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ABSTRACT OF THE DISSERTATION

Duplication and cis/trans regulatory variants: Evolutionary genomics perspectives on gene
regulation

By

Xinwen Zhang

Doctor of Philosophy in Biological Sciences

University of California, Irvine, 2019

Assistant Professor J. J. Emerson, Chair

Variation in gene expression contributes significantly to phenotypic variation. As a result,

in addition to protein-coding loci, and genomic regions coding for gene regulatory elements

are predicted to be under selection. This dissertation uses the genetic models budding yeast

and fruit fly to explore the genetic basis of gene expression variation within species. The

first chapter lays out the general background. It introduces the genetic architecture of gene

expression, the cis/trans model, the allele-specific expression approach, and other commonly

used methods in genomic studies.

The second chapter explores the relation of gene duplication and gene expression level.

Gene duplication is thought to be the primary mechanism to produce new genes. However,

a newly duplicated gene copy needs to exist in the population long enough to gain novel

function. If the new copy affects gene expression in a deleterious direction, it would soon

be eliminated by purifying selection. We would like to know how gene duplication affects

expression between the duplicated genotype and the single copy genotype as well as the dif-

ferences between paralogs in the duplicated genotype. We compared the genomes of strains

of Drosophila melanogaster, focusing on 35 newly duplicated nuclear genes and compared

the gene expression level between two duplicated paralogs and between the singletons and

xi



doublets. We found that all of the 16 analyzable genes show differential expression between

paralogs under the binomial model. The other 19 genes are either 100% identical in their

sequence or have more than two duplicated copies, rendering analysis of copy-specific expres-

sion patterns either impossible or ambiguous. For the total expression level, we found that

most of the genes show elevated expression level, though the magnitude of change shows no

clear relationship with the number of copies. The work is the first such genome-wide survey

of duplicated gene expression employing comparisons of reference-grade genome assemblies.

This ensures that we discover duplicates previously hidden to short-read based methods.

The third chapter discusses a novel implementation of statistical model for inference of allele-

specific expression. Commonly used binomial models ignore the variance among biological

replicates which leads to many false-positives. We implemented a beta-binomial model and

demonstrated its advantages with both simulated and experimental data. The 20 biologi-

cal replicate allele-specific expression dataset not only yields a more accurate landscape of

expression variation but also provide a resource for model testing for future studies.

The fourth chapter contributes to a debate regarding the commonly reported compensatory

evolution in expression regulatory control. We demonstrate with statistical principles that

the observed compensatory evolution in allele specific expression studies might merely be a

measurement artifact. It then discusses an improved method and demonstrates the reduction

of the negative-correlation (an indicator of compensatory evolution) mediated by shared

error. Inferences are made with both simulated and published data.

The fifth and final chapter is a summary of the thesis. It also points out several unsolved

problems and put forward future directions.

xii



Chapter 1

Introduction

This chapter outlines a general background for the dissertation. It introduces the genetic

architecture of gene expression, the cis/trans model, the allele-specific experiment and in-

terpretation, and other commonly used methods in genomic studies.

1.1 Phenotypic Variation and Genetic Variation

The analysis of how the phenotypic variation corresponds to the genetic variation is a long-

standing task in genetics. How genotype relates to phenotype can be studied in both direc-

tions. One direction is from the genotype: certain parts of the genetic material (DNA) are

manipulated, and consequences in phenotype are then recorded. The other direction starts

with phenotypes. We start from the natural variation of phenotype and then by comparing

the underlying DNA sequences, map the phenotype to DNA locations. Those natural vari-

ations in phenotypes, unlike the manipulated ones, are more likely to be evolution heritage.

For evolutionists, natural variation is of primary interest.

1



1.2 Variation in Protein Sequence and Expression Pat-

tern

The central dogma claims that information from DNA passes to RNA via transcription and

then into protein via translation (and once in protein, cannot go back). The protein is

generally thought to constitute the major driver of phenotype, indicating that both gene

sequence and gene expression variance are relevant for variation in phenotype.

The opinion that variation in gene expression contributes significantly to phenotypic vari-

ation has been proposed by many early studies [22, 42]. One widely cited study compares

human and Chimpanzee proteins, pointing out that the peptide sequences are almost the

same. This unexpectedly small variation in protein sequence was argued to be insufficient to

explain the phenotypic differences between the species [26]. Consequently, the authors pro-

posed that variation in gene expression as a candidate explaining the phenotypic difference.

Consequently, gene regulatory elements have long been thought to be an important target

of natural selection comparable in significance to variation in the proteome [47, 76].

1.3 The Genetic Architecture of Gene Expression and

cis/trans Mechanisms

The expression of genes can be seen as a signal transmission process. The molecules in

the cellular environment occupied by the chromosomes (e.g., transcription factors) provide

a signal input and the sequence features linked to the gene itself detect the signal (Figure

1.1). A typical eukaryotic gene has several regulatory regions upstream of the transcription

starting point. The proximal regulatory sequence, also known as a promoter, is where the

RNA polymerase bind to initiate the transcription process. The other distal regulation

2



Figure 1.1: The cis and trans factors affecting gene expression are shown as colorful elements
on the sequence and colorful surrounding elements. The promoter region is shown as a gray
rectangle upstream of the transcription starting point.

sequences are for complex time and space control. These regions are named enhancer or

insulator depending on their function. They detect signals (e.g., transcription factors with

cell cycle information or spatial information) and guide the timing and amount of expression

by attracting or repelling RNA polymerase.

If the variation in DNA sequence affects the expression level in a non-diffusible manner, we

call it cis variation. For example, a mutation in the promoter region might reduce RNA poly-

merase binding leading to reduced expression. Another example: a deletion in the enhancer

region that makes the gene insensitive to some growth factor. These are DNA sequence

variations, and would not diffuse out to affect other chromosomes. On the other hand, if the

variation at the DNA sequence level affects the expression level in a diffusible manner, we call

it trans variation – for example, an amino acid change in a transcription factor. The tran-

scription factor is diffusible and has the chance to affect genes in different chromosomes. We

can decompose the genetic architecture of regulatory variation into cis variation and trans

variation. Their magnitude can be measured by the allele-specific expression experiment

3



introduced in section 1.5.

1.4 Examples of Phenotypic Variation Resulting from

Regulatory Variation

Mutations that affect gene expression in a non-diffusible manner are called cis variants. Such

mutations include nucleotide changes to promoters and enhancers as well as changes in copy

number of a gene. Additionally, mutations like TE insertions near the gene that change

the chromatin state and inversions that change the upstream and downstream context of a

gene can affect the expression of genes in a cis manner. The trans variation includes even

broader events; any mutation that changes the micro-environment in which the gene exists

is potentially effective.

Gene expression variation sometimes results in variation in observable phenotype. A classical

phenotype of the hind-limb reduction in three-spined sticklebacks is caused by cis mutation

[60]. A regulatory mutation on the upstream of the Pitx1 gene reduces or eliminates the

Pitx1 gene expression in pelvic and caudal fin precursors (Figure 1.2).

The pigmentation of Petunia is an example of trans variant with phenotypic consequences.

The expression level of several pigmentation genes are affected by a frameshift mutation of

an2 transcription factor (Figure 1.3).

1.5 The Allele-Specific-Expression Experiment

The allele-specific-expression experiment is similar to a standard gene expression experi-

ment. We first extract mRNA, make a library, sequence it, then map the reads to genes

4



Figure 1.2: A mutation happens on the hind-limb regulatory region upstream of the Pitx1
gene eliminates the expression of Pitx1 and leads to hind-limb reduction in freshwater stick-
lebacks.

Figure 1.3: The Petunia have different flower color. The frameshift mutation on the tran-
scription factor an2 change the expression of several genes involving in the pigmentation
pathway.

in the genome, and finally calculate the read counts. Allele-specific-expression requires one

additional step to identify from which allele an RNA read comes (for diploid hybrid cells or

mixed homologous parental samples). Only reads overlapping the variant positions (SNPs

or indels) between two alleles can be identified (Figure 1.4). Other reads are uninforma-

5



Figure 1.4: In allele-specific experiment, only reads overlapping with the variant positions
(red line in figure) are informative of their parental origin. Other reads have to be discarded.

tive, so allele-specific expression experiments make use of a smaller proportion of collected

data relative to standard gene expression experiments, and are therefore less powerful for

differential expression inference given the same sequencing depth.

However, if the allele-specific read counts can be accurately collected, we can then calculate

the cis and trans variation. In an F1 hybrid cell, two alleles of the same gene are exposed

to the same diffusible elements, so any difference between the alleles’ expression must be

encoded by features linked to the gene itself (i.e., cis variation). By measuring the allele-

specific expression of all genes in hybrid cells, we can measure the magnitude of cis variation

(cis-effect). On the other hand, in an equal-mixed sample of parental cells, the allelic

expression difference is caused by a combination of cis and trans effect. The trans effect can

then be estimated accordingly [62, 15].

6



1.6 The Main Problems with the Allele Specific Ex-

pression Experiment

Although the allele-specific expression experiment is useful for characterizing cis and trans

variation, it has some limitations. The major one is the mapping bias problem. As discussed

in the previous section, only read counts overlapping with variant positions are informative

of which alleles they come from. When only one reference genome is provided in the mapping

step, the parental genome that is more similar to the reference genome tends to get more

read counts. As a result, the mapping step is affected by the choice of the reference genome.

Without the ability to sequence and assemble the whole genomes, researchers tend to use the

community reference genomes from public databases and mask the known variant positions

or substitute SNPs for the nucleotides of the reference. It helps to reduce the mapping bias,

but the variant list may not reflect the accurate variant positions for the specific strains in

each experiment. Fortunately, with new sequencing and assembly techniques, high-quality

genomes become accessible for individual labs. The problem can then be solved by using the

experimental-specific reference genomes.

Another problem is the over-dispersed variance among biological replicates. Gene expression

itself is a noisy process, not to mention the variance introduced in sample collection, library

preparation, and sequencing. Previous studies use only 1-3 replicates and a binomial model,

leading to many false positives of differential expression between alleles. Fortunately, as

the library preparation and sequencing become more and more affordable, collecting more

replicates becomes more feasible. A new scheme is described in Chapter 3.

7



1.7 Benefits of Genome Assembly with Long Reads

The newest mainstream generation of sequencing platforms like Single Molecule Real Time

Sequencing by Pacific Biosciences and the MinION Nanopore sequencer by Oxford Nanopore

Tech make high-quality genomes accessible for individual labs. My lab colleagues developed

a hybrid assembly scheme that combines the high contiguity from long reads and the high

accuracy from short reads while keeping sequencing cost as low as possible [9]. With the

help of these new techniques and schemes, the genomes of the two Saccharomyces cerevisiae

strain: RM11-1a and YPS128 and the genomes of two Drosophila melanogaster strain: A3

and A4 are accurately sequenced and assembled.

The RM11-1a and YPS128 genomes are both used as the reference genome in the allele-

specific-expression experiments so that mapping bias is eliminated (For details, see chapter

3).

A3 and A4 genomes are compared with the ISO1 Drosophila melanogaster release 6 reference

to find duplicated genes in Chapter 2. Duplicates are very hard to identify with only short-

read assemblies. This project would be tedious and filled with uncertainty from inaccurate

assemblies without these techniques. Reference quality genomes will undoubtedly become

routine for genomic studies going forward. The struggle to deal with the uncertainty in

genomes could soon be saved by such techniques.

