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Abstract

Homological algebra of Gorenstein rings

Harrison Hunter Henningsen

We study three triangulated categories associated to a Gorenstein ring,

that is, a right- and left-noetherian ring with finite right and left injec-

tive dimension. After a survey of exact categories and cotorsion theory, we

discuss the homological algebra of the category of finitely generated mod-

ules over a Gorenstein ring, concluding that the subcategory of maximal

Cohen-Macaulay (MCM) modules is both a Frobenius category and a co-

torsion class. Immediate corollaries include a triangulated structure on the

projective stabilization of the subcategory of MCM modules and structure

theorems for finitely generated modules. Then we describe two triangulated

categories equivalent to the stable category of MCM modules. The homo-

topy category of acyclic complexes of projective modules is the first, making

precise a connection observed between MCM modules and existence of pro-

jective co-resolutions. The second, the singularity category, is a Verdier

quotient of the bounded derived category that allows us to study modules

up to MCM approximation.

iv



Acknowledgements

Mom, with all the thank-you cards you asked me to write, I hoped that

I would be more prepared to write one for you. However, in every attempt

to consolidate my gratitude, I find words lacking in their ability to express

the gravity of my thanks. From you, I learned that dedicating myself to

a meaningful project is always worthwhile and that work reflects effort.

Your calls, reminders, questions, remarks, and funny messages are constant

reminders of your steady support, for which I am inexpressibly grateful.

With how much you contribute to my life, this thesis is just as much yours

as it is mine. I hope you know how much I appreciate how hard you work

to support Honor and me—we are so very lucky. Thank you, thank you,

thank you.

Honor, you are an inspiration to me. Your creativity and positivity

brighten my life, and your calls make any day better. Thank you for your

fantastic, amazing, incredible art, which brings color and joy to the walls

of our house. I want to mention one drawing in particular that you gave

me with the caption “You got this!” I cannot count the number of times I

looked to those words of encouragement while writing this thesis.

Alex, thank you for being my best friend. You are a constant in my

life, yet you always find a way to bring something new and interesting to

each day. You are reliable, motivating, and supportive. In working on our

theses at the same time, I gained a better understanding of what it means

to support a partner: I appreciate the details, like reminding me to drink

water while working, all the more. Thank you for talking with me, listening

to me, and asking random questions—“What kind of coffee table would you

want?”—when I’ve run out of things to say. You’re just the best.

v



Johan, I want to start by saying thank you for agreeing to meet with me

last fall to discuss this research project. As you described the article that

would eventually become the heart of this thesis, I saw the hopes you had for

me in this project. The generosity you extended to me then has remained

throughout in innumerable ways. Our meetings were the highlight of every

week: You dedicated entire afternoons to our meetings, with conversation

ranging from thesis work to crosswords, vegetarianism, baking bread, and

more. You respected when I got distracted learning about other areas of

math, honoring my questions and allowing me the space to make this thesis

my own. Your direction gave me the courage to work on a research question

that I would have assumed too challenging, and you fostered an atmosphere

of collaboration that gave me confidence to work on once unfamiliar topics.

Along with a better understanding of homological algebra, I gained a new

outlook on mathematics by working categorically. My only wish is that we

could continue this project, puzzling over questions as they arise, learning

more along the way. I am proud to call you both an advisor and a friend.

To my reading committee, thank you for reading this thesis! I appreciate

the time required to read mathematics, and I want to acknowledge your

generosity in dedicating some of your time to my work. Beren, thank you for

chatting, checking in, and supporting this project from the start. Junecue,

thank you for introducing me to abstract algebra. I think you should know I

credit much of my decision to study algebra to you: Your enthusiasm for the

subject was a welcome sign, illuminating for me a direction in mathematics

I could not have imagined.

To the mathematics department, thank you for your confidence in me.

I am so grateful to have worked in a department with such compassionate

faculty and staff, with welcoming colleagues that made me feel like a valued

member of our department.

vi



Lastly, to my friends: As we see each other less often, I find greater value

in the moments we all get together to catch up or play a board game. I think

about all the time spent in the graduate offices, chatting about everything

and nothing, never settling on a topic, and I’m confident that I will not

meet another group of people for whom a blackboard is required to hold

regular conversation. Thank you for being funny, fascinating, and overall

great friends.

Harrison

June 2020

vii





Introduction

In the beginning, the tentative program of study was commutative al-

gebra. I had little experience in the field, but I found it interesting: a

set of tools designed largely in service of algebraic geometry which, in the

last half century, has become a subject unto itself. I proposed a research

project with faint direction to Johan, the topic not more specific than just

commutative algebra, and to my absolute delight he agreed to advise the

project. He cautioned at our first meeting that the project would likely lie

in the intersection of commutative and homological algebra, a compromise

I made readily. However, there is a gravity inherent to an advisor’s research

domain, and I felt the pull as the project drifted quickly in the direction of

homological algebra, an adjustment I soon welcomed.

My perspective shifted with the focus of the project to a more unfamiliar

style of argument: that of category theory. Homomorphisms of individual

objects made way for more macroscopic tools like functors, and soon the

language of category theory became the primary dialect. We noticed that

several propositions can be rephrased in terms of cotorsion theory—diversion

or new direction? My fluency in working on a categorical level improved as

we explored the problem more, and it was not long before the “commutative”

assumption was dropped in favor of increased generality. What results is an

investigation of the homological algebra of Gorenstein rings inspired by a

program to reinterpret and modernize Buchweitz’s outstanding unpublished

treatise [3].
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Outline

We construct three triangulated categories associated to a Gorenstein

ring, that is, a noetherian ring with finite injective dimension, all of decid-

edly different flavors. Breaking from tradition, most of our effort is directed

toward the category of modules over a Gorenstein ring S, where we unravel

several resulting rich structures. Particular focus is placed on the subcate-

gory of maximal Cohen-Macaulay modules, the full subcategory consisting

of objects for which HomS(−, S) is an exact duality. We examine maximal

Cohen-Macaulay modules from several perspectives to highlight a tapestry of

remarkable properties. In this way and despite their top-line billing, Goren-

stein rings serve more as a technical assumption to facilitate the study of

maximal Cohen-Macaulay modules.

Chapter 1 surveys two specialized topics we utilize throughout. First we

detail exact categories, which can be viewed as a natural generalization of

abelian categories. The usual short exact sequences are replaced with a care-

fully axiomatized structure designed to mimic the familiar properties enjoyed

by an abelian category, and we may accomplish much the same homological

algebra with decidedly weaker structure. We discuss the stabilization of an

additive category, and specialize to the case of Frobenius categories to draw

conclusions about triangulated categories. Then we present cotorsion pairs,

a formalism we use to unify many structural results. Such a pair is comprised

of two Ext-orthogonal subcategories, which we equip with more structure

as we prepend adjectives. Cotorsion pairs serve as a natural context for

discussing approximation, and upon stabilizing, the approximations can be

made functorial. We propose a torsion theory for additive categories suit-

able for the stabilized categories in consideration and quickly derive results

concerning approximating subcategories that arise from cotorsion pairs.
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In Chapter 2, we begin our main line of inquiry by studying modules.

Our first application of cotorsion pairs concerns the subcategory of finitely

generated projective modules, offering a concrete example of cotorsion the-

ory in a familiar context. After a review of some homological algebra, we

introduce the subcategories of maximal Cohen-Macaulay modules and mod-

ules of finite projective dimension, partners in a more intricate cotorsion

pair. We introduce lemmas detailing connections between the pair argued in

a more classical homological-algebraic fashion, slowly building toward more

macroscopic structural results. In the remaining two sections, we appeal to

the theory established in Chapter 1 to prove the projective stabilization of

the subcategory of maximal Cohen-Macaulay modules is triangulated and

derive structure theorems for any finitely generated module over a Goren-

stein ring. We conclude the chapter with a discussion of additional conse-

quences, including functorial approximation.

Chapter 3 adds variety by introducing other categories associated to

the same Gorenstein ring. We examine the category of chain complexes

through the new lens of exact structure, deriving the homotopy category of

complexes as the natural triangulated stabilization. The triangulated sub-

category of acyclic complexes of projective modules is introduced to formal-

ize a connection between maximal Cohen-Macaulay modules and projective

co-resolutions noted in the previous chapter, made precise now by an equiv-

alence of categories. Then we treat Verdier localization, a technique for

formally inverting a class of morphisms in a category, at which point we can

introduce the derived category with its natural triangulated structure. The

third category of interest is the singularity category, a Verdier quotient of

(a triangulated subcategory of) the derived category, which carries its own

inherited triangulation. By studying the singularity category, we gain a bet-

ter understanding of MCM approximation. We lastly show the singularity
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category is equivalent to the other two, furnishing three perspectives on the

homological algebra of Gorenstein rings.

Notation, conventions, and assumptions

Throughout R will denote a unital ring, and we reserve the symbol S for

a Gorenstein ring. We denote by ModR the category of right R-modules and

by modR the full additive subcategory of finitely generated right R-modules.

We write Z for the integers, that is, the initial object in the category of unital

rings, and according let Ab := ModZ be the category of abelian groups. For

a category X, write Proj(X) and Inj(X) for the full subcategories of projective

objects and injective objects respectively; as shorthand, we will write proj(R)

for the full subcategory of projective modules in modR. Lastly, we regard

biproducts as column vectors.

We expect the reader to be familiar with graduate level algebra, e.g.,

rings and modules, and a fluency with homological algebra would be wel-

come, but the necessary concepts for the latter are briefly recalled through-

out. Many of our results are formulated in the language of category theory,

so we assume the reader has at least some familiarity with the basic concepts

of categories, functors, equivalences, and adjoints; see [13] for an excellent

account. Most of the categorical language is supported by more classically

algebraic proofs, so the text should be fairly accessible to an algebraically-

inclined graduate student.
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CHAPTER 1

Preliminaries

We begin with a survey of preliminary notions, namely exact categories

and cotorsion theory. Building much of the machinery at the outset leaves

later arguments streamlined. For example, Theorem 1.1.19, the headlining

result of the chapter, says that every stabilized Frobenius category is tri-

angulated, a technical and lengthy verification. We use this result to show

directly that the stable category of maximal Cohen-Macaulay modules is

triangulated, a fact that historically has been verified indirectly, e.g., in [3].

1.1. Exact categories

We treat exact categories, with the goal of proving stabilized Frobenius

categories are triangulated. This will reduce the hassle, or at least bulk, of

proving a category is triangulated, shifting the task to proving each category

of interest satisfies the hypotheses laid out in this section. It is our hope that

each of the resulting proofs (that each category under scrutiny is Frobenius)

feels less like a routine verification of axioms and more like an exploration

of appreciably different exact structures. The reference of choice for exact

categories is [4].

1.1.1. Definitions. The function of an exact structure on an additive

category is to recover the usual homological algebra of short exact sequences

in the absence of guaranteed kernels/cokernels. By prescribing a class of

well-behaved sequences, we can do much of the work usually accomplished

with short exact sequences. Exact structures furthermore highlight what
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1. PRELIMINARIES

conditions we need for many standard lemmas of homological algebra—i.e.,

the short five lemma, snake lemma, horseshoe lemma, existence of projective

resolution and uniqueness up to homotopy equivalence, etc.—showing that

hypotheses we often impose, hypotheses predicated on working in an abelian

category, are needlessly restrictive.

Definition 1.1.1 ([4, Definition 2.1]). Let X be an additive category. A

pair of composable morphisms (i, p) in X is called a kernel-cokernel pair

if i is a kernel of p and p is a cokernel of i.

Fix a class E of kernel-cokernel pairs on X. We call a morphism i an

inflation if there exists a morphism p such that (i, p) ∈ E. Symmetrically,

a morphism p for which there exists an i such that (i, p) ∈ E is a deflation.

Together, a kernel-cokernel pair in E is called a conflation. We write a

conflation as A ↪→ B � C, that is, the arrow ↪→ is an inflation and � is a

deflation.

An exact structure on X is an isomorphism closed class E of kernel-

cokernel pairs subject to the following axioms.

E0 For all objects A in X, the identity on A is an inflation.

E1 The class of inflations is closed under composition.

E2 The pushout of an inflation along an arbitrary morphism exists and

is itself an inflation.

A B

C D
p∃

E0op For all objects A in X, the identity on A is a deflation.

E1op The class of deflations is closed under composition.

6



1.1. EXACT CATEGORIES

E2op The pullback of a deflation along an arbitrary morphism exists and

is itself a deflation.

D C

B A

∃

y

We call the pair (X,E), or sometimes just X when E is understood, an

exact category. Quillen is often credited with formalizing the notion of

exact categories, whence the more attributive terminology Quillen exact

category derives.

Remark 1.1.2. Given a kernel-cokernel pair (i, p), we have that i is a

monomorphism and p is an epimorphism. This yields the alternate nomen-

clature admissible monomorphism and admissible epimorphism in

place of inflation and deflation. In the literature, one may also encounter

short exact sequence as a substitute for conflation. Looking to avoid

overloading terminology, we reserve the term short exact sequence for the

familiar notion in an abelian category.

Immediately we might ask the question: If the exact structure E is ex-

ternally prescribed, what parameters do the axioms ensure? For example,

a more tractable question: Is there a class of conflations belonging to ev-

ery exact structure? The smallest exact structure, in the sense that ev-

ery other exact structure contains it, is the class of split exact sequences

A ↪→ A⊕B � B, the maps being canonical inclusion into the first compo-

nent and canonical projection from the second respectively.

Let E be an exact structure on an additive category X. To prove E

contains the split exact sequences, first note that E0 (resp. E0op) implies

A → 0 (resp. 0 → A) is a deflation (resp. an inflation) for any A in X.

Taking the pushout of 0 ↪→ B along 0 ↪→ A shows that A ↪→ A ⊕ B is an

7



1. PRELIMINARIES

inflation (E2). Essentially dually, the pullback of A� 0 along B � 0 shows

A⊕B � B is a deflation (E2op). Gluing the squares together,

0 B

A A⊕B B

A 0

p

y

and upon recognizing that the canonical inclusion and projection form a

kernel-cokernel pair, we conclude that the middle row, the desired sequence,

belongs to E. Notice that the symmetry of the axioms allowed us to freely

use duality arguments. Formally, (X,E) is an exact category if and only if

(Xop,Eop) is an exact category.

Any additive category is an exact category with the exact structure given

by the split exact sequences. This trivial structure is usually not particularly

insightful, though we will require it in Chapter 3. On the other end of the

spectrum are abelian categories, with the class of all short exact sequences

a priori an exact structure. Here we have an interesting exact structure at

the expense of generality, that is, we gave up on the category being only

additive. What will prove most fruitful is something in the middle.

Our scope is not so broad however. We restrict our attention to a class

of exact categories that possess both enough projectives and injectives, and

that furthermore cannot tell the difference between the two. To unpack,

define an exact functor F : (X,E) → (X′,E′) between exact categories as

an additive functor such that F (E) ⊂ E′. An object P in an exact category

is projective if HomX(P,−) is an exact functor from X to the category of

abelian groups. As the category of abelian groups is an abelian category, we

impose on it the naturally inherited exact structure consisting of all short

exact sequences. We say an exact category (X,E) has enough projectives

8



1.1. EXACT CATEGORIES

if, for each object A in X, there exists a projective P and a deflation P � A.

Dually, an object I is called injective if HomX(−, I) is an exact functor

from X to the category of abelian groups, and (X,E) is said to have enough

injectives if, for each object A in X, there exists an injective I and an

inflation A ↪→ I. Note that projectives in an exact category possess many

familiar properties, with dual statements about injectives being immediate.

Lemma 1.1.3 ([4, Proposition 11.3]). For an object P in an exact cate-

gory X, the following are equivalent.

• HomX(P,−) is an exact functor from X to the category of abelian

groups, i.e., P is projective.

• for all deflations A� B and every map P → B, there exists a lift

P → A (making the usual triangle commute).

• HomX(P,−) sends deflations to surjections.

• every deflation A� P has a right inverse.

Definition 1.1.4. An exact category is called Frobenius if it has

enough projectives and injectives, and if the classes of projective objects

and injective objects coincide.

Example 1.1.5. As mentioned before, any additive category is an exact

category with respect to the split exact structure. Here every object is both

projective and injective, so trivially the category is Frobenius, but this is

not insightful in practice.

For any right- and left-noetherian ring R, the category modR is abelian,

thus exact—the exact structure is simply all short exact sequences—so

modR is Frobenius if and only if projective R-modules and injective R-

modules coincide. By [15, Theorem 4.2.4], the latter is equivalent to R

being injective as a right and left module over itself, i.e., that R is (right

and left) self-injective. Such a ring is called quasi-Frobenius.

9



1. PRELIMINARIES

Historically, the definition of quasi-Frobenius rings was not motivated by

the observation above, but rather as a generalization of Frobenius algebras.

A finite dimensional algebra Λ over a field k is called a Frobenius algebra if

it is isomorphic to its k-linear dual as Λ-modules:

Λ ∼= Homk(Λ, k).

Naturally, any Frobenius k-algebra Λ is quasi-Frobenius, since we have nat-

ural isomorphisms of functors

HomΛ(−,Λ) ∼= HomΛ(−,Homk(Λ, k)) ∼= Homk(−⊗Λ Λ, k)

by the Yoneda Lemma and tensor-hom adjunction, and the rightmost func-

tor is exact since k is self-injective. Heller was the first to systemati-

cally study Frobenius categories in [7, Section 3] (according to [3, Section

8.1]), with modules over a Frobenius algebra being the motivating example,

whence the name.

An important example of Frobenius algebras is group algebras: For any

field k and any finite groupG, the group algebra kG is Frobenius ([15, Propo-

sition 4.2.6]), from which it follows that the category mod kG is Frobenius.

As we will see in the next chapter, the Frobenius structure on mod kG facil-

itates the study of representation theory.

Example 1.1.6. Another nice example that more readily permits com-

putation is the category of finitely generated modules over the truncated

polynomial ring Λ := k[x]/(xn) for some n ≥ 1. In this case, the only non-

trivial indecomposable finitely generated Λ-modules are those of the form

k[x]/(xi) for 1 ≤ i ≤ n; this follows from the structure theorem for finitely

generated modules over a principal ideal domain, in this case k[x], and ac-

counting for the vanishing of xn. Already we know that Λ is a projective

10



1.1. EXACT CATEGORIES

module, and as Λ is indecomposable, we conclude that finite rank free Λ-

modules are the only finitely generated projective modules.

We show Λ is self-injective by way of Baer’s Criterion: For any ring R, a

right R-module Q is injective if and only if for every right ideal I of R, any R-

module homomorphism I → Q can be lifted to an R-module homomorphism

R→ Q. Note that Λ is a local ring with maximal ideal (x)/(xn). Any ideal

of Λ is of the form (xi)/(xn), so a Λ-module homomorphism

(xi)/(xn)→ Λ

is determined by the image of a generator xi 7→ f(x), which we may further-

more assume is given by xi 7→ xj : Writing f(x) = xj · g(x) with x - g(x),

we have that g(x) 6∈ (x)/(xn), and thus is a unit, say with inverse h(x), so

xi · h(x) also generates (xi)/(xn) and maps to xj . Additionally, i ≤ j, since

otherwise 0 = xn−i · xi 7→ xn−i · xj 6= 0 by Λ-linearity. Then 1 7→ xj − i is a

lift; in the sequel, we write ·x` for 1 7→ x`.

(xi)/(xn) Λ

Λ

xi 7→xj

·xj−i

Therefore Λ is self-injective. Clearly Λ is noetherian (it’s artinian!), so Λ is

quasi-Frobenius, hence modΛ is Frobenius.

As a practical matter, we need the notion of an admissible morphism to

work in exact categories as we do in abelian categories.

Definition 1.1.7. A morphism f : A→ B is admissible if it factors as

a deflation followed by an inflation.

Admissible morphisms require that image and coimage are isomorphic,

as in abelian categories, and encode the familiar factorization over the image.

11



1. PRELIMINARIES

Furthermore, the factorization of an admissible morphism is unique up to

unique isomorphism ([4, Lemma 8.4]). We caution that the composition of

admissible morphisms is not admissible in general. To learn more about an

admissible morphism, we study its analysis. The analysis of an admissible

morphism is a diagram

A B

K I C
p

f

ck

i

such that k is a kernel and c is a cokernel. A sequence of composable

admissible morphisms

A′ A A′′

I I ′

f f ′

is called acyclic or exact if I ↪→ A � I ′ is a conflation. The defi-

nition can be extended to longer sequences by applying it to every suc-

cessive morphism pair in the sequence. Note that we can discuss com-

plexes in any additive category—a complex is just a Z-indexed sequence

· · · → Xi−1 di−1−−−→ Xi di−→ Xi+1 → · · · such that didi−1 = 0 for all i—so it is

the acyclicity that requires an exact structure. Now that we have detailed

the machinery required to work with acyclic complexes like projective reso-

lutions, we will make mention of it rarely, operating as one generally would

in abelian categories.

1.1.2. Stabilization. The results of this section, and many subsequent

headlining results, concern stabilized categories, which allow us to study

objects and morphisms up to some subcategory. Examples include projective

stabilization, which is used in the representation theory of finite groups, and

homotopy stabilization, which makes the category of chain complexes more

flexible. We start with a brief treatment of stabilization.

12



1.1. EXACT CATEGORIES

Definition 1.1.8. Let X be an additive category, ω an isomorphism

closed full subcategory of X, and A,B, objects in X. Write ω(A,B) for the

set of morphisms from A to B that factor through an object in ω. Note

that ω(A,B) is a subgroup of HomX(A,B), and that the collection of all

ω(A,B) forms an ideal, call it Iω, of X. The ω-stabilization of X is the

quotient X/Iω, or X/ω for short. In X/ω, objects are the same as those in

X, and morphisms from A to B are given by the image of morphisms in the

quotient HomX(A,B)/ω(A,B). There is an additive functor q : X → X/Iω

that is identity on objects and sends morphisms to their equivalence class

that is universal in the following sense: If F : X→ D is any additive functor

to any additive category D such that F (f) ∼= 0 for all f ∈ Iω, then there

exists a unique F̃ : X/Iω → D such that F̃ q = F .

Remark 1.1.9. So as not to abandon vocabulary unaccompanied by

definition, we mention ideals. A left/right/two sided ideal in a locally

small pre-additive category Y is a collection I of morphisms closed under

left/right/two sided composition; all ideals considered herein are two sided.

