
UC San Diego
UC San Diego Previously Published Works

Title
Using machine vision to analyze and classify Caenorhabditis elegans behavioral 
phenotypes quantitatively

Permalink
https://escholarship.org/uc/item/6hv7v7b2

Journal
Journal of Neuroscience Methods, 118(1)

ISSN
01650270

Authors
Baek, Joong-Hwan
Cosman, Pamela
Feng, Zhaoyang
et al.

Publication Date
2002-07-01

DOI
10.1016/S0165-0270(02)00117-6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6hv7v7b2
https://escholarship.org/uc/item/6hv7v7b2#author
https://escholarship.org
http://www.cdlib.org/


Using machine vision to analyze and classify Caenorhabditis elegans
behavioral phenotypes quantitatively

Joong-Hwan Baek a, Pamela Cosman b, Zhaoyang Feng c, Jay Silver c,
William R. Schafer c,*

a School of Electronics, Telecommunication and Computer Engineering, Hankuk Aviation University, Koyang City, South Korea
b Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, USA

c Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA

Received 26 February 2002; received in revised form 26 April 2002; accepted 26 April 2002

Abstract

Mutants with abnormal patterns of locomotion, also known as uncoordinated (Unc) mutants, have facilitated the genetic

dissection of many important aspects of nervous system function and development in the nematode Caenorhabditis elegans .

Although a large number of distinct classes of Unc mutants can be distinguished by an experienced observer, precise quantitative

definitions of these classes have not been available. Here we describe a new approach for using automatically-acquired image data to

quantify the locomotion patterns of wild-type and mutant worms. We designed an automated tracking and imaging system capable

of following an individual animal for long time periods and saving a time-coded series of digital images representing its motion and

body posture over the course of the recording. We have also devised methods for measuring specific features from these image data

that can be used by the classification and regression tree classification algorithm to reliably identify the behavioral patterns of

specific mutant types. Ultimately, these tools should make it possible to evaluate with quantitative precision the behavioral

phenotypes of novel mutants, gene knockout lines, or pharmacological treatments. # 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Understanding the relationship between genes and

behavior represents a fundamental challenge in neu-

roscience. A powerful approach to this problem is to use

genetic analysis in simple model organisms, such as the

nematode Caenorhabditis elegans , to identify genes

whose specific behavioral phenotypes reflect a specific

role in nervous system function. Since phenotype-driven

genetic screens essentially make no prior assumptions

about the types of molecules involved in the process

being studied, this approach is well suited for identifying

previously unknown receptors or signal transduction

molecules involved in poorly-understood aspects of

neuronal or muscle cell activity. Furthermore, modern

molecular genetics provides the ability to manipulate

specific gene products in an intact animal, making it

possible to assess a particular protein’s functions within

the context of an intact nervous system. The nematode

C. elegans has powerful genetics, a well-described

nervous system, and a complete genome sequence;

thus, it is particularly well suited to genetic analysis of

nervous system function and behavior (Riddle et al.,

1997).

The genetic analysis of nervous system function in C.

elegans depends on the availability of reliable assays to

detect behavioral abnormalities. Unfortunately, beha-

vioral assays in this organism, particularly in more

complex behaviors such as locomotion, are often highly

imprecise and subjective. For example, over 100 genes

have been described which when mutated lead to

abnormal or uncoordinated movement (Brenner,

1974). In the published literature (e.g. Hodgkin, 1983),

these uncoordinated (‘Unc’) mutants are usually classi-

fied into a number of descriptive categories, including

‘kinky’, ‘coiled’, ‘shrinking’, ‘loopy’, ‘slow’, and ‘slug-
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gish’ animals. Since these categories are somewhat

vague, and are always scored subjectively by a human

observer, it is not uncommon for the same Unc mutant

to be described differently by different researchers, or
for two mutants with clearly distinguishable mutant

phenotypes to be assigned the same classification.

Moreover, many mutants with physiologically relevant

defects in nervous system function exhibit only subtle

alterations in behavior that are difficult for even an

expert observer to reliably detect. Among the C. elegans

genes with extremely subtle knockout phenotypes are

the AMPA and NMDA glutamate receptor homologues
glr-1 and nmr-1 (Zheng et al., 1999), the serotonin

biosynthetic and reuptake transporter genes tph-1 and

mod-5 (Sze et al., 2000; Ranganathan et al., 2001) and

the dopamine biosynthetic gene cat-2 (Lints and Em-

mons, 1999).

One way these problems have been surmounted is

through use of automated video capture and analysis

systems. By recording and analyzing the behavior of
individual animals, often for long time intervals, it has

been possible to rigorously identify and quantify devia-

tions from wild-type behavior that are difficult to

discern by eye (Pierce-Shimomura et al., 1999; de

Bono et al., 1998). For example, we previously devel-

oped a computer-controlled motorized microscope that

could record an individual animal’s behavior at high

magnification (Hardaker et al., 2001). To keep the
animal from leaving the field of view, a tracking

program was designed to control the movement of a

motorized stage and maintain the worm in the center of

the field. This system made it possible to follow the

position of the animal over long time periods, and by

recording the experiments on videotape, to analyze the

details of locomotive and egg-laying behavior off-line.

