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Background—~People with human immunodeficiency virus (HIV) infection (PWH) are at higher
risk of myocardial infarction (MI) than those without HIV. About half of Mls in PWH are

type 2 (T2MI), resulting from mismatch between myocardial oxygen supply and demand, in
contrast to type 1 MI (T1MI), which is due to primary plaque rupture or coronary thrombaosis.
Despite worse survival and rising incidence in the general population, evidence-based treatment
recommendations for T2MI are lacking. We used polygenic risk scores (PRS) to explore genetic
mechanisms of T2MI compared to TIMI in PWH.

Methods—We derived 115 PRS for Ml-related traits in 9,541 PWH enrolled in the Centers for
AIDS Research Network of Integrated Clinical Systems cohort with adjudicated T1MI and T2MI.
We applied multivariate logistic regression analyses to determine the association with T1MI and
T2MI. Based on initial findings, we performed gene set enrichment analysis of the top variants
composing PRS associated with T2MI.

Results—We found that TIMI was strongly associated with PRS for cardiovascular disease,
lipid profiles, and metabolic traits. In contrast, PRS for alcohol dependence and cholecystitis,
significantly enriched in energy metabolism pathways, were predictive of T2MI risk. The
association remained after the adjustment for actual alcohol consumption.

Conclusions—We demonstrate distinct genetic traits associated with TIMI and T2MI among
PWH further highlighting their etiological differences and supporting the role of energy regulation
in T2MI pathogenesis.

Keywords

Type 1 myocardial infarction; type 2 myocardial infarction; HIV; polygenic risk score; energy
metabolism

1. Introduction

Antiretroviral therapy (ART) has significantly improved the survival of people with human
immunodeficiency virus (HIV) infection (PWH). Yet, the burden of cardiovascular disease
(CVD), particularly myocardial infarction (MI), remains higher in PWH than in uninfected
persons [1-3]. Several studies have identified HIV-related risk factors that contribute to
elevated MI risk among PWH, including low CD4 cell counts, chronic inflammation,

and ART-related dyslipidemia [3, 4]; however, to date, traditional and HIV-related CVD
risk factors do not fully explain the increased Ml rates among PWH. Moreover, ~50%

of MIs among PWH are type 2 MI (T2MI) [5, 6], resulting from a mismatch between
myocardial oxygen supply and demand [7, 8], rather than type 1 MI (T1MI) which are

due to primary plaque rupture or coronary thrombosis. Importantly, the rates of T2MI

are also increasing in the general non-HIV population reportedly consisting of up to 43%
with an MI meeting the definition of T2MI [9]. Causes of the myocardial oxygen supply
and demand mismatch of T2MI include severe anemia, sepsis, hypertensive emergency,
arrhythmias, heart failure, and vasospasm such as due to use of cocaine or other illicit
drugs, among others, and the relative contributions of each likely differs between PWH
and the general population [5, 10]. Furthermore, T1MI has a clear set of guideline-

based recommendations for treatment, focusing on thrombolysis and reperfusion of the
myocardium. In contrast, optimal evaluation and therapeutic strategies for T2Ml, including

Int J Cardiol. Author manuscript; available in PMC 2024 July 15.
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its heterogeneous underlying disease contributors and risk factors for recurrence, have yet
to be defined [11] and poorer long-term survival has been reported both among those

with and without HIV [2, 12]. Accumulating evidence suggests that TAMI and related
cardiometabolic traits, including lipid levels, body weight, insulin resistance, blood pressure,
and many others, have a strong genetic component, with multiple common variants of
small effect involved in risk variability [13-16]. Polygenic risk scores (PRS) have been
implemented to evaluate cumulative genetic burden across multiple susceptibility loci based
on genome-wide association studies (GWAS) [17, 18]. It has been shown that individuals at
the top 10% of the PRS distribution for CVD [19] have a 2.9-fold increased risk and those
at the top 1% had a 4.8-fold higher risk of developing the disease compared to people in
the bottom 90% and 99%, respectively [20]. Furthermore, PRS based on the top 27 single
nucleotide polymorphisms (SNPs) previously associated with CVD has been predictive

of outcomes in primary and secondary prevention trials of statin therapy, demonstrating

the largest benefit in individuals at the highest quintile of PRS [21]. Recent studies have
shown the predictive value of a CVD-associated PRS in the risk of subclinical CVD in
PWH, especially when combined with the clinical and HIV-related risk factors [22, 23].
However, to the best of our knowledge, while prior GWAS looked at CVD, stroke and

Mls, predominantly T1MIs, no GWAS of T2MI or comparisons of T1IMI and T2MI have
been reported, limiting our ability to discern the genetic factors underlying T2MI etiology.
Focusing on a high risk subgroup can help elicit biological underpinnings of T2MI and
develop risk stratification strategies.