The collection I is subject to the constraint that I ∩ HomY(A,B) is a sub-

group of HomY(A,B) for any two objects A,B in Y. We write I(A,B) for the

subgroup I ∩ HomY(A,B). For example, suppose I is a right ideal of Y and

A,B,C objects in Y. Then for any f ∈ HomY(A,B) and any g ∈ I(B,C),

we have gf ∈ I(A,C) ⊂ I. Quotients by an ideal behave precisely as de-

scribed in the last definition. Note that a locally small pre-additive category

with one object can be viewed as a ring, namely the endomorphism ring of

that object, and in this case the ideals of the pre-additive category are the

ideals of the ring. Consequently, one can think of a locally small pre-additive

category as a ring with many objects.

13



1. PRELIMINARIES

Suppose X is an exact category with enough projectives. For each object

A in X, we have a conflation K ↪→ P � A with P projective. Set ΩA :=

K and write Proj(X) for the full subcategory of projective objects in X.

Then the assignment Ω defines an additive endofunctor, called the syzygy

functor, on the projective stabilization X := X/Proj(X). Syzygies on a

projectively stabilized category were studied by Heller in the case of abelian

categories (see [7]), from which our more general treatment derives.

Proposition 1.1.10. The assignment A 7→ ΩA is functorial in X.

Proof. The plan of attack is to prove a general fact about lifting of

the zero map and then apply this to show the assignment of objects and

morphisms is well-defined. Suppose we have two conflations K ↪→ P � A

and L ↪→ Q� B in X with P,Q projective. Then the zero map A→ B lifts

to a map ϕ : P → Q, making the right square commute.

K P A

L Q B

i

∃!ψ ∃ϕ 0

j π

In addition, as πϕi = 0, there exists a map ψ : K → L making the left

square commute. Note that ψ is unique with respect to the choice of ϕ, but

ϕ need not be unique. Then commutativity of the right square implies that

ϕ factors uniquely through j, i.e., there exists λ : P → L such that ϕ = jλ.

K P A

L Q B

i

ψ ϕ
∃!λ

0

j π

Take note that only one of these triangles commutes a priori, that is, there

is no guarantee that ψ = λi. In this case however, the other triangle does

14



1.1. EXACT CATEGORIES

indeed commute: jψ = ϕi = jλi, and j is a monomorphism, so ψ = λi.

Therefore ψ factors over a projective, so the image of ψ in X is 0.

Now for an object A in X, pick two conflations K ↪→ P � A and

L ↪→ Q� A for A with P,Q projective. Consider the following diagram.

K P A

L Q A

K P A

f0 f

g0 g

We want to show the composition g0f0 factors over a projective, so look at

the difference between it and the identity map.

K P A

K P A

1−g0f0 1−gf 0

The diagram above is the situation from the last paragraph, so g0f0 equals

the identity on K in X. Similarly for L, and we find K ∼= L in X, hence the

assignment on objects is well-defined.

For morphisms, we appeal again to our work extending the zero mor-

phism. Suppose we are given two conflations K ↪→ P � A and L ↪→ Q� B

in X with P,Q projective and a map h : A → B. Assume furthermore that

we have two lifts f, g : P → Q that suit the diagram, and f0, g0 : K → L

the induced maps. Take the difference to get a diagram extending the zero

map,

K P A

L Q B

f0−g0 f−g 0

and we conclude f0 = g0 in X. The rest, that Ω preserves identities, com-

positions, etc., follows from the same tactic as above. �
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1. PRELIMINARIES

Example 1.1.11. Let R be a right-noetherian ring, so modR is an

abelian (and thus exact) category with enough projectives. Given a right R-

module M and two short exact sequences N ↪→ P �M and N ′ ↪→ P ′ �M

with P, P ′ projective modules, Schanuel’s Lemma says N ⊕ P ∼= N ′ ⊕ P ′.

Notice that N and N ′ are both syzygies of M , isomorphic up to a projec-

tive module. Projectively stabilizing modR removes projective summands,

so the lemma amounts to saying that taking syzygies is indeed unique in

modR/ proj(R), as should be expected from the last proposition. More gen-

erally, Schanuel’s Lemma holds for any exact category with enough projec-

tives, so we can be assured (or perhaps impressed!) that the result depends

only on properties of exact categories, rather than the specific characteristics

of modules over a noetherian ring.

Additionally, returning to Example 1.1.6, consider Λ = k[x]/(xn). Com-

puting syzygies of the nontrivial indecomposable Λ-modules k[x]/(xi), 1 ≤

i ≤ n, is immediate upon considering the short exact sequence

0→ k[x]/(xn−i)→ Λ→ k[x]/(xi)→ 0

with the injection and surjection given by ·xi and reduction modulo xi re-

spectively. Furthermore, symmetry in i and n− i implies that higher syzy-

gies, that is, syzygies of syzygies, can be computed with the same short

exact sequence, and accordingly higher syzygies of k[x]/(xi) are 2-periodic:

Ω · · ·Ω︸ ︷︷ ︸
j times

k[x]/(xi) ∼=


k[x]/(xn−i) j odd,

k[x]/(xi) j even.

This isomorphism, of course, is in modΛ/ proj(Λ).

Dual to syzygies, if X is an exact category with enough injectives, Inj(X)

the full subcategory of injective objects in X, then we can form conflations

16



1.1. EXACT CATEGORIES

A ↪→ I � C out of A with I injective and set ΣA := C. The assignment Σ

defines an additive endofunctor on the injective stabilization X := X/ Inj(X)

of X, called the cosyzygy functor. As is ever the case with formal duality,

we have a dual result to the last, the verification for which we omit.

Proposition 1.1.12. The assignment A 7→ ΣA is functorial in X.

Our notation hints at the upcoming investigation of triangulated cate-

gories, and moreover has historical grounds: In topology, given a space X,

one may consider both the suspension ΣX and loop space ΩX. The in-

teraction of Σ and Ω motivated the development of much of the theory we

utilize herein. It is known, for example, that the suspension (cosyzygy) and

loop space (syzygy) functors are adjoint, e.g., Eckmann–Hilton duality in

the homotopy category of topological spaces, but in our investigation we ask

for more. We want to study when Σ and Ω define inverse auto-equivalences,

and the natural setting to do so is Frobenius categories. If F is a Frobenius

category, then the projective stabilization F and the injective stabilization

F coincide—or at least there is an isomorphism of categories identifying the

two—so we get two endofunctors Ω and Σ acting on the stabilization. For

consistency, we fix the notation F for the projective/injective stabilization

of F.

Proposition 1.1.13. The functors Ω and Σ define inverse auto-equivalences

on the projective/injective stabilization of any Frobenius category.

Proof. Let F be a Frobenius category, F the projective/injective sta-

bilization of F, Ω the syzygy and Σ the cosyzygy functors on F. The claim

boils down to the functoriality of Ω and Σ. Note that we write, for ex-

ample, ΩA for an arbitrary fixed representative in F of the unique object

in F. Consider f : A → B in F. Using the conflations ΩA ↪→ P � A

17



1. PRELIMINARIES

and ΩB ↪→ Q � B, with P,Q projective/injective, the map f induces

Ωf : ΩA→ ΩB in F. We can compare ΩA ↪→ I � ΣΩA to ΩA ↪→ P � A,

where I is projective/injective, and the identity map on ΩA induces a map

εA : ΣΩA→ A, giving the following commutative diagram in F.

ΩA I ΣΩA

ΩA P A

ΩB Q B

∃ ∃!εA

Ωf f

Functoriality of Σ implies the residue of εA in F is an isomorphism. On the

other hand, the conflation ΩB ↪→ J � ΣΩB gives the next commutative

diagram in F (again, J is projective/injective).

ΩA I ΣΩA

ΩB J ΣΩB

ΩB Q B

Ωf ∃ ∃!ΣΩf

∃ ∃!εB

Again, the residue of εB in F is an isomorphism. Combining the last two

diagrams, we get the following situation.

ΩA I ΣΩA

ΩB Q B

Ωf fεA εB(ΣΩf)

The rightmost pair of vertical maps both arise from Ωf , depending on dif-

ferent choices of the middle vertical map. As we know, the residue of the

right vertical map depends only on the left vertical map, not the middle

vertical map, so fεA = εB(ΣΩf) in F. Therefore there exists a natural

isomorphism ε : ΣΩ → 1F. Similarly, one can find a natural isomorphism

1F → ΩΣ, proving Ω and Σ define inverse auto-equivalences on F. �
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1.1. EXACT CATEGORIES

Example 1.1.14. Here is an intuitive description of the last proposition,

at least on the level of objects. Recall Schanuel’s Lemma (Example 1.1.11),

and consider the dual statement: Given an exact category X with enough

injectives and two conflations A ↪→ I � C and A ↪→ I ′ � C ′ with I, I ′

injective, then I ⊕ C ∼= I ′ ⊕ C ′ in X. Suppose X is Frobenius and A ∈ X.

Schanuel’s Lemma implies that any fixed lift of ΩΣA can be made isomorphic

(in X) to A upon adding projective and injective summands to both; the

dual of Schanuel’s Lemma implies the same about ΣΩA and A. It follows

that Ω and Σ are inverses on objects in the projective/injective stabilization

of X.

Building on our recurring example, consider once more Λ = k[x]/(xn).

Recall (Example 1.1.6) that Λ is self-injective, so the argument from Exam-

ple 1.1.11 yields the cosyzygies of an indecomposable Λ-module:

Σ · · ·Σ︸ ︷︷ ︸
j times

k[x]/(xi) ∼=


k[x]/(xn−i) j odd,

k[x]/(xi) j even.

Now we can concretely verify ΣΩ(k[x]/(xi)) ∼= k[x]/(xi) in modΛ/ proj(Λ),

either by the argument from the last paragraph or using the formulas for

syzygies and cosyzygies of k[x]/(xi).

1.1.3. Triangulation of stabilized Frobenius categories. We now

turn our attention to triangulated categories, the goal being to show the

stabilization of a Frobenius category with respect to its class of projec-

tive objects—or, equivalently, injective objects—is a triangulated category

(called an algebraic triangulated category). Recall the definition, as

appears in [12, Chapter 1] or [15, Definition 10.2.1]:
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Definition 1.1.15. Let T be an additive category equipped with an

additive auto-equivalence Σ: T → T. Generally, Σ is called the suspen-

sion or shift functor. A triangle in T is a sequence of objects and maps

(X,Y, Z, f, g, h) in T that takes the following shape:

X
f−→ Y

g−→ Z
h−→ ΣX.

Often, as is shorthand in the literature, we may replace ΣX by X[1], and

more generally ΣiX by X[i] for all i ∈ Z. A morphism between triangles

(X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) is a triple (u, v, w) of morphisms

in T that make the following diagram commute.

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

u

g

v

h

w Σu

f ′ g′ h′

We call the category T a triangulated category if it has a class ∆ of

so-called distinguished triangles and the following four axioms hold.

TR1 ∆ is isomorphism closed. Every triangle of the form

X
id−→ X → 0→ ΣX

belongs to ∆. Any morphism f : X → Y can be embedded into

a distinguished triangle, i.e., for any such f there exists maps g, h

and an object Z so that (X,Y, Z, f, g, h) ∈ ∆.

TR2 If (X,Y, Z, f, g, h) ∈ ∆, then (Y,Z,ΣX, g, h,−Σf) ∈ ∆.

TR3 Given a diagram

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

u

g

v

h

Σu

f ′ g′ h′
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1.1. EXACT CATEGORIES

of distinguished triangles (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′)

with maps u : X → X ′ and v : Y → Y ′ so that f ′u = vf , there

exists a map w : Z → Z ′ making (u, v, w) a morphism of triangles.

TR4 Suppose we are given dishinguished triangles (X,Y, Z, f, f ′, f ′′),

(Y,U,W, g, g′, g′′), and (X,U, V, h, h′, h′′) with the stipulation gf =

h. Then there exist maps k : Z → V , k′ : V → W , and k′′ : W →

ΣZ so that (Z, V,W, k, k′, k′′) is a distinguished triangle and the

following diagram commutes.

X U W ΣZ

Y V ΣY

Z ΣX

h

f h′

g′

g′′

k′′

g

f ′

k′

h′′

Σf ′

k

f ′′

Σf

Remark 1.1.16. A category that satisfies TR1, TR2, and TR3 is called

pre-triangulated. The remaining axiom, TR4, is called the octahedral

axiom, or sometimes Verdier’s axiom, after Jean-Louis Verdier. While

similar axioms were circulating around two years before Verdier’s treatment,

it was he who devised TR4, which allowed a thorough examination of the

derived category in his Ph.D. thesis (published posthumously in [14]). The

braid diagram for Verdier’s axiom is due to [11] (according to [9, Section

2.3]), however initially, the diagram was non-planar, envisioned by Verdier

as an octahedron; see [15, Definition 10.2.1] for an illustration. The axioms

have been scrutinized thoroughly in the last half century, and there is still

some debate over whether TR4 follows from the other three. Some treat-

ments state TR2 as a biconditional, but [11] showed that one direction of

TR2, along with TR3, follow from the rest. While this streamlines matters,
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1. PRELIMINARIES

we forgo the shortcut in the upcoming proof, as we will use facts about

pre-triangulated categories in the verification of TR4.

Definition 1.1.17 ([12, Definition 1.1.7]). Given a triangulated cate-

gory T and an abelian category A, a functor H : T → A is homological if

every distinguished triangle

X → Y → Z → ΣX

is sent to an exact sequence

HX → HY → HZ.

Moreover, axiom TR2 implies that this exact sequence can be extended to

a long exact sequence

· · · → H(Σ−1Z)→ HX → HY → HZ → H(ΣX)→ · · ·

in A. If H is instead contravariant, we call it cohomological.

Lemma 1.1.18 (Triangulated 5 Lemma). Suppose T is a pre-triangulated

category and we have the following morphism of triangles.

X Y Z ΣX

X ′ Y ′ Z ′ ΣX ′

f

u

g

v

h

w Σu

f ′ g′ h′

If two of u, v, w are isomorphisms, then so is the third.

Proof. In light of TR2 (and since Σ is an auto-equivalence), we as-

sume u and v are isomorphisms, and we accept one well known fact without

proof: For any object W ∈ T, the covariant functor HW (−) := HomT(W,−)
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is homological. Applying HW (−) to the situation gives the following com-

mutative diagram of abelian groups.

HW (X) HW (Y ) HW (Z) HW (ΣX) HW (ΣY )

HW (X ′) HW (Y ′) HW (Z ′) HW (ΣX ′) HW (ΣY ′)

HW (w)

Every vertical morphism except HW (w) is necessarily an isomorphism, so

by the 5 Lemma (for abelian groups), we conclude that HW (w) is an iso-

morphism. But this holds for all objects W , so the Yoneda Lemma implies

w is an isomorphism. �

Pre-triangulated categories allow us to study homology/cohomology in

categories that fail to be abelian by replacing short exact sequences with

triangles. One of the properties maintained in this substitution is vanishing

composition, which is to say, given a distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX,

the compositions gf , hg, and (−Σf)h are all 0. For gf = 0, compare the

above triangle to the distinguished (by TR1) triangle X = X → 0 → ΣX

and apply TR3; the other two follow similarly by TR2. In a pre-triangulated

category, any representable covariant (resp. contravariant) functor is homo-

logical (resp. cohomological), a fact we utilized in the proof of Lemma 1.1.18

above. Searching for examples of triangulated categories, we arrive at the

next result classifying a broad class of triangulated categories. The theorem

will furthermore be central to arguments in the following chapters.

Theorem 1.1.19. The projective/injective stabilization of a Frobenius

category is triangulated.
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We will use the several diagram lemmas in the proof of the theorem.

The verification of both amounts to the usual game of cat and mouse, so we

omit proofs and refer the intent reader to [4].

Lemma 1.1.20. In a commutative square

A C

B D

with inflations for horizontal arrows, the following are equivalent:

(1) The square is a pushout.

(2) The square fits into a commutative diagram

A C E

B D E

where the rows are conflations.

Lemma 1.1.21 (3× 3 Lemma). Consider a commutative diagram

A′ B′ C ′

A B C

A′′ B′′ C ′′

f g

with columns and outer rows conflations. If gf = 0, then the middle row is

a conflation.

Proof of Theorem 1.1.19. Let F be a Frobenius category, F the pro-

jective/injective stabilization, and Σ the cosyzygy functor on F. By Propo-

sition 1.1.13, Σ is an auto-equivalence. We begin by exhibiting standard

distinguished triangles.
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Given a morphism f : A → B and conflation A ↪→ I � ΣA with I

injective, take the pushout of i : A ↪→ I along f , and extend to the following

commutative diagram by Lemma 1.1.20.

A I ΣA

B cone(f) ΣA

f

i

p
g

p

j q

Note that, while the cosyzygy object ΣA is unique up to isomorphism in F

(by Proposition 1.1.12), it is not well-defined in F. By ΣA we mean any fixed

object of F that satisfies the diagram and whose image in F is isomorphic

to ΣA. Wherever the specific choice does not matter, we retain the abuse

of notation. We designate diagrams of the form A
f−→ B → cone(f) → ΣA

arising from the construction above as prototypical distinguished triangles,

and we stipulate that any diagram isomorphic to a prototypical distinguished

triangle is itself distinguished—an isomorphism of distinguished triangles

is a morphism (u, v, w) of distinguished triangles, as in Definition 1.1.15,

where u, v, w are all isomorphisms. Now we verify the axioms using diagram

arguments in F.

Most of TR1 is free by construction. All we must show is that A = A→

0 → ΣA is distinguished. Working in F, embed A into an injective I and

take the pushout along A = A; the pushout is necessarily I. Complete the

diagram to include cokernels and excise the triangle. Since I ∼= 0 in F,

we are done. Therefore it suffices to check the remaining axioms only on

prototypical distinguished triangles.

For TR2, consider the distinguished triangle A
f−→ B → cone(f)→ ΣA.

As with A ↪→ I � ΣA, embed B into an injective J via γ and exhibit the

cokernel π : J � ΣB. Then since i : A ↪→ I is an inflation and J is injective,

there exists a map m : I → J such that γf = mi, which induces a unique
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map Σf on the cokernels so that (Σf)p = πm.

A I ΣA

B J ΣB

i

f

p

∃m ∃!Σf
γ π

Looking at the pushout of i along f , we induce a unique map δ : cone(f)→ J

such that m = δg and γ = δj by the universal property of the pushout.

A I

B cone(f)

J

f

i

p
g

m
j

γ

∃!δ

Extend the diagram to include ΣA and ΣB.

A I ΣA

B cone(f) ΣA

J ΣB

f

i

p
g

p

j

γ

q

δ Σf

π

Then πδg = πm by the pushout property, πm = (Σf)p by an earlier com-

mutative diagram, and (Σf)p = (Σf)qg, as was shown at the start of the

proof, thus πδg = (Σf)qg. Additionally, πδj = πγ = 0, so the pushout prop-

erty implies there exists a unique map cone(f) → ΣB that respects all the

equalities just found. But there are two such maps, namely πδ and (Σf)q,
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so they must be equal. Now consider the following commutative diagram.

B J ΣB

cone(f) J ⊕ ΣA ΣB

ΣA ΣA

j

γ

( 1
0 )

π

q

(
δ
q

)
(π −Σf )

( 0 1 )

Here the columns and outer rows are conflations, and the composition in

the middle row is 0, so the middle row is a conflation by Lemma 1.1.21.

Moreover, Lemma 1.1.20 implies that the upper left square is a pushout.

Therefore

B cone(f) J ⊕ ΣA ΣB
j

(
δ
q

)
(π −Σf )

is a (prototypical) distinguished triangle by construction, and we can com-

pare it to the rotation of the triangle with which we started. Canonical

inclusion into and projection out of the second component ΣA → J ⊕ ΣA

and J ⊕ ΣA→ ΣA yield the following diagram.

B cone(f) J ⊕ ΣA ΣB

B cone(f) ΣA ΣB

j

(
δ
q

)
(π −Σf )

( 0 1 )

j q

( 0
1 )

−Σf

While the diagram fails to commute in F, upon projecting down to F, we

get an isomorphism of triangles. Therefore the rotated triangle

B
j−→ cone(f)

q−→ ΣA
−Σf−−−→ ΣB

is distinguished.
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For TR3, we are given two distinguished triangles arising the following

diagrams.

A I ΣA C J ΣC

B cone(f) ΣA D cone(g) ΣC

f

i

p
f̂

p i′

g
p

p′

ĝ

j q j′ q′

Suppose there exists maps u : A→ C and v : B → D such that vf = gu in F.

We want a map w : cone(f)→ cone(g) such that (u, v, w) is a morphism of

triangles. As vf−gu = 0 in F, there exists an injective I0 that factors vf−gu

in F, i.e., we have maps ε : A→ I0 and β : I0 → D with βε = vf − gu. Note

that ε necessarily factors through I since i : A ↪→ I is an inflation, giving

the following commutative diagram.

A D

I I0

vf−gu

i
ε

η

β

Thus, instead of factoring vf − gu over I0, we can factor over I, and letting

α := βη, we get vf − gu = αi. Additionally, as I in injective, we can induce

maps û : I → J and Σu : ΣA→ ΣC making the following diagram commute.

A I ΣA

C J ΣC

i

u

p

∃û ∃!Σu
i′ p′

Now we can induce the required map w by studying the pushout of i along

f . We have maps j′v : B → cone(g) and (ĝû+ j′α) : I → cone(g), and

(ĝû+ j′α)i = ĝûi+ j′αi

= ĝi′u+ j′(vf − gu)

= j′gu+ j′vf − j′gu = j′vf,
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so by the pushout property there exists a unique map w : cone(f)→ cone(g)

such that wj = j′v and wf̂ = ĝû+ j′α, in other words, making the following

diagram commute.

A I

B cone(f)

cone(g)

f

i

p
f̂ ĝû+j′α

j

j′v

∃!w

Now that we have a candidate map w, we must show that (u, v, w) is a mor-

phism of triangles. This is surprisingly straightforward, as we can actually

show the following diagram commutes in F.

B cone(f) ΣA

D cone(g) ΣC

j

v

q

w Σu

j′ q′

From the construction of w we get that the left square commutes. To show

the right square commutes, we appeal to the pushout of i along f once again.

We want that q′w − (Σu)q = 0, so if we can show that (q′w − (Σu)q)j =

0 = (q′w − (Σu)q)f̂ , then there are two maps, namely 0 and q′w − (Σu)q,

from cone(f) to ΣC satisfying the following diagram, so uniqueness (from

the pushout property) implies they are equal.

A I

B cone(f)

ΣC

f

i

p
f̂ 0

j

0

q′w−(Σu)q

0
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Two computations complete the proof of TR3. Since both (j, q) and (j′, q′)

are kernel-cokernel pairs and by construction of w,

(q′w − (Σu)q)j = q′wj − (Σu)qj

= q′j′v − 0 = 0,

and

(q′w − (Σu)q)f̂ = q′wf̂ − (Σu)qf̂

= q′(ĝû+ j′α)− (Σu)p

= q′ĝû+ q′j′α− (Σu)p

= p′û− (Σu)p

= (Σu)p− (Σu)p = 0.