In this way, it was possible to obtain precise data on the
timing of egg-laying events and to thereby develop a

quantitative model for the temporal pattern of egg-

laying that could be used to characterize and classify

egg-laying-defective mutants (Waggoner et al., 1998;

Zhou et al., 1998). Because the tracking system also

retained information about the stage position and the

position of the animal in the field of view, we could also

quantify large-scale features of the animal’s locomotor
pattern (e.g. speed and directional changes) and inves-

tigate their correlation with egg-laying. Comparative

analysis of behavioral mutants and animals carrying

precise neuronal lesions identified specific serotonergic

synapses that were critical for coordinating these

behaviors (Hardaker et al., 2001). Taken together, the

use of an automated tracking system made it possible to

rigorously assay phenotypes that were essentially un-
detectable by eye and to distinguish functionally rele-

vant phenotypic differences that revealed essential

features about underlying molecular and neural me-

chanisms (Kim et al., 2001).

These preliminary studies suggested that more power-

ful computer vision tools could be used to generally

characterize and classify the locomotor patterns of Unc

mutants. Here we describe a new system we have devised
for the automated collection and analysis of C. elegans

locomotion data. Using this system, it has been possible

to obtain reliable measurements of key features of an

animal’s locomotor pattern and to use these features to

classify the locomotor patterns of individual mutant

types. The behavioral data gathered by this system have

many applications for the molecular analysis of the

nervous system and behavior in this widely studied
model organism.

2. Materials and methods

2.1. Strains and culture methods

Routine culturing of C. elegans was performed as

described (Brenner, 1974). All worms analyzed in these
experiments were young adults; fourth-stage larvae were

picked the evening before the experiment and tracked

the following morning after cultivation at 22 8C. We

observed that animals tended to show higher locomotor

activity immediately after being transferred to a fresh

plate; thus, experimental animals were allowed to

acclimate for at least 1 h before their behavior was

analyzed. Plates for tracking experiments were prepared
fresh the day of the experiment; a single drop of a

saturated LB culture of E. coli strain OP50 was spotted

onto a fresh NGM agar plate and allowed to dry for 1 h

before use. The chromosomal locations of the genes

studied in these experiments are as follows: LGI, unc-38

(x20), goa-1 (n1134) ; LGIII, unc-36 (e251) ; LGIV,

egl-19 (n582) ; LGX, nic-1 (lj22) .

2.2. Acquisition of image data

C. elegans locomotion was tracked with a Zeiss Stemi

2000-C Stereomicroscope mounted with a Cohu High

Performance CCD video camera. A computer-con-

trolled tracker (Parker Automation, SMC-1N) was

used to put the worms in the center of the optical field

of the stereomicroscope during observation (excluding
the microscope, the components for this system cost

approximately $10 000). To record the locomotion of an

animal, an image frame of the animal was snapped every

0.5 s for at least 5 min. Among those image pixels with

values less than or equal to the average value minus

three times the S.D., the largest connected component

was found. The image was then trimmed to the smallest

axis-aligned rectangle that contained this component,
and saved as eight-bit grayscale data. The dimensions of

each image, and the coordinates of the center of mass of

the worm in the tracker field were also saved simulta-
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neously as the references for the location of an animal in

the tracker field at the corresponding time point when

the images are snapped. The stereomicroscope was fixed

to its largest magnification (50�/) during operation.
Depending on the type and the posture of a worm, the

number of pixels per image frame varied although the

number of pixels per millimeter was fixed at 312.5 pixel/

mm for all worms.

2.3. Image pre-processing

To obtain the clean binary image, the background

intensity level of the grayscale image was found first by
taking the maximum of the values of the four corner

points (top-left, top-right, bottom-left, bottom-right) of

the trimmed image (at least one of the corner points is

always not part of the worm body). After finding the

background level (b ), a 5�/5 moving window was

scanned over the trimmed image, and the mean (m )

and S.D. (s) of the pixels inside the window were

computed at every pixel position. If the mean was less
than 0.7b or the s is larger than 0.3m , then the pixel was

considered to be a pixel of the worm body and is

assigned a value 1. In order to clean up the spots inside

the worm body, a morphological closing operator

(binary dilation followed by erosion) was applied

(Gonzalez et al., 2002). Next, the sequential algorithm

for component labeling was used to remove unwanted

isolated objects (Jain et al., 1995). The connected
components were labeled by scanning the image in x

and y directions sequentially, and the largest component

was selected to guarantee that there will be only one

object, the worm, in the image.