1.8 The Following Documents and My Projects

This dissertation focuses on the natural variation in gene regulation mechanisms and at-

tempts to solve the main problems in commonly used methods by taking advantage of state-

of-the-art genome sequencing and assembly methods. The new methods/schemes are then

8



tested on simulated data and also applied to real experimental data, yielding a preliminary

landscape of regulatory variation.

The first project focuses on the duplicated genes in two strains of Drosophila melanogaster.

The copy number differences of genes between these two strains can be viewed as one type

of cis variation. The expression levels of genes with different copy numbers are compared

within and between the two strains. This work is described in Chapter 2. As of this writing,

it is unpublished, but I anticipate a manuscript based on this work will be submitted soon

after submission of this dissertation. Some of of the results related to this chapter are already

published in Nature Genetics.

For general cis measurements, the statistical methods should use a model that incorporates

over-dispersion among replicates. In the second project, I outline a beta-binomial model

for general cis variation measurement and applied to 20 replicated yeast hybrid samples.

Along the way, I also solved the mapping bias problem with a carefully-designed pipeline

involving de novo assembly and identification and correction of biased variants. This work

is preprinted in bioRxiv and is described in Chapter 3.

Compensatory evolution in cis and trans gene regulation has been reported in several studies.

However, many studies employ a method for cis/trans estimation that conflates compen-

satory evolution with shared error. The third project demonstrates the phenomena with

both statistical prove and simulated/experimental data. Part of this work is published in

Trends in Genetics and is fully described in Chapter 4.
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Chapter 2

The Expression of the Incipient

Duplicated Genes

This project explores the relationship between gene duplication and gene expression level.

This comprehensive genome-wide survey of duplicated gene expression is made possible with

newly-developed genome sequencing and assembly approaches. Part of the work is published

in Nature Genetics under the title “Hidden genetic variation shapes the structure of func-

tional elements in Drosophila”. This chapter includes additional follow-up work (including

more extensive analysis that addresses all duplicates rather than a few examples) slated for

submission as an independent manuscript.

2.1 Abstract

Gene duplication plays an important part in genome evolution. Here we measure the gene

expression of 35 newly duplicated genes in two strains of Drosophila melanogaster : A3 and

A4. Each of these genes is fully duplicated. Of the 35 copied genes, 16 exhibit allelic dif-
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ferences making them suitable for paralog-specific expression analysis. We found that the

paralogs are usually differentially expressed, though the change is often less than two-fold.

Provided both copies are expressed, the combined expression levels of the two copy genotypes

tend to increase relative to that of the corresponding single copy genotypes. However, the

magnitude of change has no clear pattern. While in a few cases, the total expression level

corresponds roughly linearly to gene copy (ie doubling for a one-copy to two-copy compari-

son), there are many exceptions. Indeed, these cases offer many examples where at least one

of the apparently redundant individual copies does not faithfully recapitulate the expression

of its single copy progenitor. Each copy number variant on this list merits careful investiga-

tion of its regulatory mechanism to understand how these changes in expression came about

mechanistically.

2.2 Introduction

Gene duplication is one of the most important mechanisms for adding novel genes to the

genome. Members of gene families can often easily be traced back to a gene ancestor [46].

Duplication could happen via ectopic recombination, replication slippage, errors in double

strand break repair, retrotransposition, or whole genome duplication, the consequences of

which may occasionally be adaptive [27] or disease-causing [64]. One apparent dilemma

for the fixation of the new duplication is attaining novel function that would preserve the

new copy may be slow compared to loss by mutation, genetic drift, or purifying selection.

While there are many models proposed to explain how duplicates are fixed and retained in

populations [21], most imply that the fixed duplicates are neutral or beneficial.

We identified newly duplicated genes in both A3 and A4 genomes. We restricted our attention

to loci for which the reference genome ISO1 possessed a single copy allele. Since these copy

number changes are present in either A3 or A4, the duplication event will usually have
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occurred since A3 and A4 last shared a common ancestor at the locus. But since variation

at the locus is still segregating, these duplicates’ final fate remains unresolved. Any effects of

gene duplication on the expression level potentially affect the fitness effects of the duplicate

allele. It is possible that for one gene, a dosage increase is beneficial but for another gene,

an increase is deleterious. Environment is also a factor. An increase of expression could be

beneficial in an environment the A3 strain most recently inhabited, but could be deleterious

in the corresponding A4 environment.

Since the connection between expression level and fitness is a priori, predicting the fitness

effect and the likely fate of duplication is not tractable given our approach. Instead, we

focus on surveying the molecular phenotypes of expression level change arising from gene

duplications. Since duplicate discovery is conditional on a small sample size, any ascertained

variants are drawn from intermediate to high allele frequency classes. As a result, they are

disproportionately likely to be beneficial relative to variants ascertained in the absence of

this bias. Interestingly, some genes also exhibit a clear response to a nicotine treatment

and fall under nicotine resistance QTL, which are likely to be positively selected in the area

where nicotine (e.g. tobacco) or neo-nicotinoid pesiticides are prevalent [41, 11].

Previous results appear contradictory about effect of duplication on expression level. Gene

duplicates are variously reported to increase expression levels [37], decrease noise in expres-

sion levels [55], or maintain consistent expression levels [56]. We hope this work will serve

as a rigorous quantitative estimate of the distribution of these possible outcomes, and that

our measurement of paralog specific expression will provide mechanistic insight into various

outcomes.

In this project, we identified 35 genes that have no recent paralogs in the ISO1 strain,

but do exhibit recent paralogs in either the A3 or the A4 genomes. These genes have

at least 95% identity in their protein coding regions, so are presumably recent duplicates.

They are distributed across all 5 chromosome arms, and are comprised mostly of tandem
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duplications, with only 2 translocation duplicates. A GO analysis shows that these genes

are over-represented by the “UDP-glycosyltransferase activity” class. Out of the 35 genes,

16 exhibit sufficient nucleotide variation between the copies to subject them to paralog-

specific expression analysis. Naive statistical tests of differential expression between paralogs

show that all 16 pairs are differentially expressed between the two paralogs with a wide

variance in the degree of change. An important caveat is that, since we only have one

biological replicate for this experiment, the number of differentially expressed pairs would be

overestimated by this simple binomial approach. Our expression dataset from Marriage et al.

2014 (a nicotine resistance QTL study) measured expression in two conditions: larvae with

and without nicotine in the medium. Most of the pairs did not change expression pattern

across conditions (the most highly expressed paralog in the control condition will usually

be more highly expressed in the nicotine condition as well), indicating the variance in the

cis regulatory region or the position effect is consistently behaved or independent of the

trans regulatory network. We analyzed all genes for differences in the total expression level

between singleton and multi-copy alleles. The expression levels scale with copy number for

some genes, but most exhibit changes that deviate from this ideal, showing either higher or

lower than the expected variation. This demonstrates that the total expression level is not

merely driven by doubling the genetic material, and must entail some regulatory network

control. Future work carefully characterizing all of these variants will substantially improve

our understanding of the spectrum of possibilities available for the molecular phenotype of

gene expression following gene duplication and the regulatory mechanisms that underlie such

changes.
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2.3 Methods

2.3.1 Drosophila melanogaster strains and their genome assem-

blies

A3 and A4 strains are founder strains for the Drosophila Synthetic Population Resource

(DSPR) project [25]. Regardless of their origins, the strains of the resource are cosmopolitan.

A3 is from Spain whereas A4 is from Zimbabwe. The genomes of A3 and A4 have been

assembled do novo from high-coverage PacBio data, resulting in reference quality genomes.

The sequencing and assembly of these strains is described here [10].

2.3.2 Identifying recent gene duplicates

To simplify the problem, we only choose genes that meet the following criteria: 1) the gene

is present as a single copy in the ISO1 reference genome and two or more copies in either

the A3 or A4 genome; 2) the copy number differs between A3 and A4; 3) the protein-coding

sequences (CDS) of a gene should all be present in all copies, meaning that partial duplication

is not considered; 4) the copies should be similar to each other so that we only consider likely

recent duplicates (compared to ISO1, CDSs exhibit ≥ 95% identity, retain ≥ 95% of CDS

length, and retain ≥ 50% of the full gene span, which permits some variation in UTRs and

intron sequences).

To achieve this, we first extract all CDS sequences from the ISO1 reference genome and

its annotation file. We then blasted [7] the ISO1 CDS sequences to the A3, A4, and ISO1

assemblies and retain only the hits ≥ 95% identity ≥ 95% of the query CDS length. Next,

we identified genes possessing only one unique copy in ISO1 genome (i.e., every CDS in the

gene has only one hit in ISO1) and two or more copies in either A3 and/or A4. If the gene
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belongs to a large gene family with many similar members, they would cross-blast to each

other and will return multiple hits in the ISO1-self-blast results (e.g., casein kinase 2 subunit

beta family; 16 genes in that family are cross-blasted to each other). This step removes those

genes with the goal of filtering out all but unique singleton genes in ISO1. At this step, we

retained 62 fully duplicated genes, 12 of which are from the mitochondrial genome. We focus

our attention on the 50 nuclear genes.

In addition to blasting the CDS region, we also extracted full gene in ISO1 and blasted it

to A3, A4, and ISO1 itself. We retained the blast hits with ≥ 50% length of the query gene

length and required that the number of hits of full genes matches with the hits of CDS. For

example, each CDS in the gene Muc12Ea has one hit while the full gene has 233 hits in

ISO1-self-blast; another example is in gene Cyp9f2. It has one hit for the full gene blast, but

two of the CDS have two hits. These genes presumably contain common motifs with other

genes, which means the RNA reads from other genes may be falsely mapped to this gene

by the common motifs, so we also removed these ambiguous genes. Finally, 35 genes were

retained for gene expression analysis.

2.3.3 Measuring the gene expression in two conditions with RNA-

seq

We downloaded the gene expression data from a nicotine resistance QTL mapping study

carried out in the DSPR [41]. The transcriptomes were extracted from the first-instar larvae

of A3 and A4 strain in two conditions (control vs. nicotine). The larvae were exposed to

control media or nicotine-containing media for 4 hours before collection. The four samples

(A3 control, A3 nicotine, A4 control, A4 nicotine) were then sequenced with 100 bp single-

end with Illumina HiSeq 2500. We followed the paper for quality trimming with sickle

(version 1.200, github.com/najoshi/sickle) and obtained 182.4 million reads for A3 control
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sample, 181.4 million reads for A3 nicotine sample, 185.1 million reads for A4 control and

184.4 million reads for A4 nicotine sample.

2.3.4 Aggregate and independent measurement of paralog tran-

script abundance

We mapped A3 samples to gene sequences of the A3 assembly and A4 samples to gene

sequences of the A4 assembly with hisat2 [23]. Each of the 35 genes was used as the reference

individually. Take Cyp28d1 as an example: Cyp28d1 is a singleton in the A3 strain and has

two paralogs in the A4 strain. We used the singleton sequence as reference for A3 RNA reads

mapping and the two paralogs sequence as reference for A4 RNA reads mapping. We used

default parameters in hisat2, except -k 20 to allow multiple mapping. We counted the reads

that perfectly mapped to the reference (no SNPs or indels), and calculated the FPKM [12]

for comparing expression between samples. If the paralogs of a gene have non-homologous

regions, the RNA reads mapped to those regions are not considered. The paralog-specific

read counts are estimated by the ratio of unique read counts mapped to each paralog. The

gene that has more than two paralog copies are not considered for paralog-specific read

counts estimation.