Therefore w : cone(f) → cone(g) is a map in F such that (u, v, w) is a

morphism of triangles in F.

We have shown that F is pre-triangulated. For the octahedral axiom,

suppose we are given three (prototypical, by TR1) distinguished triangles

A
f−→ B

f ′−→ cone(f)
f ′′−→ ΣA,

A
h−→ C

h′−→ cone(h)
h′′−→ ΣA,

B
g−→ C

g′−→ cone(g)
g′′−→ ΣB,

such that gf = h. For the first two triangles, we may assume they arise

from the following commutative diagrams.

A I ΣA A I ΣA

B cone(f) ΣA D cone(h) ΣC

f

i

p
f̂

p i

h=gf
p

p

ĥ

f ′ f ′′ h′ h′′
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For the third triangle, which comes from a diagram looking like the following,

we need to make a replacement.

B J ΣB

C cone(g) ΣB

g
p

Using the embedding (inflation) ` : cone(f) ↪→ K, where K is injective, we

get a map `f ′ : B ↪→ K, which, as the composition of inflations, is itself an

inflation (axiom E1). Accordingly, there must be a corresponding deflation

K � B′. We may now assume we have the following commutative diagram.

B K B′

C E B′

g

`f ′

p
ĝ

p′

g′ g′′

By Proposition 1.1.12 and Lemma 1.1.18, the triangles B → C → cone(g)→

ΣB and B → C → E → B′ are isomorphic in F, so we assume from now on

that E and B′ are replaced by cone(g) and ΣB respectively in the diagram

above. After all, the symbols cone(g) and ΣB represent one arbitrary lift

of unique (up to isomorphism) objects in F, so we may as well choose the

most advantageous lift. Consider the resulting diagram.

A I ΣA

B K ΣB

i

f

p

`f̂ ∃!Σf
`f ′ p′

The left square commutes automatically, as it is the result of applying ` to

the pushout of i along f . Factoring through the cokernel yields a unique

map Σf making the right square commute, so we have (Σf)p = p′`f̂ .

We want maps k : cone(f) → cone(h) and k′ : cone(h) → cone(g) so

that

cone(f)
k−→ cone(h)

k′−→ cone(g)
(Σf ′)g′′−−−−−→ Σ cone(f)
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is a distinguished triangle compatible with the diagram given in Definition

1.1.15. As before, we use the property of the pushout to induce the required

maps. First, we have maps ĥ : I → cone(h) and h′g : B → cone(h) such

that ĥi = h′h = h′gf . Now upon considering the pushout of i along f , we

find there exists a unique map k : cone(f)→ cone(h) such that kf̂ = ĥ and

kf ′ = h′g. Next we have maps ĝ`f̂ : I → cone(g) and g′ : C → cone(g) such

that

ĝ`f̂ i = ĝ`f ′f = g′gf = g′h,

so looking at the pushout of i along h gives a unique map k′ : cone(h) →

cone(g) such that k′ĥ = ĝ`f̂ and k′h′ = g′.

Let k′′ := (Σf ′)g′′. For clarity, we record our progress using the following

diagram of the octahedral axiom.

A B cone(f) ΣA

A C cone(h) ΣA

B C cone(g) ΣB

cone(f) cone(h) cone(g) Σ cone(f)

f f ′

g (1)

f ′′

k (2)
h

f

h′

(3)

h′′

k′ (4) Σf

g

f ′

g′

h′

g′′

Σf ′

k k′ k′′

In the last paragraph, we showed squares (1) and (3) commute, so it remains

to show that the other two commute and that the bottom row is a distin-

guished triangle. For square (2), consider the map (f ′′ − h′′k) : cone(f) →

ΣA and argue by the pushout of i along f . Since

(f ′′ − h′′k)f̂ = f ′′f̂ − h′′kf̂ = p− h′′ĥ = p− p = 0

and

(f ′′ − h′′k)f ′ = f ′′f ′ − h′′kf ′ = 0− h′′kf ′ = h′′h′g = 0,
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the pushout property implies f ′′ − h′′k = 0, so square (2) commutes. Then

square (4) again boils down to using the pushout diagram of i along h. As

((Σf)h′′ − g′′k′)ĥ = (Σf)h′′ĥ− g′′k′ĥ = (Σf)p− g′′ĝ`f̂ = p′`f̂ − p′`f̂ = 0

and

((Σf)h′′ − g′′k′)h′ = (Σf)h′′h′ − g′′k′h′ = 0− g′′g′ = 0,

the pushout property gives (Σf)h′′−g′′k′ = 0, that is, square (4) commutes.

To show the bottom row of the last diagram is a distinguished triangle,

we start by showing k′k = ĝ`. Note that

(k′k − ĝ`)f̂ = k′kf̂ − ĝ`f̂ = k′ĥ− k′ĥ = 0

and

(k′k − ĝ`)f ′ = k′kf ′ − ĝ`f ′ = k′h′g − g′g = g′g − g′g = 0,

so as cone(f) is the pushout of i along f , we find k′k = ĝ`. Now consider

the following commutative diagram.

A I

B cone(f) K

C cone(h) cone(g)

i

f f̂

f ′

g

`

k ĝ

h′ k′

The upper left square is a pushout, and since h = gf and ĥ = kf̂ , the left rec-

tangle is a pushout. By the pasting lemma for pushouts, the lower left square

is a pushout. Then the bottom rectangle is a pushout because g′ = k′h′, so

the pasting lemma implies that the lower right square is a pushout. There-

fore, as it arises from a pushout diagram, cone(f)→ cone(h)→ cone(g)→

Σ cone(f) is a distinguished triangle. This completes the proof. �
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1.2. Cotorsion theory

In Chapter 2, we take the opportunity to discuss some structural aspects

of certain module categories, with particular focus placed on cotorsion pairs

and approximation. We outline the general theory of cotorsion pairs in this

section, which allow us to decompose an abelian category into “orthogonal”

subcategories, in a certain sense. We also treat approximation theory, which

generalizes notions like projective covers and injective hulls, and we propose

a weakened torsion theory suitable for any additive category.

1.2.1. Cotorsion pairs. Let A be an abelian category. We open with

some definitions.

Definition 1.2.1. A pair (C,D) of classes of objects C and D in A is

called a cotorsion pair if C and D are mutually Ext1-orthogonal, that is

(1) C ∈ C if and only if Ext1(C,D) = 0 for all D ∈ D, and

(2) D ∈ D if and only if Ext1(C,D) = 0 for all C ∈ C.

In a cotorsion pair (C,D), C is called a cotorsion class and D is called a

cotorsion-free class. Without any issue, we may write C and D for the

isomorphism closed full subcategories of A containing the object classes of

the same name.

Note that the two conditions defining cotorsion pairs is stronger than

requiring Ext1(C,D) = 0. In this case, we would have

D ⊆ C⊥1 := {A ∈ A : Ext1(C, A) = 0} and

C ⊆ ⊥1D := {A ∈ A : Ext1(A,D) = 0}.

Instead, we are requiring that the cotorsion class and cotorsion-free class

mutually determine the other, that is, C⊥1 = D and C = ⊥1D.
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The easiest example, available in every abelian category, is when D = A.

Requiring C ∈ C such that Ext1(C,D) = 0 for all D ∈ A amounts to saying

that C is projective, hence (Proj(A),A) is a cotorsion pair in A. Dually,

with C = A, we find that (A, Inj(A)) is a cotorsion pair.

Cotorsion pairs are a tool to decompose a category into orthogonal

parts. We can immediately demonstrate several properties of cotorsion and

cotorsion-free classes in A.

Lemma 1.2.2. Let (C,D) be a cotorsion pair in A. Then C and D are

closed under extensions and direct summands. Also, C contains all the pro-

jective objects in A and D contains all the injective objects in A.

Proof. Take a short exact sequence C ↪→ A � C ′ with C,C ′ ∈ C and

apply Ext1(−, D) with D ∈ D, giving an exact sequence

Ext1(C ′, D) Ext1(A,D) Ext1(C,D)

with the outer terms vanishing, hence A ∈ C, showing C is closed under

extensions. Let C ′ be a summand of C ∈ C. Since Ext commutes with

direct sums, Ext1(C,D) = 0 implies Ext1(C ′, D) = 0 for all D ∈ D, so

C ′ ∈ C. Therefore C is closed under retracts. Lastly, for any projective P ,

Ext1(P,−) vanishes on A, so in particular on D, hence P ∈ ⊥1D = C. The

rest follows similarly for D. �

What we encounter in later inquiry will not be pedestrian cotorsion

pairs. A more restrictive species of cotorsion pair, which we now christen,

appears in Chapter 2.

Definition 1.2.3. A cotorsion pair (C,D) in A is called hereditary if

Exti(C,D) = 0 for all i > 0.
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Lemma 1.2.4. If (C,D) is a hereditary cotorsion pair in A, then C is

closed under kernels of epimorphisms and D is closed under cokernels of

monomorphisms.

Proof. Let p : C � C ′ be an epimorphism of objects in C. For any

D ∈ D, the short exact sequence ker p ↪→ C � C ′ induces the exact sequence

Exti(C,D) Exti(ker p,D) Exti+1(C ′, D).

The outer terms vanish for all i > 0, so Exti(ker p,D) = 0 for all D ∈ D,

thus ker p ∈ C. Similarly for D. �

The converse is harder, but requiring that A has enough projectives or

injectives does the trick. The conditions are not coupled however, and it is

quite reasonable to have a hereditary cotorsion pair (C,D) with, for example,

C closed under kernels of epimorphisms and D not closed under cokernels of

monomorphisms.

Lemma 1.2.5. Let (C,D) be a cotorsion pair in A. If C is closed under

kernels of epimorphisms and A has enough projectives, then (C,D) is hered-

itary. If D is closed under cokernels of monomorphisms and A has enough

injectives, then (C,D) is hereditary.

Proof. Suppose C is closed under kernels of epimorphisms and A has

enough projectives. For C ∈ C, we always have an epimorphism p : P � C

from some projective P . With D ∈ D, we get an exact sequence

Exti(ker p,D) Exti+1(C,D) Exti+1(P,D)

for all i > 0. Then Ext1(ker p,D) = 0 because C is closed under kernels of

epimorphisms and Ext2(P,D) = 0 because P is projective, so Ext2(C,D) =
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0 by exactness at i = 1. Induction implies (C,D) is hereditary. The situation

with D is formally dual. �

Definition 1.2.6. A cotorsion pair (C,D) in A is called complete if,

for any object A ∈ A, there exist short exact sequences

A ↪→ dA� c′A and d′A ↪→ cA� A

with c′A, cA ∈ C and dA, d′A ∈ D.

Remark 1.2.7. Warning: the assignments c′, c : A → C and d, d′ : A →

D are not functorial in general. We will show what alterations are necessary

to make these choices uniquely in Section 1.2.2 (Proposition 1.2.15), however

these sequences are still plenty useful without functoriality.

Lemma 1.2.8. Let (C,D) be a complete cotorsion pair in A, C ∈ C, and

D ∈ D. Then f : C → D factors over an object in C ∩D.

Proof. As the cotorsion pair is complete, we can write a short exact

sequence d′D ↪→ cD � D for D. Now apply Exti(C,−) with i = 0, 1, giving

the exact sequence

Hom(C, cD)→ Hom(C,D)→ Ext1(C, dD)→ Ext1(C, cD)→ Ext1(C,D).

First, Ext1(C, dD) vanishes, so Hom(C, cD)→ Hom(C,D) is epi, that is, f

factors through cD ∈ C. But Ext1(C,D) vanishes too (or equivalently, D is

extension closed), so Ext1(C, cD) = 0, i.e., cD ∈ C ∩D. �

With complete cotorsion pairs, we get additional data about how Ext-

orthogonal classes decompose our category. For example, if (C,D) is a com-

plete cotorsion pair in A, then it follows from the definition that every object
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in A is isomorphic to the quotient of an object in C by an object in D. Addi-

tionally, the existence of such short exact sequences provides room to weaken

earlier hypotheses.

Lemma 1.2.9 ([2, Remark V.3.2]). Suppose C and D are two isomor-

phism closed full subcategories in an abelian category A such that

(1) Ext1(C,D) = 0,

(2) C and D are closed under direct summands, and

(3) for any object A ∈ A, there exist short exact sequences

A ↪→ dA� c′A and d′A ↪→ cA� A

with c′A, cA ∈ C and dA, d′A ∈ D.

Then (C,D) is a complete cotorsion pair in A.

Proof. As was discussed earlier, Ext1(C,D) = 0 implies D ⊆ C⊥1 .

Consider a short exact sequence A ↪→ dA � c′A with A ∈ C⊥1 , so the

sequence splits. Then A is a summand of dA, and since D is closed under

summands, A ∈ D. Therefore C⊥1 = D. Similarly, using the other short

exact sequence with A ∈ ⊥1D, we conclude C = ⊥1D. �

1.2.2. Approximation theory. We are often interested in approxi-

mating objects in an additive category X by a subclass of objects with nice

properties. The analogy is projective covers and injective hulls of modules,

which supply approximations of arbitrary modules by modules of a partic-

ular breed.

Definition 1.2.10. Let C be an isomorphism closed full subcategory of

an additive category X.
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(1) A right C-approximation of an object A ∈ X is a morphism

f : C → A with the property that any other map g : C ′ → A factors

via h : C ′ → C, i.e., g = fh.

(2) If every object A ∈ X has a right C-approximation, then C is called

a contravariantly finite subcategory of X.

(3) Dually, a left C-approximation of an object A ∈ X is a morphism

f : A→ C with the property that any other map g : A→ C ′ factors

via h : C → C ′, i.e., g = hf .

(4) If every object A ∈ X has a left C-approximation, then C is called

a covariantly finite subcategory of X.

(5) We say C is a functorially finite subcategory of X if it is both

contravariantly finite and covariantly finite.

Remark 1.2.11. Notice that we do not require approximations to be

unique! Many authors get around this by fixing assignments for each object

in X, but making such choices functorial would certainly be more robust.

We will show that appropriately stabilizing X makes the selection functorial

when the approximations come from complete cotorsion pairs.

Recall from Definition 1.2.6 that a complete cotorsion pair (C,D) in

an abelian category A comes equipped with assignments of objects in C

and D for each object in A. Approximations naturally arise from complete

cotorsion pairs.

Proposition 1.2.12. Let (C,D) be a complete cotorsion pair in A. Then

C is a contravariantly finite subcategory of A and D is a covariantly finite

subcategory of A.

Proof. Fix an object A ∈ A and short exact sequences d′A ↪→ cA� A

and A ↪→ dA � c′A. We have to show if C ∈ C is any object with a
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morphism f : C → A, then f factors over cA. The short exact sequence

d′A ↪→ cA� A yields an exact sequence

Hom(C, cA)→ Hom(C,A)→ Ext1(C, d′A)

where the last term vanishes. Thus Hom(C, cA) → Hom(C,A) is epi, so

f : C → A factors through cA.

Dually, if D ∈ D is any object with g : A → D, we need that g factors

over dA. Using A ↪→ dA� c′A, we get an exact sequence

Hom(dA,D)→ Hom(A,D)→ Ext1(c′A,D).

Once more the last term vanishes, so Hom(dA,D) → Hom(A,D) is epi,

completing the proof. �

Let f : A′ → A and suppose we are given right C-approximations C ′ →

A′ and C → A. We want to narrow down what it would take to make the

induced map C ′ → C unique. Say we have two maps g and h, for which the

following diagram commutes.

C ′ A′

C A

g h f

Then seeking such restrictions, and in light of the fact that A is abelian,

it suffices to study g − h. In the case approximations come from complete

cotorsion pairs, we get the following result.

Lemma 1.2.13. Let (C,D) be a complete cotorsion pair in A and f : A′ →

A a morphism in A. Suppose we fix short exact sequences d′A′ ↪→ cA′ � A′

and d′A ↪→ cA � A, i.e., right C-approximations with kernels in D. If

g, h : cA′ → cA are two maps induced by f , then g−h factors through C∩D.
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Proof. We have the commutative diagram

cA′ A′

d′A cA A

j
g−h 0

with g − h in the kernel of cA � A, inducing the unique dashed diagonal

map j : cA′ → d′A. By Lemma 1.2.8, j factors over an object in C ∩D, so

g − h does as well. �

We get a dual statement about left D-approximations with cokernels in

C, which follow immediately from the last lemma by formal duality.

Lemma 1.2.14. Let (C,D) be a complete cotorsion pair in A and f : A′ →

A a morphism in A. Suppose we fix short exact sequences A′ ↪→ dA′ � c′A′

and A ↪→ dA � c′A, i.e., left D-approximations with cokernels in C. If

g, h : dA′ → dA are two maps induced by f , then g − h factors through

C ∩D.

If we can remove maps that factor through C∩D, the assignments given

in Definition 1.2.6 would become functorial. This is accomplished by stabi-

lizing A (Definition 1.1.8) with respect to C ∩D.

Proposition 1.2.15. Let (C,D) be a complete cotorsion pair in A and

ω := C∩D. The assignments of short exact sequences from Definition 1.2.6

define functors c : A → C/ω and d : A → D/ω. These functors descend to

functors on A/ω, which we also call c and d.

Proof. Lemmas 1.2.13 and 1.2.14 quickly dispose of the first claim. It

is worth remarking that the choice of short exact sequence does not matter,

for if we are given two sequences d̃′A ↪→ c̃A� A and d′A ↪→ cA� A, then

the identity map on A induces maps α : c̃A→ cA and β : cA→ c̃A. Lemma

1.2.13 implies that both idc̃A − βα and idcA − αβ factor through ω, that is,
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cA ∼= c̃A in C/ω. Similarly, Lemma 1.2.14 ensures that the assignment of

an object in D/ω does not depend on the choice of sequence.

For the second claim, take A ∈ C ∩D with short exact sequences A ↪→

dA� c′A and d′A ↪→ cA� A. Since C and D are extension closed, we find

dA ∈ C and cA ∈ D, hence both are in C ∩ D. Thus cA and dA are 0 in

their respective quotients, proving we get functors on A/ω. �

Proposition 1.2.16. Let (C,D) be a complete cotorsion pair in A and

ω := C ∩ D. Then C/ω is a contravariantly finite and D/ω a covariantly

finite subcategory of A/ω.

Proof. This follows from Propositions 1.2.12 and 1.2.15. �

In summary, if (C,D) is a complete cotorsion pair in an abelian category

A, then C is a contravariantly finite and D a covariantly finite subcategory

of A (Proposition 1.2.12). If we stabilize A with respect to ω := C∩D, then

we get functors c : A/ω → C/ω and d : A/ω → D/ω (Proposition 1.2.15).

Moreover, c and d respectively define right C/ω-approximations and left

D/ω-approximations of objects in A/ω (Proposition 1.2.16), and the assign-

ment of an approximation is now functorial.

To finish, we generalize the syzygy and cosyzygy functors from Section

1.1.2. Let C be a contravariantly finite subcategory of an abelian category

A, and form the stable category A/C as in Definition 1.1.8. For each object

A ∈ A, we have a right C-approximation f : C → A, and we set ΩA := ker f .

The assignment Ω descends to an endofunctor on A/C, which we call a

syzygy functor. Dually, for a covariantly finite subcategory D of A, define

a cosyzygy functor—either denoted by f (traditional) or Σ (to align with

Section 1.1.2)—on A/D by taking cokernels of left D-approximations.

1.2.3. Torsion pairs. In this section we propose a torsion theory suit-

able for additive categories. Our approach distills the classical approach
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down to the existence of certain adjoint functors, eliminating the need for

the full structure of an abelian category. What’s more, when specializing

back to abelian categories, our theory recovers the expected data, though

it fails to specialize to a similar notion for triangulated categories. We re-

mark on the latter at the end of the section and propose an alteration that

suitably generalizes both the abelian and triangulated cases.

Our motivation for greater generality is a connection to cotorsion pairs.

We will find that cotorsion pairs immediately give rise to torsion-pair-like

structures, but in a category that is only additive in general. Extending

the notion of torsion pairs to additive categories allows us to draw conclu-

sions about adjoint functors from cotorsion structure, furnishing much richer

structure with little extra work. We begin with a review of torsion pairs for

abelian categories.

Definition 1.2.17 ([2, Definition I.1.1]). Let A be an abelian category.

A torsion pair in A is a pair (T,F) of isomorphism closed full subcategories

of A with the following properties.

(1) HomA(T,F) = 0.

(2) For any Z ∈ A, there exists a short exact sequence

0→ tZ → Z → fZ → 0

in A with tZ ∈ T and fZ ∈ F.

With the assignment of a short exact sequence we immediately get a

functor t : A→ T that is right adjoint of the inclusion i : T → A. Symmetri-

cally we get a functor f : A→ F that is left adjoint of the inclusion j : F → A.

Indeed, if 0 → tZ → Z → fZ → 0 and 0 → t′Z → Z → f ′Z → 0 are two

short exact sequences for an object Z, then since HomA(tZ, f ′Z) = 0, there
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exists a unique ϕ : tZ → t′Z making the left square below commute.

0 tZ Z fZ 0

0 t′Z Z f ′Z 0

∃!ϕ ∃!ψ

Similarly, there exists a unique ψ : fZ → f ′Z making the right square above

commute. In both cases, it is quick to observe that ϕ and ψ are isomor-

phisms (induce maps in the other direction), so specifying a short exact

sequence determines, for each object Z, objects in T and F that are unique

up to unique isomorphism. Now suppose we have a map g : Z → Z ′. As

HomA(tZ, fZ ′) = 0, there exists unique maps tg : tZ → tZ ′ and fg : fZ → fZ ′

making the left and right squares below respectively commute.

0 tZ Z fZ 0

0 tZ ′ Z ′ fZ ′ 0

∃!tg g ∃!fg

Therefore the assignments t : A → T and f : A → F define functors; that

these functors are adjoints to inclusion is a quick verification. Moreover,

tZ → Z is the component at Z of the counit of the adjunction i a t and

Z → fZ is the component at Z of the unit of the adjunction f a j. Inspired

by these adjoints, we extend the notion of torsion pairs to any additive

category.