To understand the different risk factors, courses, and prognosis for Ml types in PWH,

we established an M1 adjudication protocol in the Centers for AIDS Research Network

of Integrated Clinical Systems (CNICS) cohort which enables the central adjudication and
categorization of Mls by type in PWH [24]. The goal of the present study was to apply a set
of PRS corresponding to various traits and diseases to identify major genetic determinants
of T2MI and compare them to the known genetic risks for TLMI. We hypothesized that

the CVD traits, key for TLMI, would not be important drivers for T2MI highlighting the
differences in these outcomes. We further hypothesized that genetic contributors to T2MI
risk among PWH would be heterogeneous, consistent with the wide range of causes of T2MI
among PWH. A fuller understanding of the pathogenetic basis of T2MI occurrence may help
identify individuals at risk and facilitate development of targeted interventions, regardless of
HIV infection status.

Methods

2.1. Cohort description

CNICS is a prospective longitudinal observational cohort of PWH receiving routine

clinical care at eight sites in the United States [25]. The CNICS data repository

integrates comprehensive longitudinal data from outpatient and inpatient encounters. It
captures standardized HIV-related information collected at enrollment (initial clinic visit);
demographic characteristics; laboratory test results; prescription medications; and clinical
diagnoses from each site’s electronic health record and other institutional data sources. This
provides rich longitudinal phenotype data including laboratory data, medications such as

Int J Cardiol. Author manuscript; available in PMC 2024 July 15.
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lipid-lowering therapies, antihypertensive medications, and ART; diagnoses; and vital status.
Seven of eight sites have initiated centralized MI adjudication to not only improve the
accuracy of identifying Mls over diagnoses alone, but also to categorize Mls by type based
on the Universal Definition of Ml [5, 24, 26, 27]. PWH also complete the CNICS clinical
assessment of patient reported measures and outcomes (PROs) on touch-screen tablets at
routine clinic visits every ~4—-6 months [28, 29]. This provides rich phenotype data on
domains such as drug and alcohol use for most PWH in CNICS. PWH who are medically
unstable, appear intoxicated, have a cognitive impairment, or do not speak English, Spanish,
or Amharic are not asked to complete the clinical assessment. The PRO clinical assessment
was initiated at the first site in 2007, with most sites initiating around 2010, and the last site
starting in 2018; therefore, this information is missing in a subset of CNICS participants.

2.2. Study eligibility

CNICS has an ongoing genetics project in which adult PWH across racial/ethnic
backgrounds from all sites, who provided informed consent and contributed specimens to
the CNICS biospecimen repository, are being genotyped. PWH were included in this study
if they had been genotyped and were in care at one of the seven sites after MI adjudication
began. While genotyping is ongoing, at the time this study was conducted, 9,541 PWH had
been successfully genotyped from the seven sites and met study eligibility.

2.3. Covariates

Demographic and clinical covariates of interest included birth sex, age (calculated at index
MI or study exit), race/ethnicity, ART status, and CD4 cell count, and other clinical values
including body mass index (BMI), HIV viral load, hemoglobin Alc, total cholesterol (TC),
high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL),
triglycerides, systolic and diastolic blood pressure, and serum glucose. ART status (on
versus off) was based on an ART regimen at the time of M1 or study exit. The lab value
closest to but before the index date was used. Index data was the date of the MI for PWH
with a type 1 or type 2 MI or the study exit date for those who did not have an Ml

during follow-up. PROs such as smoking (measured using the National Institute of Drug
Abuse-modified Alcohol, Smoking and Substance Involvement Test [30, 31]) and alcohol
use (measured using the Alcohol Use Disorders Identification Test [32, 33]), were available
from the subset of PWH who were in care after PRO initiation at their site [25].

