factor (VIF) for each model set
using the car package in R (Fox and Weisberg 2018) and
ensured that all variables met a VIF cutoff score of 3. We
ran model selection using the MuMIn package (Barton
2018), an information-theoretic selection process that operates
by subsetting the model. A set of models is generated with all
possible combinations of the five predictor variables listed
above (base model). We selected the top model based on the
AICc values. For models where the AICc for top models was
within 2 points of the next best model, we calculated model
averages (Table S1).

Local, landscape, and pollinator impacts
on pollination

Next, we evaluated the impact of these same local and land-
scape variables on fruit weight and seed number for the open
pollination treatments. Because we were interested in evalu-
ating the impact of the interaction between pollinators and
their food resources, we included an interaction between the
number of pollinators and the number of flowers (number of

pollinators*number of flowers) and the richness of pollinators
and number of flowers (richness of pollinators*number of
flowers). Our models contained the following predictor vari-
ables: number of pollinators*number of flowers, richness of
pollinators*number of flowers, mulch, number of woody
plants, diversity of herbaceous plant species, and proportion
of natural habitat (2 km) as fixed effects. We checked that VIF
scores were still below 3 and used a linear model for the fruit
weight data using lm in the stats R package, as fruit weight
data met assumptions of normality, and a generalized linear
model with a Poisson distribution for the seed number data
using glm in the MASS R package (Ripley et al. 2013), be-
cause seed number is count based and was underdispersed for
a Negative Binomial distribution. We again ran model selec-
tion using the MuMIn package (Barton 2013) and selected the
top model based on the AICc values. For models where the
AICc for top models was within 2 points of the next best
model, we calculated model averages. We also ran the same
models using bee richness and bee abundance instead of pol-
linator richness and abundance, and found similar patterns
(Table S2). To determine the goodness-of-fit of all best
models, we calculated a pseudo-R2 value as [(null deviance -
residual deviance)/ null deviance] (Dobson & Barnett 2008).

Greenhouse and field experiments

In the greenhouse experiments we examined if pepper plants are
self-compatible and/or enhanced by cross-pollination. To examine
how fruit weight was influenced by these two treatment types, we
ran a linear model using the lm function in the stats R package. To
examine how seed set was influenced by these treatment two types,
we used a generalized linearmodelwith a Poisson distribution using
the glm function in the stats R package. We also compared the
means via a post-hoc Tukey test. For the field experiments, we
examined if there was a significant difference between the closed
treatment (C), open treatment (O), and outcrossed-open (OO) treat-
ment for fruit weight and seed number. Specifically, to examine
how fruit weight was influenced by these three treatment types,
we ran a linear mixed effect model using the lmer function in R
with garden as a random effect. For seed number, we used a gen-
eralized linear mixed effect model with a Poisson distribution using
the glmer function also with garden as a random effect. Both anal-
yses were conducted with the lme4 R package in R (Bates et al.
2015). We then compared means via a posthoc Tukey test.

Results

Local and landscape impacts on pollinator abundance
& richness

The taxonomic identities of pollinators observed in this study
are described in the supplemental information (Table S3). We
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observed 2583 total pollinators visiting flowers. We observed
22 distinct taxonomic groups and an average abundance of
132.83 (± 11.51 SE) individuals and average richness of
9.54 (± 0.59 SE)morphospecies per site. Pollinator abundance
was lower where mulch cover was higher (p < 0.05, Fig. 3).
After averaging the top models (AICc<2), mulch was the only
significant predictor of pollinator abundance (Table 1b).
Pollinator richness (Chao estimator) was not significant-
ly predicted by any local or landscape habitat factor
(Table S4a & b).

