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Background—People with human immunodeficiency virus (HIV) infection (PWH) are at higher 

risk of myocardial infarction (MI) than those without HIV. About half of MIs in PWH are 

type 2 (T2MI), resulting from mismatch between myocardial oxygen supply and demand, in 

contrast to type 1 MI (T1MI), which is due to primary plaque rupture or coronary thrombosis. 

Despite worse survival and rising incidence in the general population, evidence-based treatment 

recommendations for T2MI are lacking. We used polygenic risk scores (PRS) to explore genetic 

mechanisms of T2MI compared to T1MI in PWH.

Methods—We derived 115 PRS for MI-related traits in 9,541 PWH enrolled in the Centers for 

AIDS Research Network of Integrated Clinical Systems cohort with adjudicated T1MI and T2MI. 

We applied multivariate logistic regression analyses to determine the association with T1MI and 

T2MI. Based on initial findings, we performed gene set enrichment analysis of the top variants 

composing PRS associated with T2MI.

Results—We found that T1MI was strongly associated with PRS for cardiovascular disease, 

lipid profiles, and metabolic traits. In contrast, PRS for alcohol dependence and cholecystitis, 

significantly enriched in energy metabolism pathways, were predictive of T2MI risk. The 

association remained after the adjustment for actual alcohol consumption.

Conclusions—We demonstrate distinct genetic traits associated with T1MI and T2MI among 

PWH further highlighting their etiological differences and supporting the role of energy regulation 

in T2MI pathogenesis.

Keywords

Type 1 myocardial infarction; type 2 myocardial infarction; HIV; polygenic risk score; energy 
metabolism

1. Introduction

Antiretroviral therapy (ART) has significantly improved the survival of people with human 

immunodeficiency virus (HIV) infection (PWH). Yet, the burden of cardiovascular disease 

(CVD), particularly myocardial infarction (MI), remains higher in PWH than in uninfected 

persons [1–3]. Several studies have identified HIV-related risk factors that contribute to 

elevated MI risk among PWH, including low CD4 cell counts, chronic inflammation, 

and ART-related dyslipidemia [3, 4]; however, to date, traditional and HIV-related CVD 

risk factors do not fully explain the increased MI rates among PWH. Moreover, ~50% 

of MIs among PWH are type 2 MI (T2MI) [5, 6], resulting from a mismatch between 

myocardial oxygen supply and demand [7, 8], rather than type 1 MI (T1MI) which are 

due to primary plaque rupture or coronary thrombosis. Importantly, the rates of T2MI 

are also increasing in the general non-HIV population reportedly consisting of up to 43% 

with an MI meeting the definition of T2MI [9]. Causes of the myocardial oxygen supply 

and demand mismatch of T2MI include severe anemia, sepsis, hypertensive emergency, 

arrhythmias, heart failure, and vasospasm such as due to use of cocaine or other illicit 

drugs, among others, and the relative contributions of each likely differs between PWH 

and the general population [5, 10]. Furthermore, T1MI has a clear set of guideline-

based recommendations for treatment, focusing on thrombolysis and reperfusion of the 

myocardium. In contrast, optimal evaluation and therapeutic strategies for T2MI, including 
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its heterogeneous underlying disease contributors and risk factors for recurrence, have yet 

to be defined [11] and poorer long-term survival has been reported both among those 

with and without HIV [2, 12]. Accumulating evidence suggests that T1MI and related 

cardiometabolic traits, including lipid levels, body weight, insulin resistance, blood pressure, 

and many others, have a strong genetic component, with multiple common variants of 

small effect involved in risk variability [13–16]. Polygenic risk scores (PRS) have been 

implemented to evaluate cumulative genetic burden across multiple susceptibility loci based 

on genome-wide association studies (GWAS) [17, 18]. It has been shown that individuals at 

the top 10% of the PRS distribution for CVD [19] have a 2.9-fold increased risk and those 

at the top 1% had a 4.8-fold higher risk of developing the disease compared to people in 

the bottom 90% and 99%, respectively [20]. Furthermore, PRS based on the top 27 single 

nucleotide polymorphisms (SNPs) previously associated with CVD has been predictive 

of outcomes in primary and secondary prevention trials of statin therapy, demonstrating 

the largest benefit in individuals at the highest quintile of PRS [21]. Recent studies have 

shown the predictive value of a CVD-associated PRS in the risk of subclinical CVD in 

PWH, especially when combined with the clinical and HIV-related risk factors [22, 23]. 