2.4. Myocardial infarction classification

Potential Mls were identified retrospectively in the CNICS data repository by Ml clinical
diagnoses, cardiac biomarkers, and procedures [5, 24]. Ml adjudication is ongoing and
completion dates vary slightly by site but includes events from ~2000-2017. Sites prepare
de-identified packets including provider notes, electrocardiograms, laboratory reports, and
results of imaging and procedures. Potential MlIs are centrally adjudicated by two expert
physicians and discrepant results are reviewed by a third expert physician. Reviewers
classify each Ml as type 1 or type 2, and in the case of T2MI the suspected cause(s) is
recorded [5, 24]. Other Ml types (types 3, 4, and 5) were not included as they are rare. For
example, there are less than 10 cardiac procedure-related Mls (type 4 and type 5) in CNICS
to date.

Int J Cardiol. Author manuscript; available in PMC 2024 July 15.
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2.3. Genotyping and Imputation

DNA was isolated from peripheral blood mononuclear cells or buffy coats using the
FlexiGene DNA kit (Qiagen, #51206). We used Illumina high-density Infinium Multiethnic
Global Array series BeadChips to generate genotype data. Variant calling was conducted
using GenomeStudio® Genotyping Module v2.0 software (1llumina®, San Diego, California,
USA) and zCall [34]. SNPs with call rates < 95%, minor allele frequency < 1%, and
samples with call rates < 90%, sex discrepancies between genotype data and self-report,

and pairwise identity-by-descent pi-hat > 0.9 were removed using PLINK v.1.9 [35]. For
imputation, ancestry was inferred using GRAF-pop software [36] and genotype data imputed
separately in each ancestral group (European, African, and other) using the Trans-Omics

for Precision Medicine (TOPMed) reference panel. To retain variants with high quality, we
used imputation quality score of r2 > 0.3 and followed standard quality control procedures
[37, 38]. Principal components analysis (PCA) was performed using PLINK v.1.9 with

the derived principal components (PCs) included as covariates in the regression models to
control for population stratification.

2.4. Polygenic risk score analysis

For each CNICS participant, we calculated 115 PRS representing 10 disease and trait
categories known to be associated with MI based on previous studies. These categories
include cardiovascular disease [39-42], hypertension [43], dyslipidemia [44], BMI [45],
birth weight [46], kidney disease [47-49], substance use [50, 51], type 2 diabetes [52-54],
and gall bladder disease [55, 56]. We used linear combinations of imputed genotype dosages
[57] based on the association summary statistics of corresponding previously published
formulas or trained on GWAS summary level data (Supplementary Table S1). Prior to

PRS calculation, linkage disequilibrium-based pruning of SNPs was performed using 1000
Genomes using European and African reference panels in PLINK and highly redundant
SNPs (r2=0.5) were removed. Associations of PRS with TIMI and T2MI were evaluated
using multivariable logistic regression adjusted for birth sex, age, race/ethnicity, top 5

PCs, study site, ART use, and CD4 cell counts. In subgroup analyses, the effects of lipid
lowering drugs (statin use, ever versus never), as well as alcohol consumption (drinks per
week), were also assessed. We used a study-wise statistical significance threshold of 0.005
(0.05/10 phenotypic categories) to correct for multiple hypothesis testing while accounting
for correlated PRS derived for the same trait from different GWAS. We considered the
results significant if consistent association was detected between Ml status and PRS from at
least two GWAS.

2.5. Expression quantitative trait loci and gene set enrichment analyses

Based on the initial findings, to explore potential genetic mechanisms linking T1IMI and
T2MI to the most significant PRS, we first sorted the SNPs composing respective PRS
based on the GWAS of coronary artery disease (CAD) [58], alcohol dependence (FT12
cohort) [59], and cholecystitis [60] by absolute effect weights or GWAS p-values, whichever
was available. We then examined if these SNPs were eQTLs (SNPs underlying expression
quantitative trait loci) at false discovery rate (FDR) [61] < 0.1 in CAD-relevant tissues
(atherosclerotic aortic root, liver, subcutaneous fat, skeletal muscle, and visceral abdominal

Int J Cardiol. Author manuscript; available in PMC 2024 July 15.
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fat) from the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task study
[62]. We allowed for each eQTL to map to one or more genes. The top 200 genes

driving eQTLs for each of the three PRS were used to conduct a gene set enrichment
analysis in Enrichr [63], a web server currently supporting 358,534 terms and 183 libraries
(https://maayanlab.cloud/Enrichr/, Kyoto Encyclopedia of Genes and Genomes, or KEGG,
database, last access August 2021) in each tissue separately, to identify biological pathways
potentially associated with T1MI or T2MI.