Local, landscape, and pollinator impacts
on pollination

Fruit weight was not predicted by any local or landscape hab-
itat factor or pollinator factor. Seed number increased with
number of woody plants (p < 0.0001) and herbaceous plant
species (p < 0.0001), decreased with the proportion of semi-
natural habitat in a 2 km radius (p < 0.0001), and was unaf-
fected by mulch (p = 0.834). We found a positive interaction
between pollinator richness and flower number (p < 0.0001).
When there were more flowers in the garden, the positive
relationship between pollinator richness and seed number
was steeper (Fig. 4). The model also documents a negative
effect of the interaction of number of pollinators and number
of flowers (p < 0.0001), where the higher the pollinator abun-
dance, the more negative the relationship between number of
flowers and seed number (p < 0.0001)(Fig. 5). After averaging

the top models (AIC <2), the same factors remained signifi-
cant predictors of seed number (Table 2). We found similar
patterns when bee richness and bee abundance were substitut-
ed for pollinator richness and abundance in the analysis
(Table S2).

Greenhouse and field experiments

Our greenhouse experiment confirmed that jalapeños benefit
from outcross pollination. Mean fruit weight was higher in
closed outcross (CO) plants (19.69 g ± 1.12 SE) than for
closed self-cross (CS) plants (13.39 g ± 1.29 SE, p =
0.0015). Likewise, mean seed number was higher in closed
outcross (CO) plants (83.50 g ± 11.71 SE) than for closed self-
cross (CS) plants (34.60 g ± 9.28 SE) (p < 0.0001).

For plants placed in the field, mean fruit weight was 8.28 g
(± 1.67 SE), 12.28 g (± 2.04 SE), and 16.92 g (± 1.32 SE), for
the closed treatment (C), open treatment (O), and outcrossed-
open (OO) treatment, respectively (Fig. 2). Fruit weight was
significantly greater in the OO treatment compared to the C
treatment (p = 0.0005). Fruit weight was not significantly
greater between the O and OO treatment (p = 0.078), and not
significantly different between the O and C treatments (p =
0.144). For these same plants, the mean seed number was
23.84 (± 6.60 SE), 39.42 (± 12.11 SE), and 48.36 (± 8.71
SE) for the closed treatment (C), open treatment (O), and
outcrossed-open (OO) treatment, respectively. Seed number
was significantly different between all treatment comparisons
(p < 0.0001).

Discussion

Our findings highlight a critical interaction between floral
abundance and pollinator community features, with conse-
quences for pollination services in urban landscapes. First,
we found that pollinator abundance was significantly higher
in urban gardens with less mulch, but was unaffected by other
local and landscape factors. Second, we found that jalapeño
seed number was significantly and positively impacted by the
interaction between pollinator richness and the number of
flowers, where the more flowers there are in the garden, the
more positive the relationship between pollinator richness and
seed number, likely through increased pollinator functional
complementarity. In contrast, we found that gardens with high
floral abundance had lower seed number when they supported
high pollinator abundance, likely through forager dilution ef-
fects on plant reproduction. Finally, we observed that jalapeño
plant reproduction was significantly higher for insect-
mediated treatments (open and open-outcross treatments)
compared to no pollination treatments, and highest in the
outcross-pollination treatments.

Table 1 (a) Base linear model of pollinator abundance and (b) best
model, calculated as model average of the best three models (all within
Δ 2AICc, model details in methods). Intercepts are scaled values. (Signif.
code:‘*’ 0.05, ‘**’ 0.01, ‘***’ 0.001)

(a) base lm of pollinator abundance, Poisson distribution

Coefficients

Estimate Std. Error T-value Pr(>|t|)

Intercept 133.316 9.841 13.547 4.82e-09 ***

Herbacous Plant Richness 20.439 10.546 1.938 0.075

Natural Cover (2 km) 16.560 10.971 1.509 0.155

Number Woody Plants −9.027 11.688 −2.572 0.023*

% Mulch Cover −29.934 11.638 −2.572 0.023

Number of Flowers −7.343 12.819 −0.573 0.577

(b) best model

Model-averaged coefficients (full avg.)