However, to the best of our knowledge, while prior GWAS looked at CVD, stroke and 

MIs, predominantly T1MIs, no GWAS of T2MI or comparisons of T1MI and T2MI have 

been reported, limiting our ability to discern the genetic factors underlying T2MI etiology. 

Focusing on a high risk subgroup can help elicit biological underpinnings of T2MI and 

develop risk stratification strategies.

To understand the different risk factors, courses, and prognosis for MI types in PWH, 

we established an MI adjudication protocol in the Centers for AIDS Research Network 

of Integrated Clinical Systems (CNICS) cohort which enables the central adjudication and 

categorization of MIs by type in PWH [24]. The goal of the present study was to apply a set 

of PRS corresponding to various traits and diseases to identify major genetic determinants 

of T2MI and compare them to the known genetic risks for T1MI. We hypothesized that 

the CVD traits, key for T1MI, would not be important drivers for T2MI highlighting the 

differences in these outcomes. We further hypothesized that genetic contributors to T2MI 

risk among PWH would be heterogeneous, consistent with the wide range of causes of T2MI 

among PWH. A fuller understanding of the pathogenetic basis of T2MI occurrence may help 

identify individuals at risk and facilitate development of targeted interventions, regardless of 

HIV infection status.

2. Methods

2.1. Cohort description

CNICS is a prospective longitudinal observational cohort of PWH receiving routine 

clinical care at eight sites in the United States [25]. The CNICS data repository 

integrates comprehensive longitudinal data from outpatient and inpatient encounters. It 

captures standardized HIV-related information collected at enrollment (initial clinic visit); 

demographic characteristics; laboratory test results; prescription medications; and clinical 

diagnoses from each site’s electronic health record and other institutional data sources. This 

provides rich longitudinal phenotype data including laboratory data, medications such as 
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lipid-lowering therapies, antihypertensive medications, and ART; diagnoses; and vital status. 

Seven of eight sites have initiated centralized MI adjudication to not only improve the 

accuracy of identifying MIs over diagnoses alone, but also to categorize MIs by type based 

on the Universal Definition of MI [5, 24, 26, 27]. PWH also complete the CNICS clinical 

assessment of patient reported measures and outcomes (PROs) on touch-screen tablets at 

routine clinic visits every ~4–6 months [28, 29]. This provides rich phenotype data on 

domains such as drug and alcohol use for most PWH in CNICS. PWH who are medically 

unstable, appear intoxicated, have a cognitive impairment, or do not speak English, Spanish, 

or Amharic are not asked to complete the clinical assessment. The PRO clinical assessment 

was initiated at the first site in 2007, with most sites initiating around 2010, and the last site 

starting in 2018; therefore, this information is missing in a subset of CNICS participants.

2.2. Study eligibility

CNICS has an ongoing genetics project in which adult PWH across racial/ethnic 

backgrounds from all sites, who provided informed consent and contributed specimens to 

the CNICS biospecimen repository, are being genotyped. PWH were included in this study 

if they had been genotyped and were in care at one of the seven sites after MI adjudication 

began. While genotyping is ongoing, at the time this study was conducted, 9,541 PWH had 

been successfully genotyped from the seven sites and met study eligibility.

2.3. Covariates

Demographic and clinical covariates of interest included birth sex, age (calculated at index 

MI or study exit), race/ethnicity, ART status, and CD4 cell count, and other clinical values 

including body mass index (BMI), HIV viral load, hemoglobin A1c, total cholesterol (TC), 

high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), 

triglycerides, systolic and diastolic blood pressure, and serum glucose. ART status (on 

versus off) was based on an ART regimen at the time of MI or study exit. The lab value 

closest to but before the index date was used. Index data was the date of the MI for PWH 

with a type 1 or type 2 MI or the study exit date for those who did not have an MI 

during follow-up. PROs such as smoking (measured using the National Institute of Drug 

Abuse-modified Alcohol, Smoking and Substance Involvement Test [30, 31]) and alcohol 

use (measured using the Alcohol Use Disorders Identification Test [32, 33]), were available 

from the subset of PWH who were in care after PRO initiation at their site [25].