3. Results

3.1. Cohort characteristics

Of the 9,541 PWH in CNICS who had genotype data available at the time of this analysis,
there were 523 adjudicated Mls; 294 T1MI and 229 T2MI. The study cohort consisted of
79% males, 49% African Americans, 39% Europeans, 10% Hispanic/Latino, and 1% Asians
(Table 1). The prevalence of TIMI and T2MI was 3.1% and 2.4%, with 2.9 T1MIs per 1000
person-years, and 2.3 T2Mls per 1000 person-years, respectively. PWH with T2MI were
more likely to be of African American ancestry (70% versus 47%) and have lower BMI
(26.3 kg/m? versus 27.5 kg/m2; P=0.005), TC (162 mg/dL versus 188 mg/dL; P=2.3x1079),
LDL (85 mg/dL versus 109 mg/dL; P=3.2x10711), and triglycerides (185 mg/dL versus

204 mg/dL; P=0.005), compared to TIMI. They also had significantly higher viral load
(77,716 versus 22,194 copies/mL; P=0.0001) and lower CD4 counts (351 cells/mm3 versus
530 cells/mm3; P=6.8x10719). PWH with either TIMI or T2MI had higher glucose levels,
hemoglobin A1C, and systolic blood pressure and lower HDL compared to PWH with no
MI. Also, PWH with T2MI were less likely to be on ART than those with T1MI or no Ml
(91%, 96%, and 97%, respectively; P=0.03 between T1MI and T2MI; Table 1).

3.2. PRS analysis

Of the 115 PRS (Supplementary Table 1), 31 were associated with T1MI, with 19
remaining significant after adjustment for multiple hypothesis testing. Several PRS for CAD,
angina and stroke, lipoprotein levels such as TC, LDL, and apolipoprotein, and type 2
diabetes were associated with higher risk of T1MI, while PRS for birth weight showed

an inverse correlation with T1IMI (Fig. 1; Supplementary Table S1). For T2MI, the most
consistent positive association was detected with PRS for alcohol dependence, quantified

by three different PRS: (1) PRS-problematic alcohol use (PAU) derived from a GWAS

on the problem subscale from the Collaborative Study on the Genetics of Alcoholism
(COGA, PRS-PAU-COGA [59]; OR=1.23 [95%CI 1.01-1.49] per standard deviation of
PRS, unadjusted P=0.04), (2) PRS-Alcohol Drink Per Week (ADPW) derived from the
GWAS & Sequencing Consortium of Alcohol and Nicotine Use (GSCAN [64]; OR=1.24
[95%CI 1.03-1.51] per standard deviation of PRS, unadjusted P=0.04), and (3) PRS-PAU
from the FinnTwin12 study (FT12, PRS-PAU-FT12 [59]; OR=1.36 [95%CI 1.12-1.65] per
standard deviation of PRS, unadjusted P=0.002), the latter remaining statistically significant
after adjustment for multiple testing (P=0.02; Fig. 1). Also, PWH with T2MI had higher
PRS for cholecystitis, type 2 diabetes, and waist-hip ratio (Fig. 1; Supplementary Table S1).
These associations did not substantially change after adjustment for statin use or type 2
diabetes (Supplementary Table S1). Moreover, PRS for type 2 diabetes was independently

Int J Cardiol. Author manuscript; available in PMC 2024 July 15.
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associated with both TIMI and T2MI when included alongside PRS-CAD or PRS-PAU-F12,
respectively (Supplementary Table S2). Also, ART use was associated with a significant
reduction in T2MI (OR=0.25 [95%CI 0.15-0.43, P=1.3E-07) and to a lesser extend in T1MI
(OR=0.53 [95%CI 0.29-1.08, P=0.06; Supplementary Table S2).

In the sub-cohort with PRO data (N=6,397), adding reported alcohol consumption per

week to the model did not change the magnitude of the association between various alcohol-
related PRS and T2MI, even though statistical significance was slightly weakened due

to the reduction in the sample size (Table 2). These results suggest that genetic variants
composing PRS for alcohol dependence, rather than actual drinking, contribute to the risk
of T2MI. We did not observe genetic associations between PRS for atrial fibrillation, sepsis
or anemia, previously reported in patients presenting with T2MI [10], and T2MI diagnosis
(Supplementary Table 1).