Definition 1.2.18. A torsion pair in an additive category X is a pair

(T,F) of isomorphism closed full subcategories T and F, the torsion class

and torsion-free class respectively, such that

T1 HomX(T,F) = 0, and

T2 the canonical inclusions T ↪→ X and F ↪→ X admit right and left

adjoints respectively.
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Let (T,F) be a torsion pair in an additive category X. To see the gener-

alized notion specializes back to the classical, simply notice that when X is

abelian, T1 implies T is closed under extensions of right exact sequences: If

X → Z → X ′ → 0 is exact with X,X ′ ∈ T, then

0→ HomX(X ′, Y )→ HomX(Z, Y )→ HomX(X,Y )

is exact for every Y ∈ F. As the outer terms vanish, HomX(Z, Y ) = 0 for

all Y , thus Z ∈ T. Similarly, T1 implies F is closed under extensions of left

exact sequences. Then T2 and [2, Proposition I.1.2] imply that (T,F) is a

torsion pair in the sense of Definition 1.2.17.

The main purpose of extending the notion of torsion pairs to additive

categories is to serve abelian categories stabilized by the intersection of com-

plete cotorsion pairs. Given a pair of isomorphism closed full subcategories

(C,D) in an abelian category A, we can stabilize A (in the sense of Defini-

tion 1.1.8) with respect to C ∩D. The resulting stabilization is not abelian

in general, but when (C,D) is a complete cotorsion pair, we find that the

stabilization is endowed with a torsion pair.

Proposition 1.2.19. Let (C,D) be a complete cotorsion pair in an

abelian category A and ω := C ∩ D. Then (C/ω,D/ω) is a torsion pair

in A/ω.

Proof. For brevity, write A, C, and D for the ω-stabilization of A, C

and D respectively. First, Hom(C,D) = 0 by Lemma 1.2.8. For the adjoints,

the setup is as follows.

C A D

i

c

d

j

45



1. PRELIMINARIES

We have inclusions i, j, i.e., full embeddings, and the approximation func-

tors c, d from Proposition 1.2.15. It is immediate from Lemma 1.2.8 that

Hom(C,D) = 0, so it remains to show (i, c) and (d, j) are adjoint pairs; we

will demonstrate only the former, as the latter is dual. Since C is a full

subcategory of A and i is a full embedding, it suffices to demonstrate

HomA(C, cA)→ HomA(C,A)

is an isomorphism for C ∈ C and A ∈ A. Fix a short exact sequence

0→ d′A→ cA
p−→ A→ 0

in A as in Definition 1.2.6. Applying HomA(C,−), we get an exact sequence

0→ HomA(C, d′A)→ HomA(C, cA)
p∗−→ HomA(C,A)→ Ext1

A(C, d′A)

where the last term vanishes, hence p∗ is an epimorphism. We should indeed

expect this, since cA is a right C-approximation of A, so any map C → A

will factor through cA. It remains to show every f ∈ ker p∗ vanishes in

A. By the above exact sequence, ker p∗ ∼= HomA(C, d′A), so Lemma 1.2.8

implies the residue of f in A is 0. Hence p∗ descends to an isomorphism

HomA(C, cA)
∼−→ HomA(C,A),

with naturality in both components immediate from construction. Therefore

(i, c) is an adjoint pair. �

Remark 1.2.20. Similar to Definition 1.2.17, there is a notion of torsion

pairs for triangulated categories: A torsion pair in a triangulated category

U with suspension Σ is a pair (T,F) of isomorphism closed full subcategories

with the following properties.

(1) HomU(T,F) = 0.
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(2) Σ(T) ⊂ T and Σ−1(F) ⊂ F.

(3) For any Z ∈ U, there exists a distinguished triangle

tZ → Z → fZ → Σ(tZ)

in U with tZ ∈ T and fZ ∈ F.

See [2, Section I.2] for details.

The issue with Definition 1.2.18 is that it yields no control over Σ. We

could adapt our definition to suit suspended additive categories, that is,

additive categories endowed with an additive auto-equivalence Σ, subject

to mild assumptions. If X is one such category and (T,F) is a proposed

torsion pair, we could require—in addition to the stipulations of Definition

1.2.18—that Σ(T) ⊂ T, Σ−1(F) ⊂ F, and that the adjoints commute with Σ.

Taking Σ to be the identity on X, this version can be applied to any additive

category, but now we have the flexibility to choose a nontrivial suspension,

as in the case of triangulated categories.
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CHAPTER 2

Modules over a Gorenstein ring

Recall that, for any ring R, the category of right R-modules ModR

is abelian and has enough injectives and projectives. In general, the full

subcategory of finitely generated right R-modules modR is only additive,

but when R is noetherian, modR is abelian. By noetherian ring we mean

a ring that is right- and left-noetherian. In this chapter, we assume modules

are finitely generated; we entreat the reader to do as much if the language,

against our better efforts, somewhere lacks. We furthermore assume that all

rings have unity.

2.1. Projectively stable modules

Let R be a noetherian ring, and let proj(R) be the full subcategory of

modR comprised of (finitely generated) projective right R-modules.

Definition 2.1.1. The projectively stabilized category of finitely

generated right R-modules is the stabilization modR/ proj(R), which we

will abbreviate by modR. For subcategories of modR containing proj(R),

we denote the stable subcategory in the same way. If M and N are isomor-

phic objects in modR, we say they are projectively stably equivalent

modules.

A classical result of Auslander and Bridger, [1, Proposition 1.44], is

that M and N are projectively stably equivalent if and only if there exists

projectives P and Q such that M ⊕ P ∼= N ⊕ Q in modR. Compare this

result to Schanuel’s Lemma (Example 1.1.11) concerning syzygies. Indeed,
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by Proposition 1.1.10, there exists an additive endofunctor Ω on modR

given by taking syzygies, and Schanuel’s Lemma details how to connect

isomorphism classes of syzygies in modR to isomorphism classes of lifts in

modR.

Proposition 2.1.2. For a noetherian ring R, the pair (proj(R),modR)

is a complete hereditary cotorsion pair in modR. In addition, the subcate-

gory proj(R) is a contravariantly finite subcategory of modR.

Proof. Immediately we have that (proj(R),modR) is a hereditary co-

torsion pair, for Hom(P,−) is exact if and only if P is projective. To show

the pair is complete, consider any rightR-moduleM . Take a projective cover

of M to get one of the short exact sequences: ker(P �M) ↪→ P �M . For

the other, just map M identically onto itself and then the trivial module:

M ↪→ M � 0. The last claim follows from Proposition 1.2.12 and what we

have just shown. �

2.2. Some homological algebra

2.2.1. Dimension theory. Let R be a noetherian ring. One homo-

logical invariant we may assign to any R-module, including R itself, is its

injective dimension. For a right R-module M , the injective dimension of

M is the minimum length of resolutions of M by injective right R-modules.

If M has no injective resolutions of finite length, we say the injective dimen-

sion of M is infinite. To emphasize that we are working with right modules,

we may say right injective dimension, and write idim(MR) for clarity. When

there is no concern for confusion, we may just write idim(M). Predictably,

there is an analogous definition for left modules, and we write idim(RM) for

the left injective dimension of a left R-module M .
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By looking at projective resolutions of a right R-module M , we can

assign to M a projective dimension. We define the projective dimension

of M to be the minimum length of a resolution of M by projective right R-

modules, and if no finite resolution exists we say the projective dimension is

infinite. Like before, we may emphasize right projective dimension, written

pdim(MR), with pdim(M) as shorthand. Furthermore, pdim(MR) ≤ d if

and only if ExtiR(M,N) = 0 for all right R-modules N ; see [10, Appendix

B] for details.

Finally, there is weak dimension: Introduced by Cartan and Eilenberg

as an exercise, [5, Exercise VI.5.3], the weak dimension, sometimes flat

dimension, of a right R-module M is the greatest integer n such that

TorRn (M,N) 6= 0 for some left R-module N . If no such maximum integer

exists, the weak dimension of M is infinite. The terminology flat dimension

comes from flat resolutions. It turns out the weak dimension is the minimum

length of a resolution

· · · → F1 → F0 →M → 0

of M by flat right R-modules. We write wdim(MR), or simply wdim(M),

for the weak dimension. Notice that, since projectives are flat, wdim(MR) ≤

pdim(MR). In addition and by definition, M has weak dimension at most

n if and only if TorRn+1(M,N) = 0 for all left R-modules N . Symmetric

definitions, notations, and criterions exist for left modules.

To better understand right- or left-noetherian rings, we give several re-

sults relating the three homological invariants. These results will be used

later and further illustrate the utility of the noetherian hypothesis. In both

proofs, we utilize the following construction from Cartan and Eilenberg.
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Lemma 2.2.1 ([5, Proposition VI.5.3]). Let R be a left-noetherian ring.

There exists an isomorphism

TorRi (HomS(B, I), A)
∼−→ HomS(ExtiR(A,B), I),

for all i ≥ 0, where A is a finitely generated left R-module, I is an injective

right S-module, and B is any (R,S)-bimodule.

Lemma 2.2.2. For a left-noetherian ring R and any finitely generated

left R-module A, wdim(RA) = pdim(RA). Symmetrically, for a right-

noetherian ring R and any finitely generated right R-module A, wdim(AR) =

pdim(AR).

Proof. Suppose wdim(RA) = d. It is enough to show pdim(RA) ≤

d, which amounts to showing Extd+1
R (A,B) = 0 for all left R-modules B,

equivalently, for all (R,Z)-bimodules B. Note that Extd+1
R (A,B) is a right

Z-module and Q/Z is an injective cogenerator of ModZ, so

HomZ(Extd+1
R (A,B),Q/Z) = 0 ⇐⇒ Extd+1

R (A,B) = 0.

From Lemma 2.2.1 we get

TorRd+1(HomZ(B,Q/Z), A) ∼= HomZ(Extd+1
R (A,B),Q/Z),

with the lefthand side vanishing because wdim(RA) = d. It follows that

Extd+1
R (A,B) = 0, hence wdim(RA) = pdim(RA).

Suppose now R is right-noetherian and A is any finitely generated right

R-module. Recall that, for any ring R, a right R-module is a left Rop-

module. With this in mind, Rop is left-noetherian and A is a finitely gener-

ated left Rop-module. The argument from the preceding paragraph shows

wdim(RopA) = pdim(RopA), and recognizing wdim(RopA) = wdim(AR) and

pdim(RopA) = pdim(AR) completes the proof. �
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Lemma 2.2.3. For a noetherian ring R,

idim(RR) = sup{wdim(IR) : IR is an injective right R-module}.

Symmetrically,

idim(RR) = sup{wdim(RI) :RIis an injective left R-module}.

Proof. We follow [8, Proposition 1]. Throughout the proof, A always

denotes a finitely generated left R-module and I is always an injective right

R-module. Note that, from Lemma 2.2.1, we have an isomorphism

TorRi (I, A)
∼−→ HomR(ExtiR(A,R), I)

for all i > 0, using the fact that R is an (R,R)-bimodule.

First we will bound the weak dimension of every injective right R-module

by the left injective dimension of R. Since Tor commutes with direct limits

in the right component, it suffices to show, for each I, that TorRd+1(I, A) = 0

for all finitely generated A. Assume idim(RR) = d and A is arbitrary.

Then Extd+1
R (A,R) = 0, so for any I, TorRd+1(I, A) = 0 too. This shows

idim(RR) ≥ wdim(IR) for all I, thus

idim(RR) ≥ sup{wdim(IR) : RI is an injective right R-module}.

Now suppose that wdim(IR) ≤ d for any I. We find

0 = TorRd+1(I, A) ∼= HomR(Extd+1
R (A,R), I)

for all A, so taking I to be an injective cogenerator shows Extd+1
R (A,R) = 0.

Hence idim(RR) ≤ d, demonstrating the other required inequality. For right

injective dimension of R and left weak dimension of injective R-modules,

working over Rop gives the symmetric result. �
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For an (R,R)-bimodule M , we may discuss both the right and left in-

jective dimension of M , and they need not coincide in general. However, we

have a result due to Zaks that simplifies matters for R, viewed as a bimodule

over itself.

Proposition 2.2.4 ([16, Lemma A]). For any noetherian ring R, if the

right and left injective dimensions are finite, then they are equal.

2.2.2. Gorenstein rings and duality. In light of the last proposition,

we may refer unambiguously to the injective dimension of R—no mention

of right/left—so we make the following definition.

Definition 2.2.5. A (not necessarily commutative) noetherian ring R

is called Gorenstein if the injective dimension of R is finite.

Remark 2.2.6. Please note the symmetry in the definition: R is Goren-

stein if and only if Rop is Gorenstein. As an aside, this terminology dif-

fers from [3], which favors strongly Gorenstein. The reasoning follows from

analogy to the commutative case: In commutative algebra, a commutative

noetherian ring R is called Gorenstein if the localization Rp is a Gorenstein

local ring—[10, Definition following Theorem 18.1]—for every prime p of R.

The issue is that, for the preceding condition to imply R has finite injective

dimension, we require that R have finite Krull dimension, so indeed requir-

ing R has finite injective dimension at the outset is more restrictive. For

the sanity of both the author and reader, as we encounter no confounding

examples throughout, we maintain simpler nomenclature.

Example 2.2.7. We should start with some noncommutative and not-

necessarily-commutative examples. Clearly every quasi-Frobenius ring (Ex-

ample 1.1.5) is Gorenstein. In particular, group algebras over a field are
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Gorenstein. On the other hand, the right global dimension of a ring R is

defined to be

sup{pdim(M) : M ∈ ModR} = sup{idim(M) : M ∈ ModR};

these are equal by [15, Theorem 4.1.2], where it is also remarked that

right global dimension equals its left analogue when R is right- and left-

noetherian. From the righthand side, we see that any right- and left-

noetherian ring with finite global dimension must be Gorenstein.

Example 2.2.8. Turning to commutative algebra, if R is a commutative

Gorenstein ring, then the polynomial ring R[x] is Gorenstein ([10, Exercise

18.3]). If R is a commutative local Gorenstein ring, then the completion R̂ is

Gorenstein—this is in fact a biconditional; see [10, Theorem 18.3]. One class

of commutative rings that are all Gorenstein is regular local rings. Let R be

a commutative noetherian local ring with maximal ideal m. We say R is a

regular local ring if the Krull dimension of R equals the dimension of m/m2

as a vector space over the residue field R/m. By [10, Theorem 21.1.iii] and

the next example, every regular local ring is Gorenstein, though the result-

ing theory is not that interesting: A theorem of Serre says a commutative

noetherian local ring is regular if and only if it has finite global dimension

(see [10, Theorem 19.2]), and the case of finite global dimension does not

furnish an insightful theory.

Example 2.2.9. Having defined regular local rings, we give a more sub-

stantial example. Let R be a commutative noetherian ring and M an R-

module. Following [10, Section 16], an element x ∈ R is M -regular if xm 6= 0

for all nonzero m ∈ M . A sequence (x1, . . . , xn) of elements of R is called

an M -sequence if it satisfies two conditions: First, x1 is M -regular, x2 is
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(M/x1M)-regular, and in general xi+1 is (M/(x1, . . . , xi)M)-regular; sec-

ond, we require (x1, . . . , xn)M 6= M . A ring S is a complete intersection if

there exists a regular local ring R and an R-sequence (x1, . . . , xn) such that

S ∼= R/(x1, . . . , xn); when n = 1, S is called a hypersurface. As the name

suggests, complete intersection rings were initially studied in the context of

geometry, though of more immediate interest to us is the fact that every

complete intersection ring is Gorenstein ([10, Theorem 21.3]).

Let k be a field, and recall the truncated polynomial ring Λ = k[x]/(xn)

from Example 1.1.6. Note that k[x] is a regular local ring, that xn is not

a zero divisor of k[x], and that (xn) 6= k[x]. By definition, Λ is a complete

intersection ring, in particular a hypersurface. The ring

k[[x, y, z]]/(x2 − y2, y2 − z2, xy, yz, zx),

a quotient of the formal power series ring over k in three indeterminants,

is a Gorenstein ring that is not a complete intersection ring ([10, Exercise

21.3]).

Example 2.2.10. Buchweitz gives a recipe for Gorenstein rings of arbi-

trary injective dimension in [3, Proposition 8.3.1]. Let R be a regular local

ring with maximal ideal m. Suppose S is a finite and flat R-algebra via

some morphism R → S such that S ⊗R R/m is quasi-Frobenius. Then S is

Gorenstein and idim(S) equals the Krull dimension of R.

We review some duality theory.

Definition 2.2.11. For a right R-module M , the dual module M∗ is

the left R-module, equivalently right Rop-module, HomR(M,R). For the

sake of visibility and clarity, temporarily make the convention that � is R-

action and �op is Rop-action. Then for m ∈ M , f ∈ M∗, and r ∈ R, the
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action is given by

r � f(m) = f �op r(m) := f(r �op m) = f(m� r).

A module M is called reflexive if M ∼= M∗∗.

Lemma 2.2.12. If P is a finitely generated projective right R-module,

then the dual module P ∗ is a projective left R-module. Furthermore, P is

reflexive.

Proof. If P is projective, it is a direct summand of a free module, i.e.,

there exists another module Q such that P ⊕Q ∼= Rn. Then

P ∗ ⊕Q∗ = HomR(P,R)⊕HomR(Q,R)

∼= HomR(P ⊕Q,R)

∼= HomR (Rn, R) ∼= Rn

so P ∗ is a direct summand of a free module.

Maintaining P ⊕Q ∼= Rn, we get a commutative diagram

0 ker f ker g kerh 0

0 P Rn Q 0

0 P ∗∗ (Rn)∗∗ Q∗∗ 0

f g h

where the rows are split short exact sequences, and f , g, and h are the

natural evaluation maps. As g is an isomorphism, the first row implies f

and h are injective. It follows from the snake lemma that kerh ∼= coker f ,

so f is an isomorphism. �

Following [6], we define the Auslander-Bridger transpose for a module

over a noetherian ring, a useful tool when studying duality.
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Definition 2.2.13. Let R be a noetherian ring and M a finitely gener-

ated right R-module. If

· · · → P1
f−→ P0 →M → 0

is a resolution of M by finitely generated projective modules, then

0→M∗ → P ∗0
f∗−→ P ∗1 → coker f∗ → 0

is an exact sequence. Call coker f∗ the Auslander-Bridger transpose of

M , denoted TrM .

Remark 2.2.14. While TrM certainly depends on the projective res-

olution chosen, it is unique up to projectively stable equivalence, which is

good enough for computing Ext. To demonstrate the latter, if · · · → P1
f−→

P0 →M → 0 and · · · → Q1
g−→ Q0 →M → 0 are two projective resolutions

of the right R-module M , then there exists projective left R-modules P and

Q such that coker f∗ ⊕ P ∼= coker g∗ ⊕Q, hence

ExtiRop(coker f∗, R) ∼= ExtiRop(coker f∗ ⊕ P,R)

∼= ExtiRop(coker g∗ ⊕Q,R) ∼= ExtiRop(coker g∗, R)

for all i > 0.

We use the following later.

Lemma 2.2.15 ([6, Lemma 2.5]). Let M be a right R-module. We have

an exact sequence

0→ Ext1
Rop(TrM,R)→M →M∗∗ → Ext2

Rop(TrM,R)→ 0.
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Proof. A priori we have the natural evaluation map τ : M → M∗∗.

Take a resolution of M by finitely generated projective right R-modules

· · · P1 P0 M 0

ΩM

f

π1

ε

i1

and dualize to get an exact sequence

0 M∗ P ∗0 P ∗1 TrM 0

C

ε∗

π2

where C := coker(M∗ → P ∗0 ). From the short exact sequence

0→ C → P ∗1 → TrM → 0

we get the exact sequence 0 → (TrM)∗ → P ∗∗1 → C∗ → Ext1(TrM,R) →

0 → Ext1(C,R) → Ext2(TrM,R) → 0, from which it follows Ext1(C,R) ∼=

Ext2(TrM,R). Dualizing the short exact sequence

0→M∗
ε∗−→ P ∗0 → C → 0

gives rise to a commutative diagram

0 ΩM P0 M 0

0 C∗ P ∗∗0 M∗∗ Ext1(C,R) 0

g

ε

σ0 τ

ε∗∗

with exact rows. Here σ0 is an isomorphism (Lemma 2.2.12) and g is induced

by the diagram (i.e., factoring through ker ε∗∗). As the first row is exact and

σ0 is an isomorphism (so in particular injective), it follows that g is injective.

The snake lemma implies ker τ ∼= coker g. Moreover, coker ε∗∗ ∼= coker τεσ−1
0

by commutativity, and since both σ−1
0 and ε are surjections, coker τεσ−1

0
∼=
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coker τ . But coker ε∗∗ ∼= Ext1(C,R), so we have shown

coker τ ∼= Ext1(C,R) ∼= Ext2(TrM,R).

To show ker τ ∼= Ext1(TrM,R), consider the following commutative

diagram.

P1 C∗ Ext1(TrM,R) 0

0 ΩM C∗ coker g 0

gπ1

π1 id h

g

Note the sequence C∗ → Ext1(TrM,R) → 0, lifted from an earlier exact

sequence, and remark that cokerπ1 = coker id = ker id = 0. The snake

lemma implies h is an isomorphism, so as ker τ ∼= coker g, we get the desired

exact sequence. �

Definition 2.2.16. For a noetherian ring R, we say a finitely generated

right R-module M is Gorenstein dimension zero, sometimes Goren-

stein projective, if M is reflexive and

ExtiR(M,R) = 0 and ExtiRop(M∗, R) = 0

for all i > 0. For many purposes, modules of Gorenstein dimension zero

behave like projectives.

2.3. Two subcategories

From now on, let S be a Gorenstein ring. Unless otherwise stated,

we make the convention of working with right modules, so by the symbols

idim, pdim, and wdim we mean right injective dimension, right projective

dimension, and right weak dimension respectively.

Many of the arguments in this section and the next use a technique

called dimension shifting. We introduce it here as a lemma.
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Lemma 2.3.1. If

0→ N → Pj−1 → Pj−2 → · · · → P1 → P0 →M → 0

is an exact sequence in modS with Pk projective, 0 ≤ k ≤ j, then

ExtiS(N,S) ∼= Exti+jS (M,S).

Proof. Consider the short exact sequence 0→ N → P →M → 0 with

P a projective module. Applying Ext yields a long exact sequence

· · · → ExtiS(P, S)→ ExtiS(N,S)→ Exti+1(M,S)→ Exti+1
S (P, S)→ · · ·

with the outer terms vanishing. Therefore ExtiS(N,S) ∼= Exti+1
S (M,S), and

the general result follows immediately. �

2.3.1. Maximal Cohen-Macaulay modules.

Definition 2.3.2. A finitely generated right S-module M is maximal

Cohen-Macaulay, abbreviated MCM, if ExtiS(M,S) = 0 for all i > 0.

We write MCM(S) for the full subcategory of maximal Cohen-Macaulay

modules in modS.