2.4. Myocardial infarction classification

Potential MIs were identified retrospectively in the CNICS data repository by MI clinical 

diagnoses, cardiac biomarkers, and procedures [5, 24]. MI adjudication is ongoing and 

completion dates vary slightly by site but includes events from ~2000–2017. Sites prepare 

de-identified packets including provider notes, electrocardiograms, laboratory reports, and 

results of imaging and procedures. Potential MIs are centrally adjudicated by two expert 

physicians and discrepant results are reviewed by a third expert physician. Reviewers 

classify each MI as type 1 or type 2, and in the case of T2MI the suspected cause(s) is 

recorded [5, 24]. Other MI types (types 3, 4, and 5) were not included as they are rare. For 

example, there are less than 10 cardiac procedure-related MIs (type 4 and type 5) in CNICS 

to date.
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2.3. Genotyping and Imputation

DNA was isolated from peripheral blood mononuclear cells or buffy coats using the 

FlexiGene DNA kit (Qiagen, #51206). We used Illumina high-density Infinium Multiethnic 

Global Array series BeadChips to generate genotype data. Variant calling was conducted 

using GenomeStudio® Genotyping Module v2.0 software (Illumina®, San Diego, California, 

USA) and zCall [34]. SNPs with call rates < 95%, minor allele frequency < 1%, and 

samples with call rates < 90%, sex discrepancies between genotype data and self-report, 

and pairwise identity-by-descent pi-hat > 0.9 were removed using PLINK v.1.9 [35]. For 

imputation, ancestry was inferred using GRAF-pop software [36] and genotype data imputed 

separately in each ancestral group (European, African, and other) using the Trans-Omics 

for Precision Medicine (TOPMed) reference panel. To retain variants with high quality, we 

used imputation quality score of r2 > 0.3 and followed standard quality control procedures 

[37, 38]. Principal components analysis (PCA) was performed using PLINK v.1.9 with 

the derived principal components (PCs) included as covariates in the regression models to 

control for population stratification.

2.4. Polygenic risk score analysis

For each CNICS participant, we calculated 115 PRS representing 10 disease and trait 

categories known to be associated with MI based on previous studies. These categories 

include cardiovascular disease [39–42], hypertension [43], dyslipidemia [44], BMI [45], 

birth weight [46], kidney disease [47–49], substance use [50, 51], type 2 diabetes [52–54], 

and gall bladder disease [55, 56]. We used linear combinations of imputed genotype dosages 

[57] based on the association summary statistics of corresponding previously published 

formulas or trained on GWAS summary level data (Supplementary Table S1). Prior to 

PRS calculation, linkage disequilibrium-based pruning of SNPs was performed using 1000 

Genomes using European and African reference panels in PLINK and highly redundant 

SNPs (r2≥0.5) were removed. Associations of PRS with T1MI and T2MI were evaluated 

using multivariable logistic regression adjusted for birth sex, age, race/ethnicity, top 5 

PCs, study site, ART use, and CD4 cell counts. In subgroup analyses, the effects of lipid 

lowering drugs (statin use, ever versus never), as well as alcohol consumption (drinks per 

week), were also assessed. We used a study-wise statistical significance threshold of 0.005 

(0.05/10 phenotypic categories) to correct for multiple hypothesis testing while accounting 

for correlated PRS derived for the same trait from different GWAS. We considered the 

results significant if consistent association was detected between MI status and PRS from at 

least two GWAS.

2.5. Expression quantitative trait loci and gene set enrichment analyses

Based on the initial findings, to explore potential genetic mechanisms linking T1MI and 

T2MI to the most significant PRS, we first sorted the SNPs composing respective PRS 

based on the GWAS of coronary artery disease (CAD) [58], alcohol dependence (FT12 

cohort) [59], and cholecystitis [60] by absolute effect weights or GWAS p-values, whichever 

was available. We then examined if these SNPs were eQTLs (SNPs underlying expression 

quantitative trait loci) at false discovery rate (FDR) [61] < 0.1 in CAD-relevant tissues 

(atherosclerotic aortic root, liver, subcutaneous fat, skeletal muscle, and visceral abdominal 
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fat) from the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task study 

[62]. We allowed for each eQTL to map to one or more genes. The top 200 genes 

driving eQTLs for each of the three PRS were used to conduct a gene set enrichment 

analysis in Enrichr [63], a web server currently supporting 358,534 terms and 183 libraries 

(https://maayanlab.cloud/Enrichr/, Kyoto Encyclopedia of Genes and Genomes, or KEGG, 

database, last access August 2021) in each tissue separately, to identify biological pathways 

potentially associated with T1MI or T2MI.