3.3. Gene set enrichment analysis

To account for the variation in the sample size of original GWAS and different number of
SNPs used in PRS derivation for various traits, we selected the top 200 genes regulated by
the eQTLs comprising each PRS-PAU-FT12, PRS-cholecystitis or PRS-CAD. Metabolism
of xenobiotics by cytochrome P450, drug metabolism, and bile secretion pathways were
enriched in both PRS-PAU-FT12 and PRS-cholecystitis (all in the liver; Fig. 2). eQTLs from
PRS-PAU-FT12 were also significantly enriched in the tyrosine metabolism (in the aortic
root) and in ascorbate and aldarate metabolism, pentose and glucoronate interconversions,
and retinol metabolism (in the liver; Fig. 2), whereas eQTLs from PRS-cholecystitis were
also significantly enriched in the glutathione metabolism (in the liver). The cholesterol
metabolism pathway was enriched in both PRS-cholecystitis (in the liver, foam cells and
macrophages) and PRS-CAD (in the liver and visceral fat). In addition the PRS-CAD-
associated eQTLs were enriched in the hepatocellular carcinoma and lysosome pathways.

4. Discussion

In this study, we applied a series of PRS linked to cardiovascular disease, metabolic and
anthropometric traits, and risky behaviors, to a large, well-characterized cohort of PWH
with adjudicated MIs to explore underlying mechanisms of TLMI and T2MI in a high risk
population. We found that, as expected, TIMI was strongly associated with different PRS
representing genetic risk burden for CVD and related risk factors. In contrast, PWH with
T2MI had higher PRS for alcohol dependence and cholecystitis. PRS associated with TIMI
were driven by genetic variants that are enriched in the lipid metabolism and lysosomal
function, whereas those linked to T2MI controlled expression of genes enriched in energy
metabolism. Our results highlight previously observed key clinical differences between
T1MI and T2MI and the need for adjudication to allow them to be distinguished, especially
in genetic studies.

T2Ml is believed to result from mismatch between myocardial oxygen supply and demand
[7, 8, 10, 65, 66], in contrast to TAMI, which is due to primary plaque rupture or coronary
thrombosis. The ability of the heart to prioritize energy producing substrates between
glucose metabolism and free fatty acids, especially during cardiac ischemia, is critical

Int J Cardiol. Author manuscript; available in PMC 2024 July 15.
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and can be, at least in part, genetically determined. Apart from requiring higher oxygen
expenditure than glucose metabolism, elevated free fatty acid uptake leads to reduced
contractile function and arrhythmia generation, which is common in patients with T2MI
[10]. We found that top loci comprising PRS-PAU-F16 were enriched for the ascorbate

and aldarate metabolism, pentose and glucoronate interconverions, retinol metabolism,
metabolism of xenobiotics by cytochrome P450, drug metabolism, and bile secretion in the
liver and for tyrosine metabolism in the aortic root. Ascorbate and aldarate metabolism and
pentose and glucoronate interconverions were among the 34 pathways disturbed during early
stages of experimental myocardial ischemia.[67] Moreover, retinoids have been previously
shown to regulate the expression of genes involved in hepatic glucose and lipid metabolism
[68]. Certain xenobiotics particularly target the heart and promote toxicity. High levels of
drugs of abuse, namely amphetamines, cocaine, and even the consumption of alcohol for
long periods of time, are linked to cardiovascular abnormalities as oxidative stress may be
one common link for cardiac toxicity associated with these compounds [69]. Furthermore,
tyrosine kinases are critical in activating signaling pathways that regulate cell growth,
differentiation, metabolism, migration, and apoptosis.

Given that the top variants composing the PRS that was associated with T2MI were derived
from GWAS for alcohol dependence, we tested if the observed results were driven by
genetic predisposition to alcohol addiction. We found no substantial differences after the
adjustment for actual alcohol consumption in a sub-group analysis. Binge drinking has

been previously associated with a higher risk for M1 compared to no alcohol consumption
[70, 71], though potential genetic mechanisms underlying this observation have not been
fully elucidated. This finding suggests that PRS-PAU-FT16 may reflect the impaired genetic
control of energy regulation and could be useful in the early recognition of myocardial
ischemia regardless of alcohol intake.