As another example, consider Ugt86Dh. Ugt86Dh is a singleton in A3 with a length of 2,384

bp. In A4, Ugt86Dh has two paralogs. One is of 2,005 bp, the other is of 2,382 bp including

322 bp non-homologous sequence in the end (2,060–2,382 is the non-homologous region).

After the mapping, there are 1,300 reads perfectly mapped to A3 Ugt86Dh from the A3

control sample, whose total read counts is 182.4 million. For the A4 control sample, whose

total read counts is 185.1 million, there are 1,210 reads mapped to both paralogs, 942 reads

mapped to copy one uniquely and 978 reads mapped to copy two uniquely. For the second

copy, 187 reads overlap with the 2,060–2,382 non-homologous region, so we don’t consider
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them for A4 total read counts or A4 paralog-specific read counts. The total read counts and

paralog-specific read counts for A4 are calculated in the following way:

Total A4 read counts = (common read counts) + (copy1 unique) + (copy2 unique in homolog

region) = 1, 210 + 942 + (978− 187) = 2, 943;

A4 copy1 read counts = (total read counts) × (copy1 unique) / (sum of copy1 and copy2

unique in homolog region) = 2, 943× 942/(942 + 978− 187) = 1, 600;

A4 copy2 read counts = (total read counts) × (copy2 unique in homolog region) / (sum of

copy1 and copy2 unique in homolog region) = 2, 943×(978−187)/(942+978−187) = 1, 343.

The FPKM are then calculated in the following way:

A3 FPKM = (A3 total read counts) / (A3 length in kbp × A3 control sample total read

counts in million) = 1, 300/(2.384 kbp× 182.4 million) = 2.99;

A4 FPKM = (A4 total read counts) / (max(A4 homolog region length of copy1 and copy2) ×

A4 control sample total read counts) = 2, 943/(max(2.060 kbp, 2.005 kbp)×185.1 million) =

7.72;

A4 copy1 FPKM = (A4 copy1 read counts) / (A4 copy1 homolog region length in kbp ×

A4 control sample total read counts in million) = 1, 600/(2.005 kbp× 185.1 million) = 4.31;

A4 copy2 FPKM = (A4 copy2 read counts in homolog region) / (A4 copy2 homolog region

length in kbp × A4 control sample total read counts in million) = 1, 343/(2.060 kbp ×

185.1 million) = 3.52.

2.3.5 Differential expression test on total expression level and

paralog-specific expression level

Since there is only one replicate of each sample, a binomial model was used for the differential

expression test. One gene’s raw counts for A3 and A4 were first divided by normalizing
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factors to correct the difference in sequencing depth. For example, A3 nicotine sample has

181 million reads, while A4 nicotine sample has 184 million reads, then normalizing factors

are 1 for A3 and 1.02 (184/181) for A4. The normalized read counts are then tested by a

binomial model against a null hypothesis of equal expression.

2.4 Results

2.4.1 Distribution of the 35 paralogs selected for further study

The 35 genes we selected for additional study are scattered across all 5 major chromosome

arms (Figure 2.1). As a part of our selection and filtering process, we required that the state

of the ISO1 genome to be single copy. 30 of the duplication events are tandem duplicates

(e.g. the three genes on chromosome arm 2L), but some tandem duplicated regions involve

more than one gene (e.g. Dlc90F and CG18600 on chromosome arm 3L are duplicated

together). We found two genes that were duplicated to other chromosome arms (Hapin and

Snakeskin). We also discovered a large duplication spanning 5 genes on chromosome arm

2L. Interestingly, the two copies are 4 million base pairs apart (Figure 2.1: chromosome arm

2R). Two of these five genes (Ugt49B1 and Ugt49C1 ) have 5 copies in total. One possible

explanation is that the two genes were duplicated tandemly before the larger duplication

event affecting the whole region. These two genes duplicated again into 5 copies.

The copy number of these 35 genes ranges from 2 to 7. 15 of the 35 genes get duplicated

exclusively on A3 genome, including two disperse-duplicated genes, while 19 of the 35 genes

duplicated on A4 genome. The gene Ugt303B3 has 1 copy in ISO1 genome, 3 copies in

the A3 genome and 2 copies in the A4 genome. Instead of being a duplication event, this

phenomena could also be explained by gene deletion events, depending on the copy number

of the ancestry state.
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2.4.2 The functional distribution of the 35 genes

We performed GO analysis for the 35 genes. In terms of molecular function, the largest

category is catalytic activity, which contains 15 genes (Figure 2.2a). The two largest child

categories are transferase activity (6 genes: Haspin, Ugt49B1, Ugt49C1, Ugt86Dh, Ugt303B3,

CG1894 ) and hydrolase activity (4 genes: Prosβ5R2, θTrypsin, CG6472, Lapsyn). The over-

representation test against all genes in Drosophila melanogaster shows that the category

“UDP-glycosyltransferase activity”, a grandchild “category of transferase activity” category

was over-represented with a p-value of 9e − 6. In terms of biological processes, the largest

category is metabolic process, which contains 8 genes (Figure 2.2b), though no significant

over-representation was shown. In terms of cellular component (Figure 2.2c), the largest

category is organelle, containing 10 genes, but no significant over-representation was shown

either.

2.4.3 Pairs of paralog genes are usually differentially expressed

16 of the 35 genes are two-copy paralogs with sufficient genetic variation between the copies

to permit us to estimate their paralog-specific expression levels. We first calculated the

paralog-specific FPKM and then use the raw read counts in the paralogs’ homolog region to

test whether they are differentially expressed (see §2.3).

The statistical significance test shows that all 16 pairs of paralogs are differentially expressed,

although the magnitude varies (Figures 2.3, 2.4). The gene spook has no expression in

one of its paralogs in either condition, suggesting that this duplication product might be

a pseudogene. One copy of the gene Lapsyn and CG6472 are not expressed in control

conditions but are in the nicotine condition, though the read count of Lapsyn is low for one

copy (12 for one copy, 2,930 for another copy).

19



Paralog pairs generally exhibit consistent expression patterns between conditions for most of

the genes (the highly expressed copy in the control condition is usually still the most highly

expressed in the nicotine condition). One exception is the gene CG2233 (Figure 2.4), but

the expression of the two copies do not differ much between the conditions. Three pairs

of paralogs have similar expression levels (Ugt86Dh, fiz, CG9612 ) and respond similarly

in control/nicotine environment, suggesting they are regulated together. There are also

examples of genes where the two paralogs respond differently to environmental change. For

example, for the genes IntS3 and mRpS5, one copy does not show variable expression between

conditions but the other shows decreased expression in the nicotine treatment (Figure 2.4).

For the two dispersed duplicated genes (Snakeskin and Haspin), the original copy is more

highly expressed than the derived copy for both conditions.

2.4.4 Gene duplication usually leads to increased expression

When a gene is duplicated, the combined expression level of both paralogs usually increases

relative to the single copy allele, but we observe some exceptions: IntS3, spook, Dlc90F,

Lapsyn, CG1894, Alp9, fiz. For these genes, the expression levels did not change in either

treatment (Figures 2.5, 2.6). From the paralog-specific expression analyses, the stable ex-

pression level for IntS3, Lapsyn, and spook can be explained by the observation that one

copy contributed virtually nothing to the total expression level. These copies might be pseu-

dogenes or genes with regulatory elements that prevent their expression in the treatments.

Unfortunately, we cannot conclude much merely on the basis of an absence of expression

evidence. For the gene CG1894, although the total expression level did not change in the

control treatment, it did dramatically increases in the nicotine treatment (Figure 2.5: panel

n=7, Figure 2.6) indicating that the six new copies in the A3 strain are regulated by el-

ements that can be induced by nicotine. The gene Alp9 and fiz are two examples where

20



the total expression of duplicated genes is lower the the singleton version. For Alp9, this

is observed only in the nicotine treatment while it is observed for both treatments for fiz.

The paralog-specific expression data shows that both copies of fiz in A4 strain are expressed

(Figures 2.3, 2.4) suggesting that the total expression level of this gene is tightly monitored

by the regulatory network in A4.

There are also genes whose expression levels are well predicted by the copy number, including:

CG31157, CG7966, Ugt49b1, Ugt49C1 (Figure 2.5: panel n=3, n=5, Figure 2.6, Figure 2.7).

The total expression levels of the high copy-number alleles are roughly n fold higher (n=3,

n=5) in both control and nicotine conditions indicating that these duplication events retained

the same regulatory sequences. For the two-copy genes, the total expression levels distribute

evenly around the expected 2 fold line (Figure 2.5, panel: n=2, Figure 2.7). This reflects

that the total expression level is not simply proportional to its genetic content.

2.5 Discussion

This project is a preliminary but comprehensive survey of the effect of gene duplication on

expression level. Our sampling approach required paralogs to exhibit only one unique copy

in the ISO1 reference genome. For each gene in our list, the duplicate is either in A3 strain

or A4 strain, the only exception is the gene Ugt303B3, which has 3 copies in A3 and 2 copies

in A4. So the ancestral state of the gene Ugt303B3 is unknown, but for other genes, we can

infer that these are newly duplicated genes, and the duplication events happened after the

A3 and A4 separation. The project does not explore the correlation of fitness and change in

expression. These duplicates were observed in a small sample size and are therefore likely

to be drawn disproportionately from higher frequency classes. Consequently, they might be

expected to be enriched for beneficial or at least neutral variants, although we do not know

their frequeny distribution among other Drosophila melanogaster populations.
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A gene’s expression level change due to duplication varies a lot in our 35 gene sample.

We observed a few genes whose expression levels are roughly multiplied by the number of

copies but we also observed several genes whose expression barely changes. However, we

can still conclude that as long as both paralogs are expressed (i.e., they have not become

pseudogenes), the expression level tends to increase, though there is subsantial variation in

the realized increase in expression. In short, naive predictions based on predictions derived

solely from copy number changes are frequently wrong.

The paralog-specific expression level analysis is possible only for 16 out of 35 genes due

to the requirement that the paralogs must exhibit variation that uniquely identifies the

members of the pairs. Frequently, the pairs are 100% identical, preventing paralog-specific

expression analysis. All 16 pairs are nominally differentially expressed based on our binomial

significance test. Since we only have one replicate of the expression experiment, the over-

dispersion among replicate cannot be calculated. Thus the number of differentially expressed

pairs we report will be an overestimate. One pattern worth mentioning is that many of the

newly copied paralogs seem to have lower expression level than the original copy. When

members of paralog pairs can be definitively identified as ancestral and new (e.g., dispersed-

copy duplicates and three gene in the large copied region at the end of chromosome arm 2L)

it is the newer copies that have the lower expression. Our catalog of incipient new genes

constitutes a class of variants that merits further investigation because of their potential to

advance our knowledge of regulatory architecture.
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GO: Molecular Function
Total genes: 34 ; Total function hits: 20

GO: Biological Process
Total genes: 34 ; Total process hits: 18

GO: Cellular Component
Total genes: 32 ; Total component hits: 20
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Figure 2.2: The 35 genes are classified by Molecular Function, Biological Process and Cellular
Component. The fisher exact test for over-representing shows the ”UDP-glycosyltransferase
activity” (a category belongs to ”catalytic activity”) is significantly over-represented among
all genes in Drosophila, but no significant over-representing was shown for Biological Process
or Cellular Component.
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Figure 2.4: The color indicates the strain in which duplication occurs. Purple means dupli-
cation occurs in A4 strain, pink means duplication occurs in A3 strain. Few genes has small
FPKM, which are less convincing for expression level. However, their raw read counts are
sufficient to made qualitative conclusions. The highest bin of Haspin, CG6472, spook has
raw read counts of 8672, 642, 122 respectively.
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Figure 2.5: The raw read counts in A3 and A4 strain are plotted. The singletons’ expression
is on x axis(no matter in A3 or A4), and the total expression of the multi-copy version is on
y axis. The number on top of each panel is the copy number. The dotted line in each panel
is the equal express line. The solid line indicates the expected relationship of expression level
if completely conform to the copy number.