Example 2.3.3. Let S be a quasi-Frobenius ring (Example 1.1.5). Then

Exti(M,S) = 0 for all finitely generated S-modules M and all i > 0, so every

S-module is MCM. In some respects, this may look like a trivial case, but as

we shall see for a general Gorenstein ring S, the subcategory MCM(S) has

structure that modS lacks. Therefore when S is quasi-Frobenius, we can

leverage the additional structure on modS to learn more about all finitely

generated S-modules. This is particularly important in the case of group

algebras for a finite group over a field; see Example 2.5.3.

Here are some basic facts about MCM(S).
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Lemma 2.3.4. MCM(S) is closed under extensions and kernels of epi-

morphisms. Additionally, proj(S) is a full subcategory of MCM(S) and S is

an injective object in MCM(S).

Proof. Let L ↪→ M � N be a short exact sequence in modS. Apply

Ext∗(−, S) to get an exact sequence

Ext1(N,S)→ Ext1(M,S)→ Ext1(L, S)→ Ext2(N,S)→ · · ·

If L and N are MCM, then Exti(L, S) and Exti(N,S) vanish for all i > 0,

so Exti(M,S) must vanish too, as is evident in the case i = 1 above, thus

MCM(S) is extension closed. If M and N are MCM, then since Exti(L, S) is

sandwiched between Exti(M,S) and Exti+1(N,S), we conclude the former

must vanish when the latter two do (again see i = 1 above), hence MCM(S)

is closed under kernels of epimorphisms.

That proj(S) is a full subcategory of MCM(S) is obvious, for if P is

projective, then Hom(P,−) is exact, so Exti(P, S) = 0 for all i > 0. It

follows that S is an object in MCM(S) (since S is projective), but perhaps

more interesting is that S is an injective object of MCM(S). Surely, as the

functor Hom(−, S) is exact on MCM(S), we conclude S is an injective object

in MCM(S). �

Lemma 2.3.5 ([3, Lemma 4.2.2.iv]). Any finitely generated right S-module

admits a finite resolution by MCM modules with length at most idim(S) + 1,

and all but the last module in such a resolution can be chosen to be projective.

Proof. Let d := idim(S). Most of this boils down to the fact that,

for finitely generated modules over a noetherian ring, we can choose all

modules in a projective resolution to be finitely generated. Let N be any
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finitely generated right S-module and

· · · P2 P1 P0

N3 N2 N1 N

a resolution of N by finitely generated projective modules. Here Nj+1 is the

kernel of the next epimorphism Pj � Nj . Truncate the resolution at d − 1

to get a finite resolution

0→ ker δ → Pd−1
δ−→ Pd−2 → · · · → P0 → N → 0

of length d + 1. A priori the Pj are projective (j = 0, . . . , d − 1), hence

MCM, so all we need is that ker δ is MCM too. By dimension shifting

(Lemma 2.3.1),

Exti(ker δ, S) ∼= Exti+d(N,S) = 0

for all i > 0 because idim(S) = d. Therefore ker δ is MCM. �

Duality theory is particularly nice over Gorenstein rings.

Lemma 2.3.6. The functors

HomS(−, S) : MCM(S)→ MCM(Sop)

and

HomSop(−, Sop) : MCM(Sop)→ MCM(S)

are exact. Moreover, a right S-module M is MCM if and only if the dual

module M∗ is a MCM right Sop-module, and MCMs are reflexive.

Proof. By Lemma 2.3.4, S is an injective object in MCM(S), so the

first functor HomS(−, S) is exact; dually, we find HomSop(−, Sop) is exact.

Fix a resolution by finitely generated projective right S-modules

· · · → P2 → P1 → P0 →M → 0
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for M and dualize, giving a co-resolution

0→M∗ → P ∗0 → P ∗1 → P ∗2 → · · ·

of M∗ by projective left S-modules (Lemma 2.2.12). We thus realize M∗ as

a syzygy module of arbitrarily high order, so in particular

Exti(M∗, S) ∼= Exti+j(coker(P ∗j−2 → P ∗j−1), S)

for all i > 0 by dimension shifting (Lemma 2.3.1). However, the left injective

dimension of S is finite, so taking j > idim(S) shows that M∗ is MCM.

Dualizing again, we find M∗∗ is MCM.

If we can show M ∼= M∗∗, then we are done. But notice that, by the

same argument as in the last paragraph, the Auslander-Bridger transpose

TrM is a syzygy module of arbitrarily high order, hence a MCM right Sop-

module. By Lemma 2.2.15, we are done. �

Corollary 2.3.7. An S-module is MCM if and only if it admits a

projective co-resolution.

Proof. If an S-module M admits a projective co-resolution, then M

is a syzygy of arbitrarily high order, as was shown in the last proof, so

M must be MCM. Conversely, if M is MCM, then M is reflexive. Take

a projective resolution of the dual module M∗ (in modSop) and dualize

to produce a projective co-resolution of M ∼= M∗∗ containing only finitely

generated projective right S-modules by Lemma 2.2.12. �

Remark 2.3.8. The last two results yield additional characterizations

of MCM modules. Lemma 2.3.6 implies that the subcategory MCM(S) is

precisely the collection of Gorenstein dimension zero objects in modS; this is

the characterization of MCM(S) often found in the literature. Alternatively,

we can join a co-resolution of a MCM module M to a projective resolution
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of M through the connecting map P0 � M ∼= M∗∗ ↪→ P ∗−1, giving what is

called a complete resolution of M .

· · · → P2 → P1 → P0︸ ︷︷ ︸
resolution of M

→ P ∗−1 → P ∗−2 → P ∗−3 → · · ·︸ ︷︷ ︸
co-resolution of M ∼= M∗∗

Corollary 2.3.7 says that we can characterize MCM modules as those S-

modules that admit a complete resolution. We study complete resolutions

more in Chapter 3 (for example, see Definition 3.1.20).

2.3.2. Modules of finite projective dimension.

Definition 2.3.9. For a Gorenstein ring S, we write fpd(S) for the full

subcategory of modS comprised of modules of finite projective dimension.

In the interest of brevity, we may refer to a module of finite projective

dimension as a fpd module.

Proposition 2.3.10. Suppose S is a Gorenstein ring and U a finitely

generated S-module. Then pdim(U) <∞ if and only if idim(U) <∞.

Proof. Let U be a finitely generated S-module. Note that as S has fi-

nite (right) injective dimension, all finite rank free modules must too. Recall

(e.g., [10, Appendix B]) that U has finite injective dimension, say idim(U) ≤

d, if and only if Extd+1(N,U) = 0 for all S-modules N . If pdim(U) = 0,

i.e., if U is projective, then there exists Q such that U ⊕ Q ∼= Sn for some

integer n. We know there exists d ∈ Z such that Extd+1(N,Sn) = 0 for all

N , so

0 = Extd+1(N,Sn) ∼= Extd+1(N,U ⊕Q) ∼= Extd+1(N,U)⊕ Extd+1(N,Q).

Thus Extd+1(N,U) = 0 for all N , equivalently, idim(U) is finite. Proceed by

induction on pdim(U). Assuming the claim holds for modules of projective

dimension at most d − 1, suppose pdim(U) = d, and write a projective
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resolution for U :

0→ Pd → · · · → P1 → P0
π−→ U → 0.

Then pdim(kerπ) ≤ d − 1, so idim(kerπ) < ∞. Apply Ext to the short

exact sequence

0→ kerπ → P0 → U → 0

to get a long exact sequence

· · · → Exti(N,P0)→ Exti(N,U)→ Exti+1(N, kerπ)→ · · ·

for i > 0 and all N . Since P0 and kerπ have finite injective dimension, the

outer terms vanish for i� 0, therefore U has finite injective dimension.

To show the converse, first notice that injectives have finite projective

dimension. Indeed, Lemma 2.2.3 and the fact that S has finite left injective

dimension imply injectives have finite weak dimension. Lemma 2.2.2 assures

that the weak dimension and projective dimension coincide, so injectives

have finite projective dimension. The rest follows by induction on idim(U).

Assuming the hypothesis holds for modules with injective dimension at most

d− 1, suppose idim(U) = d. Take an injective resolution

0→ U
ι−→ I0 → I1 → · · · → Id → 0

of U . Then idim(coker ι) ≤ d− 1, and the short exact sequence

0→ U → I0 → coker ι→ 0,

yields the long exact sequence

· · · → Exti(I0, N)→ Exti(U,N)→ Exti+1(coker ι,N)→ · · ·
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for i > 0 and all N . As both I0 and coker ι have finite projective dimension,

we conclude—analogously to the previous paragraph—U must have finite

projective dimension as well. �

2.4. Connections

To further understand the makeup of modS, we give several results

that characterize the relationship between MCM(S) and fpd(S). The first

concerns the projective dimension of MCMs, and the other two present

criteria relating MCM modules and modules of finite projective dimension.

Lemma 2.4.1 ([3, Lemma 5.1.1.iv]). If pdim(M) < ∞ for some MCM

module M , then M is projective.

Proof. Let M be a MCM module. Clearly if pdim(M) = 0 then M

is projective. Assume the claim holds for MCM modules of projective di-

mension at most d− 1, and let M be MCM with pdim(M) = d. Consider a

projective resolution of M :

0→ Pd → · · · → P1 → P0
π−→M → 0.

First, we argue kerπ is MCM. Starting with the short exact sequence

0→ kerπ → P0 →M → 0,

we get a long exact sequence

· · · → Exti(P0, S)→ Exti(kerπ, S)→ Exti+1(M,S)→ · · ·

for i > 0. The outer terms vanish, so kerπ is MCM. By the hypothesis, we

conclude kerπ is projective, since pdim(kerπ) ≤ d − 1. Then dualize the
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short exact sequence to get

0→M∗ → P ∗0 → kerπ∗ → 0,

a short exact sequence of MCM right Sop-modules. For any right Sop-module

N , we have the induced exact sequence

Ext1
Sop(P ∗0 , N)→ Ext1

Sop(M∗, N)→ Ext2
Sop(kerπ∗, N)

with outer terms vanishing. Therefore Ext1
Sop(M∗, N) = 0 for all N , so M∗

is a finitely generated projective right Sop-module. Lemma 2.2.12 implies

M∗∗ is a projective left Sop-module, hence a projective right S-module, and

the fact that MCMs are reflexive (Lemma 2.3.6) finishes the job. �

Example 2.4.2. We take a moment to discuss an implication of the last

lemma in two exceptional cases. In general, we have

proj(S) ⊂ MCM(S) ⊂ modS,

but what happens when one of these inclusions is actually equality?

Let S be a right- and left-noetherian ring of finite global dimension

(Example 2.2.7). The last lemma implies that every MCM module in modS

is projective, i.e., that proj(S) = MCM(S). This leads to a rather trivial

theory. On the other hand, if S is quasi-Frobenius (Example 1.1.5), then

we have seen in Example 2.3.3 that MCM(S) = modS, and the last lemma

says that the only S-modules of finite projective dimension are projective

modules. As we detail the properties of the category MCM(S), we will see

that this yields a rich theory.

Suppose now that S is a quasi-Frobenius ring of finite global dimension.

The conclusions above yield proj(S) = MCM(S) = modS, that is, every S-

module is projective and injective. We call such a ring semisimple, though
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these will not significantly contribute to our investigation—their triviality

makes them wholly unenlightening in our context.

Lemma 2.4.3 ([3, Lemma 5.1.1.i]). Let M be a right S-module. Then M

is MCM if and only if Exti(M,U) = 0 for all i > 0 and all finitely generated

right S-modules U of finite projective dimension.

Proof. One direction is by definition. For the other, we use induction

on the projective dimension of U . If U is projective, then there exists Q

such that U ⊕Q ∼= Sn, and

0 = Exti(M,Sn) ∼= Exti(M,U)⊕ Exti(M,Q)

for all i > 0, hence Exti(M,U) = 0. Now assuming this holds for modules

of projective dimension at most d − 1, we suppose pdim(U) = d. Take a

projective resolution of U

0→ Pd → · · · → P1 → P0
π−→ U → 0

and note that pdim(kerπ) ≤ d− 1. From the short exact sequence

0→ kerπ → P0 → U → 0,

we get a long exact sequence

· · · → Exti(M,P0)→ Exti(M,U)→ Exti+1(M, kerπ)→ · · ·

for i > 0, and as the outer terms vanish, we conclude Exti(M,U) = 0 for all

i > 0. �

Lemma 2.4.4 ([3, Lemma 5.1.1.ii]). Let U be a right S-module. Then U

has finite projective dimension if and only if Exti(M,U) = 0 for all i > 0

and all MCM modules M .
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Proof. Suppose first that Exti(M,U) = 0 for all i > 0 and all MCM

modules M . By Proposition 2.3.10, it suffices to show U has finite injective

dimension. Let V be an arbitrary S-module, d := idim(S), and

0→M → Pd−1 → · · · → P1 → P0 → V → 0

a finite resolution of V by MCM modules, per Lemma 2.3.5. Dimension

shifting (Lemma 2.3.1) and our hypothesis together show

Exti+d(V,U) ∼= Exti(M,U) = 0

for all i > 0. In particular, there exists a positive integer j such that

Extj+1(V,U) = 0 for every V , so U has finite injective dimension (by the

criterion introduced in the beginning of the proof of Proposition 2.3.10).

Conversely, if U is projective, then there exists Q such that U⊕Q ∼= Sn,

and for all MCM modules M ,

0 = Exti(M,Sn) ∼= Exti(M,U)⊕ Exti(M,Q)

for all i > 0, thus Exti(M,U) = 0. The rest follows by induction on projec-

tive dimension of U , as has become routine for claims of this flavor. �

From the proof of Lemma 2.4.4, we see that every projective is an in-

jective object in MCM(S). That is, while an object of proj(S) may not, and

likely is not, injective in modS, when we restrict our attention to the full

subcategory of MCM modules, all projectives are in fact injective objects.

We can rephrase the above as the containment proj(S) ⊂ Inj(MCM(S)), and

we can show even more.

Lemma 2.4.5. In MCM(S), the projective objects and injective objects

coincide. Furthermore, projective objects in MCM(S) are precisely projective

modules in modS.
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Proof. We have shown (proof of Lemma 2.4.4) that projective S-modules

are injective in MCM(S), however, it is not yet clear that all projective ob-

jects in MCM(S) arise as projective S-modules. We claim if P is an object

in Proj(MCM(S)), then P is in proj(S) too. To show Ext1(P,N) = 0 for all

N in modS, it suffices to consider a short exact sequence

0→M1 →M0 → N → 0

with N any finitely generated S-module and M0,M1 MCM. We have an

exact sequence

Ext1(P,M0)→ Ext1(P,N)→ Ext2(P,M1)

where the outer terms vanish, so the middle one must too, hence P is in

proj(S). In general, write a finite resolution

0→Md →Md−1 → · · · →M1 →M0 → N → 0

of N by MCM modules using Lemma 2.3.5, and apply the above result,

starting with 0 → Md → Md−1 → coker(Md → Md−1) → 0 and continuing

down the line, to conclude Ext1(P,N) = 0.

The current state of affairs is proj(S) = Proj(MCM(S)) ⊂ Inj(MCM(S)).

To demonstrate the other containment, suppose I is injective in MCM(S),

so Exti(M, I) = 0 for all i > 0 and all MCM modules M . By Lemma 2.4.4,

I has finite projective dimension, so Lemma 2.4.1 implies I is projective

in modS, i.e., belongs to proj(S). Therefore proj(S) = Proj(MCM(S)) =

Inj(MCM(S)). �
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2.5. Frobenius structure and triangulation

While the structural results of the last few sections are insightful, they

do not directly shed light on the heart of our investigation. We now make

headway on some headlining results by focusing on the category MCM(S).

The category of MCM S-modules inherits an exact structure from modS,

obtained by designating all short exact sequences of MCM modules as con-

flations. If M � N is an epimorphism of MCM modules, then it is a defla-

tion by Lemma 2.3.4. For inflations, consider a monomorphism f : L ↪→ M

of MCM modules. In modS, we can extend to include the cokernel L ↪→

M � C, and C is MCM if and only if f∗ : Hom(M,S) → Hom(L, S) is an

epimorphism; this characterizes inflations.

Proposition 2.5.1. The category MCM(S) is Frobenius.

Proof. To show MCM(S) is an exact category, we only really need to

show E1, E2, and E2op, as the others are immediate. If f : L ↪→ M and

g : M ↪→ N are two inflations, then f∗ and g∗ are epimorphisms. It follows

that f∗g∗ = (gf)∗ is an epimorphism, proving E1.

Now let i : L ↪→M be an inflation and f : L→ N an arbitrary morphism.

Take the pushout, say K, in modS.

L M

N K

i

p
f f̂

j

We must show K is MCM and that j : N → K is an inflation. Note that we

have a short exact sequence

0→ L

(
i
−f
)

−−−−→M ⊕N → K → 0,
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so K is MCM if and only if

(
i∗ −f∗

)
: Hom(M,S)⊕Hom(N,S)→ Hom(L, S)

is an epimorphism. Since i is an inflation, i∗ is an epimorphism, so ( i∗ −f∗ )

is an epimorphism too. Therefore K is MCM. Now j is a priori a monomor-

phism (this is true in any abelian category), but we need to show it is a

kernel of some deflation q : K � C in MCM(S). As i is an inflation, we

can exhibit a cokernel p : M � C in MCM(S), and along with the zero map

N → C, we induce a unique map q : K → C such that qf̂ = p and qj = 0.

L M

N K

C

i

p
f f̂

p
j

0

∃!q

First, qf̂ = p implies q is an epimorphism, hence a deflation, so it is enough

to show q is a cokernel of j. Let h : K → X be any map such that hj = 0.

To see that h factors uniquely through q, notice that, by commutativity,

hf̂i = 0, so there exists a unique map r : C → X with the property that

hf̂ = rp.

L M C

N K X

i

p
f

p

f̂ ∃!r
j

q

h

We must show h = rq. By construction of q and h, hf̂ = rqf̂ and hj =

0 = rqj. Then there are two maps h − rq and 0 from the pushout K to

X compatible with the pushout diagram, but uniqueness of maps from the

pushout implies h − rq = 0. Therefore q is a cokernel of j, or put another

way, 0 → N → K → C → 0 is a short exact sequence of MCM modules in

modS. Hence j is an inflation, verifying E2.
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For E2op, let q : N � K be a deflation and g : M → K any morphism.

Take the pullback in modS.

L M

N K

p

y
g

q

As p is the pullback of an epimorphism, p is an epimorphism (as is the case

in any abelian category). Then we get a short exact sequence

0→ L→M ⊕N ( g −q )−−−−→ K → 0.

Both M⊕N and K are MCM modules, so as MCM(S) is closed under kernels

of epimorphisms (Lemma 2.3.4), L is an MCM module. Thus p : L�M is

a deflation, showing E2op. Therefore MCM(S) is an exact category.

To show MCM(S) is Frobenius, we note that modS has enough projec-

tives, so MCM(S) must have enough too. Then Corollary 2.3.7 and Lemma

2.4.5 imply that MCM(S) has enough injectives and that Proj(MCM(S)) =

Inj(MCM(S)). Therefore MCM(S) is a Frobenius category. �

Corollary 2.5.2. The category MCM(S) is triangulated.

Proof. By Theorem 1.1.19 and Proposition 2.5.1. �

Example 2.5.3. From the perspective of representation theory, the last

corollary is quite good news, as the triangulated structure aids the compu-

tation of group cohomology. Indeed, if G is a finite group and k is a field, we

know that the group algebra kG is self-injective, hence MCM(kG) = mod kG.

Group cohomology of G with coefficients in a kG-module M is given by

Hn(G;M) ∼= ExtnkG(k,M)
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for n ≥ 0; see [15, Exercise 6.1.2]. The righthand side is computed in the

stable category mod kG, that is, writing Hom for the stable Hom,

ExtnkG(k,M) ∼= HomkG(Ωnk,M).

In this way, the natural context for studying group cohomology is the stable

category mod kG.

The cohomology ring of G is the graded ring

H?(G) :=
⊕
n≥0

Hn(G; k) ∼=
⊕
n≥0

ExtnkG(k, k).

While Ext is only defined in nonnegative degrees, we can use the triangulated

structure on mod kG to extend the definition. That is to say, taking syzygies

is an auto-equivalence on mod kG, so negative syzygies are just positive

cosyzygies, i.e., we have a natural isomorphism

HomkG(ΩnM,N) ∼= HomkG(M,ΣnN)

for all n ∈ Z. For any integer n, we define the nth Tate cohomology group

of G to be

Ĥn(G) := HomkG(k,Σnk).

A seemingly different definition is given in [3, Definition 6.1.1], though it

follows from our work in Section 3.2.2 that our definition is equivalent. The

Tate cohomology ring is then the graded ring

Ĥ?(G) :=
⊕
n∈Z

HomkG(k,Σnk).

See Remark 3.2.6 for another application of the triangulation of mod kG.

One note regarding the theory just described: Maschke’s Theorem says

that kG is semisimple when the characteristic of k does not divide the order
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of G. In this case every kG-module is projective (by definition; recall Ex-

ample 2.4.2), from which it follows that the triangulated category mod kG

is trivial. Hence the theory is only really interesting when the characteristic

of k divides the order of G.

2.6. Cotorsion structure

Let S be a Gorenstein ring. As is evident from Lemmas 2.4.3 and 2.4.4,

the Ext-orthogonal complement to MCM modules are modules of finite pro-

jective dimension. Using the language of Section 1.2, we will unify the

numerous preceding lemmas into statements about a cotorsion structure of

the category modS.

Proposition 2.6.1. For a Gorenstein ring S, the pair (MCM(S), fpd(S))

is a complete hereditary cotorsion pair in modS.

Proof. That (MCM(S), fpd(S)) is a hereditary cotorsion pair in modS

follows from Lemmas 2.4.3 and 2.4.4. Now let N be an arbitrary finitely

generated right S-module. Our approach assumes a bit more of the reader,

so we encourage a review of chain complexes (Section 3.1.1) and quasi-

isomorphisms (Remark 3.1.16) if necessary. We will construct both required

short exact sequences at once, and we start by taking a projective resolution

P of N .

· · · → P2 → P1 → P0 → N → 0.

Dualizing, we get a complex (not acyclic!) P ∗ := HomS(P, S)

P ∗0 · · · P ∗m−1 P ∗m · · ·

N∗ K

with bounded homology. Indeed,

HnP
∗ = Hn HomSop(P ∗, Sop) = ExtnSop(N∗, Sop) = 0
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for n > idim(Sop). Suppose m is the cutoff for nonzero homology, that is,

HmP
∗ 6= 0 and HnP

∗ = 0 for all n > m. Truncate P ∗ at degree m by

replacing P ∗m with K := ker(P ∗m → P ∗m+1), giving a finite complex τ≥mP
∗

of projectives quasi-isomorphic to P ∗:

0→ P ∗0 → P ∗1 → · · · → P ∗m−1 → K → 0.