2.4. Image feature extraction

All of the software for binarization, skeletonization,
and feature extraction was coded in C and implemented

on a UNIX machine. Some features (e.g. the area of the

worm, that is, the number of pixels which make up the

single binary object in the frame) could be computed on

a single frame; these were computed for all 600 frames in

the sequence. The average value, the maximum value

and the minimum value were then computed for these

600 measurements. In some cases, the maximum value
or minimum value of a given parameter tended to be a

relatively uninformative outlier; in such cases, it was

more useful to summarize the group statistics with such

quantities as the 90th and 10th percentile values out of

the population of 600 numbers. Other features could not

be extracted from a single frame, for example, the

movement between two frames, or the movement within

10 s (20 frames). Since there are approximately 600
frames total in a sequence, the movement between two

frames could be computed 300 times if we take pairs of

frames in a non-overlapping fashion, or it could be

calculated 599 times taking pairs of frames in a sliding

window or overlapping fashion. Likewise, for the move-

ment within 20 frames, we could compute 581 values for

overlapping 20-frame intervals. Therefore, quantities of

this type were calculated in a sliding window fashion. As

before, the average, max, min, and other order statistics

can be computed from this set of numbers. Average

processing times of a single 600-frame clip are 75.9 and

58.5 s for the digitization and feature extraction,

respectively on a personal computer (PC) with 1 GHz

CPU.

2.5. Classification and regression tree analysis

The classification and regression tree (CART) algo-

rithm for designing CARTs has its origins in a 1984

monograph by Breiman et al. (1984). Briefly, the CART

approach involves recording a set of examples of each

worm type (i.e. wild-type or a specific mutant), and

measuring features that might in principle be used to

distinguish different types. From these measurements, a

training vector is generated for each recording consisting

of an identifier of worm type along with the values for

each feature measurement. Using this learning sample

(which in our case consisted of 600 data points-100 of

each of the 6 strains), CART produces a binary

classification tree in which each binary split of the

data involves a splitting question of the form ‘Is xm 0/

c?’ where xm is one of the measurements, and c is a

threshold. The root node of the tree contains all the

training cases; the worm types are equally mixed

together in this node. The goal of CART is to

successively subdivide the training set using binary splits

in such a way that the data associated with the terminal

nodes of the tree do not have a mix of worm types;

rather each node should be as ‘pure’ as possible. We

used the Gini index of diversity to measure the impurity

of a set of data. A class assignment rule assigned a class

to every terminal node. A simple rule is to assign the

most popular class for each terminal node; this is called

the plurality rule, and is what we used. When two

different classes were tied for the most popular class in

the node, we arbitrarily chose the lower numbered class

as the class for that node.
CART parameters are set as follows. First, we set

ERROR CROSS�/10. This means that 10-fold cross

validation is used to determine the optimal tree. Second,

we set BOPTION SERULE�/0.0. This means that the

number of standard errors to be used in the optimal tree

selection rule is zero, so the tree with the smallest cost is

chosen as the optimal tree. Third, we set BOPTION

COMPLEXITY�/0.0. This means that no penalty is

given for growing complex trees, so the largest possible

tree is grown initially.
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3. Results

3.1. A tracking system for the automated acquisition of

nematode locomotion data

To classify and quantitatively characterize C. elegans

Unc mutants, we built a tracking and imaging system

that could not only follow an individual animal’s

position over long time periods, but could also save

image data about the animal’s body posture and move-

ments. A schematic of this system is shown in Fig. 1.
Briefly, the system consisted of (i) a dissecting micro-

scope with a stereoscopic zoom; (ii) a motorized stage

controlled by a serial port; (iii) a monochrome analog

CCD camera; (iv) a PC with a video acquisition board.

A VCR was also included for cross verification of

behavioral tracking. During a recording, images from

the CCD camera are captured and digitized at a

frequency of up to 2 Hz. Next, a tracking program
identified the animal in the field of view and saved a

grayscale image of the worm, the stage position, the

position of the worm in the field of view, and the time of

capture. Thus, the system generated a time-coded

sequence of images that in principle represented a nearly

complete record of the animal’s body movements over

an indefinitely long time period. To facilitate parameter

estimation, the grayscale images in the data structure
were subjected to preliminary image processing to

generate simplified representations of body position

and shape (Fig. 2; see also Section 2).

3.2. Extracting image features for phenotype

classification

We have developed tools to extract a wide range of

features related to body shape and locomotor patterns

from the image data gathered by this system. Methods

for measuring some of the most useful features for

phenotypic analysis are described below:

3.2.1. Large-scale movement

Previous work indicated that speed and reversal
frequency represent important features of many mu-

tants’ behavioral phenotypes. These features can be

measured most simply by following the trajectory of the

Fig. 1. Tracking and imaging system. The CCD video camera is fitted to the microscope and outputs analog video images to the digitizing board on

the PC. The same analog video can also be recorded on a VCR. Customized tracking software computes the centroid of the worm and sends

commands to the stage controller to re-center the field of view on the worm. The software has additional modules to collect a variety of behavioral

data. Details on the components of the system are described in Section 2.

Fig. 2. Acquisition and processing of nematode image data. (A)

Original grayscale image. Shown is a grayscale image of a wild-type

hermaphrodite acquired by the tracker. Original image was 640�/480

pixels. (B) Binary image. Image obtained by applying a threshold to

the grayscale image in part (A). The threshold level was determined as

described in Section 2. (C) Binary image following closing operation.

Closing operation (Section 2) was applied to the image in part (B).