PWH with T2MI were also more likely to have a higher PRS for cholecystitis. Interestingly,
a large meta-analysis including nearly one million participants demonstrated a substantially
higher risk of fatal and nonfatal CVD events among patients with a medical history

of gallstone disease [56]. Beyond the observed clinical comorbidity, similar to PRS-PAU-
FT16, the top variants contributing to PRS for cholecystitis were enriched in the energy
metabolism pathways, including metabolism of xenobiotics by cytochrome P450, drug
metabolism, bile secretion and, suggestively, retinol metabolism. Interestingly, excess bile
acids have been shown to decrease fatty acid oxidation in cardiomyocytes and cause heart
dysfunction, a cardiac syndrome termed cholecardia [72]. The cholecystitis PRS-related
variants were also enriched in the glutathione and cholesterol metabolism. Glutathione
plays an important role in the cell, regulating multiple vital functions and may serve as

a biomarker for ischemic stroke in the blood [73], whereas cholesterol is a precursor of

bile acids among numerous other functions. Further studies are warranted to determine if
individuals at the top percentile of these two PRS may benefit from metabolic support to
the ischemic heart — a promising strategy to reduce infarct size and improve T2MI outcomes
[74].

Importantly, in contrast to T2MI, T1MI patients had consistently higher genetic risk for
CAD based on multiple independent GWAS studies, as well as higher PRS for a number

Int J Cardiol. Author manuscript; available in PMC 2024 July 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Leeetal.

Page 10

of lipid traits, which is supported by prior clinical data demonstrating that T2MI patients
had less dyslipidemia compared to PWH with T1MI [9, 75]. Moreover, the top variants
composing the PRS for CAD were significantly enriched in the cholesterol metabolism,
lysosomal function and hepatocellular carcinoma. Dyslipidemia is one of the major risk
factors for TIMI, while previous studies have shown an early disruption of lysosomes in the
setting of MI [76]. While the link between PRS for CAD and hepatocellular carcinoma is
not obvious, a distant cardioprotective mechanism involving hepatic cell mobilization to the
ischemic myocardium in response to experimental myocardial ischemia-reperfusion injury
has been reported [77]. Also, TIMI, but not T2MI, was associated with lower birth weight as
assessed by independent PRS [78, 79]. Previous epidemiological studies have linked lower
birth weight to the higher risk of CVD in the general population [80, 81]. Future studies
should be designed to determine the predictive value across multiple PRS identified in our
study to enhance T2MI risk stratification and diagnosis.

It is important to emphasize that the contribution of genetic predisposition to Ml risk may
differ in PWH. However, direct assessment of the effect of genotype x HIV interactions

on CVD morbidity is challenging due to the lack of sizable cohorts composing of people
with and without HIV with adjudicated outcomes. Our previous study has identified novel
genetic loci involved in immune cell regulation and previously linked to HIV control, body
composition, and risky behaviors, which were associated with dyslipidemia in PWH but not
in a large population-based GWAS [82]. These findings suggest that certain genetic variants
may lead to further immune perturbations that contribute to cardiometabolic risk, especially,
or uniquely, in the presence of HIV infection. Well-powered GWAS in PWH are warranted
to further expand these results.

The major strengths of this study are the inclusion of the large, well-characterized cohort of
PWH with genome-wide genotype data and centralized Ml adjudication. We also adjusted
for ART and CD4 counts known to be predictive of Ml risk in PWH. Furthermore, we

used PROs to test whether it is genetic determinants of alcohol dependence or actual
alcohol intake that increase the risk of T2MI in PWH. There are also several limitations.
Specifically, we calculated PRS using effect estimates from largely European GWAS, which
are less generalizable, especially to the African-ancestry populations [83]. Further GWAS
in diverse cohorts, as well as multi-ethnic PRS calculations, which have been shown to
significantly improve disease prediction accuracy in cohorts of non-European ancestry [84],
would allow us to refine our findings. Also, PRS accuracy heavily relies on the original
GWAS size; smaller GWAS may be underpowered to properly select variants contributing
to the PRS. That may explain the lack of association between T2MI and PRS for atrial
fibrillation, sepsis or anemia, the phenotypes observed in patients presenting with T2MI
[10]. Moreover, genetic determinants of other diseases or traits, which were not included in
our PRS selection, could be involved in T2MI risk. Similarly, due to the lack of available
GWAS, we were unable to confirm the contribution of genetic determinants to the principal
mechanism shown to provoke T2MI, such as hypotension and hypoxia. In addition, we
adjusted for the general ART use (yes vs. no), and did not differentiate between specific
ART regimens. Moreover, despite being the largest genetic study reported in PWH, the
number of T2MI cases was too small to conduct a GWAS to inform direct PRS-T2MI
calculation. Future GWAS of adjudicated T2MI are needed to explore the genetic predictors
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of disease pathogenesis. Lastly, we used Bonferroni correction to adjust for multiple testing
for 10 traits and disease categories and not for each PRS, as PRS within each category were
often highly correlated. We treated unadjusted significant associations between multiple
PRS derived from different GWAS within the same phenotype category as a validation of
our findings rather than a penalty. However, we could not completely rule out the overlap
between the samples used in each independent GWAS. Further studies are warranted to
replicate our findings.