3. Results

3.1. Cohort characteristics

Of the 9,541 PWH in CNICS who had genotype data available at the time of this analysis, 

there were 523 adjudicated MIs; 294 T1MI and 229 T2MI. The study cohort consisted of 

79% males, 49% African Americans, 39% Europeans, 10% Hispanic/Latino, and 1% Asians 

(Table 1). The prevalence of T1MI and T2MI was 3.1% and 2.4%, with 2.9 T1MIs per 1000 

person-years, and 2.3 T2MIs per 1000 person-years, respectively. PWH with T2MI were 

more likely to be of African American ancestry (70% versus 47%) and have lower BMI 

(26.3 kg/m2 versus 27.5 kg/m2; P=0.005), TC (162 mg/dL versus 188 mg/dL; P=2.3×10−9), 

LDL (85 mg/dL versus 109 mg/dL; P=3.2×10−11), and triglycerides (185 mg/dL versus 

204 mg/dL; P=0.005), compared to T1MI. They also had significantly higher viral load 

(77,716 versus 22,194 copies/mL; P=0.0001) and lower CD4 counts (351 cells/mm3 versus 

530 cells/mm3; P=6.8×10−10). PWH with either T1MI or T2MI had higher glucose levels, 

hemoglobin A1C, and systolic blood pressure and lower HDL compared to PWH with no 

MI. Also, PWH with T2MI were less likely to be on ART than those with T1MI or no MI 

(91%, 96%, and 97%, respectively; P=0.03 between T1MI and T2MI; Table 1).

3.2. PRS analysis

Of the 115 PRS (Supplementary Table 1), 31 were associated with T1MI, with 19 

remaining significant after adjustment for multiple hypothesis testing. Several PRS for CAD, 

angina and stroke, lipoprotein levels such as TC, LDL, and apolipoprotein, and type 2 

diabetes were associated with higher risk of T1MI, while PRS for birth weight showed 

an inverse correlation with T1MI (Fig. 1; Supplementary Table S1). For T2MI, the most 

consistent positive association was detected with PRS for alcohol dependence, quantified 

by three different PRS: (1) PRS-problematic alcohol use (PAU) derived from a GWAS 

on the problem subscale from the Collaborative Study on the Genetics of Alcoholism 

(COGA, PRS-PAU-COGA [59]; OR=1.23 [95%CI 1.01–1.49] per standard deviation of 

PRS, unadjusted P=0.04), (2) PRS-Alcohol Drink Per Week (ADPW) derived from the 

GWAS & Sequencing Consortium of Alcohol and Nicotine Use (GSCAN [64]; OR=1.24 

[95%CI 1.03–1.51] per standard deviation of PRS, unadjusted P=0.04), and (3) PRS-PAU 

from the FinnTwin12 study (FT12, PRS-PAU-FT12 [59]; OR=1.36 [95%CI 1.12–1.65] per 

standard deviation of PRS, unadjusted P=0.002), the latter remaining statistically significant 

after adjustment for multiple testing (P=0.02; Fig. 1). Also, PWH with T2MI had higher 

PRS for cholecystitis, type 2 diabetes, and waist-hip ratio (Fig. 1; Supplementary Table S1). 

These associations did not substantially change after adjustment for statin use or type 2 

diabetes (Supplementary Table S1). Moreover, PRS for type 2 diabetes was independently 
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associated with both T1MI and T2MI when included alongside PRS-CAD or PRS-PAU-F12, 

respectively (Supplementary Table S2). Also, ART use was associated with a significant 

reduction in T2MI (OR=0.25 [95%CI 0.15–0.43, P=1.3E-07) and to a lesser extend in T1MI 

(OR=0.53 [95%CI 0.29–1.08, P=0.06; Supplementary Table S2).

In the sub-cohort with PRO data (N=6,397), adding reported alcohol consumption per 

week to the model did not change the magnitude of the association between various alcohol-

related PRS and T2MI, even though statistical significance was slightly weakened due 

to the reduction in the sample size (Table 2). These results suggest that genetic variants 

composing PRS for alcohol dependence, rather than actual drinking, contribute to the risk 

of T2MI. We did not observe genetic associations between PRS for atrial fibrillation, sepsis 

or anemia, previously reported in patients presenting with T2MI [10], and T2MI diagnosis 

(Supplementary Table 1).