The cost of truncating is that K may not be projective. To remedy this, take

a resolution G of τ≥mP
∗ by projective right Sop-modules. This amounts to

taking a projective resolution F of K, labelled

· · · → Fm−2 → Fm−1 → Fm → K → 0

for notational convenience, and setting G to be the complex

· · · → F−1 → P ∗0 ⊕ F0 → · · · → P ∗m−1 ⊕ Fm−1 → Fm → 0.

Dualizing again, we get a bounded below complex G∗ of projective right

S-modules that is quasi-isomorphic to P ∼= P ∗∗. The picture is as follows.

· · · P1 P0 0

· · · G∗1 G∗0 G∗−1 · · ·d1 d0

Now G∗ has homology only in degree 0, in particular, H0G
∗ ∼= N , so we

have exact sequences

0→ im(d1)→ ker(d0)→ N → 0

and

0→ N → coker(d1)→ im(d0)→ 0.

We claim ker(d0) and im(d0) are MCM, while im(d1) and coker(d1) are

of finite projective dimension. The latter follows since G∗ is bounded below,
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so

0→ G∗m → · · · → G∗1 → im(d1)→ 0

and

0→ G∗m → · · · → G∗0 → coker(d1)→ 0

are the required finite projective resolutions. To see ker(d0) and im(d0) are

MCM, notice that the righthand side of G∗ is a projective co-resolution of

both. Dimension shifting (Lemma 2.3.1) gives

Exti(ker(d0), S) ∼= Exti+j(ker(d−j), S)

and

Exti(im(d0), S) ∼= Exti+j(im(d−j), S),

and taking j > idim(S) makes both 0 for all i > 0, hence ker(d0) and im(d0)

are MCM. Therefore the cotorsion pair (MCM(S), fpd(S)) is complete. �

We may now apply everything we learned about complete hereditary

cotorsion pairs in Section 1.2 to further describe modules over a Gorenstein

ring. First, the preceding proposition implies that we can realize a finitely

generated S-module as either the quotient of a MCM module by a fpd

module or as the kernel of an epimorphism from a fpd module to a MCM

module. Furthermore, it is immediate from Proposition 1.2.12 that MCM(S)

is a contravariantly finite subcategory of modS and fpd(S) is a covariantly

finite subcategory of modS. This yields the notions of MCM approximation

and fpd approximation: For any finitely generated S-module N , there exists

a MCM module M that right approximates N as well as or better than any

other MCM module and similarly an fpd module U with a left approximation

of N ; see Definition 1.2.10. Briefly, a right approximation of N by MCM(S)

is a map M → N that factors any other map into N from a MCM module.

In fact, we can refine this map to be a surjection by adding on a projective
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cover of N to M . Dually, we have a map from N into a module U of finite

projective dimension that factors any other map from N into a fpd module,

and by adding an injective envelope to U , we can make this map an injection.

Note that these assignments of approximations are not functorial in general,

but upon projectively stabilizing, we obtain functorial approximations.

Proposition 2.6.2. Let modS, fpd(S), and MCM(S) be the projective

stabilizations of modS, fpd(S), and MCM(S) respectively. Then MCM(S) is

a contravariantly finite subcategory of modS, fpd(S) is a covariantly finite

subcategory of modS, and (MCM(S), fpd(S)) is a torsion pair in modS.

Proof. By Lemma 2.4.1, MCM(S) ∩ fpd(S) = proj(S), and the first

two claims follow from Proposition 1.2.16. The last claim is immediate by

Proposition 1.2.19. �

We can be more explicit about how the approximations M and U arise.

Maintaining the notation from the proof of Proposition 2.6.1, let M :=

ker(d0) and U := coker(d1). We have a short exact sequence

0→M → N ⊕G∗0 → U → 0.

Here G∗0 is doing double duty, ensuring that the first and second maps are

respectively monic and epic. Then in modS, G∗0 vanishes, and we get func-

torial right and left approximations of N by M and U .

The picture is as follows, with i, j the canonical inclusions and c, d the

adjoint approximations.

MCM(S) modS fpd(S)i

⊥
c

d

j

⊥

Of particular interest is the functor c and the notion of functorial MCM

approximation. The polarity in our discussion comes from Corollary 2.5.2,
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which says MCM(S) is triangulated. In the next chapter we will relate

MCM(S) to other triangulated categories, and we will see that one of these

is connected to MCM(S) through MCM approximation.
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CHAPTER 3

Categories equivalent to MCM(S)

We turn our attention to the construction of several triangulated cat-

egories equivalent to the projectively stable category of maximal Cohen-

Macaulay modules. Throughout, constructions arising from chain com-

plexes, such as the homotopy category of complexes and the derived cate-

gory, guide the narrative. We declare once and for all that S is a Gorenstein

ring.

3.1. The homotopy category of acyclic complexes of projectives

We begin with the homotopy category of acyclic complexes of finitely

generated projective right S-modules. This category, written Kac(proj(S)),

is not only equivalent to MCM(S), but is intimately connected to one char-

acterization of maximal Cohen-Macaulay modules. In examining the ties

between Kac(proj(S)) and MCM(S), we will shine a light on how Kac(proj(S))

shapes the discussion of MCM modules, illuminating earlier sections where

Kac(proj(S)) lingered implicit.

3.1.1. Exact structure on the category of chain complexes.

Definition 3.1.1. Let X be an additive category. A chain complex

with values in X is a diagram of the form

· · ·
dXn+2−−−→ Xn+1

dXn+1−−−→ Xn
dXn−−→ Xn−1

dXn−1−−−→ · · ·

where Xi are objects in X and dXi d
X
i+1 = 0 for all i ∈ Z. One writes

X•, or even X, in place of the diagram above for brevity. The maps dXi
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are called differentials, and the superscript recording where differential

resides is often dropped. A morphism of chain complexes f• : X• → Y• is

a set of morphisms {fi : Xi → Yi}i∈Z such that dYi+1fi+1 = fid
X
i+1 for all

i ∈ Z; again, one may write f : X → Y as shorthand. The decoration may

be exchanged, whence we would write

· · ·
dn−2
X−−−→ Xn−1 dn−1

X−−−→ Xn dnX−−→ Xn+1 dn+1
X−−−→ · · ·

instead—note the indices ascend from left to right now. Collecting chain

complexes and their morphisms, we define the category of chain com-

plexes with values in X, denoted by Ch(X). This is an additive category.

Note that any additive category has a minimal exact structure given by

the split exact sequences. A conflation can be thought of as complex, and

in this way, isomorphism classes of diagrams of the form

X X ⊕ Z Z
( 1

0 ) ( 0 1 )

comprise the exact structure. Then endowing X with this minimal exact

structure, we can impose on Ch(X) an exact structure given by degree-wise

split exact sequences, that is X• → Y• → Z• is a conflation in Ch(X) if and

only if Xi → Yi → Zi is a conflation in X for all i ∈ Z. From now on, we

suppress the dot subscript on complexes and their morphisms.

Lemma 3.1.2. Let X be an additive category equipped with the split exact

structure. Then Ch(X) is an exact category with respect to the degree-wise

split exact structure.

Proof. All we really need to check is E2, and E2op will follow sim-

ilarly. Given an inflation i : X ↪→ Y and an arbitrary f : X → Z, take

pushouts degree-wise. At each level, we have an inflation jn : Zn ↪→Wn and
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a morphism gn : Yn →Wn making the following (pushout square) commute.

Xn Yn

Zn Wn

in

fn
p

gn

jn

All that we need are the differentials dWn : Wn → Wn−1 compatible with g

and j. Consider the maps gn−1d
Y
n : Yn → Wn−1 and jn−1d

Z
n : Zn → Wn−1.

Then

gn−1d
Y
n in = gn−1in−1d

X
n = jn−1fn−1d

X
n = jn−1d

Z
n fn,

so there exists a unique dWn : Wn → Wn−1 such that dWn gn = gn−1d
Y
n and

dWn jn = jn−1d
Z
n by the universal property of the pushout.

Xn Yn

Zn Wn

Xn−1 Yn−1

Zn−1 Wn−1

in

fn

dXn

gn

dYn
jn

dZn
in−1

fn−1
gn−1

jn−1

∃!dWn

So long as W is a complex, the induced map j : Z →W is an inflation, so we

must show dWn−1d
W
n = 0. To see this, we can construct a map Wn → Wn−2

via the universal property of the pushout. Taking

gn−2d
Y
n−1d

Y
n : Yn →Wn−2 and jn−2d

Z
n−1d

Z
n : Zn →Wn−2,

a chase similar to the one above verifies the required equality, and we induce

a unique map Wn →Wn−2. But dYn−1d
Y
n = 0 = dZn−1d

Z
n , so the induced map

is the zero map too, and uniqueness implies dWn−1d
W
n = 0. Therefore the

pushout of i along f exists and is an inflation. �
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Now we can examine projective and injective objects in Ch(X). Recall

that a complex P is projective if, for all deflations Y � Z, the induced

map HomCh(X)(P, Y )→ HomCh(X)(P,Z) is a surjection. On the other hand,

a complex I is injective if, for all inflations X ↪→ Y , the induced map

HomCh(X)(Y, I) → HomCh(X)(X, I) is a surjection. To start, consider com-

plexes of the form 0→ A = A→ 0, which we denote by PA. These will serve

as our prototype projective/injective objects, as is verified in the lemma.

Lemma 3.1.3. The complex PA is both projective and injective in Ch(X).

Proof. We will prove that PA is projective, and as the only fact we

need about deflations is that they are degree-wise split, the proof readily

carries over to show PA is injective. Let a : PA → Z be a morphism of

complexes, and assume without loss of generality that we index as follows.

· · · 0 A A 0 · · ·

· · · Z3 Z2 Z1 Z0 · · ·

a2 a1

dZ2

Remark that a1 = dZ2 a2 by assumption. Now let f : Y � Z be a deflation,

so f is a degree-wise split epimorphism, say with splitting si : Zi → Yi for

each i, so figi = idZi . Note that the splitting is only degree-wise and need

not be a morphism of complexes. Define b : PA → Y by b2 := g2a2 and

b1 := dY2 g2a2 (and bi = 0 everywhere else). We have the following situation.

· · · 0 A A 0 · · ·

· · · Y3 Y2 Y1 Y0 · · ·

· · · Z3 Z2 Z1 Z0 · · ·

b2 b1

f3

dY2

f2 f1 f0g3

dZ2

g2 g1 g0
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By construction, b is a morphism of complexes: b1 = dY2 g2a2 = dY2 b2. Then

f2b2 = f2g2a2 = a2 and

f1b1 = f1d
Y
2 g2a2 = dZ2 f2g2a2 = dZ2 a2 = a1,

so fb = a, showing Hom(PA, Y )→ Hom(PA, Z) is surjective. �

One more operation we need is translation. The translation functor is

an additive auto-equivalence (−)[1] : Ch(X) → Ch(X) that shifts complexes

against the differential, swaps the sign of the differential, and carries mor-

phisms along with it. More generally we can speak of a Z-indexed family

of translation functors (−)[i] given by X[i]n := Xn−i and d
X[i]
n := (−1)idXn−i

for a complex X. For a morphism f : X → Y , the result is f [i]n := fn−i.

From the prototype projectives, we can construct more elaborate pro-

jectives, in particular projective covers. Given a complex X, we make the

convention that PX0 is concentrated in degrees 0 and −1 so we can get the

alignment correct; see below for PX0 , PX1 [1], and X (top to bottom).

· · · 0 0 X0 X0 0 · · ·

· · · 0 X1 X1 0 0 · · ·

· · · X2 X1 X0 X−1 X−2 · · ·

1

−1

The coproduct of projectives is still projective, so define the projective cover

of X by

PX :=
∐
i∈Z

PXi [i].

There should be no confusion of the notation as it will be clear when the

subscript is an object in X or a complex. By construction, the differential

on PX is

dPX
i =

0 (−1)i

0 0

 : Xi+1 ⊕Xi → Xi ⊕Xi−1,
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and we can define b : PX → X by

bi :=
(
dXi+1 (−1)i

)
: Xi+1 ⊕Xi → Xi,

which is a morphism of complexes since dXi bi = bi−1d
PX
i . We make the

following claim.

Proposition 3.1.4. The map b : PX → X is a deflation. Consequently,

Ch(X) has enough projectives.

Proof. To justify the claim, we must show b fits into a degree-wise split

exact sequence, so we will construct a sequence

(3.1.1) X̃
( 1

0 )
−−→ P̃X

( 0 1 )−−−→ X

that is surely degree-wise split exact and show it is isomorphic to a sequence

containing b. We start by proposing a candidate sequence for b: Define

the complex X̃ by X̃i := Xi+1 and dX̃i := dXi+1. Remark that X̃ is just

X[−1] without the negative sign on the differentials. Furthermore, define

f : X̃ → PX by

fi :=

(−1)i+1

dXi+1

 : Xi+1 → Xi+1 ⊕Xi.

Then dPX
i fi = fi−1d

X̃
i , so f is a morphism of complexes, and bf = 0 as one

would hope. Having established our candidate

(3.1.2) X̃
f−→ PX

b−→ X,

we must show it is in fact degree-wise split exact.
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Let P̃X be the complex with (P̃X)i = (PX)i and differential

dP̃X
i :=

dXi+1 (−1)i

0 dXi

 : Xi+1 ⊕Xi → Xi ⊕Xi−1.

Notice that P̃X fits into the sequence (3.1.1), where both inclusion into the

first component and projection from the second are morphisms of complexes.

Define ϕ : P̃X → PX by

ϕi :=

(−1)i+1 0

dXi+1 (−1)i

 : Xi+1 ⊕Xi → Xi+1 ⊕Xi,

a morphism of complexes since dPX
i ϕi = ϕi−1d

P̃X
i . Perhaps surprisingly, ϕ is

an involution! Indeed, (ϕi)
2 is the identity on Xi+1⊕Xi for all i, so right and

left multiplying appropriately with the last equation gives ϕi−1d
PX
i = dP̃X

i ϕi,

i.e., that ϕ : PX → P̃X is a morphism of complexes. It follows that ϕ is an

isomorphism. We claim the candidate sequence (3.1.2) is isomorphic to

(3.1.1), so evaluate the following diagram.

Xi+1 Xi+1 ⊕Xi Xi

Xi+1 Xi+1 ⊕Xi Xi

fi

ϕi

bi

( 1
0 )

ϕi

( 0 1 )

Both squares commute for both directions of ϕi for all i, so (3.1.2) is a

degree-wise split exact sequence. Therefore b is a deflation, and as we can

form a projective cover PX for each object X in Ch(X), we conclude Ch(X)

has enough projectives. �

On the other hand, the prototype complexes PA are injective, so a prod-

uct of these is still injective. Define the injective hull of a complex X to

be

IX :=
∏
i∈Z

PXi [i+ 1],
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which has differential

dIXi =

0 (−1)i

0 0

 : Xi ⊕Xi−1 → Xi−1 ⊕Xi−2

by construction. Additionally, we have a morphism of complexes f : X → IX

given by

ai :=

(−1)i+1

dXi

 : Xi → Xi ⊕Xi−1,

and we find the following.

Proposition 3.1.5. The map a : X → IX is an inflation. Consequently,

Ch(X) has enough injectives.

The proof follows mutatis mutandis from the last, so is omitted. Note

that these projective covers and injective hulls coincide—i.e., for each X,

there exists Y such that PX ∼= IY —as we have an isomorphism

∐
i∈Z

PXi [i]
∼=
∏
i∈Z

PXi [i]

for each X (there are only two summands in each degree). Having shown

Ch(X) has enough projectives and enough injectives, one could hope that

all projectives and injectives coincide, making Ch(X) Frobenius. In fact this

is the case, and we connect projectives and injectives through contractible

complexes.

Definition 3.1.6. Let f, g : X → Y be two morphisms of complexes.

A (chain) homotopy between f and g is a set of morphisms {hi : Xi →

Yi+1}i∈Z subject to

fi − gi = hi−1d
X
i + dYi+1hi

for all i ∈ Z. We may write f ∼ g if they are homotopic. A chain map is

called null-homotopic if it is homotopic to the zero map. We call f : X →
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Y is a homotopy equivalence if there exists g : Y → X with gf homotopic

to the identity on X and fg homotopic to the identity on Y , and in this case,

we say X and Y are homotopy equivalent. A complex is contractible if

its identity map is null-homotopic, so contractible complexes are homotopy

equivalent to the zero complex.

One obstacle we face in homological algebra is constructions that fail

to be unique in some way. For example, we speak not of the projective

resolution of an object, only a projective resolution, because there is no

way to choose projective resolutions uniquely. Projective resolutions are

complexes, and isomorphism of complexes is too strong a notion to capture

the behavior here. Homotopy does a better job at expressing this similarity,

as two projective resolutions of the same object are homotopy equivalent

(see Lemma 3.1.22). Lastly, we detail a construction fundamental to the

study of chain complexes.

Definition 3.1.7. For a morphism of complexes f : X → Y , define the

mapping cone of f by cone(f) := Y ⊕X[1] with differential

dfi :=

dYi fi−1

0 −dXi−1

 : Yi ⊕Xi−1 → Yi−1 ⊕Xi−2.

Remark 3.1.8. There are differing conventions for the definition of map-

ping cone which the above definition generally betrays. Usually, the cone of

a morphism f : X → Y is defined to be X[1]⊕ Y with differential either−dXi−1 0

fi−1 dYi

 or

−dXi−1 0

−fi−1 dYi


depending on a sign convention. The terminology “mapping cone” comes

from topology, where the suspension of a space X is glued to Y along f ,

perhaps motivating (by analogy) the traditional order of the summands.
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We swap the order of the summands so that the inclusion into the cone and

projection from the cone agree with our established shape of a degree-wise

split exact sequence

Yi
( 1

0 )
−−→ Yi ⊕Xi−1

( 0 1 )−−−→ Xi−1.

We feel this ordering is more natural for our discussion.

We have actually seen a mapping cone before. In the proof of Proposition

3.1.4, P̃X is the cone of the alternating sign map ±1: X[−1]→ X̃ given by

X[−1]i = Xi+1
(−1)i+1

−−−−−→ Xi+1 = X̃i.

We use cones again in the proof of the next result.

Proposition 3.1.9. A complex is projective if and only if it is con-

tractible if and only if it is injective, so Ch(X) is Frobenius.

Proof. First note that Ch(X) has enough projectives and enough in-

jectives by Propositions 3.1.4 and 3.1.5. For the first biconditional, suppose

C is a contractible complex and p : X � C a deflation. Using the projective

cover b : PC � C defined by

bi :=
(
dCi+1 (−1)i

)
: Ci+1 ⊕ Ci → Ci,

we induce a map q : PC → X so that pq = b. Thus, in order to find a

splitting of p, it suffices to find a splitting of b. Since C is contractible, there

exists a homotopy {hi : Ci → Ci+1}i∈Z such that dCi+1hi+hi−1d
C
i = 1 for all

i. Using this homotopy, define a splitting map s : C → PC by

si :=

 hi

(−1)ihi−1d
C
i

 : Ci → Ci+1 ⊕ Ci.
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Then, as dPC
i si = si−1d

C
i , we see s is a morphism of complexes, and bs = 1:

bisi = dCi+1hi + hi−1d
C
i = 1

for all i. Lastly, qs is a splitting of p, since pqs = bs = 1, so C is projective.

Now assume C is projective. There is a deflation from the mapping cone

of the identity on C[−1] to C:

(
0 1

)
: cone(idC[−1]) = C[−1]⊕ C → C.

Note that the differential on cone(idC[−1]), which we denote by d∗i for ease

of notation, takes the form

d∗i =

dC[−1]
i 1

0 −dC[−1]
i−1

 =

−dCi+1 1

0 dCi

 .

Since C is projective, the deflation must split, giving s : C → cone(idC[−1])

which must take the form

si =

hi
1

 : Ci → Ci+1 ⊕ Ci

at each degree. The splitting is a morphism of complexes, so d∗i si = si−1d
C
i ,

hence

d∗i si =

−dCi+1 1

0 dCi

hi
1

 =

−dCi+1hi + 1

dCi

 =

hi−1d
C
i

dCi

 = si−1d
C
i

Equality of the top entry means hi−1d
C
1 + dCi+1hi = 1, so {hi}i∈Z is a ho-

motopy between the identity on C and the zero map. Consequently, C is

contractible.

We sketch the other biconditional: Suppose C is contractible, say with

homotopy {hi : Ci → Ci+1}i∈Z. To show every inflation j : C ↪→ X splits, it
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suffices to show the inflation a : C ↪→ IC given by

ai :=

(−1)i+1

dCi

 : Ci → Ci ⊕ Ci−1

splits, since there exists k : X → IC so that kj = a. The splitting s : IC → C

given by

si :=
(

(−1)i+1dCi+1hi hi−1

)
: Ci ⊕ Ci−1 → Ci

does the trick. Now if C is injective, every inflation must split, so in partic-

ular inclusion into the first component1

0

 : C → cone(idC) = C ⊕ C[1]

must split. The splitting must take the form

si :=
(

1 hi−1

)
: Ci ⊕ Ci−1 → Ci

where the maps hi−1 : Ci−1 → Ci are furnished by the splitting. Then

{hi}i∈Z is the required homotopy, which can be verified as before. Therefore

an object in Ch(X) is projective if and only if it is injective, hence Ch(X) is

Frobenius. �

Definition 3.1.10. The projective/injective stabilization of Ch(X) is

called the homotopy category of complexes in X, and is written K(X).

Homotopy equivalent chain complexes are isomorphic in K(X), so contractible

complexes—the projective/injective objects of Ch(X)—are all sent to zero.

Corollary 3.1.11. For any additive category X, the homotopy category

of complexes K(X) is triangulated.

Proof. By Theorem 1.1.19 and Proposition 3.1.9. �
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Per Lemma 1.1.20, the pushout of X ↪→ IX along some f : X → Y fits

into a commutative diagram of the following form.