28



Figure 2.6: The figure shows the FPKM of the total expression level in 35 genes. The color
scheme is the same as in figure 1. Some genes have small FPKM (less than 1), but their raw
reads may be sufficient to make qualitative conclusions. The raw read counts of the highest
bin of these genes are listed here: Prosβ5R2:3; CG6472:900; CG17658: 109, spook: 152;
Or85f: 312; CG1894: 266;. The raw read counts shows that Prosβ5R2 is barely expressed,
the expression level of it is not reliable.
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Figure 2.7: The figure shows the distribution of log odds ratio of 35 genes in control condition.
The log odds ratio is calculated as the log2 fold change in expression minus the log2 fold
change in gene copy. The color of the block uses the same color pattern in the FPKM graphs.
The gene names is also labeled in each block.
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Chapter 3

Inferring Genetic Architecture of

Expression Variation

In the project, I described a new beta-binomial model for general cis variation measurement

and applied to 20 replicated yeast hybrid samples. Along the process, the common map-

ping bias problem was also solved by a carefully-designed pipeline. This work is preprinted

in bioRxiv under the title ”Inferring the genetic architecture of expression variation from

replicated high throughput allele-specific expression experiments”. It is reprinted here with

a few modifications to conform the dissertation format.

3.1 Abstract

Gene expression variation between alleles in a diploid cell is mediated by variation in cis

regulatory sequences, which usually refers to the differences in DNA sequence between two

alleles near the gene of interest. Expression differences caused by cis variation has been

estimated by the ratio of the expression level of the two alleles under a binomial model.
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However, the binomial model underestimates the variance among replicated experiments

resulting in the exaggerated statistical significance of estimated cis effects and thus many

false discoveries of cis-affected genes. Here we describe a beta-binomial model that estimates

the cis-effect for each gene while permitting overdispersion of variance among replicates. We

demonstrated with simulated null data (data without true cis-effect) that the new model

fits the true distribution better, resulting in approximately 5% false positive rate under 5%

significance level in all null datasets, considerably better than the 6%–40% false positive rate

of the binomial model. Additional replicates increase the performance of the beta-binomial

model but not of the binomial model. We also collected new allele-specific expression data

from an experiment comprised of 20 replicates of a yeast hybrid (YPS128/RM11-1a). We

eliminated the mapping bias problem with de novo assemblies of the two parental genomes.

By applying the beta-binomial model to this dataset, we found that cis effects are ubiquitous,

affecting around 70% of genes. However, most of these changes are small in magnitude. The

high number of replicates enabled us a better approximation of cis landscape within species

and also provides a resource for future exploration for better models.

3.2 Introduction

Variation in gene expression contributes significantly to phenotypic variation [22, 42]. Con-

sequently, gene regulatory elements have long been thought to be an important target of

natural selection comparable in significance to variation in the proteome [47, 26, 76]. The

genetic architecture of variation in gene regulation can be decomposed into cis variation

and trans variation. The cis variation affects expression differences between two individuals

in a non-diffusible manner (e.g., a mutation on a promoter region), while trans variation

affects the expression difference in a diffusible manner (e.g., a coding region mutation on a

transcription factor) [15, 74].
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In an F1 hybrid cell, two alleles of the same gene are exposed to the same diffusible elements,

so any difference between the alleles’ expression must be encoded by features linked to the

gene itself (i.e., cis variation). By measuring the allele-specific expression of all genes in

hybrid cells, we can measure the magnitude of cis variation (cis-effect) and detect cis-

affected genes [62, 15]. The cis effect parameter (ecis) for a gene is defined as the ratio of

the expression from allele 1 and allele 2 [14, 58]. However, previous allele-specific expression

studies using RNA-seq for cis-effect typically employed 1-3 hybrid replicates in binomial

framework [14, 58, 45, 52, 39, 44, 3], which assumes that the read counts for each allele

among replicates can be modeled as a Poisson random variable.

The actual variance among RNA-seq experiments is known to be overdispersed, and conse-

quently, the single Poisson parameter is inadequate to model both the mean and variance.

The negative binomial distribution instead has been shown to fit better than Poisson in many

differential expression studies [53, 59, 18]. The negative binomial distribution is equivalent

to the compound gamma-Poisson distribution, where the lambda parameter of Poisson is

a gamma-distributed random variable. The two parameters of the negative binomial per-

mit the mean and variance to vary independently. Therefore, we modeled allelic expression

for each gene with a negative binomial distribution instead of a Poisson distribution. Un-

der this assumption, the cis-effect ecis is beta-binomially distributed with an overdispersion

parameter compared with the binomial distribution (see §3.3.6).

We compared the false positive rates of the two models with simulated null datasets where

no true cis effects exist. We found that the binomial model has high false positive rate even

with a large number of replicates, but the beta-binomial model improves with increased

replication, attaining a 5% false positive rate as expected.

We also grew 20 replicates of hybrid from the cross of yeast Saccharomyces cerevisiae strains

YPS128 and RM11-1a to estimate cis variation. YPS128 is a woodland stain [65] and RM11-

1a is a derivative of a vineyard strain [6]. We used RNA-seq for allele-specific counts and
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estimated the gene-wise ecis with both models. In terms of power, both models improve as

replication increases. We found from this experimental data that ∼70% of the total 4,710

informative genes have a significant cis difference. Around 2% of the total genes have a

greater than 2-fold difference significantly.

Estimated from the simulated null data, 20%–30% genes lacking a true cis effect would be

falsely classified as significant by the binomial model. In our experimental data, the beta-

binomial model and binomial model differ by ∼5% in the number of significant cis affected

genes (Figure 3.4), which is less than the 15%–25% difference in false-positive rate estimated

from the null data. This could perhaps be explained by the possibility that the two strains

are sufficiently diverse that most of the genes are true positives. However, for closely related

species (or strains) with less differential gene expression, a 5% false positive rate would

contribute a much higher proportion to the total number of differentially expressed genes.

This allele-specific study demonstrated the advantage of the beta-binomial model over the

binomial model and the salutary effect of using high replication. The high number of repli-

cates of hybrid samples between the two yeast strains enabled us a better approximation

of cis landscape within species. It also provides a resource for future exploration of better

models.

3.3 Materials and Methods

3.3.1 Yeast strains and preparation of hybrid samples

We mixed a single colony of YPS128 strain (MATα; ura3::kanMX; HO::HygMX; lys2::ura3)

and a single colony of RM11-1a strain (MATa; leu2∆0; ura3∆0; HO::kanMX) together in

100 ul YPAD, put the mix in 30 ◦C for 4 hours, then we poured 50ul of mixed cells into a
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dropout plate (-leu, -lys), and struck to get one single diploid colony.

We picked one single diploid colony and struck it on the standard YPAD plate for hybrid

sample collection. We then collected 20 independent hybrid samples started from this YPAD

plate. Each sample was generated by the following procedure:

One single colony was taken from the YPAD plate and was cultured overnight. It was then

diluted to OD 0.05 in 5 ml YPAD and grow until OD 0.7–0.8 in 30 ◦C with 220 rpm shaking.

The yeast culture was then distributed in Eppendorf tubes by 1 ml per tube, centrifuged

with 9,000 rpm to remove the supernatant, snap-frozen in liquid Nitrogen and finally stored

at −80 ◦C for DNA and RNA extraction.

3.3.2 DNA extraction and sequencing

We extracted the DNA of these 20 hybrid samples using the Yeast DNA Extraction Kit

(Thermo Scientific 78870). After extraction, we used the Nextera DNA Library Prepara-

tion Kit (Illumina) to make 20 libraries with unique barcode combination (Nextera Index

Kit) and pooled them together before sequencing. We sequenced the pooled library in UC

Davis Genome Center (http://dnatech.genomecenter.ucdavis.edu/) with 1 Lane of mid-

output Nextseq PE75. We then demultiplexed [51] the pooled reads and got a total of 95.3

million reads for the 20 replicates.

3.3.3 RNA extraction and sequencing

We extracted the RNA of these 20 hybrid samples using the TRIzol Plus RNA Purification

Kit (Invitrogen). Transcriptome libraries were made by the Smart-seq2 protocol [49]. The

20 Libraries were pooled together and sequenced in UC Davis Genome Center with 4 Lanes

of high-output Nextseq PE75. After demultiplexing [51], we got a total of 1,530.8 million
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reads for the 20 replicates.

3.3.4 Sequencing and assembly of YPS128 and RM11-1a genome

We assembled our YPS128 and RM11-1a genome and used them as the reference genomes

in mapping DNA/RNA reads. We extracted whole genome DNA of YPS128 strain and

RM11-1a strain using the QIAamp DNA Mini Preparation Kit (Qiagen), prepared Nextera

DNA library (Illumina) and sequenced the pooled library with 1 Lane of Miseq PE75, which

generated an 88X coverage for the YPS128 strain and a 102X coverage for the RM11-1a

strain. We also generated long DNA reads with Oxford Nanopore (Rapid sequencing) for

RM11-1a strain and got a 59X coverage. Since our Nanopore experiment failed for the

YPS128 strain, we downloaded its Pacbio long reads from this project [77] which gives a

230X coverage.

For YPS128 strain, we used Dextractor (https://github.com/thegenemyers/DEXTRACTOR)

to extract fastq sequences from the original h5 files. Then we used Canu [29] for raw assembly

and finisherSC [31] for gap fixing, followed by two rounds of quiver (https://github.com/

PacificBiosciences/GenomicConsensus) correction. We further polished the assembly

with Illumina short reads using pilon [70] and pacbio long reads again using quiver followed

by one final round of pilon. We ended up with an assembly with NG50=808.6K and Busco

score [63] of 94.4% (fungi).

For RM11-1a strain, we used Albacore (ONT software version 2.2.7) for nanopore long reads

base-calling. Then we used Canu [29] for raw assembly followed by finisherSC [31] for gap

fixing, then corrected the raw assembly by three rounds of Racon (https://github.com/

isovic/racon). We further polished the assembly with the Illumina short reads using Pilon

[70] and nanopore long reads again using Racon. We did the pilon-racon for two rounds and

wrapped up with four rounds of pilon. Finally, we obtained an assembly with NG50=919.8K
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and Busco score [63] of 93.7% (fungi).