4. Conclusions

In conclusion, using a set of PRS for various traits and diseases in a high risk cohort with
adjudicated MI, we were able to reconstruct and expand on previously reported differences
between T1MI and T2MI etiologies and identify potential genetic pathways associated with
T2MI, whose incidence is high among PWH (~ half of Mls) and is increasing in the general
population. Our approach might be useful to explore genetic determinants of other traits and
diseases for which GWAS are not available.
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Highlights

About half of myocardial infarction (MI) cases in people with HIV are type

2 (T2Ml), resulting from mismatch between myocardial oxygen supply and
demand, in contrast to type 1 MI (T1MI), which is due to primary plaque
rupture or coronary thrombosis, and the incidence is significantly rising in the
general non-HIV population.

Despite worse survival, evidence-based treatment recommendations for T2Ml
are lacking partially due to a poor understanding of the disease pathogenesis.

An unbiased analysis of polygenic risk scores associated with
cardiometabolic traits and diseases implicated energy regulation and other
metabolic pathways in T2MI risk, while confirming the role of lipid
metabolism in the development of T1MI.

Further research into the key genetic drivers of T2MI pathogenesis is
warranted to help stratify those at risk and inform therapeutic strategies.
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. Adjusted p-value < 0.05

. Unadjusted p-value < 0.05

Unadjusted p-value 2 0.05

Fig. 1: Forest Plot of Association between Polygenic Risk Scores and Type 1 and Type 2
Myocardial Infarction.

CAD, coronary artery disease; T1MI, type 1 myocardial infarction; T2MlI, type 2 Ml; LDL,
low-density lipoprotein; WHR, waist to hip ratio, ADPW, alcohol drink per week, COGA,
the Collaborative Study on the Genetics of Alcoholism, FT12, the FinnTwin12 study. In
parenthesis, PubMed identification numbers. Shown are the odds of T2MI or T1IMI risk

by 1-standard deviation increases of the risk scores using multivariate logistic regression

models.
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Fig. 2: Gene Set Enrichment Analysis of the Top Expression Quantitative Trait Loci Composing
Polygenic Risk Scores for Alcohol Dependence, Cholecystitis, and Coronary Artery Disease.

P-values for enrichment are shown with and without adjustment for false discovery rate.
Only the six tissues of nine tissues tested with at least one unadjusted P<0.05 for enrichment
are shown. CAD, coronary artery disease.
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Table 2.
Multivariate analysis of type 2 myocardial infarction with and without adjustment for alcohol consumption per
week.
Cohort Variable OR (95% CI) P value
Full cohort PRS-PAU (COGA)[59] 1.23 (1.01-1.49) | 0.036
(n=8.541) PRS-PAU-FT12 [59] 1.36 (1.11-1.65) | 0.002
PRS-ADPW[64] 1.22 (1.01-1.48) | 0.037
Subset with alcohol consumption data | PRS-PAU (COGA)[59] 1.28 (1.07-1.11) 0.08
(n=6,397) Alcohol consumption (drinks per week) | 1.00 (0.97-1.03) 0.71
PRS-PAU-FT12 [59] 1.47 (1.11-1.96) 0.008
Alcohol consumption (drinks per week) | 1.00 (0.97-1.03) 0.72
PRS-ADPW([64] 1.22(1.02-3.61) | 017
Alcohol consumption (drinks per week) | 1.00 (0.99-1.04) 0.76

OR, odds ratio, 95% confidence interval (Cl), 95% confidence interval; PAU, problematic alcohol use; ADPW, alcohol drink per week. All models
were also adjusted for birth sex, age, antiretroviral therapy, CD4 cell counts, self-reported ethnicity, first five principal components for population

stratification, and study site.
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