X IX X[1]

Y Z X[1]

f

p

Then the bottom row is degree-wise split exact by definition, so Zi ∼= Yi ⊕

Xi−1 for each i. In fact, there exists an isomorphism of complexes Z ∼=

cone(f), so that

Y
( 1

0 )
−−→ Y ⊕X[1]

( 0 1 )−−−→ X[1]

is isomorphic to Y ↪→ Z � X[1]. Following Theorem 1.1.19, distinguished

triangles in K(X) arise from pushout diagrams like the one above, i.e.,

X
f−→ Y → Z → X[1]

is distinguished. Triangles isomorphic to those excised from pushout dia-

grams are deemed distinguished, so the (standard) triangle

X
f−→ Y

( 1
0 )
−−→ cone(f)

( 0 1 )−−−→ X[1]

is distinguished. We may thus realize any distinguished triangle in K(X), up

to a shift, as such a mapping cone sequence.

3.1.2. The subcategory Kac(proj(S)) and equivalence. Through-

out, let R be a noetherian ring, modR the category of finitely generated

right R-modules, and proj(R) the full subcategory of modR consisting of

projective R-modules. As proj(R) is an additive category, we can define

the category of complexes Ch(proj(R)) which is Frobenius when equipped

with the degree-wise split exact structure. Then passing to the quotient, we

obtain the triangulated category K(proj(R)).
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Remark 3.1.12. In an abundance of caution, we reconcile the notion of

an admissible morphism with our current situation. Recall Definition 1.1.7

and the subsequent discussion, and observe that every morphism in modR is

admissible, regarding the abelian structure as an exact structure. Moreover,

a sequence of composable morphisms

A
f−→ B

g−→ C

is acyclic if im(f) → B → im(g) is a short exact sequence (conflation),

i.e., if im(f) ∼= ker(g). In this way, we can carry out the usual enterprise

of homological algebra in an abelian category without fear of the subtlety

brought on by consideration of exact structures.

Definition 3.1.13. The homotopy category of acyclic complexes

of projectives Kac(proj(R)) is the full additive subcategory of K(modR)

consisting of acyclic complexes of finitely generated projective right R-

modules.

Example 3.1.14. Let k be a field and consider the hypersurface Λ =

k[x]/(xn). Recall Example 1.1.6, where we showed that free modules are the

only projective modules in modΛ. The most basic example of an object in

Kac(proj(Λ)) is

· · · → Λ
·xi−→ Λ

·xn−i

−−−→ Λ
·xi−→ Λ

·xn−i

−−−→ Λ
·xi−→ Λ→ · · ·

with 0 ≤ i ≤ n, though the rest of the objects in Kac(proj(Λ)) are not much

more complicated.

We may in fact say something stronger about Kac(proj(R)), in effect that

it is a triangulated category unto itself. The triangulation on Kac(proj(R))

is inherited from K(proj(R)) in the following sense, as we shall verify shortly.
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Definition 3.1.15 ([12, Definition 1.5.1]). A full additive subcategory S

of a triangulated category T is a triangulated subcategory if it is closed

under shifts, isomorphisms, and distinguished triangles in the following way:

If

X → Y → Z → X[1]

is a distinguished triangle in T with X,Y in S, then Z must be in S.

Remark 3.1.16. Before continuing, we discuss homology. Given L
f−→

M
g−→ N with gf = 0, we can make sense of ker(g)/ im(f) since modR

is abelian. We extend this idea to homology of complexes in modR by

defining, for a complexX, the nth homology ofX asHnX := ker(dXn )/ im(dXn+1).

Homology is of particular importance when considering the homotopy cat-

egory of complexes K(modR), as a distinguished triangle

X → Y → Z → X[1]

gives rise to a long exact sequence

· · ·Hn+1Z → HnX → HnY → HnZ → Hn−1X → · · ·

of homology modules—this follows from the Snake Lemma. Now, while

proj(R) is not abelian (it lacks cokernels of monomorphisms in general), we

can compute homology in modR, so we still discuss homology of complexes

in K(proj(R)). Lastly, a morphism of complexes f : X → Y is a quasi-

isomorphism if the induced map fn : HnX → HnY on homology is an

isomorphism for all n. It is helpful to note that homotopy equivalence is a

quasi-isomorphism.

Lemma 3.1.17. Kac(proj(R)) is a triangulated subcategory of K(proj(R)).
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Proof. All we really need to check is triangle closure. Suppose X →

Y → Z → X[1] is a distinguished triangle in K(proj(R)) with X,Y in

Kac(proj(R)). Taking homology, we get a long exact sequence

· · · → HnX → HnY → HnZ → Hn−1X → · · ·

of modules with HnY ∼= 0 ∼= Hn−1X for all n (because X and Y are assumed

acyclic). Therefore HnZ vanishes too, so Z is acyclic as required. �

Recall from Section 1.1.2 the syzygy functor Ω. We extend the notion

of syzygies to Ch(proj(R)) by defining the ith syzygy of a complex X to

be ΩiX := coker(dXi+1) for i ∈ Z.

Proposition 3.1.18. Taking the ith syzygy defines an additive functor

Ωi : Ch(proj(R))→ modR. Moreover, we find the composition

Ch(proj(R))
Ωi

−→ modR→ modR

factors uniquely through K(proj(R)).

Proof. Let f : P → Q be a morphism in Ch(proj(R)) and let q : Qi �

ΩiQ be the projection onto the cokernel of dQi+1. As

qfid
P
i+1 = qdQi+1fi+1 = 0,

there exists a unique map Ωif : ΩiP → ΩiQ induced by factoring through

the cokernel.

Pi+1 Pi ΩiP

Qi+1 Qi ΩiQ

dPi+1

fi+1 fi ∃!Ωif

dQi+1 q

It is straightforward to check (via the uniqueness of the induced maps) that

Ωi : Ch(proj(R))→ modR is an additive functor.
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To show the composition

Ch(proj(R))
Ωi

−→ modR→ modR

descends to an additive functor on K(proj(R)), it suffices to show null-

homotopic maps in Ch(proj(R)) are sent to zero in modR, equivalently, to

maps in modR that factor over a projective. Let f : P → Q be a null-

homotopic morphism of complexes in Ch(proj(R)) with homotopy {hi : Pi →

Qi+1}i∈Z such that fi = hi−1d
P
i + dQi+1hi. As before, let q : Qi � ΩiQ

and say p : Pi � ΩiP is the other epimorphism, so there exists a unique

Ωif : ΩiP → ΩiQ such that (Ωif)p = qfi. Additionally, there exists a map

j : ΩiP → Pi−1 (since P is a complex) such that jp = dPi .

ΩiP

Pi Pi−1

Qi+1 Qi ΩiP

Ωif

j

p

fi

dPi

hi hi−1

dQi+1
q

From here, we compute

(Ωif)p = qfi = q(hi−1d
P
i + dQi+1hi) = qhi−1d

P
i = qhi−1jp.

As p is an epimorphism, we conclude Ωif = qhi−1j, so Ωif factors over a

projective—in fact two: both Pi−1 and Qi. Therefore the composition in

question descends to an additive functor K(proj(R))→ modR. �

Remark 3.1.19. In the proof above, we conclude there exists an additive

functor K(proj(R)) → modR. Upon restricting the source to Kac(proj(R)),

we have a functor into modR which will be our primary charge henceforth.

We call this new functor Ωi : Kac(proj(R))→ modR as there is no opportu-

nity for confusion.
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In Chapter 2, projective co-resolutions of MCM modules were an essen-

tial tool in proofs. Recall that a projective co-resolution of an MCM module

M is obtained by dualizing a projective resolution of the dual module M∗.

This construction depends on MCMs being reflexive, and we should not ex-

pect that all modules possess projective co-resolutions. In fact, admitting a

projective co-resolution is equivalent to being MCM, as was shown in Corol-

lary 2.3.7. Following Remark 2.3.8, we now make formal the definition of a

complete resolution.

Definition 3.1.20. A complete resolution of a module M is an

acyclic complex P such that each Pi is projective and coker(dP1 ) ∼= M .

· · · P1 P0 P−1 P−2 · · ·

M

dP1

A module thus admits a complete resolution if and only if it admits a pro-

jective co-resolution.

Notice that a complete resolution P of a module M is a priori an acyclic

complex in Ch(proj(R)), and M can be realized as the 0th syzygy of P .

There is a deficit to this perspective: When it exists, a complete resolution

of a module need not be unique. However, just like projective resolutions,

complete resolutions of the same module are homotopy equivalent. Look-

ing instead at the homotopy category Kac(proj(R)), we can assign complete

resolutions uniquely.

The cost of shifting perspective is that we can only investigate syzygy

modules up to projectively stable equivalence, but this approach has been

encoded in modR all along. Recall from Section 2.1 that taking syzygies

of modules is unique up to projectively stable equivalence, and in much

the same way, Proposition 3.1.18 says extracting syzygies of complexes in
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Kac(proj(R)) enjoys the same uniqueness. Beyond analogy, there is even a

compatibility with the notion of syzygy from Section 2.1: If M is a module

(in modR) admitting a complete resolution P , then the 1st syzygy of P is

isomorphic to the syzygy of M , in symbols, Ω1P ∼= ΩM . Higher syzygies of

M correspond precisely to higher syzygies of P , that is, if we write

ΩiM := Ω · · ·Ω︸ ︷︷ ︸
i times

M,

then ΩiP ∼= ΩiM (i ≥ 0).

Such an intimate connection between the 0th syzygy module of an acyclic

complex of projectives and its complete resolution encourages us to identify

Kac(proj(R)) with a subcategory of modR, but there is hazard in being so

hasty. While we can restrict the target to make Ω0 essentially surjective,

there is no indication that Ω0 would be full or faithful. The way forward is

to return to Gorenstein rings, where we can make precise the link between

modules admitting complete resolutions and acyclic complexes of projec-

tives.

Theorem 3.1.21. Let S be a Gorenstein ring and MCM(S) the projec-

tively stable category of Maximal Cohen-Macaulay modules. The functor

Ω0 : Kac(proj(S))→ MCM(S) is an equivalence of categories.

To prove this result, we will need the Comparison Theorem.

Lemma 3.1.22 ([5, Proposition V.1.1]). Assume the following takes place

in a category with a suitable notion of acyclicity, i.e., an abelian category or

more generally an exact category.
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(1) Given the solid diagram

· · · P2 P1 P0 M

· · · E2 E1 E0 N

f2 f1 f0 f

with the bottom row acyclic and the Pi projective objects, there ex-

ists a lift of f to a morphism of complexes {fi} that is unique up

to homotopy.

(2) Given the solid diagram

M E0 E1 E2 · · ·

N I0 I1 I2 · · ·

f f0 f1 f2

with the top row acyclic and the Ii injective objects, there exists

a lift of f to a morphism of complexes {f i} that is unique up to

homotopy.

Proof of Theorem 3.1.21. By Corollary 2.3.7, Ω0X is MCM for all

X in Kac(proj(S)). What’s more, the assignment of complete resolutions

is functorial. Let g : M → N be a morphism of MCM modules. Then by

Lemma 3.1.22, g lifts to a morphism between projective resolutions and a

morphism between injective resolutions of M and N , both unique up to

homotopy. This gives a lift f of g between complete resolutions, as injective
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resolutions in MCM(S) are projective co-resolutions by Lemma 2.4.5.

· · · P1 P0 P−1 P−2 · · ·

M

· · · Q1 Q0 Q−1 Q−2 · · ·

N

f1 f0 f−1 f−2

g

If g is the zero map, then Lemma 3.1.22 guarantees that each half of the

lift is null-homotopic. We can complete the homotopies on each side to

one for the entire complex by filling in the zero map for P−1 → Q0, so f

is null-homotopic. Thus formation of complete resolutions yields a functor

CRes] : MCM(S) → Kac(proj(S)), and we conclude in particular that com-

plete resolutions are unique up to isomorphism. Moreover, if g factors over

a projective P , i.e., if the residue of g in MCM(S) is 0, then CRes] g factors

over CRes] P , which is contractible: A complete resolution of P is given by

0 → P = P → 0, which is a projective object in Ch(proj(S)) by Lemma

3.1.3, so contractible by Proposition 3.1.9. Therefore CRes] descends to a

unique additive functor CRes: MCM(S)→ Kac(proj(S)).

Maintaining notation, we have shown there exists a unique lift f : P → Q

of g : M → N for any choice of complete resolutions P for M and Q for N .

In particular, we can lift idM to a map ηM : P → CResM and idN to

ηN : Q→ CResN . Since idN · g = g · idM = g, we find that

ηNf = (CRes g)ηM

as both extend g to a map P → CResN . In addition, ηM and ηN must be

isomorphisms because complete resolutions are unique up to isomorphism.

Now suppose we are given a map f : P → Q in Kac(proj(S)) with Ω0P =: M
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and Ω0Q =: N , and set g := Ω0f . We conclude from the equality above

that

ηNf = (CRes Ω0f)ηM .

Therefore η describes a natural isomorphism from the identity on Kac(proj(S))

to CRes Ω0, proving Ω0 is an equivalence of categories. �

Example 3.1.23. If S is a semisimple ring (Example 2.2.7), then by

definition Kac(proj(S)) is just Kac(modS). However, there is nothing to be

gained here: MCM(S) is trivial, so by Theorem 3.1.21, Kac(proj(S)) must

be trivial too. More generally, if S is a Gorenstein ring of finite global

dimension, then MCM(S) and thus Kac(proj(S)) are trivial; see Example

2.4.2.

As both MCM(S) and Kac(proj(S)) are triangulated categories, one may

wonder whether Ω0 is compatible with both triangulations. To state our

next result, we need the following definition.

Definition 3.1.24 ([12, Definition 2.1.1]). A triangulated functor

F : T → D is an additive functor between triangulated categories with nat-

ural isomorphisms

ξX : F (ΣX)
∼−→ Σ(FX)

such that for any distinguished triangle

X
u−→ Y

v−→ Z
w−→ ΣX

in T, the candidate triangle

FX
Fu−−→ FY

Fv−−→ FZ
ξX ·Fw−−−−→ Σ(FX)

is distinguished in D.

Proposition 3.1.25. Ω0 is a triangulated functor.
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Proof. Suppose

X
u−→ Y

v−→ Z
w−→ X[1]

is a distinguished triangle in Kac(proj(S)), so it comes from a pushout dia-

gram

X IX

Y Z

i

û

p
g

v̂

in Ch(proj(S)). Let M be an MCM module and fix a complete resolution

P for M . If we have maps h : IX → P and k : Y → P such that hi = kû,

then there exists a unique map ` : Z → P with h = `g and k = `v̂. By the

uniqueness property of factoring through the cokernel, we get the following

commutative diagram.

coker(dX1 ) coker(dIX1 )

coker(dY1 ) coker(dZ1 )

M

∃!

Note that both coker(dX1 ) → coker(dIX1 ) and coker(dY1 ) → coker(dZ1 ) are

inflations: If A ↪→ B is an inflation of acyclic complexes of projectives,

then there is a conflation A ↪→ B � C, which is by definition a degree-

wise split exact sequence. Thus C is an acyclic complex of projectives and

coker(dC1 ) is MCM. It follows that coker(dA1 ) → coker(dB1 ) is an inflation

in MCM(S). Therefore the diagram above is a pushout diagram. Noting

Ω0A = coker(dA1 ), we have that Ω0X → Ω0Y → Ω0Z → Σ(Ω0X) is a

distinguished triangle in MCM(S). If we can exhibit a natural isomorphism

ξX : Ω0(X[1])→ Σ(Ω0X), we will be done.
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Notice first that Ω0 is compatible with shifts:

Ω0(X[j]) = coker(d
X[j]
1 ) = coker((−1)jdX−j+1) ∼= Ωi−jX;

this isomorphism is non-canonical since, to describe the rightmost isomor-

phism, we have to choose to put the −1: Xn → Xn in either even or odd

degrees when j is odd. Let M be an MCM module with complete resolution

P . The idea with the natural isomorphism ξP : Ω0(P [1])→ Σ(Ω0P ) can be

illustrated by the following diagram.

Ω−1P

· · · P0 P−1 P−2 · · ·

M ΣM

dP0

As projective co-resolutions are injective resolutions in MCM(S), both Ω−1P

and ΣM are defined as coker(dP0 ). Therefore there exists an isomorphism

Ω−1P
∼−→ ΣM , which is natural by the unique factorization property of the

cokernel. Then with Ω0(P [1]) ∼= Ω−1P and M ∼= Ω0P , we find Ω0(P [1]) ∼=

Σ(Ω0P ). Continuing on from the last paragraph, we conclude

Ω0X
Ω0u−−→ Ω0Y

Ω0v−−→ Ω0Z
ξX ·Ω0w−−−−−→ Σ(Ω0X)

is a distinguished triangle in MCM(S). �

Example 3.1.26. Let k be a field. For the hypersurface Λ = k[x]/(xn),

consider, as in Example 3.1.14, an object

· · · → Λ
·xi−→ Λ

·xn−i

−−−→ Λ
·xi−→ Λ

·xn−i

−−−→ Λ
·xi−→ Λ→ · · ·
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in Kac(proj(Λ)), 0 ≤ i ≤ n. Compute syzygies of this object and compare

with the formulas derived in Examples 1.1.11 and 1.1.14. Conclude that

objects of this form are complete resolutions of indecomposable Λ-modules.

Example 3.1.27. Let k be a field and G a finite group. The equivalence

of MCM(kG) and Kac(proj(kG)) yields another way to calculate the Tate

cohomology groups of G introduced in Example 2.5.3. We can now take a

complete resolution of k and consider the complex Hom(CRes k, k), whereby

Ĥn(G) ∼= Hn Hom(CRes k, k).

This isomorphism is demonstrated in [3, Lemma 6.1.2.ii] by different means

than Theorem 3.1.21.

3.2. The singularity category

It is at this juncture that historical motivation leans decidedly geometric.

Verdier’s effort to axiomatize triangulated categories (see Remark 1.1.16)

was in service of describing the derived category, a notion proposed by his

doctoral advisor Alexander Grothendieck. The advent of the derived cate-

gory, which isolates homological data of a given abelian category, marked a

technological leap in algebraic geometry. Formal construction of the derived

category evaded Grothendieck, perhaps by want of time over anything else.

He insisted that results—dependent on the yet formalized derived category—

were within his grasp, if only the mathematics could be described to state

these insights. Grothendieck, in a tradition as old as mathematics, subcon-

tracted the problem to his student, Verdier.

Verdier localization allows us to define the derived category of modS. We

describe subcategories of the derived category that restrict where complexes

have nonzero homology, including the bounded derived category, where a

complex has nonzero homology in only finitely many degrees. With the
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bounded derived category as our starting point, we localize yet again to de-

fine the singularity category Dsg(S), encoding MCM approximation through

the canonical inclusion of modS. By studying isomorphism classes in the sin-

gularity category, along with connections between Dsg(S) and Kac(proj(S)),

we will show that Dsg(S) and MCM(S) are equivalent as triangulated cate-

gories.

3.2.1. Verdier localization. Verdier localization is a procedure by

which a class of morphisms is formally inverted. While not intractably com-

plicated, the construction is technical, and a thorough treatment requires

careful lemmas and lengthy argument. We present here an abridged ver-

sion, so as to provide enough flavor to whet the appetite, and refer the

intent reader to [12, Chapter 2] for the buffet.

We paraphrase [9, Section 1.3] for an overview of localization. The idea

with localization is to invert a class S of morphisms in a category T so that

the canonical localization functor q : T → T[S−1] enjoys two properties:

• qs is an isomorphism for all s ∈ S.

• If F : T → D is a functor such that Fs is an isomorphism for all

s ∈ S, then F factors uniquely through q. Therefore q is universal

with respect to this factoring property.

We impose several axioms on S to ensure the resulting T[S−1] is a category

and that q possesses the universal factoring property. For our purposes, we

concern ourselves only with localizations of triangulated categories, whereby

we require S is compatible with the triangulation. The next definition loosely

follows [9].

Definition 3.2.1. A multiplicative system S in a category T is a

class of morphisms subject to the following constraints.

MS0 For every object X in T, idX ∈ S.
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MS1 If s, t ∈ S are composable, then ts ∈ S.

MS2 Suppose s : X → Y is a morphism in S. Any map Y ′ → Y can be

completed to a commutative diagram

X ′ X

Y ′ Y

s′ s

with s′ ∈ S, and symmetrically any map X → X ′′ can be completed

to a commutative diagram

X X ′′

Y Y ′′

s s′′

with s′′ ∈ S.

MS3 For two maps f, g : X → Y in T, there exists s : X ′ → X in S with

fs = gs if and only if there exists t : Y → Y ′ in S such that tf = tg.

When T is a triangulated category, we require that the multiplicative sys-

tem be compatible with the triangulation, i.e., that S meets the following

additional criteria.

MS4 For all n ∈ Z and s ∈ S, Σns ∈ S.

MS5 If (s, t, u) is a morphism of distinguished triangles in T with s, t ∈ S,

then there exists u′ ∈ S making (s, t, u′) a morphism of distin-

guished triangles.

Objects in the localization T[S−1] are precisely those in T. A morphism

X → Y in T[S−1] is an equivalence class of diagrams of the form

Z

X Y

s f
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with s ∈ S and f ∈ HomT(Z, Y ), which we will abbreviate as (Z, s, f) : X →

Y . These diagrams should be thought of as representing fs−1 and are

often called fractions accordingly. Morphisms in T[S−1] are subject to

an equivalence relation: Diagrams (Z, s, f) and (Z ′, s′, f ′) are equivalent if

there exists a diagram (Z ′′, s′′, f ′′) : X → Y and morphisms u : Z ′′ → Z and

v : Z ′′ → Z ′ in T such that the following diagram commutes.

Z

X Z ′′ Y

Z ′

s f

s′′

u

v

f ′′

s′ f ′

Composition of (equivalence classes of) morphisms (V, t, g) : W → X and

(Z, s, f) : X → Y is accomplished by the following commutative diagram.

Z ′

V Z

W X Y

s′ g′

gt s f

By MS2, the commutative rhombus at center exists and s′ ∈ S. Then

ts′ ∈ S by MS1, hence the composition is given by (Z ′, ts′, fg′) : W → Y .

The localization functor q : T → T[S−1] sends a morphism f : X → Y to the

triple (X, idX , f).

Let T be a triangulated category and U a triangulated subcategory.

Define S(U) to be the class of maps f : X → Y in T such that there exists a

distinguished triangle

X
f−→ Y → Z → ΣX

with Z ∈ U. By [14, Proposition II.2.1.8], S(U) is a multiplicative system

compatible with the triangulation.
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Definition 3.2.2. The Verdier quotient of T by U is the localization

T/U := T[S(U)−1].

As always, there is a canonical functor q : T → T/U. The formation of a

Verdier quotient is a special case of localization, so it is often attributively

referred to as Verdier localization.

Proposition 3.2.3 ([14, Théorème II.2.2.6]). There exists a unique tri-

angulated structure on the Verdier quotient T/U such that q is a triangulated

functor. Distinguished triangles in T/U are isomorphic to images via q of

distinguished triangles in T. If F : T → D is a triangulated functor with the

property that Fs is an isomorphism for all s ∈ S(U), then F factors uniquely

through q.