The qualities of the assemblies are further evaluated with QV estimation. We aligned the

Illumina reads used for polishing to the final assembly using bwa mem [35] with default

parameters. Following [28], we used freebayes (V.1.2.0-4) [17] to estimate the number of

SNPs and indel variants with the command freebayes -C 2 -0 -O -q 20 -z 0.10 -E 0

↪→ -X -u --ploidy 1 -F 0.75 -f asm.fasta asm_nodup.bam > asm.vcf. Total bases

changed E (inserted, deleted, substituted) was summed and divided by the total number of

bases (T) with minimum coverage 3. QV was calculated as −10 log10(E/T ).

3.3.5 Collect DNA/RNA read counts

Identify variants between YPS128 and RM11-1a

The reads from hybrid samples are unidentifiable of which parental genotype they belong to

if they do not overlap with any variant (SNPs or Indels) between the two parental strains. So

we first extracted a list of SNPs and Indels by comparing the YPS128 assembly and RM11-1a

assembly using MUMmer [30] (MUMmer/3.23: nucmer; show-snps). For conservativeness,

we did it in both directions (using YPS128 as query, RM11-1a as subject and then exchange)

and only retained the SNPs and Indels that appear in both comparisons.

Mapping DNA reads with two references

We next mapped the DNA reads of the 20 hybrid samples to both assemblies using bowtie2

[32] (bowtie2.2.7) and got 40 mapping files. We then counted the allele-specific number of

reads hitting each variant position with Samtools [36] (Samtools 1.9: mpileup setting -q to 5

to ignore multi-hits reads) and customized scripts (count_pileup.py: count the number of

reads mapping to the reference allele and alternative allele respectively using mpileup output
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file as input).

We found that the mapping always biases towards the reference genome. In hybrid DNA

samples, the reads from YPS128 genome is expected to be of the same amount as from

RM11-1a genome. However, when YPS128 assembly was used as the reference genome, the

sum of reads assigned to YPS128 allele across all variants is around 1.4 fold more than the

sum of reads assigned to RM11-1a allele in all of the 20 hybrids. This also happened when

RM11-1a was used as the reference genome. The sum of reads assigned to RM11-1a allele

across all variants is around 1.4 fold more than the number of reads assigned to YPS128

allele (Figure 3.7).

One main reason for this mapping bias is that when one assembly was chosen as the reference

genome, the reads from the alternative genome in the hybrid sample are not as likely to map

to the correct genomic position because of the variant. So we conceived that the alternative

counts for each SNP/indel in the mapping results are underestimated while the reference

counts are more reliable. Thus, we only kept the YPS128 allelic reads from mapping results

using YPS128 as the reference genome and RM11-1a allelic reads from mapping results using

RM11-1a as the reference genome. Some variant positions are close to each other and the

reads that cover both of them would be counted repeatedly when summing up the counts,

so we also unioned the reads from each allele using the reads’ names as identifiers. After

this operation, we reduced most of the mapping bias, but the total read counts still biased

towards RM11-1a genome by around 1% (Figure 3.8).

Identifying suspected loci causing mapping bias

Another possible source for mapping bias are the errors in genome assembly and the in-

coordination between the assembly and the real genotype in hybrid (the YPS128 strain’s

Pacbio long-reads used in assembly is not from this project), or regions that the sequencing
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probability for two alleles is extremely different. In these loci, nearly all the allelic read

counts would be assigned to one of the genomes. As these kinds of loci accumulate, the

bias would be reflected in the total read counts. Thus, we check the reads that cover each

variant position to see whether the nucleotide information provided by the short reads in

hybrid samples match with the variant we got from genome comparison. For example, If

the SNP pair is A on YPS128 and C on RM11-1a from the comparison of assemblies, short

reads with A and short reads with C on the corresponding positions are both required to

exist in all mapping results. Variants without sufficient short reads support were removed for

downstream analysis (12,793 positions are removed from total 82,029 positions in YPS128;

12,326 positions are removed from total 81,574 positions in RM11-1a). After the removal of

those positions, we recounted the read counts overlapping with the remaining positions and

also unioned the reads covering consecutive positions (group_reads.py, yps5rmB_gc.py),

the mapping bias was then sufficient small to be ignored (Figure 3.9).

Mapping expression reads and collecting allele-specific read counts

We first annotated the two assemblies with CrossMap [80] v0.2.8 (using S.cer reference

annotation), and label each variant position with gene name. The variant positions that are

not in any gene regions or overlap with two gene range (Some gene overlaps in yeast) are

further removed. There are 37,487 variant positions retained, which cover 4,710 genes.

We then mapped the Expression reads using bowtie2 (bowtie 2.2.7: there are very limited

intron regions in the yeast genome, so we did not choose an RNA splice-sites aware mapping

tool) to both two assemblies. Same as the procedure for DNA reads counting, we collected

counts from only reference allele for each retained position.

Finally, we aggregated the read counts of variant positions under the same gene name

and counted allelic reads with samtools and customized scripts as we did for DNA counts
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(group_reads.py, yps5rmB_gc.py). The total read counts of YPS128 allele and RM11-1a

allele are almost the same in the 20 hybrid samples (Figure 3.10).

Remove bad replicates

We checked the correlation of the read counts between each of the 40 allele-specific expression

profiles (function cor() in R (R Foundation for Statistical Computing, Vienna, Austria.,

n.d.), Figure 3.11), and found that the expression profiles from two replicates 14A and 9A

are apparently different from other replicates. These two replicates are happened to be the

two outliers in Figure 3.10 (the leftmost and rightmost point). We decided to remove them

for downstream analysis.

3.3.6 Cis variation estimation

We use the ratio of two alleles’ expression in the hybrid to measure cis variation ecis between

the two alleles in one gene.

Binomial model

If one assumes that the read counts in a gene for two alleles X and Y in one sample can be

modeled by independent Poisson Variables, X and Y can be expressed as:

X ∼ Pois(µ1 = C1 · λ1)

Y ∼ Pois(µ2 = C2 · λ2) (3.1)

C1 represents the total read counts from one genotype which X allele rested on. C2 repre-

sents the total read counts from the other genotype which Y allele rested on. In true hybrid
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samples, C1 and C2 are almost the same, but in simulations or parental samples they are not

necessarily the same; λ1 and λ2 represent the proportion of reads mapping to the correspond-

ing alleles. The total read counts C1 and C2 are variable across biological replicates, while

λ1, λ2 are assumed to be biological properties of a gene (expression level) that keep constant

across biological replicates. The cis effect (ecis) is related to the mapping rate parameter λ

as follows:

ecis =
λ1

λ2

(3.2)

Conditionally on X+Y=n, the probability of k reads mapped to X allele (X=k) is:

P (X=k|X+Y=n)

=
P (X=k ∧X+Y=n)

P (X+Y=n)
=
P (X=k) · P (Y=n−k)

P (X+Y=n)

=
e−µ1 · µ

k
1

k!
· e−µ2 · µ

n−k
2

(n−k)!

e−(µ1+µ2) · (µ1+µ2)n

n!

=
n!

k! · (n− k)!
·
(

µ1

µ1 + µ2

)k
·
(

µ2

µ1 + µ2

)n−k
=

(
n

k

)
·
(

C1·λ1

C1·λ1 + C2·λ2

)k
·
(

C2·λ2

C1·λ1 + C2·λ2

)n−k
(3.3)

So, the read counts of X allele can be modeled by a binomial distribution conditioned on the

sum of the two alleles:

X|X+Y=n ∼ B(n, p)

p =
C1·λ1

C1·λ1 + C2·λ2

=
C1·ecis

C1·ecis + C2

(3.4)

The pdf (probability density function) for X allele’s count in one sample is

f(X=k,X+Y=n, ecis) =

(
n

k

)
·
(

ecis
ecis + 1

)k
·
(

1

1 + ecis

)n−k
(3.5)
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Since the reads count variable X is independent across t biological replicates, the joint pdf is

the product of the above pdf. Thus, we can use the Maximum likelihood method to estimate

ecis. The log-likelihood function to maximize is

l(ecis ; ki, ni, C1i, C2i) =
t∑
i=1

ln f(ki, ni, C1i, C2i|ecis) (3.6)

For accommodating the mel2() function in R, in which we applied the log-likelihood function,

the optimization for ecis is done on log space. The output is log2(ecis) and its confidence

interval.

Beta-binomial model

The assumption that the read counts for alleles can be modeled by independent Poisson

Variables may not be appropriate since there is usually more variability than the Poisson

Model.

The negative-binomial model provides a good fit to the gene-level read counts distribution

[53]. It is equivalent to the gamma-Poisson model where the Poisson rate is gamma dis-

tributed, adding one degree of freedom to adjust the variance independently of the mean.

We now use negative-binomial variables to model the read counts mapped to allele X and Y

in the hybrid sample.

X ∼ NB(C·r1, p)

Y ∼ NB(C·r2, p) (3.7)
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The mean, variance and variance-to-mean ratio for X and Y are shown below:

E(X) = C1·λ1 =
C1·r1·p
1− p

Var(X) =
C1·r1·p
(1− p)2

E(Y ) = C2·λ2 =
C2·r2·p
1− p

Var(Y ) =
C2·r2·p
(1− p)2

Variance to Mean Ratio: D =
1

1− p
(3.8)

C1 and C2 represent the total read counts for each genotype in the sample as in binomial

model; λ1 and λ2 represent the proportion of reads mapping to the corresponding alleles;

λ1 = r1·p/(1−p) and λ2 = r2·p/(1−p). The assumption for the above modeling is that the

two alleles of the same gene have the same variance-to-mean ratio D (p is a constant for

X and Y). It is necessary for deriving the beta-binomial distribution below. Although this

assumption can not reflect reality completely, it is still more relaxed than the previously

used Poisson model in which the variance equals the mean. When p approaches 0, the

negative-binomial model approaches the Poisson Model.

The cis variation ecis is related to the parameter r in the above model:

ecis =
r1 · p/(1− p)
r2 · p/(1− p)

=
r1

r2

(3.9)
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Conditionally on X+Y=n, the probability of k reads mapped to X allele (X=k) is:

P (X=k|X+Y=n)

=
P (X=k ∧X+Y=n)

P (X+Y=n)
=
P (X=k) · P (Y=n−k)

P (X+Y=n)

=

Γ(k+C1·r1)
k!·Γ(C1·r1)

· pk · (1− p)C1·r1 · Γ(n−k+C2·r2)
(n−k)!·Γ(C2·r2)

· pn−k · (1− p)C2·r2

n+C1·r1+C2·r2
n!·Γ(C1·r1)+C2·r2 · p

n · (1− p)C1·r1+C2·r2

=
Γ(k + C1·r1) · Γ(n− k + C2·r2) · Γ(C1·r1 + C2·r2)

Γ(C1·r1) · Γ(C2·r2) · Γ(n+ C1·r1 + C2·r2)
· n!

k!·(n− k)!