Note the absence of holes in the processed binary image. (D) Final

clean binary image. Small objects external to the worm were removed

from the image in part (C) as described in Section 2. (E) Skeleton

obtained through thinning and pruning.
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animal’s centroid over time. To measure speed, the

centroid position data are sampled over a constant time

interval, and the worm’s displacement is proportional to

its average speed during that interval. Interval durations
used in our experiments ranged from 0.5 s (1 frame), to 5

min (the total time of observation). To measure

reversals, the trajectory of the centroid is sampled at

intervals of constant distance (typically 30 pixels, which

is one-tenth of the normal worm length). The turning

angle at every vertex is computed; if the angle is greater

than 1208, then the position is considered to be a

reversal (Fig. 3A). A previous study implementing this
approach found that over 90% of reversal events

detectable by eye were identified using this method,

and that greater than 99% of these events were in fact

reversals rather than large turns (Hardaker et al., 2001).

3.2.2. Body size

The worm’s area was obtained by determining the

total number of ‘on’ pixels in the binary image. Like-

wise, the animal’s length could be obtained by determin-

ing the number of pixels in the image skeleton. The

worm thickness was measured at the center and head/

tail positions of the worm skeleton (the center position
was the value at the center of the skeleton pixel list; the

head/tail position was defined as the position which is 7

pixels away from each end of the worm body). In order

to measure the center thickness, we first took a 9-pixel-

long segment from the skeleton list, and computed the

best fit line for the segment by a line fitting algorithm.

Then we rotated the line by 908 to get a perpendicular

line to it (Fig. 3B). We traversed the perpendicular line

in both directions from the center position until we

reached the edges of the worm body, and then computed

the distance between the two edges. We also rotated the

perpendicular line by �/58 and �/58, and measured the

thickness in those two directions. The minimum value of

the three measurements was considered to be the center

thickness. Similarly, in order to measure the head/tail

thickness, we took two 9-pixel-long segments from each

end of the skeleton list. After getting the best fit lines for

the segments, we found the designated head/tail position

by going back 7 pixels from the end of the worm body

along the best fit line. Then we computed the thickness

at these two measuring positions (one at each end) by

traversing the perpendicular lines to the best fit lines.

The minimum value of the two measurements was

considered to be the head/tail thickness. We also

define the worm’s fatness as the ratio of worm area to

length.

Fig. 3. Measurement of features based on large-scale movement and shape. (A) Directional change detection method. The trajectory of the worm’s

centroid (black solid line) is sampled at intervals of 30 pixels. The directional change position (mark with a star) is found by computing the angle

deviation at every vertex of the polygon (gray line). If the angle (u ) is greater than 1208, then the position is considered to be a reversal. (B) Thickness

measuring method. The length of a perpendicular cross-section of the binary image was computed at the center (i.e., the midpoint of the skeleton),

head and tail (i.e. 7 pixels from the respective ends of the skeleton) as described in the text. (C) Best fit ellipse, and its associated parameters. (D)

MER. The methods for deriving the best fit ellipse and MER are described in the text.
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3.2.3. Best fit ellipse and minimum enclosing rectangle

Several other parameters that correlated with both

body size and body posture could be obtained by finding

the best fit ellipse to the binary shape, and then using the

length of the major and minor axes of the ellipse as

shape features (Fig. 3C). An eccentricity variable was

then computed as the ratio of the distance between the

foci of the ellipse and its major axis length; this value

(which is between 0 for a circle and 1 for a line) provided

a measure of the elongation of the worm. By rotating the

image according to the orientation of the best-fit

ellipse’s major axis, we could also obtain the minimum

enclosing rectangle (MER) of the shape (Fig. 3D). The

height and width of the MER, as well as the ratio

Fig. 4. Measurement of body curvature features. (A) Morphological skeleton with lower (A) and upper (B) maximum distance points along the

straight line connecting two end points. The sum of the peak A and B distances is designated the animal’s amplitude, and the ratio of min (A, B) to

max (A, B) is designated the amplitude ratio. (B)�/(D) Sample images and their amplitude ratios (B: P�/0, C: P�/0.4, D: P�/0.97). (E) Measurement

of the angle change rate. As described in the text, the angle change rate is calculated by segmenting the skeleton using a constant distance of 10 pixels,

and dividing the average angle difference between each two consecutive segments along the skeleton by the total worm length. Thus, a larger angle

change rate means that a worm is more wavy.

Fig. 5. Detection of coiled body postures. (A) Successive image frames showing an animal that coiled briefly. (B) Successive image frames from an

animal that made multiple coils.
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between these two, are useful features that can indicate

whether the worm tends to take on elongated positions
with low amplitude waves, or, on the contrary, tends to

have deeper body bends or looped body positions. The

approximate amplitude of the worm skeleton wave is

also found by computing the perpendicular distance

from every skeleton point to the line connecting the two

end points of the skeleton. Let the coordinates of a point

on the skeleton be (xi; yi) and the equation of the line

ax�by�c�0: Then the perpendicular distance (d)
from the point to the line can be obtained by the

following equation:

d�
jaxi � byi � cjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p :

The sum of the two maximal distances (A and B ) is

considered to be the amplitude of the skeleton (Fig. 4A).