There is a sense in which the Verdier quotient T/U can be thought of as

modding out by U. Let

X
f−→ Y → Z → ΣX

be a distinguished triangle in T with Z ∈ U. Localizing, we find that

qX
qf−→ qY → qZ → Σ(qX)

is a distinguished triangle in T/U and qf is invertible. Axioms TR1 and

TR3 guarantee that we can construct a morphism of distinguished triangles

qX qY qZ Σ(qX)

qX qX 0 Σ(qX)

qf

(qf)−1 w
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where w is an isomorphism by Lemma 1.1.18 (Triangulated 5 Lemma).

Therefore q sends objects in U to zero. We can in fact characterize the

kernel of q.

Definition 3.2.4. The kernel of a triangulated functor F : T → D is

the full additive subcategory kerF of T consisting of objects sent to zero by

F , i.e., X ∈ kerF if and only if FX ∼= 0.

It is clear that kerF is isomorphism closed. As F is a triangulated

functor,

F (ΣX) ∼= Σ(FX) ∼= 0

whenever X ∈ ker q, so the kernel is closed under shifts. Lastly, suppose

X → Y → Z → ΣX is a distinguished triangle in T with X,Y ∈ kerF . By

TR1, 0 → 0 → 0 → 0 is a distinguished triangle in D, and TR3 says there

exists a morphism of distinguished triangles

FX FY FZ Σ(FX)

0 0 0 0

u v w Σu

in D. But u and v are isomorphisms by assumption, so Lemma 1.1.18

(Triangulated 5 Lemma) implies w is an isomorphism, hence Z ∈ kerF .

Therefore kerF is a triangulated subcategory of T. Notice moreover that if

X ⊕X ′ ∈ kerF , then X ∈ kerF :

0 ∼= F (X ⊕X ′) ∼= FX ⊕ FX ′,

so FX ∼= 0. We conclude that the kernel of a triangulated functor is closed

under direct summands.

Definition 3.2.5. A triangulated subcategory is called thick if it is

closed under direct summands.
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Remark 3.2.6. We remark that thick subcategories have utility beyond

kernels. Let k be a field, and recall from Example 2.5.3 the cohomology ring

H?(G) for a finite group G. Understanding one invariant of H?(G), namely

the associated projective variety, amounts to classifying thick subcategories

of the triangulated category mod kG. In fact, there is a more general pro-

gram that studies topological invariants of algebraic objects by classifying

thick subcategories of an associated triangulated category.

Returning to the localization q : T → T/U, we have that U is certainly

contained in ker q. To characterize the latter, note that ker q is the smallest

thick triangulated subcategory containing U. We can in fact construct ker q

as the full additive subcategory containing all direct summands in T of

objects in U.

To see Verdier localization in action, we close this section with an exam-

ple. Let A be an abelian category. Perhaps the canonical example of Verdier

localization is the derived category D(A). Recall homology of complexes and

quasi-isomorphisms from Remark 3.1.16 and notice that it immediately gen-

eralizes from modR to A. The derived category of A consists of complexes

of objects in A with the property that all quasi-isomorphisms are invert-

ible. Start with the homotopy category of complexes K(A). Let Kac(A)

be the full additive subcategory of K(A) comprised of acyclic complexes.

It is quick to see that Kac(A) is a triangulated subcategory, as the proof of

Lemma 3.1.17 generalizes immediately. Furthermore we remark that Kac(A)

is thick. Define the derived category as the Verdier quotient

D(A) := K(A)/Kac(A).

Note that a morphism f : X → Y in K(A) is a quasi-isomorphism if and

only if cone(f) is acyclic, so quasi-isomorphisms are invertible in D(A), and
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acyclic complexes are sent to zero. We will build on the derived category in

the next section to introduce the third actor in our analysis.

3.2.2. The quotient Dsg(S) and equivalences. Let A be an abelian

category. So far in Chapter 3, we have considered only unbounded chain

complexes, but now that we have defined Ch(A), K(A), and D(A), we men-

tion boundedness conditions for all three. Define the category of chain com-

plexes in A with bounded above homology

Ch−(A) := {X ∈ Ch(A) : HnX = 0 for all n� 0},

the category of chain complexes with bounded below homology

Ch+(A) := {X ∈ Ch(A) : HnX = 0 for all n� 0},

and the category of chain complexes with bounded homology

Chb(A) := {X ∈ Ch(A) : HnX = 0 for all |n| � 0}.

As with Ch(A), we can stabilize Ch?(A) for ? ∈ {b,−,+} with respect

to contractible complexes, giving the homotopy category K?(A) of com-

plexes with bounded (above/below) homology. Then taking the Verdier

quotient of K?(A) by the triangulated subcategory of acyclic complexes, we

get the bounded (above/below) derived category D?(A). By [14, Théorème

III.1.2.3], we can think of K?(A) and D?(A) as triangulated subcategories

of K(A) and D(A) respectively, as we may induce full embeddings from the

inclusion functor Ch?(A)→ Ch(A).

Let S be a Gorenstein ring and write D(S) for D(ModS). Additionally,

write Db(S) for Db(modS), the bounded derived category of complexes of

finitely generated S-modules. A perfect complex is a complex X that

is isomorphic in D(S) to a finite complex of finitely generated projective
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S-modules; by finite complex we mean that Xi 6= 0 for only finitely many

i. Clearly if X is perfect, then X has bounded homology, whereby X ∈

Db(S), and we denote the full additive subcategory of perfect complexes by

perf(S). Suppose T is another triangulated category and F : Db(S) → T is

a triangulated functor such that FS ∼= 0. The kernel of any such functor is

easily characterized.

Lemma 3.2.7. For any triangulated functor F : Db(S) → T such that

FS ∼= 0, kerF = perf(S).

Proof. Suppose that X is a perfect complex, so without loss of gen-

erality we can write X as a finite complex of finitely generated projective

modules concentrated in nonnegative degrees:

0→ Xi → · · · → X0 → 0.

For each 0 ≤ j ≤ i, there exists a module Yj and an integer nj such that

Xj ⊕ Yj ∼= Snj , and the complex Y given by

0→ Yi
0−→ Yi−1

0−→ · · · 0−→ Y1
0−→ Y0 → 0

must be perfect. Then F (Xj ⊕ Yj) ∼= F (Snj ) ∼= 0 for each j since F is

additive, and we must have 0 ∼= F (X ⊕ Y ) ∼= FX ⊕ FY . Hence X ∈ kerF ,

and it follows that perf(S) ⊂ kerF .

Note that perf(S) is a triangulated subcategory: The only thing we pos-

sibly need to check is triangle closure, but this is immediate upon applying

the triangulated functor F . We claim perf(S) is thick. For this, it suf-

fices to notice that a summand of a perfect complex is (isomorphic to) a

summand of a finite complex of projectives. As summands of projectives

are themselves projective, we conclude perf(S) is closed under summands.

Therefore perf(S) is a thick subcategory containing S and contained in kerF ,
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but kerF is the smallest thick subcategory containing S, so we must have

perf(S) = kerF . �

It follows in turn that every such functor F factors through the same

Verdier quotient, a somewhat remarkable result considering our assumptions

on F are minimal. This Verdier quotient is deserving of examination in its

own right, comprising the remainder of our efforts.

Definition 3.2.8. The singularity category is the Verdier quotient

Dsg(S) := Db(S)/ perf(S).

There is a unique triangulated functor q : Db(S)→ Dsg(S) with the property

that any triangulated functor Db(S) → T sending S to 0 factors uniquely

through q.

Remark 3.2.9. An object C in a triangulated category T is called com-

pact if the functor HomT(C,−) preserves all set-indexed coproducts that

exists in T. It is interesting to remark that the compact objects in D(S) are

in fact the perfect complexes. As perf(S) ⊂ Db(S), the singularity category

may alternatively be described as the Verdier quotient of Db(S) with respect

to the compact objects in D(S).

Yet another way to characterize perf(S) is the isomorphism closed full

subcategory generated by shifts of projective S-modules. This essentially

follows from the fact that perf(S) is the smallest thick subcategory contain-

ing S, i.e., the thick subcategory generated by S. Closing under summands

of finite sums of S gives all finitely generated projective modules, and tak-

ing mapping cones of shifts of projectives gives any perfect complex, up to

isomorphism.
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We can regard any module as a complex concentrated in degree 0, which

we may formalize as a composition of functors

modS → Chb(modS)→ Kb(modS)→ Db(S)→ Dsg(S).

Any projective module is clearly sent to 0 in the composition, so any map

in modS that factors over a projective is consequently sent to the zero map.

We conclude the following.

Lemma 3.2.10 ([3, Lemma 2.2.2]). The functor modS → Dsg(S) factors

uniquely through the canonical reduction functor modS → modS, giving a

functor ι : modS → Dsg(S). Moreover, ι takes the syzygy functor Ω to the

inverse of the translation functor.

Proof. The first assertion is demonstrated in the paragraph before the

lemma. For the second, remark that the functor Ch(modS) → D(S) is a

δ-functor, in the sense of [14, Section III.1.3], so any short exact sequence of

complexes in Ch(modS) gets sent to a distinguished triangle in D(S). Start

with a morphism f : M → N in modS. Extend f to a commutative diagram

(in modS)

0 ΩM P M 0

0 ΩN Q N 0

Ωf f

with short exact rows, choosing lifts ΩM,ΩN appropriately. Viewing each

module as a complex concentrated in degree 0, we can think of the above

commutative diagram as one in Ch(modS), and we get a morphism of dis-

tinguished triangles in D(S).

ιΩM ιP ιM (ιΩM)[1]

ιΩN ιQ ιN (ιΩN)[1]

ιΩf ιf

δ

(ιΩf)[1]

δ′
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As ιP and ιQ are perfect, δ and δ′ are isomorphisms, with naturality fol-

lowing from commutativity of the rightmost square. �

Consider again the inclusion of modS into Db(S), and note that fpd

modules are sent to perfect complexes. Upon localizing, we find that every

fpd module is isomorphic to 0 in Dsg(S), so ι : modS → Dsg(S) cuts out the

torsion-free class in modS. Recall from Proposition 2.6.2 and the discussion

following that the inclusion i : MCM(S) → modS admits a right adjoint

c given by MCM-approximation. With ι(fpd(S)) vanishing, we can draw

conclusions about the interaction of ι and MCM-approximation, so that up

to natural isomorphism, ι is just a functor from MCM(S).

Proposition 3.2.11. The counit of the adjunction i a c induces a natu-

ral isomorphism of functors ιε : ιic⇒ ι. The functor ιi : MCM(S)→ Dsg(S)

is triangulated.

Proof. The second claim is a corollary to Lemma 3.2.10, so we need

only demonstrate the first. Let N be a finitely generated S-module. As

(MCM(S), fpd(S)) is a complete cotorsion pair in modS (Proposition 2.6.1),

we may exhibit a short exact sequence

0→ U →M → N → 0

with M a MCM module and U a fpd module. The inclusion of modS

into Dsg(S) is a δ-functor, thus the above short exact sequence is sent to a

distinguished triangle

U →M → N → U [1].

Noting that U is perfect, we conclude the images of M and N are isomorphic

in Dsg(S). What’s more, M ∼= cN in MCM(S)—recall from the discussion

following Proposition 2.6.2 that M is a MCM-approximation for N . To
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3.2. THE SINGULARITY CATEGORY

proceed, let f : N → L be a map in modS. The counit ε of the adjunction

i a c induces a commutative diagram

icN icL

N L

icf

εN εL

f

in modS, which upon applying ι yields a commutative diagram

ιicN ιicL

ιN ιL

ιicf

ιεN ιεL

ιf

in Dsg(S). As was just shown, the image (via ι) of any module N is iso-

morphic in Dsg(S) to the image of its MCM-approximation cN , so ιεN is an

isomorphism for all N . Therefore ιε is a natural isomorphism. �

This natural isomorphism of functors hints at a deeper connection be-

tween maximal Cohen-Macaulay modules and objects in the singularity cat-

egory, in the sense that including any module into Dsg(S) automatically

encodes its MCM approximation. Strengthening this connection further, we

now show that every object in the singularity category arises as the image

of an MCM module, up to isomorphism. For ease of notation and in light

of the last proposition, we write simply ι for ιi.

Proposition 3.2.12. The triangulated functor ι : MCM(S)→ Dsg(S) is

essentially surjective.

Proof. Start by taking a projective resolution of a complexX in Dsg(S),

that is, take P to be a bounded above (vanishing in degrees i� 0) complex

of finitely generated projective S-modules such that P is quasi-isomorphic

to X. Without loss of generality assume that Pi = 0 for all i < 0. Since X

has bounded homology, there exists an integer m such that HmX 6= 0 and
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HnX = 0 for all n > m. Let r := m + idim(S) + 1, and break up P into a

short exact sequence of complexes in Chb(modS).

...
...

...

0 0 Pr+1 Pr+1 0

0 0 Pr Pr 0

0 Pr−1 Pr−1 0 0

...
...

...

0 P0 P0 0 0

0 0 0

We write 0 → A → P → B → 0 for the above short exact sequence

of complexes, and note that P is quasi-isomorphic to X. Then the δ-

functor Chb(modS) → Dsg(S) sends the above short exact sequence to a

distinguished triangle A → P → B → A[1] with the outer terms—perfect

complexes—vanishing. Therefore X is isomorphic in Dsg(S) to the trun-

cated complex B. As B has homology only in degree r, we can further

post-compose with the quasi-isomorphism of complexes

· · · Pr+1 Pr 0 · · ·

· · · 0 coker(dPr+1) 0 · · ·

dPr+1

to conclude X is isomorphic to the complex coker(dPr+1)[r].

Let M := coker(dPr+1). Then P [−r] is almost a complete resolution of

M , the deficit being the nonzero homology off to the right, but this is no

issue—enough of the complex to the right is acyclic to show that M is MCM.
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Consider taking cosyzygies of M , and let j := idim(S).

· · · Pr Pr−1 Pr−2 · · · Pm+1

M ΣM ΣjM

By dimension shifting (Lemma 2.3.1), we find that M is MCM:

Exti(M,S) ∼= Exti+j(ΣjM,S) = 0

for all i > 0. Therefore ΣrM exists (by taking a complete resolution of M)

and is MCM, so ι(ΣrM) ∼= (ιM)[r] ∼= X since ι is triangulated, completing

the proof. �

Breaking up a complex into a short exact sequence with perfect kernel is

a handy trick—one that we employ again soon. Of particular utility was the

cokernel of the short exact sequence (see proof above), a truncated complex,

which was enough, in Dsg(S), to recover the complex with which we started.

In the ways they simplify our investigation, these truncated complexes are

the key to better understanding the singularity category and its connection

to maximal Cohen-Macaulay modules. Toward that end, recall näıve right

truncation of a complex: For a complex A and an integer k, the näıve

right truncation σ≥kA is the complex with (σ≥kA)i = Ai if i ≥ k and 0

otherwise, i.e.,

· · · → Ak+2 → Ak+1 → Ak → 0.

There is a canonical surjective map πjk : σ≥jA→ σ≥kA for all j ≤ k given by

0 in degrees less than k and identity elsewhere. It is immediate that näıve

truncation defines an endofunctor on K(modS) and that

(3.2.1) σ≥k(A[i]) = (σ≥k−iA)[i]

for all i, k ∈ Z.
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To complete our description of ι, we appeal to complete resolutions of

MCM modules; our approach here roughly follows [3]. Notice that if P is a

complex in Kac(proj(S)), then σ≥kP is a projective resolution of ΩkP . Put

another way, the complexes σ≥kP and ι(ΩkP )[k] are isomorphic in Db(S).

At the cost of slightly more notation, we introduce the homotopy cate-

gory of bounded above complexes of projective modules with bounded ho-

mology

K−,b(proj(S)) := {P ∈ K(proj(S)) : Pi = 0 for i� 0, HnP = 0 for |n| � 0}.

It is well known that K−,b(proj(S)) is equivalent to Db(S)—the functor into

Db(S) is just inclusion and the quasi-inverse is given by taking a projective

resolution. Now for each k ∈ Z, we can regard truncation as an additive

functor from Kac(proj(S)) to Db(S):

Kac(proj(S))
σ≥k−−→ K−,b(proj(S))

∼−→ Db(S);

we maintain the notation σ≥k for this composition. To check that this as-

signment is functorial, suppose f : P → Q in Kac(proj(S)) is null-homotopic.

Then Ωkf factors over a projective, i.e., ιΩkf factors over a perfect complex,

and the commutative diagram

(3.2.2)

σ≥kP ι(ΩkP )[k]

σ≥kQ ι(ΩkQ)[k]

∼

σ≥kf ι(Ωkf)[k]

∼

in Db(S) assures σ≥kf vanishes. Notice moreover that σ≥k is fully faithful

for all k ∈ Z: This follows essentially from Lemma 3.1.22 and the subsequent

description of maps lifted from MCM(S) to Kac(proj(S)). To show σ≥k is fully

faithful, if we are given f : σ≥kP → σ≥kQ, then there exists f̄ : ΩkP → ΩkQ

that is unique in MCM(S), so functoriality of CRes implies there is a unique
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lift CRes f̄ such that σ≥k CRes f̄ = f . Thus σ≥k is a full embedding, or put

another way, σ≥k Kac(proj(S)) is a full subcategory of Db(S).

Example 3.2.13. Consider again the case of the hypersurface Λ =

k[x]/(xn) for k a field. In Example 3.1.26 we classified complete resolutions

of indecomposable Λ-modules. Let M be an indecomposable Λ-module, i.e.,

M ∼= k[x]/(xi) for 1 ≤ i ≤ n or M ∼= 0. Show for any integer m that the

2mth näıve right truncation σ≥2m CResM of a complete resolution of M is

isomorphic to M in Db(Λ) up to a shift.

Passing to the singularity category via the localization q : Db(S) →

Dsg(S), we have that the complexes σ≥jP and σ≥kP are isomorphic in Dsg(S)

for integers j ≤ k: The kernel of the natural map πjk : σ≥jP → σ≥kP is a

finite complex of projectives, so the short exact sequence of complexes

...
...

...

0 0 Pk+1 Pk+1 0

0 0 Pk Pk 0

0 Pk−1 Pk−1 0 0

...
...

...

0 Pj+1 Pj+1 0 0

0 Pj Pj 0 0

0 0 0

is sent to a distinguished triangle

kerπjk → qσ≥jP → qσ≥kP → (kerπjk)[1]
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in Dsg(S), so qσ≥jP ∼= qσ≥kP in Dsg(S) since kerπjk is perfect. Moreover,

the map f : P → Q yields a commutative diagram

0 ker σ≥jP σ≥k
P 0

0 ker′ σ≥jQ σ≥k
Q 0

σ≥jf σ≥kf

with short exact rows, which is sent to a morphism of distinguished triangles

ker qσ≥jP qσ≥k
P ker[1]

ker′ qσ≥jQ qσ≥k
Q ker′[1]

∼

qσ≥jf qσ≥kf

∼

in Dsg(S), whereby naturality of the isomorphism follows from the commu-

tativity of the middle square. In summary, we have the following.

Proposition 3.2.14. The collection {qσ≥k : k ∈ Z} is a directed sys-

tem of functors from Kac(proj(S)) to Dsg(S) with natural isomorphisms for

transition maps. For each k ∈ Z, there is a natural isomorphism of functors

qσ≥k CRes ∼= ι from MCM(S) to Dsg(S). The limit

σ≥ := lim←−
k∈Z

qσ≥k

is a triangulated functor with σ≥CRes ∼= ι.

Proof. The first claim is immediate from the preceding discussion and

the second follows from Theorem 3.1.21 and (3.2.2). For the last claim, we

note first that the limit exists, since qσ≥k satisfies the universal property for

any k ∈ Z. In particular, σ≥ is naturally isomorphic to qσ≥k for all k ∈ Z.

Then (3.2.1) implies that σ≥ is triangulated and the second claim implies

σ≥CRes ∼= ι. �
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Theorem 3.2.15. The functor ι : MCM(S) → Dsg(S) is an equivalence

of triangulated categories.

Proof. By Propositions 3.2.11, 3.2.12, and 3.2.14, all we need to show

is that σ≥ is fully faithful. Considering the natural isomorphism of functors

σ≥ ∼= qσ≥k for all k ∈ Z, it suffices to find an integer k such that qσ≥k is

fully faithful. Moreover, as σ≥k is fully faithful for all k ∈ Z, it only remains

to show that the localization q is fully faithful when restricted to the full

subcategory σ≥k Kac(proj(S)). We take an approach similar to [3, Proof of

Theorem 4.4.1], whereby we first reduce the problem: By [14, Proposition

II.2.3.3], it suffices to show, for any perfect complex X and any complex Q

in Kac(proj(S)), that there exists an integer k such that

HomDb(S)(X,σ≥kQ) = 0.

Since both X and σ≥kQ are bounded above complexes of projectives, the

equivalence K−,b(proj(S))
∼−→ Db(S) implies

HomDb(S)(X,σ≥kQ) ∼= HomK−,b(proj(S))(X,σ≥kQ).

By Remark 3.2.9, we can assume X = P [i] for P some projective module and

i ∈ Z. Thus all we need to find is some k ∈ Z such that f is null-homotopic,

and k = i+ 2 works, so we are done. �

Remark 3.2.16. We can now describe a quasi-inverse of ι. The data of

a quasi-inverse is twofold: a module and a shift. Assigning a shifted MCM

module for each object in Dsg(S)—as is detailed in the proof of Proposition

3.2.12—is now seen to be functorial. To check this is well-defined, note

that we need not truncate exactly at the degree given in the proof, as any

degree greater will also yield a MCM module at the cost of a greater shift.

Maintaining the notation from the proof of Proposition 3.2.12, suppose X is
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a complex in Dsg(S) and let P be a projective resolution of X. Now choose

two different MCM modules.

Pt Pt−1 · · · Pr Pr−1

coker(dPt+1) coker(dPr+1)

Then the assignment X 7→ Σr coker(dPr+1) is well-defined, since

Σr coker(dPr+1) ∼= Σr(Σt−r coker(dPt+1)) ∼= Σt coker(dPt+1)

in MCM(S). For a morphism f : X → Y , we can truncate far enough to

the left so that both X and Y can be replaced by shifted MCM modules

concentrated in the same degree. The resulting morphism between these

modules must be the image of a unique morphism in MCM(S) as ι is fully

faithful, so send f to the corresponding morphism in MCM(S) between the

shifted MCM modules. It is quick to check that this assignment is a quasi-

inverse of ι.
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