Estimate Std. Error Z-value Pr(>|z|)

Intercept 133.316 10.404 11.839 <2e-16 ***

% Mulch Cover −28.686 11.661 2.291 0.022 *

Herbacous Plant Richness 9.996 12.119 0.797 0.425

Natural Cover (2 km) 6.289 10.883 0.561 0.575

Number Woody Plants −2.494 7.059 0.341 0.733

Number of Flowers −1.302 5.419 0.232 0.816
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Local and landscape impacts on pollinator abundance
& richness

Previous studies have found that garden size, annual floral
resources, and woody perennial plants are associated with
bee abundance and richness (Quistberg et al. 2016; Matteson
and Langellotto 2009). We did not find that floral abundance
(which was colinear with garden size in this system) impacted
pollinator abundance and richness, possibly because many
commonly grown flowers in urban garden systems are not
used by pollinators (Lowenstein et al. 2019). However, local
groundcover management, specifically, the proportion of soil
covered with mulch, was significantly and negatively corre-
lated with pollinator abundance. Mulch was also negatively
correlated with pollinator richness, although not significantly.
Mulch is negatively associated with the availability of bare
soil in many urban gardens (e.g. Quistberg et al. 2016;
Ballare et al. 2019), and many bee and non-bee pollinators
use bare soil for their nest sites. Previously, in the same study
system (Quistberg et al. 2016), a large fraction of the bee
community in the study region was comprised of below-
ground nesting species (61% of morphospecies), and the
abundance of these species was positively correlated with bare
ground availability. Our results resonate with past research
within this system and in other systems that also find a posi-
tive correlation between bare ground availability and urban
bee abundance (Frankie et al. 2009; Pardee and Philpott
2014; Ballare et al. 2019), indicating that nesting resource
availability can be a critical factor structuring urban pollinator

communities. In other words, our results suggest that urban
gardeners may be able to promote pollinator abundance by
reserving undisturbed patches of bare soils in their urban
gardens.

Local, landscape, and pollinator impacts
on pollination

For our open-pollination treatments, pollinator richness was
associated with increased seed set, a relationship that is well-
documented in previous literature. A diverse community may
enhance ecosystem services through functional complemen-
tarity (Loreau and Hector 2001, Finke and Snyder 2008,
Cardinale et al. 2011), which has been found for pollinator
diversity and plant reproduction in rural (Fründ et al. 2013a;
Mallinger and Gratton 2014; Martins et al. 2015) and urban
(Lowenstein et al. 2015) agricultural systems. This is because
diverse pollinator communities exhibit species-specific spatial
and temporal variation in floral foraging traits and behavior
that likely influence plant reproduction (Hoehn et al. 2008;
Pisanty et al. 2015). From the plant’s viewpoint, temporal
and environmental variation in pollinator species’
morphology (Larsen et al. 2005; Greenleaf et al. 2007) and
behavior (Blüthgen and Klein 2011; Rader et al. 2011;
Martins et al. 2015) contributes to complementary effects on
pollination. The importance of functional complementary has
been documented for pollination in urban systems comprised
of specialist and generalist pollinators (Cane et al. 2006; Pauw
2007).

Table 2 (a) Base generalized
linear model of seed number with
a Poisson distribution and (b) the
single best model (no other
models within Δ 2 AICc, model
details in methods). Intercepts are
scaled values. (Signif. code:‘*’
0.05, ‘**’ 0.01, ‘***’ 0.001)

(a) base glm of seed number, Poisson distribution

Coefficients

Estimate Std. Error Z-value Pr(>|z|)

Intercept 3.273 0.059 55.890 <2e-16 ***

Herbacous Plant Richness 0.231 0.046 5.052 4.36e-07 ***

Number Woody Plants 0.404 0.057 7.045 1.85e-12 ***

Natural Cover (2 km) −0.452 0.067 −6.762 1.36e-11 ***

% Mulch Cover 0.015 0.072 0.210 0.834

Number Pollinators: Number Flowers −0.468 0.078 −6.018 1.77e-09 ***

Number Flowers: Richness Pollinators 0.338 0.056 6.027 1.67e-09 ***

(b) best model

Coefficients

Estimate Std. Error Z-value Pr(>|z|)