Then amplitude ratio (P ) is defined by the following

equation:

P�
min(A;B)

max(A;B)
:

Some examples of worms with different amplitude

ratios are shown in Fig. 4. As shown in Fig. 4B�/D, this

variable was a quantitative identifier of various atypical
body postures, including the so-called omega turn,

which has an amplitude ratio of zero.

The angle change rate and its S.D. are also computed

from the skeleton of the worm (Fig. 4E). The skeleton

points are spaced apart by 10 pixels. Then the angle

change rate (R ) is defined as the ratio of the average

angle difference between every two consecutive segments

along the skeleton to the worm length, which can be
represented by the following equations:

R�
�

1

n � 1

Xn�1

i�1

ui

�
=L;

ui �arctan
yi�2 � yi�1

xi�2 � xi�1

�arctan
yi�1 � yi

xi�1 � xi

;

where n is the number of segments and L is the worm

Table 1

All feature variables used in CART analysis (total 94 variables)

CART variable name Description

MVHLFMIN, MVHLFMAX,

MVHLFAVG

Min, max, average distance moved

in 0.5 s

PRP10MIN, PRP10MAX,

PRP10AVG

Min, max, average distance moved

in 5 s or 10 frames

PRP20MIN, PRP20MAX,

PRP20AVG

Min, max, average distance moved

in 10 s or 20 frames

PRP30MIN, PRP30MAX,

PRP30AVG

Min, max, average distance moved

in 15 s or 30 frames

PRP40MIN, PRP40MAX,

PRP40AVG

Min, max, average distance moved

in 20 s or 40 frames

PRP50MIN, PRP50MAX,

PRP50AVG

Min, max, average distance moved

in 25 s or 50 frames

PRP60MIN, PRP60MAX,

PRP60AVG

Min, max, average distance moved

in 30 s or 60 frames

TOTMOVE Total amount of movement in 5

min

RV80MIN, RV80MAX,

RV80AVG

Min, max, average number of

reversals in 40 s/80 frames

TOTRV Total number of reversals in 5 min

AREAMIN, AREAMAX,

AREAAVG

Min, max, average area of the

worm

LENGTHMIN, LENGTH-

MAX, LENGTHAVG

Min, max, average length of the

worm

CNTHKMIN, CNTHKMAX,

CNTHKAVG

Min, max, average center thickness

HTTHKMIN, HTTHKMAX,

HTTHKAVG

Min, max, average head/tail thick-

ness

CNTLRMIN, CNTLRMAX,

CNTLRAVG

Min, max, average ratio of center

thickness to length

HTTLRMIN, HTTLRMAX,

HTTLRAVG

Min, max, average ratio of head/

tail thickness to length

FATMIN, FATMAX, FA-

TAVG

Min, max, average fatness of the

worm

MAJORMIN, MAJORMAX,

MAJORAVG

Min, max, average length of best-

fit ellipse’s major axis

MINORMIN, MINORMAX,

MINORAVG

Min, max, average length of best-

fit ellipse’s minor axis

ECCTYMIN, ECCTYMAX,

ECCTYAVG

Min, max, average best-fit ellipse’s

eccentricity

LNECRMIN, LNECRMAX,

LNECRAVG

Min, max, average ratio of worm

length to eccentricity

WDTHMIN, WDTHMAX,

WDAVG

Min, max, average width of MER

HGHTMIN, HGHTMAX,

HGHTAVG

Min, max, average height of MER

WHRATMIN, WHRATMAX,

WHRATAVG

Min, max, average width-to-height

ratio of MER

MERFLMIN, MERFLMAX,

MERFLAVG

Min, max, average ratio of worm

area to MER area

LNMFRMIN, LNMFRMAX,

LNMFRAVG

Min, max, average ratio of worm

length to MER fill

AMPMIN, AMPMAX, AM-

PAVG

Min, max, average amplitude of

worm skeleton wave

AMPRMIN, AMPRMAX, AM-

PRAVG

Min, max, average amplitude ratio

ANCHRMIN, ANCHRMAX,

ANCHRAVG

Min, max, average angle change

rate

ANCHSMIN, ANCHSMAX,

ANCHSAVG

Min, max, average S.D. of angle

change

LPRUNMIN, LPRUNMAX,

LPRUNAVG

Min, max, average length of time

the worm remains coiled

Table 1 (Continued )

CART variable name Description

LPSUM Total number of frames the worm

is looped

LPMLTSUM Total number of frames the worm

has multiple loops

LPRUNS Total number of times the worm

starts to coil

LPBRIEF Total number of times the worm

briefly loops

LPBRFRUN Percentage of brief runs to total

runs
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length. Note that a larger angle change rate means that a

worm is more wavy.

The amount of time a worm spent in a coil as well as

how often it coiled are unique behavioral characteristics

of several types of worms. A coiled body posture creates

a ‘hole’ in the image where the worm loops or touches

itself. To identify coiled postures, we searched for ‘holes’

in the worm image by performing connected component

labeling on the inverted image (Jain et al., 1995).