=

(
n

k

)
· B(k + C1·r1, n− k + C2·r2)

B(C1·r1, C2·r2)
(3.10)

So, the read counts of X allele can be modeled by a beta-binomial distribution conditioned

on the sum of the two alleles:

X|X+Y=n ∼ BetaBinomial(k, n, C1·r1, C2·r2) (3.11)

In order to incorporate ecis into the distribution, we reparametrize the beta-binomial distri-

bution with ecis and θ which describes the over-dispersion of the beta-binomial distribution

from the corresponding binomial distribution. Let:

θ =
1

r1 + r2

(3.12)

Then from Equation (3.8):

θ =
1

r1 + r2

=
p

(1− p)·(λ1 + λ2)
(3.13)
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It shows that θ is positively correlated with p. Then, together with Equation (3.9), we got:

r1 =
ecis

θ·(ecis + 1)

r2 =
1

θ·(ecis + 1)
(3.14)

The beta-binomial model approaches the binomial model when θ approaches zero. With

the new parameterization, the pdf (probability density function) for X allele’s count in one

sample is

f(X=k,X+Y=n, ecis, θ)

=

(
n

k

)
· B(k + C1·r1, n− k + C2·r2)

B(C1·r1, C2·r2)

=

(
n

k

)
·
B(k + C1· ecis

θ·(ecis+1)
, n− k + C2· 1

θ·(ecis+1)

B(C1· ecis
θ·(ecis+1)

, C2
1

θ·(ecis+1)
)

(3.15)

Since the reads count variable X is independent across t biological replicates, the joint pdf is

the product of the above pdf. Thus, we can use the Maximum likelihood method to estimate

the cis variation ecis along with the over-dispersion parameter θ. The final log-likelihood

function to maximize is

l(ecis, θ ; ki, ni, C1i, C2i) =
t∑
i=1

ln f(ki, ni, C1i, C2i|ecis, θ) (3.16)

As in the binomial model, the final estimation of ecis, θ and their confidence intervals are

on log space. The outputs are log2(ecis) and log2(θ) and their confidence intervals.

C1 and C2 parameter estimation

For calculating the ecis for a gene, the maximum likelihood method for both models need 4

input from each replicates: ki, ni, C1i, C2i.
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C1i and C2i are the total expression read counts of the two genotypes. Since there are around

80% of reads in hybrid samples cannot be identified of which genome they belong to, the

total allelic reads number cannot be known accurately.

Here we just used the total identifiable read counts from YPS128 allele as C1 and those from

RM11-1a allele as C2 for each sample. That is to say that the aforesaid λ1 and λ2 are no

longer the mapping rate relative to total allelic read counts but to total identifiable allelic

read counts. This does not affect the estimation of ecis and its confidence interval If we

assume that the identifiable read counts are proportional to true read counts of each allele

in the hybrid samples.

3.3.7 Generate null datasets lacking cis-variation

In order to compare the binomial model and the beta-binomial model. We generated two

datasets from experimental data which in principle should have no cis-variation and four

datasets from negative-binomial (gamma-Poisson) distributed random number.

Null datasets from experiments

The first dataset “Gier2015” was generated from a haploid yeast gene expression study [18]

which has 48 biological replicates under the same condition: ∆snf2. We downloaded the

short reads data from ENA (ENA archive, Project ID: PRJEB5348), then, as described in

the paper, got rid of four bad replicates (rep6, rep13, rep25, rep35) and obtained gene read

counts with TopHAT2 [24] and HTseq [1]. We then combined every two haploid expression

profiles into 1,892 (P (44, 2) = 44×43) hybrid samples (Table 3.1).

The second dataset “Xinw2018_yps” was generated in a similar way but from our hybrid

samples. We combine every two gene expression profiles from 18 qualified replicates of
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YPS128 allele, which generated 306 (P (18, 2) = 18×17) no-cis hybrid samples (Table 3.1).

Some simulated hybrid samples have less variation between two alleles, some have more,

but by doing this permutation and the bootstrap (see below), the structural bias from

choosing extreme hybrids by chance can be attenuated and the average effect of models can

be obtained.

Null datasets from random number

Although the null dataset generated from experimental data should in principle have no cis-

variation, the variation between alleles is not controlled and the true underlying distribution

is unknown. So to test both binomial and beta-binomial model with fully-defined hybrid

samples, we generated four datasets “simu_null:1-4” for 5,000 genes from the negative-

binomial (gamma-Poisson) distribution (Table 3.1).

The expression counts of each allele for gene i was generated from the negative-binomial

distribution using R:

Xi ∼ NB(C·ri, pi)

We set C = 1e6; pi was set to 0.1, 0.4, 0.8 respectively for “simu_null:1-3”. For “simu_null

↪→ :4”, we used a variable p for each gene, which was chosen randomly from a uniform

distribution of (0, 0.8). We made the gene i have the same expected mapping probability λ

across the four datasets, which was chosen by randomly picking a gene from our experimental

expression data and use its averaged mapping probability. Since the mapping probability

for each gene is set, ri for each gene was then calculated (ri = λ·(1−p)/p) and used as a

parameter to generate Xi.

As a result, each gene across these four datasets have the same expression level, while
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the variance is getting larger as pi getting larger. Since every two expression profiles were

combined to make hybrids within each dataset, there would be no true cis-variation. The

variance between alleles or among hybrid samples would be low in “simu_null:1” and high

in “simu_null:3”.

3.3.8 Bootstrap cis variation estimation

To test the discovery rate or the false positive rate with different replication number, we

randomly choose (without replacement) Nr replicates from all N hybrids. For each level of

replication (i.e., Nr), we did the resampling from these N hybrids for t times. Each time,

we calculated ecis and its 95% confidence interval using maximum likelihood method (see

§3.3.6). If a gene’s log2(ecis) confidence interval overlap with 0 (ecis = 1), we classify it

as a significant cis-variant gene. Table 3.1 shows the N (number of hybrid samples), Nr

(Number of replicates tested), and t (number of samplings) for each dataset.

3.3.9 Data availability

The allele-specific expression data and the short/long DNA reads to assemble the genomes

are available at NCBI with the BioProject number PRJNA554649. The scripts mentioned

and the summarized read count tables can be found at https://github.com/xinwenz/

yeastAse_bioinfo/tree/master/scripts_readcountsTable.
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3.4 Results

3.4.1 Assembly of reference genomes

Read mapping biases related to using only a single reference genome will lead to biases in

allele-specific expression inference [13]. To mitigate such bias, we constructed two reference

quality de novo genome assemblies of the parental strains used in this study, YPS128, and

RM11-1a.

The contiguity, completeness, and accuracy of our assemblies are quite high (Table 3.2 and

Figure 3.1). Both assemblies exhibit a high level of contiguity, with the majority of chro-

mosomes being covered by one or two contigs, comparable to that of the Saccharomyces

cerevisiae S288C Reference R64-1-1 (Table 3.2 and Figure 3.1). The BUSCO score assesses

genome assembly completeness by identifying conserved single copy orthologs [63]. Both as-

semblies compare favorably to the yeast community reference genome (Table 3.2: RM11-1a:

93.7%; YPS128: 94.4%; R64: 93.9%). The QV scores we calculate reflect the basepair-level

concordance between an assembly and Illumina short reads [28]. While the new assemblies

are both quite accurate, due to the lower coverage and noisier long reads used in assembling

RM11-1a, its assembly exhibited a lower QV even after polishing (Table 3.2: RM11-1a: 35.6;

YPS128: 60.0).

3.4.2 Allele-specific RNAseq

We sequenced 20 replicates of hybrid mRNA samples. The 20 samples were used indepen-

dently to construct 20 barcoded libraries that were pooled into a single sequencing exper-

iment. After demultiplexing, we obtained 1.531 billion 75-bp paired-end reads. We then

counted the allele-specific counts for each gene using the SNPs/Indels between YPS128 and
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RM11-1a genomes. Mapping bias was eliminated by using both YPS128 and RM11-1a

genomes as references in the mapping step and filtering out suspect SNPs/indels (Figure

3.10). We then discarded two replicates exhibiting the lowest correlation with other repli-

cates (Figure 3.11), and finally obtained 18 replicates of allele-specific gene read counts for

4,710 genes.

3.4.3 The beta-binomial distribution models cis-expression sam-

pling variation better than the binomial distribution

To assess the performance of two models, we additionally simulated 6 hybrid null datasets

lacking true cis-variation (for details, see §3.3.7 & Table 3.1). For each dataset (Table

3.1), we applied our inference machinery to estimate the cis-variation parameter and its

95% confidence interval for each gene. As the null data exhibits no true cis-variation, any

significant expression should be caused by false positives. We then plot the rate of rejecting

null hypothesis (which reduced to the false positive rate in the null simulations) against

replication to examine the behavior of the models as power increases (Figures 3.2, 3.3, 3.4).

The beta-binomial model exhibited a false positive rate closer to the prediction than the

binomial model in null datasets. However, for both models, the performance was poor when

there was little replication (Figures 3.2, 3.3).

Inference on a highly replicated dataset without genetic or environmental vari-

ation

One validation of our model makes use of data from a yeast expression experiment comprising

44 biological replicates of a single haploid yeast strain under the same condition [18]. Pairs

of expression profiles were combined into synthetic/in silico hybrid samples by permuting

pair assignments such that the two alleles within one synthetic hybrid do not have any true
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cis variation while retaining the sample variation between them (for details, see §3.3.7 &

Table 3.1). This hybrid dataset was labeled “Gier2015”, yielding 1,892 permuted synthetic

hybrid samples (44×43 = 1, 892).

To test whether increasing replication improves cis estimation, we randomly sampled Nr

replicates without replacement from the 1,892 synthetic hybrids, performed cis parameter

inference, and calculated the false positive rate. Nr ranged from 1 to 35 for this dataset. For

each level of replication (i.e., Nr), we sampled, as described above, 150 times to determine

the distribution of the false positive rate (Figure 3.2a; see §3.3.8).

We generated and analyzed another hybrid dataset “Xinw2018_yps” following a similar

approach to “Gier2015”, but using our own expression experiment. The 18 expression

profiles of the YPS128 allele were extracted from the 18 hybrid samples (2 of the 20 replicates

are removed due to being outliers as measured in terms of exhibiting low correlation with

other replicates), and pairs of profiles were combined into 306 (18×17 = 306) synthetic

hybrids (Figure 3.2b).

Our results demonstrate that the binomial model consistently rejects the null hypothesis at

an elevated rate for α = 0.05, exhibiting a consistent rejection rate across levels of replication

(Figures 3.2a–3.2b). The beta-binomial model consistently exhibits a rejection rate that is

lower than that of the binomial model. However, the beta-binomial does show some variation

in rejection rate at low replication. In particular, for low replication in both the “Gier2015”

and “Xinw2018_yps” datasets, the beta-binomial model shows an excess rate of rejection

that subsides as replication increases.

The severity in underestimating variance using the binomial model depends on the underlying

variance among replicates. The rejection rate of the binomial model can vary from 20%

(Figure 3.2a) to as high as 30% (Figure 3.2b). Increased replication seems to have little

effect on diminishing this problem. In contrast, the false-positive rate in the beta-binomial
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model improves as replication increases. The increasing of the false-positive rate at the

beginning of Figure 3.2a is likely an artifact resulting from the starting point of the maximum

likelihood optimizer (see §3.3.6). Other than this artifact, the beta-binomial model also

appears to underestimate the variation among replicates with fewer replicates, leading to

high false-positive rate, though reduced as compared to the binomial model. The rejection

rates improve with sufficient replication, asymptoting towards the significant level α.

De novo null simulation

Although the null datasets we generated by randomly pairing real experimental replicates

exhibit no true cis variation, there is the potential for unknown confounding factors that

were not controlled. We therefore simulated four hybrid datasets for 5,000 genes from the

gamma-Poisson distribution (“simu_null:1-4”), with the same expression level between

alleles and explicit overdispersion parameters so that we can study the behavior of overdis-

persed expression data in the absence of differential gene expression.