Intercept 3.272 0.058 55.964 <2e-16 ***

Herbacous Plant Richness 0.234 0.043 5.405 6.49e-08 ***

Number Woody Plants 0.405 0.057 7.058 1.69e-12 ***

Natural Cover (2 km) −0.445 0.057 7.850 4.17e-15 ***

Number Pollinators: Number Flowers −0.472 0.076 −6.230 4.66e-10 ***

Number Flowers: Richness Pollinators 0.340 0.056 6.112 9.83e-10 ***
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Consistent with previous studies in natural (Blaauw and
Isaacs 2014b) and urban systems (Potter and LeBuhn 2015;
Davis et al. 2017), our study indicates that pollination function
is strongly impacted by floral resources in the habitat. We
found that the relationship between pollinator richness and
seed set became steeper in gardens with high floral abun-
dance. This may be due to impacts of floral resource availabil-
ity on pollinator foraging behavior. Floral quantity, structure,
and diversity at local scales can concentrate pollinator activity
(Veddeler et al. 2006) and can influence plant constancy
(Kunin and Iwasa 1996), preference (Hambäck 2001), and
pollen deposition (Lortie and Aarssen 1999). One methodo-
logical limitation to this study is that we relied on visual
counts to sample pollinators, which may alter our ability to
compare our results with other collection-based pollination
studies. For example, Quistberg et al. 2016 collected pollina-
tors with pan traps and netting and reported 55 unique species
in this system, whereas we only identified 22 morphospecies,
likely because visual surveys often miss rare species (Bosch
et al. 2009). However, past studies have found that visual
surveys are representative of the pollinator community and
can be useful methods when destructive sampling is not pos-
sible (Mandelik et al. 2012). Further, past studies have often
focused on bees as key pollinators, and while pepper flowers
are visited by a wide range of insects, they do benefit from
buzz pollination provided by bees (Raw 2000). We therefore
modeled the impact of bees on crop seed number and found
similar patterns (Table S2). Another caveat to our findings is
that study does not distinguish between floral visitors and
pollination visits (King et al. 2013), as we do not measure
pollen loads or pollen deposition. This may be important

Fig. 2 Box and whisker plots of hand pollination field experiments with
resulting (a) Fruit weight and (b) Seed number, where the box is bounded
by the 25th and 75th percentile (50th percentile indicated by central
horizontal line), the whiskers represent 1.5 x the interquartile range, and
the points represent outliers. Boxes with the same letter are not signifi-
cantly different, while those with no common letters are significantly
different (p < 0.001)

Fig. 3 Mean mulch cover as a predictor of the number of pollinators in a
linear model. The shaded area represents the standard errors
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because landscape composition and agricultural management
can impact pollinator foraging behavior (Moreirra et al. 2015)
and may impact resulting pollen deposition (Werrell et al.
2009). However, the benefit of observing all floral visitors,
regardless of pollen transfer, is that the diversity of these in-
teraction webs is known to enhance the persistence of plant
communities (Fontaine et al. 2005) and inter-specific, indirect
interactions have been shown to promote pollination of crops
(Greenleaf and Kremen 2006).

While we found that the impact of pollinator richness on
seed set becomes stronger in floral-abundant habitats, we
found that the impact of pollinator abundance on seed set
becomes weaker. This may indicate a per-plant dilution effect
in which pollinator densities at flowers decrease in resource-
dense patches. This has been previously observed in a prairie
system when flower density was increased (Wenninger et al.
2016), possibly due to competition between pollinator indi-
viduals in abundant communities of pollinators. The underly-
ing mechanism for why high pollinator abundance without
species richness leads to greater competition is likely the same
mechanism that promotes co-existence within all communi-
ties: intraspecific competition is assumed to be greater than
interspecific competition (reviewed in Chesson 2000).