Counting up the number of connected objects will

always give a value of at least one for the background;

thus the number of holes is equal to the number of

connected components minus one. In our subsequent

analysis, we counted the number of frames the worm

was in a coiled posture as well as the number of times

the worm switched from a non-coiled to a coiled posture

(i.e. the number of ‘runs’). The length of time the worm

remained coiled was charactrized by finding the mini-

mum, maximum, and average of the run lengths. We

also counted the total number of times the worm briefly

looped (Fig. 5A) and the total number of frames the

worm had multiple loops (Fig. 5B).

3.3. Classification of representative mutant types using

image features

Based on qualitative descriptions of Unc mutant

phenotypes, we expected the features measured by our

system would provide useful quantitative definitions for

specific mutant types. To assess the ability of these

image features to provide effective characterization of C.

elegans mutant phenotypes, we tested the ability of the

CART algorithm, a classifier used in machine vision and

medical diagnostic applications, to distinguish data

obtained from different mutant types from one another

and from wild-type.

In our application of this algorithm, the measurement

vector consisted of 94 measured features (Table 1)

associated with an image sequence of a single worm.

For our initial test of the CART approach, we

compared data obtained from wild-type worms with

five different Unc mutants with distinct locomotor

patterns. Thus, the training set contained a total of six

classes: wild-type, and loss-of-function mutants defec-

tive in the genes unc-36 (encoding a calcium channel a-2

Fig. 6. Optimal classification tree. The tree was constructed using the CART algorithm as described. The number of total animals in each node (N:)

is indicated below the respective node; the number of animals of a particular type in that node is indicated within the node.
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subunit), unc-38 (encoding a nicotinic receptor subunit),

goa-1 (encoding the Go a subunit), egl-19 (encoding the

L-type calcium channel a-1 subunit) and nic-1 (encoding

a type-1 glysosyltransferase) were analyzed. For each

strain, the training set consisted of 100 5-min recordings,

with images captured every 0.5 s.

We found that it was possible to generate an optimal

classification tree that could reliably identify the type of

a given worm using only 7 parameters (Fig. 6). These

included measures of body size or shape (minimum

fatness), large scale locomotion (maximum distance

moved in 5 s or 10 frames), and correlates of body

posture (maximum and average ratio of length/MER

fill, average width/height ratio of MER, total frames in

looped posture, and maximum angle change rate for

skeleton). Not only could these features be used to

identify individual animals of a given type, but the

distinctive pattern in which these features varied be-

tween Unc mutants also provided a characteristic

behavioral signature for each mutant type (Figs. 7 and

8; Table 2).

3.4. Reliability of automated phenotype identification

To assess the reliability of our system at correctly

identifying animals of a given mutant type, we per-

formed cross-validation analysis. A measure of classifier
success is the ‘true misclassification rate,’ that is, the

fraction of new cases that would be misclassified by this

classifier. If a classifier is designed using the samples in

L, the resubstitution estimate of misclassification error

is obtained by running the samples in L through the

classifier to see how many of them get misclassified.

Growing a larger and larger tree will reduce this

resubstitution estimate of misclassification error, until
such time as each terminal node is completely pure and

the resubstitution estimate is zero. However, such a tree

is unlikely to perform well on other data. Therefore, we

Fig. 7. Characterization of Unc mutant phenotypes using image feature parameters. Shown are the feature measurement distributions for each of the

six initial worm types analyzed in this study. (A) Maximum length-to-MER fill ratio. (B) Maximum distance moved in 5 s. (C) Average length-to-

MER fill ratio. (D) Minimum fatness. In all cases, the box extends from the first quartile (25th percentiles) to the third quartile (75th percentiles), and

the horizontal line within the box indicates the median. The lower and upper error bars indicate 10th and 90th percentiles, respectively; each outlier is

indicated with a dot.

J.-H. Baek et al. / Journal of Neuroscience Methods 118 (2002) 9�/21 17



instead used 10-fold cross-validation to design a tree of

the right size and to estimate the misclassification rate.

To perform 10-fold cross validation, the entire learn-

ing sample was divided into 10 roughly equal parts, each

containing a similar distribution of the dependent

variable (i.e. the worm type). Nine tenths of the data

were used to construct a very large tree, and the

remaining tenth of the data was used to estimate the

error rate of selected sub-trees. The process was repeated

until each part of the data had been held in reserve one

time as a test sample. The results of the 10 mini-test

samples were then combined to estimate error rates for

trees of each possible size. The cross-validated relative

cost and resubstitution relative cost versus the number

of terminal nodes are shown in Fig. 9. Since we consider

the cost of misclassifying a worm of one type as being

another type to be the same for all types, the term ‘cost’

simply means ‘misclassification rate’ in our application.