The gamma-Poisson distribution (also known as the negative-binomial distribution) is widely

used to model the read counts distribution among replicates [53, 54]. This distribution can

be viewed as a Poisson distribution where the Poisson parameter is gamma distributed.

We simulated the expression profile of 5,000 genes across a wide number of expression levels

under this model. The four different datasets with different over-dispersion profiles were

generated by systematically varying the “p” parameter in the gamma-Poisson distribution

for each dataset. We ensured that each gene maintained the same expression level across

all four datasets. When p approaches zero, the Gamma-Poisson model approaches the Pois-

son model. When p approaches one, the Gamma-Poisson model is strongly over-dispersed

(for details, see §3.3.7: Null datasets from random number). We randomly paired samples

within each of the four datasets following the same approach described above for “Gier2015”
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and “Xinw2018_yps”. This permitted us to vary the level of overdispersion and study the

consequences for inference.

We set the p parameter to 0.1, 0.4, and 0.8 for the first three datasets (simu_null:1-3

respectively). As a result, the first dataset (simu_null:1) has the lowest over-dispersion

with expression profiles (the closest to the Poisson model) whereas the third (simu_null:3

↪→ ) is the most over-dispersed. For the final simulation (simu_null:4) we chose a uniform

distribution of p parameters with a mean of 0.4 for the 5,000 genes to simulate the impact

for genome-wide inference when a dataset has genes with different levels of overdispersion.

The false-positive rate for these four datasets shows a similar pattern as in “Gier2015”

and “Xinw2018_yps”. The binomial model shows an elevated false-positive rate that is not

mitigated with increased replication (Figure 3.3). The degree of excess false positives is

related to the simulated over-dispersion of each dataset. The binomial model has a ∼7%

false-positive rate in “simu_null:1” which is only 2% higher than the expected 5% (Figure

3.3a), but it can be as high as 38% in “simu_null:3” (Figure 3.3c). The performance of

the binomial model on a changing “p” (Figure 3.3d, fp ∼16%) is similar to the constant “p”

with the corresponding mean with an ∼3% higher rate of false-positives (cf. Figure 3.3b, fp

∼13%).

With few replicates and low overdispersion, the beta-binomial demonstrates a lower false-

positive rate than expected (Figure 3.3a), suggesting that it is overestimating the variance

when only a few replicates are used. The reverse is true under the high overdispersion sim-

ulation, suggesting it is underestimating the variance (Figure 3.3c). However, the model

consistently approaches α with increasing replication. This is likely because the overdis-

persion parameter θ is poorly estimated with only a few replicates and relies on the initial

arbitrary value in maximum likelihood optimizing, a situation that improves with higher

replication.
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The effects of replication on ASE confidence intervals

We then applied the ecis inference machinery on the experimental dataset of our 18 replicated

hybrid samples (Xinw2018). More significant genes are discovered as more replicates are used.

When all 18 replicates are used, we observe the rate of rejection appears to asymptote to

∼70% with the beta-binomial model. The number of significant genes from the binomial

model exceeds the beta-binomial by ∼5% (Figure 3.4).

To explore the effect of gene expression level and number of replicates on the power, we chose

100 typical genes from each of the following categories: “lowly expressed genes” (average

counts: 50–200); “intermediate expressed genes” (average counts: 400–600); and “highly

express genes” (average counts: 1,500–3,500). We plotted the confidence intervals for each

gene using the estimation calculated from four levels of replication (3, 6, 12, 18). Genes are

ranked by their cis effect (Figure 3.5).

As expected, the beta-binomial model yields a wider confidence interval than the binomial

model, reducing the false-positive rate. We also see that, as expected, when replication

increases or with higher expression level, the confidence intervals narrow for both models,

increasing the power (Figure 3.5).

3.4.4 Cis variation between YPS128 and RM11-1a strain is ubiq-

uitous and often small in magnitude

The rate of rejection appears to asymptote to ∼70% (Figure 3.4) with beta-binomial model in

the “Xinw2018” dataset, suggesting that ∼70% of the 4,710 genes we studied show evidence

for expression variation, a marked increase compared to previous observations [14, 58, 45,

68, 2].
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We then summarized the ecis distribution calculated form all 18 hybrid replicates with the

beta-binomial model (Figure 3.6a, Table 3.3). The symmetry of the distribution of log2(ecis)

indicates that there are similar amount of genes affected by cis-regulatory variation in both

directions. Approximately 70% of the genes (3,308 out of 4,710 ) exhibit significant cis

variation (| log2(ecis)| > 0; p < 0.05). Notably, the cis effect in most of these significant

genes is small in magnitude. Of the differentially expressed genes (Figure 3.6b), 70% exhibit

cis variation in the range 0 < | log2(ecis)| < 0.2, or less than a 1.15-fold difference. The

genes with the cis variation | log2(ecis)| > 1 (i.e., a 2 fold difference) only comprise 3% of all

significant genes.

3.5 Discussion

Inference of allele-specific expression differences from F1 hybrids is a widely used perspective

to explore the evolution of gene expression. Many results have been reported for a wide range

of individuals, populations, or species [68, 74, 43, 14]. Such inferences have been applied to

questions about compensation between cis and trans variation [57, 39], stabilizing selection

for expression level [20], and cis-effect in inter-specific/intra-specific expression variation

[45, 52] and all depend in a central way on accurate measurement of cis variation. However,

naive statistical models [53] and the tendency to misuse replication has limited the utility of

allele-specific-expression inference.

In this work, we describe a beta-binomial model for estimation of cis expression variation

in allele-specific studies. It is based on a more suitable gamma-Poisson distribution of read

counts among replicated experiments and is capable of accommodating over-dispersion of

expression. We demonstrate the advantage of the beta-binomial model over the binomial

model with both experimental and simulated data. The results showed that, with sufficient

replication, the beta-binomial model attains the nominal false positive rate while the bi-
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nomial model consistently underestimates the variance leading to an elevated false-positive

rate.

While, unlike the Poisson model, the gamma Poisson model permits the variance and mean

to be independent, rigorous inference using the beta-binomial model derived from it still re-

quires each allele to exhibit approximately the same variance-to-mean ratio (see §3.3.6: Beta-

binomial Model). This limitation can be addressed by assigning different over-dispersion

parameters for each allele, but inference becomes more complex. In any event, the good per-

formance of the beta-binomial model suggests that potential improvement for ecis estimation

is limited.

The trade-off between the false-positive rate and power still holds in these two models.

We used the significant gene list from our best estimates (i.e., the beta-binomial model

with all 18 replicates) as a gold standard to explore the relative power of both models

(Figure 3.12). The binomial model has higher power than the beta-binomial model in all

levels of replication. Of course, even the best statistical model would by definition exhibit

α × 100% false positives. If we assume the 18 replicate beta-binomial model has 100% of

power (Figure 3.12), then the proportion of true negatives that yields a false positive rate

of 0.05 is (1−0.702)/(1−0.05) = 0.314. The 18 replicate binomial model rejects the null

hypothesis 74.5% of the time, implying its false positive rate is 18% (1−(1−0.745)/0.314 =

0.18, assuming 100% power), which is consistent with our simulations (Figure 3.2a).

We uncovered many more cis-affected genes than previous intra-specific studies of yeast,

where the proportion varies between 6%–29% [14, 58, 45]. The main culprit is likely lower

power in previous studies, although we also used YPS128 rather than the BY4741 strain

common in previous studies. Figures 3.4, 3.5, 3.12 demonstrate that adding more replicates

increases the power and the relative difference in the discovery rate can be as high as 55%

(Figure 3.4). Results from previous studies using one or two replicates yield comparable

numbers of genes differentially expressed in cis (Figure 3.4, the left-most two points of the

56



Binomial model), suggesting that the difference in our results is of higher power to detect

smaller magnitude changes.

Our results quantify the advantage of the beta-binomial model over the binomial model in

detecting cis variation. The beta-binomial model estimates variance accurately and also has

high statistical power as long as sufficient replicates are provided. Thus, our high replicate

experiment describes an accurate and complete landscape of cis variation between YPS128

and RM11-1a. We recommend a beta-binomial model should for use in future allele-specific

experiments and predict it will reveal an abundance of cis variation that previously remained

hidden.
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Synthetic
NULL
dataset

Number
of genes
in the

dataset

Number
of haploid
expression

profile

Number of
permutate

hybrid
samples (N)

Number
of

replicates
tested
(Nr)

Number
of

samplings
for each
Nr (t)

Gier2015 6,023 44 1,892 1–35 500

Xinw2018_yps 4,710 18 306 1–20 150

simu_null:1 5,000 100 9,900 1–25 150

simu_null:2 5,000 100 9,900 1–25 150

simu_null:3 5,000 100 9,900 1–25 150

simu_null:4 5,000 100 9,900 1–25 150

Experimental
dataset

Number of
available
hybrid

samples (N)

Xinw2018 4,710 - 18 1–18 150

Table 3.1: Summary of the datasets used for this study (for details see §3.3.7). Gier2015 and
Xinwe2018_yps are null datasets simulated from replicate expression profiles. Simu_null

↪→ :1-4 are null datasets simulated from random number generator. Xinw2018 are real
experimental data.

The number of genes and number of replicated expression profiles (except Xinw2018, hybrid
samples do not have haploid expression profile) are in column 2 & 3. The permuted hybrid
samples are listed in column 4. The number of replicates are listed in column 5. The ranges
were chosen somewhat arbitrarily, but were enough to see the trend. For level of replication,
we did the resampling t times shown in column 6.
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S.cer R64-1-1 Rm11-1a Yps128

Assembly size (Mb) 12.16 11.95 12.09

Number of contigs/scaffolds 17 19 29

Contig N50 (Mb) 0.92 0.92 0.81

Contig L50 6 6 6

Contig N90 (Mb) 0.44 0.43 0.44

Contig L90 13 13 14

Busco score 93.9% 93.7% 94.4%

Complete Busco 1,351 1,347 1,358

Fragmented Busco 38 37 33

Missing Busco 49 54 47

QV score - 35.6 60.0

Table 3.2: The contiguity, completeness, and accuracy of YPS128 and RM11-1a genomes.
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Figure 3.1: The contiguity of our assemblies is comparable to that of the Saccharomyces
cerevisiae S288C Reference R64-1-1. Contigs are ranked from longest to shortest. Their
cumulative sum of length are shown on Y axis in mega bases.
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(b)

Figure 3.2: False positive rate with different number of replicates. The blue and brown
violin plot in each level of replication show the distribution of false positive rates from t (see
Table 3.1) sampling results. The red horizontal line is the expected false positive rate of
0.05 (α = 0.05). The solid and dot lines on each plot are the median, 25% quantile and 75%
quantile.