Competition might translate into negative effects on plant re-
production if the energetic costs of foraging are minimized by
avoiding competitive interactions at floral sites (Charnov
1976). Additionally, high resource density patches might pro-
vide fewer resources for abundant foragers due to saturation
effects (Totland and Matthews 1998; Andersson et al. 2013),
wherein floral resources attract an abundance of pollinators
but there are not enough resources if they all rely on the same
pollen and nectar types. Thus, effects to pollination should be
more pronounced in low-diversity pollinator communities.
While some research has suggested that the presence of dilu-
tion effects depends on pollinator species identity and their
behavior (Jha and Vandermeer 2009), further research is re-
quired to examine how species-specific pollinator foraging
traits differentially mediate pollination outcomes across a gra-
dient of resource landscapes.

Our finding that increasing floral resources only mediates
plant reproductive success when pollinator richness is high is
pertinent because urbanization is associated with increased
homogenization of pollinator communities (Deguines et al.
2016; Harrison et al. 2018; Fitch et al. 2019; Wilson and
Jamieson 2019). In rural agricultural systems, Kleijn et al.
found that a few abundant species provide the bulk of

Fig. 4 Impact of the interaction between richness of pollinators and
number of flowers on seed number from the glm (Poisson) model. In
order to visualize the interaction, the panels represent a split in the data
at the average median floral abundance cover across sampling periods

and gardens (41 flowers). The left panel (low floral abundance) represents
gardens with less-than or equal to the median number of flowers, the right
panel (high floral abundance) represents gardens with more the median
number of flowers. The shaded area represents standard errors
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pollination services (Kleijn et al. 2015), but our findings sug-
gest that the importance of pollinator richness likely varies
between urban systems and rural agricultural systems, possi-
bly because resource pulses in urban systems are not predict-
ably constrained to seasonable mass-bloom events. Within
urban gardens, past studies have shown that pollinator species
richness is mostly driven by floral diversity (Plascencia and
Philpott 2017), but we did not find this. More research is
needed on which species of flowers are most important for
bees; Lowenstein et al. found that the composition and iden-
tity of flowering resources may be more important than floral
abundance for predicting plant-pollinator interactions (2019).
Mechanistically, many pollinators require pollen and nectar
for calories (Tepedino and Parker 1982) and a greater diversity
of pollen has been linked to enhanced pollinator growth rates
(Tasei and Aupinel 2008) and pollinator diversity (Petanidou
and Vokou 1990). Taken together, these studies indicate that
efforts to provision for pollinators with floral plantings will
have the greatest impacts on seed set if they also promote
species-rich pollinator communities (rather than being domi-
nated by a few, abundant species).

We observed a positive influence of woody plant abun-
dance on pollination function. Many trees and shrubs planted

in urban gardens are fruit-producing with blooms that provide
nectar for a diversity of flies, wasps, and bees (Somme et al.
2016). Furthermore, trees and shrubs have been shown to
influence bee abundance and richness in past studies (Jha
and Vandermeer 2010; Pardee and Philpott 2014), and their
abundance in an agroecosystem is often predictive of crop
reproductive success (Garibaldi et al. 2013). We therefore
were surprised not to find a relationship betweenwoody plants
and pollinator richness or abundance. There may be other
indirect mechanisms by which trees and shrubs positively im-
pact pollination, for example, by modifying local microcli-
mate (Kilkenny and Galloway 2007). In this system, woody
plant availability was colinear with garden size, whichWerrell
et al. previously found to be important for con-specific pollen
deposition on experimental cucumber crops in urban gardens
(2009). The availability of woody plants may also influence
pollinator behavior (Klein et al. 2004; Williams 2011) and
increase overall pollen collection (Dyer et al. 2011). Overall,
our study highlights the importance of local habitat conditions
when managing for optimal ecosystem function. One possible
application of our findings is the suggestion that gardeners
plan for a combination of perennial woody plants and annual
herbaceous plant species in the garden.