3.3. Gene set enrichment analysis

To account for the variation in the sample size of original GWAS and different number of 

SNPs used in PRS derivation for various traits, we selected the top 200 genes regulated by 

the eQTLs comprising each PRS-PAU-FT12, PRS-cholecystitis or PRS-CAD. Metabolism 

of xenobiotics by cytochrome P450, drug metabolism, and bile secretion pathways were 

enriched in both PRS-PAU-FT12 and PRS-cholecystitis (all in the liver; Fig. 2). eQTLs from 

PRS-PAU-FT12 were also significantly enriched in the tyrosine metabolism (in the aortic 

root) and in ascorbate and aldarate metabolism, pentose and glucoronate interconversions, 

and retinol metabolism (in the liver; Fig. 2), whereas eQTLs from PRS-cholecystitis were 

also significantly enriched in the glutathione metabolism (in the liver). The cholesterol 

metabolism pathway was enriched in both PRS-cholecystitis (in the liver, foam cells and 

macrophages) and PRS-CAD (in the liver and visceral fat). In addition the PRS-CAD-

associated eQTLs were enriched in the hepatocellular carcinoma and lysosome pathways.

4. Discussion

In this study, we applied a series of PRS linked to cardiovascular disease, metabolic and 

anthropometric traits, and risky behaviors, to a large, well-characterized cohort of PWH 

with adjudicated MIs to explore underlying mechanisms of T1MI and T2MI in a high risk 

population. We found that, as expected, T1MI was strongly associated with different PRS 

representing genetic risk burden for CVD and related risk factors. In contrast, PWH with 

T2MI had higher PRS for alcohol dependence and cholecystitis. PRS associated with T1MI 

were driven by genetic variants that are enriched in the lipid metabolism and lysosomal 

function, whereas those linked to T2MI controlled expression of genes enriched in energy 

metabolism. Our results highlight previously observed key clinical differences between 

T1MI and T2MI and the need for adjudication to allow them to be distinguished, especially 

in genetic studies.

T2MI is believed to result from mismatch between myocardial oxygen supply and demand 

[7, 8, 10, 65, 66], in contrast to T1MI, which is due to primary plaque rupture or coronary 

thrombosis. The ability of the heart to prioritize energy producing substrates between 

glucose metabolism and free fatty acids, especially during cardiac ischemia, is critical 
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and can be, at least in part, genetically determined. Apart from requiring higher oxygen 

expenditure than glucose metabolism, elevated free fatty acid uptake leads to reduced 

contractile function and arrhythmia generation, which is common in patients with T2MI 

[10]. We found that top loci comprising PRS-PAU-F16 were enriched for the ascorbate 

and aldarate metabolism, pentose and glucoronate interconverions, retinol metabolism, 

metabolism of xenobiotics by cytochrome P450, drug metabolism, and bile secretion in the 

liver and for tyrosine metabolism in the aortic root. Ascorbate and aldarate metabolism and 

pentose and glucoronate interconverions were among the 34 pathways disturbed during early 

stages of experimental myocardial ischemia.[67] Moreover, retinoids have been previously 

shown to regulate the expression of genes involved in hepatic glucose and lipid metabolism 

[68]. Certain xenobiotics particularly target the heart and promote toxicity. High levels of 

drugs of abuse, namely amphetamines, cocaine, and even the consumption of alcohol for 

long periods of time, are linked to cardiovascular abnormalities as oxidative stress may be 

one common link for cardiac toxicity associated with these compounds [69]. Furthermore, 

tyrosine kinases are critical in activating signaling pathways that regulate cell growth, 

differentiation, metabolism, migration, and apoptosis.

Given that the top variants composing the PRS that was associated with T2MI were derived 

from GWAS for alcohol dependence, we tested if the observed results were driven by 

genetic predisposition to alcohol addiction. We found no substantial differences after the 

adjustment for actual alcohol consumption in a sub-group analysis. Binge drinking has 

been previously associated with a higher risk for MI compared to no alcohol consumption 

[70, 71], though potential genetic mechanisms underlying this observation have not been 

fully elucidated. This finding suggests that PRS-PAU-FT16 may reflect the impaired genetic 

control of energy regulation and could be useful in the early recognition of myocardial 

ischemia regardless of alcohol intake.