Note that the cross-validated relative cost is an error

measure based on a test sample, while the resubstitution

relative cost is an error measure based on the learning

sample. The cross validation classification probability

for each type is given in Table 3. The success rates are

listed along the diagonal while the off-diagonal entries

represent the misclassification error rates. From this, we

can see that for all types, the prediction success rates of

the optimal classification tree were approximately 90%

or higher for each sample animal. Thus, the classifier

showed a high degree of success at identifying the

correct mutant type even if presented with a single

example recording. The success of the classification

would be even higher if one based the classification on

multiple recordings. For example, if a single worm is

classified correctly 93% of the time, then if one takes a

group of three or five worms of the same type, and uses

a majority vote of their classification results, the correct

Fig. 8. Characterization of Unc mutant phenotypes using image feature parameters. Shown are the feature measurement distributions for each of the

six initial worm types analyzed in this study. (A) Total number of ‘looped’ frames. (B) Average width-to-height ratio of the MER. (C) Maximum

angle change rate of the image skeleton. In all cases, the box extends from the first quartile (25th percentiles) to the third quartile (75th percentiles),

and the horizontal line within the box indicates the median. The lower and upper error bars indicate 10th and 90th percentiles, respectively; each

outlier is indicated with a dot.
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Fig. 9. Cross-validated relative cost and resubstitution relative cost verses the number of terminal nodes. The cross-validated relative cost is an error

measure based on a test sample, while the resubstitution relative cost is an error measure based on the learning sample. Unlike the cross-validated

relative cost, the resubstitution relative cost always decreases as the number of terminal nodes increases. A tree with eight terminal nodes is optimal,

because the cross-validated relative cost becomes worse again as the tree grows.

Table 2

Statistics of the variables used in the classification tree

Variable Statistics Worm type

Wild-type goa-1 nic-1 unc-36 unc-38 egl-19

LNMFRMAX Min 818.50 644.74 426.39 774.81 596.49 987.42

Max 1311.54 1102.03 843.08 1221.75 1113.80 1613.84

Mean 1023.96 846.62 605.26 961.08 884.38 1386.09

S.D. 95.34 78.25 96.98 93.14 80.86 115.57

PRP10MAX Min 312.49 82.47 14.37 84.98 57.84 174.29

Max 1182.38 936.56 159.04 407.21 483.21 691.21

Mean 794.56 731.48 61.03 246.87 257.44 402.00

S.D. 156.00 126.31 28.50 69.44 78.37 98.23

LNMFRAVG Min 681.73 545.07 371.71 597.96 528.68 834.15

Max 1076.61 856.50 708.20 949.29 927.93 1296.60

Mean 842.36 715.39 505.86 784.62 733.44 1116.23

S.D. 72.39 56.19 71.26 67.73 62.33 96.67

FATMIN Min 20.63 17.77 18.23 18.25 21.55 18.86

Max 27.71 24.49 27.05 24.54 29.97 23.40

Mean 23.07 21.21 22.40 20.37 24.08 21.25

S.D. 1.31 1.40 1.72 1.14 1.50 0.93

LPSUM Min 0.00 0.00 0.00 0.00 0.00 0.00

Max 38.00 52.00 361.00 243.00 239.00 216.00

Mean 6.27 8.43 9.46 72.36 22.23 23.38

S.D. 7.86 10.21 39.44 65.37 40.91 45.20

WHRATAVG Min 2.96 2.16 1.43 1.99 1.51 1.85

Max 4.72 4.03 7.56 4.17 3.97 5.15

Mean 3.96 3.02 3.56 3.15 2.96 3.59

S.D. 0.33 0.33 1.02 0.57 0.52 0.72

ANCHRMAX Min 3.14 4.44 3.16 5.27 4.14 2.29

Max 5.32 10.23 13.88 12.00 9.94 7.40

Mean 4.07 7.09 7.55 7.49 6.52 3.78

S.D. 0.45 1.03 1.99 1.39 1.10 1.01
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classification would be achieved 98.6% (for three) or

99.7% (for five) of the time.

4. Discussion

4.1. Applications for machine vision-based behavioral

quantification in C. elegans

This study represents the first step toward developing

computer vision methods for characterizing different

classes of Unc mutants and distinguishing them from

one another. Starting with a small but representative set

of mutants exhibiting distinct Unc phenotypes, we have

shown that individual animals of a particular mutant
type can be reliably identified on the basis of a small

number of image features collected by an automated

tracking and image processing system.

Computer vision methods offer a number of clear

advantages over real-time observation for the character-

ization of behavioral phenotypes. First, these ap-

proaches provide a specific, quantitative definition of a

particular mutant phenotype, facilitating quantitative
comparisons between different mutant strains. Second, a

computerized imaging system has the potential to be

much more reliable at detecting abnormalities that are

subtle or manifested over long time scales. Finally, a

computerized system makes it possible to comprehen-

sively assay multiple aspects of behavior simultaneously,

yielding a complex phenotypic signature that can be

highly diagnostic of a specific molecular defect.
Although this study focused on the analysis of pheno-

types associated with abnormal locomotion, it should be

noted that many of the parameters used in the CART

approach will allow us to obtain automated phenotypic

data on other aspects of nematode behavior and

development, in particular those that affect morphol-

ogy. We expect that the development of automated tools

for phenotypic analysis will provide reliable, compre-
hensive analysis of behavioral abnormalities that would

normally require the efforts of a battery of expert

human observers. Such information would not only

allow a more precise understanding of the relationship

between genes and behavior in this organism, but also

would make it possible to identify genes affecting the

activity of common molecular targets in the nervous

system.