Fig. 5 Impact of the interaction between number of pollinators and
number of flowers on seed number from the glm (Poisson) model. In
order to visualize the interaction, the panels represent a split in the data
at the averagemedian floral abundance cover across all of the gardens (41

flowers). The left panel (low floral abundance) represents gardens with
less-than or equal to the median number of flowers, the right panel (high
floral abundance) represents gardens with more the median number of
flowers. The shaded area represents standard errors
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We found that the amount of natural habitat surrounding a
garden had a negative effect on seed number. While we had
hypothesized that natural cover would enhance beneficial in-
sect movement between crop and non-crop habitat, as seen in
many rural landscapes (e.g., Chaplin-Kramer et al. 2011;
Klein et al. 2012; Cusser et al. 2016), we did not find this
pattern, likely because of our crop selection and the urban
landscape. First, our focal crop, the C. annuum pepper, is
not found in natural habitat fragments, so pollinators recently
visiting natural habitat are not likely to carry conspecific pol-
len. Second, we posit that pollinators in urban landscapes may
not always be moving from natural habitat into gardens.
Third, given the challenges of traversing private property sur-
rounding the gardens, we could not ground-truth to verify the
landcover data for the region. Indeed, past studies in our study
system have found that natural habitat cover does not have the
expected positive impact on pollinator abundance and rich-
ness (Quistberg et al. 2016) or pest-control provision (Egerer
et al. 2017). These findings corroborate those of Gaines-Day
and Gratton (2016), which indicate that wild bees may prefer
to remain locally when surrounded by less hospitable land-
scapes. In another study of urban gardens in New York City,
Matteson & Langellotto found that 45% of marked bumble
bee individuals were later collected in the gardens where they
had initially been documented, indicating that bumble bees,
otherwise long-distance foragers, may largely forage within a
single garden in urban areas (Matteson and Langellotto 2009).
Based on the findings and other similar intensely managed
landscapes, it is possible that within-garden habitat features
may play a disproportionally large role in mediating pollinator
foraging and nesting patterns in urban landscapes.

Greenhouse and field pollination experiments

For both the greenhouse and field-based experiments, jalapeño
seed number was significantly higher in open-outcross treat-
ments than in open treatments or closed treatments. This finding
highlights the importance of insect pollinators for enhancing the
reproduction of crops like jalapeño peppers, however, gardeners
likely benefit more from increased fruit weight than seed number.
We found that fruit weight followed similar patterns but was not
significantly different between treatments, possibly because fruit
is largely comprised of maternal tissue and can reach maximum
weight in peppers even when seed number is low (Marcelis
1997). Furthermore, to asses fruit weight we measured wet
weight, not dry weight. While plants were watered in a standard-
izedmanner under homogenous greenhouse conditions, it is pos-
sible that slight differences in watering could influence fruit
weight data. We found that the fruit weight and seed number
of plants grown in greenhouse conditions (across all treatments)
were higher than those grown in the field, perhaps due to the
optimal climate conditions provided by greenhouses for peppers
(Bakker 1989; Shaked et al. 2004; Pagamas and Nawata 2008).

Conclusions

Animal-mediated pollination is critical for the majority of
flowering wild plant species (Ollerton et al. 2011) and within
agricultural systems, where more than 75% of domesticated
crops show increases to fruit or seed set (Klein et al. 2006). In
this study, we add to the body of literature suggesting that insect
pollination is an essential part of successful plant reproduction in
urban systems (Verboven et al. 2014, Leong et al. 2014,
Lowenstein et al. 2015, Potter and LeBuhn 2015).
Furthermore, while resource-driven foraging interactions have
been documented to impact pollinator visitation in simulated
models (Essenberg 2012), grasslands (Totland and Matthews
1998floodplains (Ebeling et al. 2008), and rural agricultural sys-
tems (Veddeler et al. 2006; Jha and Vandermeer 2009; Evans
et al. 2017; Xie et al. 2019), our study is the first to document this
interaction mediating plant reproduction within urban land-
scapes. Specifically, we show that when urban garden floral
density is high, increasing pollinator richness (and not pollinator
abundance) increases crop reproductive success. In other words,
our study indicates that local pollinator foraging interactions can
significantly influence ecosystem service provision. To achieve
optimal pollination services in their urban gardens, more research
is needed to identify which practices optimize for both pollinator
richness and floral resource availability.
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