PWH with T2MI were also more likely to have a higher PRS for cholecystitis. Interestingly, 

a large meta-analysis including nearly one million participants demonstrated a substantially 

higher risk of fatal and nonfatal CVD events among patients with a medical history 

of gallstone disease [56]. Beyond the observed clinical comorbidity, similar to PRS-PAU-

FT16, the top variants contributing to PRS for cholecystitis were enriched in the energy 

metabolism pathways, including metabolism of xenobiotics by cytochrome P450, drug 

metabolism, bile secretion and, suggestively, retinol metabolism. Interestingly, excess bile 

acids have been shown to decrease fatty acid oxidation in cardiomyocytes and cause heart 

dysfunction, a cardiac syndrome termed cholecardia [72]. The cholecystitis PRS-related 

variants were also enriched in the glutathione and cholesterol metabolism. Glutathione 

plays an important role in the cell, regulating multiple vital functions and may serve as 

a biomarker for ischemic stroke in the blood [73], whereas cholesterol is a precursor of 

bile acids among numerous other functions. Further studies are warranted to determine if 

individuals at the top percentile of these two PRS may benefit from metabolic support to 

the ischemic heart – a promising strategy to reduce infarct size and improve T2MI outcomes 

[74].

Importantly, in contrast to T2MI, T1MI patients had consistently higher genetic risk for 

CAD based on multiple independent GWAS studies, as well as higher PRS for a number 
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of lipid traits, which is supported by prior clinical data demonstrating that T2MI patients 

had less dyslipidemia compared to PWH with T1MI [9, 75]. Moreover, the top variants 

composing the PRS for CAD were significantly enriched in the cholesterol metabolism, 

lysosomal function and hepatocellular carcinoma. Dyslipidemia is one of the major risk 

factors for T1MI, while previous studies have shown an early disruption of lysosomes in the 

setting of MI [76]. While the link between PRS for CAD and hepatocellular carcinoma is 

not obvious, a distant cardioprotective mechanism involving hepatic cell mobilization to the 

ischemic myocardium in response to experimental myocardial ischemia-reperfusion injury 

has been reported [77]. Also, T1MI, but not T2MI, was associated with lower birth weight as 

assessed by independent PRS [78, 79]. Previous epidemiological studies have linked lower 

birth weight to the higher risk of CVD in the general population [80, 81]. Future studies 

should be designed to determine the predictive value across multiple PRS identified in our 

study to enhance T2MI risk stratification and diagnosis.

It is important to emphasize that the contribution of genetic predisposition to MI risk may 

differ in PWH. However, direct assessment of the effect of genotype × HIV interactions 

on CVD morbidity is challenging due to the lack of sizable cohorts composing of people 

with and without HIV with adjudicated outcomes. Our previous study has identified novel 

genetic loci involved in immune cell regulation and previously linked to HIV control, body 

composition, and risky behaviors, which were associated with dyslipidemia in PWH but not 

in a large population-based GWAS [82]. These findings suggest that certain genetic variants 

may lead to further immune perturbations that contribute to cardiometabolic risk, especially, 

or uniquely, in the presence of HIV infection. Well-powered GWAS in PWH are warranted 

to further expand these results.

The major strengths of this study are the inclusion of the large, well-characterized cohort of 

PWH with genome-wide genotype data and centralized MI adjudication. We also adjusted 

for ART and CD4 counts known to be predictive of MI risk in PWH. Furthermore, we 

used PROs to test whether it is genetic determinants of alcohol dependence or actual 

alcohol intake that increase the risk of T2MI in PWH. There are also several limitations. 

Specifically, we calculated PRS using effect estimates from largely European GWAS, which 

are less generalizable, especially to the African-ancestry populations [83]. Further GWAS 

in diverse cohorts, as well as multi-ethnic PRS calculations, which have been shown to 

significantly improve disease prediction accuracy in cohorts of non-European ancestry [84], 

would allow us to refine our findings. Also, PRS accuracy heavily relies on the original 

GWAS size; smaller GWAS may be underpowered to properly select variants contributing 

to the PRS. That may explain the lack of association between T2MI and PRS for atrial 

fibrillation, sepsis or anemia, the phenotypes observed in patients presenting with T2MI 

[10]. Moreover, genetic determinants of other diseases or traits, which were not included in 

our PRS selection, could be involved in T2MI risk. Similarly, due to the lack of available 

GWAS, we were unable to confirm the contribution of genetic determinants to the principal 

mechanism shown to provoke T2MI, such as hypotension and hypoxia. In addition, we 

adjusted for the general ART use (yes vs. no), and did not differentiate between specific 