Another potentially important application of quanti-

tative image analysis to C. elegans neurobiology is to

investigate molecular mechanisms of drug response. One

way to use worm genetics to identify drug targets is to

isolate a mutant with altered response to a given

compound. Because such mutants have alterations in

nervous system function, they frequently display abnor-

mal behavioral patterns in the absence of drug. By

quantitatively characterizing these patterns of behavior

and then searching for additional mutants with a similar

behavioral pattern, it may be possible to identify

additional genes whose products function in the same

process. A second, complementary approach would be

to treat wild-type animals with a given compound and

characterize the behavioral pattern caused by drug

treatment itself. In principle, if the drug inhibits the

activity of a specific gene product, it should induce a

similar behavioral abnormality to that caused by a loss-

of-function mutation in the gene encoding the target

molecule. By comparing the behavioral patterns of drug-

treated animals with those of known mutants, it should

therefore be possible to make informed initial hypoth-

eses about a drug’s target. To successfully apply this

approach, it will be critical to accumulate behavioral

data on a wider range of Unc mutants and to generate a

database correlating each mutant gene with its char-

acteristic behavioral pattern. A comprehensive beha-

vioral database would be extremely powerful for

identifying groups of mutants and pharmacological

treatments that have similar effects on behavior or

development. With the accumulation of increasing

phenotypic data on known mutants, it should ultimately

be possible to record from mutant or drug-treated

animals and quickly gain insight into the molecular

pathways affected by a given gene or pharmacological

agent.

Table 3

Cross validation classification probability table

Predicted worm types

Wild-type goa-1 nic-1 unc-36 unc-38 egl-19

Actual worm types Wild-type 0.96 0.01 0 0 0.02 0.02

goa-1 0.03 0.95 0.02 0.01 0.01 0

nic-1 0 0 0.92 0.01 0.05 0.01

unc-36 0 0 0.02 0.89 0.08 0.02

unc-38 0.01 0 0.04 0.02 0.93 0

egl-19 0.02 0 0 0.03 0.01 0.94

J.-H. Baek et al. / Journal of Neuroscience Methods 118 (2002) 9�/2120



References

Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and

regression trees. Belmont, CA: Wadsworth, 1984.

Brenner S. The genetics of Caenorhabditis elegans . Genetics

1974;77:71�/94.

de Bono M, Bargmann CI. Natural variation in a neuropeptide Y

receptor homolog modifies social behavior and food response in C.

elegans . Cell 1998;94:679�/89.

Gonzalez R, Woods R. Digital image processing, 2nd ed.. Prentice-

Hall, 2002.

Hardaker LA, et al. Serotonin modulates locomotory behavior and

coordinates egg-laying and movement in Caenorhabditis elegans . J

Neurobiol 2001;49:303�/13.

Hodgkin J. Male phenotypes and mating efficiency in Caenorhabditis

elegans . Genetics 1983;103:43�/64.

Jain R, Kasturi R, Schunck BG. Machine vision. McGraw-Hill Inc,

1995.

Kim J, et al. Genes affecting the activity of nicotinic receptors involved

in C. elegans egg-laying behavior. Genetics 2001:1599�/610.

Lints R, Emmons SW. Patterning of dopaminergic neurotransmitter

identity among Caenorhabditis elegans ray sensory neurons by a

TGFB family signaling pathway and a Hox gene. Development

1999;126:5819�/31.

Pierce-Shimomura JT, Morse TM, Lockery SR. The fundamental role

of pirouettes in Caenorhabditis elegans chemotaxis. J Neurosci

1999;19:9557�/69.

Ranganathan R, et al. Mutations in the Caenorhabditis elegans

serotonin reuptake transporter MOD-5 reveal serotonin-dependent

and -independent activities of fluoxetine. J Neurosci 2001;21:5871�/

84.

Riddle DL, et al, editor. C. elegans II. Cold Spring Harbor, NY: Cold

Spring Harbor Laboratory Press, 1997.

Sze JY, et al. Food and metabolic signaling defects in a Caenorhabditis

elegans serotonin-synthesis mutant. Nature 2000;403:560�/4.

Waggoner L, et al. Control of behavioral states by serotonin in

Caenorhabditis elegans . Neuron 1998;21:203�/14.

Zheng Y, et al. Neuronal control of locomotion in C. elegans is

modified by a dominant mutation in the GLR-1 ionotropic

glutamate receptor. Neuron 1999;24:347�/61.

Zhou GT, Schafer WR, Schafer RW. A three-state biological point

process model and its parameter estimation. IEEE Trans On Signal

Processing 1998;46:2698�/707.

J.-H. Baek et al. / Journal of Neuroscience Methods 118 (2002) 9�/21 21


	Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively
	Introduction
	Materials and methods
	Strains and culture methods
	Acquisition of image data
	Image pre-processing
	Image feature extraction
	Classification and regression tree analysis

	Results
	A tracking system for the automated acquisition of nematode locomotion data
	Extracting image features for phenotype classification
	Large-scale movement
	Body size
	Best fit ellipse and minimum enclosing rectangle

	Classification of representative mutant types using image features
	Reliability of automated phenotype identification

	Discussion
	Applications for machine vision-based behavioral quantification in C. elegans

	References