ART regimens. Moreover, despite being the largest genetic study reported in PWH, the 

number of T2MI cases was too small to conduct a GWAS to inform direct PRS-T2MI 

calculation. Future GWAS of adjudicated T2MI are needed to explore the genetic predictors 
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of disease pathogenesis. Lastly, we used Bonferroni correction to adjust for multiple testing 

for 10 traits and disease categories and not for each PRS, as PRS within each category were 

often highly correlated. We treated unadjusted significant associations between multiple 

PRS derived from different GWAS within the same phenotype category as a validation of 

our findings rather than a penalty. However, we could not completely rule out the overlap 

between the samples used in each independent GWAS. Further studies are warranted to 

replicate our findings.

4. Conclusions

In conclusion, using a set of PRS for various traits and diseases in a high risk cohort with 

adjudicated MI, we were able to reconstruct and expand on previously reported differences 

between T1MI and T2MI etiologies and identify potential genetic pathways associated with 

T2MI, whose incidence is high among PWH (~ half of MIs) and is increasing in the general 

population. Our approach might be useful to explore genetic determinants of other traits and 

diseases for which GWAS are not available.
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Highlights

• About half of myocardial infarction (MI) cases in people with HIV are type 

2 (T2MI), resulting from mismatch between myocardial oxygen supply and 

demand, in contrast to type 1 MI (T1MI), which is due to primary plaque 

rupture or coronary thrombosis, and the incidence is significantly rising in the 

general non-HIV population.

• Despite worse survival, evidence-based treatment recommendations for T2MI 

are lacking partially due to a poor understanding of the disease pathogenesis.

• An unbiased analysis of polygenic risk scores associated with 

cardiometabolic traits and diseases implicated energy regulation and other 

metabolic pathways in T2MI risk, while confirming the role of lipid 

metabolism in the development of T1MI.

• Further research into the key genetic drivers of T2MI pathogenesis is 

warranted to help stratify those at risk and inform therapeutic strategies.
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Fig. 1: Forest Plot of Association between Polygenic Risk Scores and Type 1 and Type 2 
Myocardial Infarction.
CAD, coronary artery disease; T1MI, type 1 myocardial infarction; T2MI, type 2 MI; LDL, 

low-density lipoprotein; WHR, waist to hip ratio, ADPW, alcohol drink per week, COGA, 

the Collaborative Study on the Genetics of Alcoholism, FT12, the FinnTwin12 study. In 

parenthesis, PubMed identification numbers. Shown are the odds of T2MI or T1MI risk 

by 1-standard deviation increases of the risk scores using multivariate logistic regression 

models.
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Fig. 2: Gene Set Enrichment Analysis of the Top Expression Quantitative Trait Loci Composing 
Polygenic Risk Scores for Alcohol Dependence, Cholecystitis, and Coronary Artery Disease.
P-values for enrichment are shown with and without adjustment for false discovery rate. 

Only the six tissues of nine tissues tested with at least one unadjusted P<0.05 for enrichment 

are shown. CAD, coronary artery disease.
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Table 2.

Multivariate analysis of type 2 myocardial infarction with and without adjustment for alcohol consumption per 

week.

Cohort Variable OR (95% CI) P value

Full cohort
(n =9,541)

PRS-PAU (COGA)[59] 1.23 (1.01–1.49) 0.036

PRS-PAU-FT12 [59] 1.36 (1.11–1.65) 0.002

PRS-ADPW[64] 1.22 (1.01–1.48) 0.037

Subset with alcohol consumption data
(n =6,397)

PRS-PAU (COGA)[59] 1.28 (1.07–1.11) 0.08

Alcohol consumption (drinks per week) 1.00 (0.97–1.03) 0.71

PRS-PAU-FT12 [59] 1.47 (1.11–1.96) 0.008

Alcohol consumption (drinks per week) 1.00 (0.97–1.03) 0.72

PRS-ADPW[64] 1.22 (1.02–3.61) 0.17

Alcohol consumption (drinks per week) 1.00 (0.99–1.04) 0.76

OR, odds ratio, 95% confidence interval (CI), 95% confidence interval; PAU, problematic alcohol use; ADPW, alcohol drink per week. All models 
were also adjusted for birth sex, age, antiretroviral therapy, CD4 cell counts, self-reported ethnicity, first five principal components for population 
stratification, and study site.
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