(a) The binomial model consistently rejects the null hypothesis at a rate around 20%. The
beta-binomial model consistently exhibits a rejection rate that is lower than that of the
binomial model and is getting closer to the expected 5% as more replicates used. The
rejection rates of beta-binomial model improve with sufficient replication, approaching the
significant level α.
(b) The binomial model consistently rejects the null hypothesis at a rate around 28%. Similar
to panel A, the beta-binomial model consistently exhibits a lower rejection rate and is getting
closer to the expected 5% as more replicates used.
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Figure 3.3: False positive rate with different number of replicates in simu_null:1-4. The
degree of excess false positives is related to the simulated over-dispersion of each dataset
(p is a parameter controls the over-dispersion: when p approaches zero, the gamma-Poisson
model approaches the Poisson model; when p approaches one, the gamma-Poisson model is
strongly over-dispersed). The binomial model has a consistent ∼7% false-positive rate in
“simu_null:1” which is only 2% higher than expected 5% (panel p = 0.1), but it can be as
high as 38% in “simu_null:3” (panel p = 0.8). The performance of the binomial model on
a changing “p” (panel p ∼ unif(0, 0.8)) is similar to the constant “p” with the corresponding
mean except a ∼3% more false-positives (panel p = 0.4). With few replicates and low
overdispersion, the beta-binomial demonstrates a lower false-positive rate than expected
(panel p = 0.1). The reverse is true under the high overdispersion simulation. The beta-
binomial model consistently approaches α with increasing replicates.
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Figure 3.4: The discovery rate of the dataset “Xinw2018”. More significant genes are discov-
ered as more replicates used. When all 18 replicates are used, the rate of rejection appears
to asymptote to ∼70% for the beta-binomial model and 75% for the binomial model. The
two asymptotic lines were drawn by fitting the data to a negative exponential model.
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Figure 3.5: The effect of gene expression level and number of replicates on the inference
power. 100 typical genes of low expression (average counts: 50–200), mid expression (average
counts: 400–600) and high expression (average counts: 1,500–3,500) are plotted for their
confidence intervals using the estimation calculated from four levels of replication (3, 6, 12,
18). The genes are ranked by their cis-effect: log2(ecis). Grey is for binomial model; Blue is
for beta-binomial model.
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Figure 3.6: (a) The log2(ecis) distribution from all 18 hybrid replicates with beta-binomial
model.
(b) The cumulative proportion of significantly cis-affected genes. The cis-affected genes are
sorted by their cis effect, from largest to smallest. The cumulative proportion shows that
most significant genes have a cis-effect of small magnitude.
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4,710 total genes Number of significant genes
(significant level: 0.05)

Proportion of all genes

| log2(ecis)| > 0 3,308 70.2%

| log2(ecis)| > 0.2
(∼1.15 fold change)

1,008 21.4%

| log2(ecis)| > 0.5
(∼1.4 fold change)

303 6.4%

| log2(ecis)| > 1
(2 fold change)

101 2.1%

Table 3.3: The number of genes and their proportion with different cis-effect magnitude.
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Figure 3.7: The mapping bias of DNA read counts when using only one assembly as the
reference genome.
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Figure 3.8: The mapping bias are mostly removed when using both assemblies as reference
genomes.
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Figure 3.9: The mapping bias of DNA read counts are further eliminated by filtering out
suspected variant positions.
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71



0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
level of replication (Nr)

po
w

er Beta−Binom
Binom

Xinw2018: statistical power with different levels of replication
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increases for both models as more replicates used. Binomial model has higher statistical
power than beta-binomial model.
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Chapter 4

Inferring Compensatory Evolution of

cis and trans Regulatory Variation

This project discusses the commonly observed compensatory evolution in expression regula-

tory control. It shows with statistical principles that the observed compensatory evolution

might just be a measurement artifact. It then discusses an improved method and demon-

strates the reduction of the negative-correlation (an indicator of compensatory evolution)

with both simulated and public data. Part of the work is published on Trends in Genetics

under the title ”Inferring compensatory evolution of cis and trans regulatory variation”. A

few materials was added to give out a comprehensive explanation of the correlation error

and also to conform the format of the dissertation.

4.1 Abstract

The variation of gene regulation can be analyzed by decomposing the causing variants into

cis variants and trans variants. We can estimate the cis/trans contribution (cis/trans effect)
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using allele-specific expression experiments in hybrid and parental cells/individuals. Many

previous studies observed a negative correlation between cis and trans effect and based on

that, inferred that compensatory evolution is common for the gene regulatory evolution.

However, the observed negative correlation can just be a measurement artifact. The cis

and trans effect, which ideally should be estimated independently, have been estimated

dependently in these results.

In this study, we first discuss the relationship between observed correlation and actual cor-

relation using statistical principles, showing that the negative correlation is inherited in

the previously used measurement scheme. We then discussed the new ‘independent hybrid’

scheme and demonstrated its advantage in reducing the correlated error with both simulated

and public data.

4.2 Introduction

Genetic variation in gene regulation is an important source of phenotypic variation, con-

tributing to human phenotypes and diseases [34, 33] as well as evolution within and between

species [8, 15]. Expression variation between two individuals can be partitioned into dif-

fusible trans elements (e.g., transcription factors) or non-diffusible cis elements (e.g., linked

regulatory sequences like promoters or enhancers) [15]. By taking advantage of genetic

crosses, we can gain insight into the mechanistic basis of expression variation that differen-

tiates individuals [73, 74]. Because parental genotypes share a single cellular compartment

in F1 hybrids, they also share all diffusible regulatory factors. Thus, expression variation

between alleles in an F1 hybrid reflects the portion of variation between the parents due

to cis factors alone. The remaining portion of variation between parents not explained by

variation in the F1 hybrids is due to variation in trans factors. Conceptually, this leads to

the mechanistic perspective that allele specific expression (ASE) variation in F1 hybrids is
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equivalent to variation in cis elements whereas ASE variation in parents is a combination of

variation in cis+trans factors [73]. By measuring the expression variation in both parents

and their F1 hybrids, we can estimate the contribution of cis elements and trans factors to

expression variation.

This ASE perspective facilitates estimation of important expression parameters on a genome

scale [43, 14], providing abundant fodder for making mechanistic inferences on the genetic

basis of expression variation within and between species. However, an article in this issue

of Trends in Genetics points out that, when cis and trans estimates share common F1

hybrid samples, they will be negatively correlated via error shared from the hybrid data [16].

One important consequence of this observation is that spurious inferences of compensatory

evolution between cis and trans factors will occur when correlated error is not accounted

for. This is because this type of compensatory evolution is defined as a negative relationship

between cis and trans variation. As [16] points out, many studies continue to make precisely

this error regarding compensatory evolution, and consequently, a solution is urgently needed.

[16] argues that the simplest solution to this problem is to estimate cis and trans parameters

from independent replicates of hybrid data so that error is no longer correlated. Indeed, an

ASE inference framework formulated by [14] recommends correcting for error in just this

way (cf Figures 2 and S2 from [14]).

In this study, we first discuss the relationship between observed correlation and actual cor-

relation using statistical principles, showing that the negative correlation is inherited in

the previously used measurement scheme. We then discussed the new ‘independent hybrid’

scheme and demonstrated its advantage in reducing the correlated error with both simulated

and public data.
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4.3 Materials and Methods

4.3.1 Synthesis hybrid and parental samples with no true cis vari-

ance

We generated correlated and independent ASE datasets by partitioning 48 biological repli-

cates of expression data from haploid yeast [18] (for details, see the flow chart of Figure 4.3).

Four replicates were discarded because of the poor quality reported in the paper. To produce

a dataset resulting in correlated estimates of cis and trans variation, the 44 remaining sam-

ples were partitioned into four subsets of 11 samples each, representing two “alleles” (strain

1 and strain 2) by two “conditions” (hybrid and parental). To produce a dataset resulting

in independent estimates of cis and trans, 42 of the 44 remaining samples were partitioned

into six subsets of 7 samples each, representing two “alleles” (strain 1 and strain 2) by three

“conditions” (hybrid 1, hybrid 2, and parental).

4.3.2 Calculate cis/trans with both methods

Estimates of cis/trans were calculated on the sums of individual partitions according to [14],

with the modification that dHybrid and dParent were calculated according to the expression:

d =

∑
genome strain 1 reads∑
genome strain 2 reads

4.3.3 Calculate cis/trans correlation of both methods

For a random split in the simulation process, Pearson correlation coefficient was calculated

in R, and a hypothesis test on the significance of the correlation was also applied.
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4.3.4 Correlation coefficient distribution of both methods

Since different partition of the 44 profiles produces different cis/trans calculation and thus

affects their correlation coefficient, the distributions of correlation coefficient are more suit-

able for comparing the two schemes. We then repeated the above process 500 times (Figure

4.3) and obtained 500 correlation coefficient data point for each scheme.

4.3.5 Test on true data of hybrid and parental samples

We obtained correlated and independent ASE datasets from supplemental datasets 1 and

2 in [14]. These are allele-specific expression count data from the co-culture and hybrid

of two Saccharomyces cerevisiae strains: BY4741 and RM11-1a. We calculated cis/trans

correlation and did hypothesis testing as mentioned above.

4.4 Results

4.4.1 Statistical principles for the correlated error in two methods

of measuring cis/trans effect

Standard method

Let assume there is no cis-trans interaction (the cis mutation between two alleles has a

consistent effect in whatever genetic background).

The expression ratio of a gene in a hybrid strain/sample is used for cis effect estimation

and can be expressed by the following equation (the ratio in hybrid and cis effect are all
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described in log space, the same applied for all the following equations).

hybrid = ĉ = c+ εh

The real cis effect is represented by c. The measurement from the hybrid cannot be exactly

accurate as the real cis effect, so we assign an error term εh and assume that εh is distributed

as a Gaussian variable with mean equals zero. The expression ratio of the two parental

strains/samples can be represented in a similar way.

parent = c+ t+ εp

The real trans effect is represented by t, and εp is the error term from measuring parental

ratio, which is independent of εh. If the same hybrid strain/sample was used in trans esti-

mation, then we can express the trans estimation in the following equation:

t̂ = parent− ĉ

= c+ t+ εp − (c+ εh)

= t+ εp − εh

Because the value of c, t, εh εp, are all independent of each other and the expectation of εh

78



εp equals to zero, we can express the covariance of cis-trans estimation in the following way:

Cov(ĉ, t̂)

= Cov(c+ εh, t+ εp − εh)

= E[(c+ εh)× (t+ εp − εh)]− E[c+ εh]× E[t+ εp − εh]

= E[c·t+ c·εp − c·εh + t·εh + εh·εp − ε2h]− E[c]·E[t]

= E[c·t]− E[ε2h]− E[c]·E[t]

= Cov(c, t)− Var(εh)

This shows that the cis-trans covariance observed can be different from the true cis-trans

covariance qualitatively. When there is no correlation or a little bit positive correlation

between true cis and trans effect, the observed correlation could still be negative.

Independent hybrid method

Same as before, assume there is no cis-trans interaction. We use one hybrid replicate for cis

estimation and another hybrid replicate along with one parent replicate for trans estimation.

hybrid1 = ĉ1 = c+ εs + εh1

hybrid2 = ĉ2 = c+ εs + εh2

In the above equation, c is the real cis effect as in box1. If hybrid1 and hybrid2 are technique

replicates, they may have a shared systematic error. We use εs to represent this systematic

error and the remaining error are represented by εh1 and εh2 . Let’s assume that εs is also

Gaussian distributed with mean equals zero. The equation for the parent sample is the same

as box1.

The hybrid1 sample is used for cis estimation, and the hybrid2 sample was used in trans
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estimation, so we can express the trans estimation in the following equation:

t̂ = parent− ĉ2

= c+ t+ εp − (c+ εs + εh2)

= t+ εp − εs − εh2

Because the value of c, t, εh1 , εh2 , εs, are all independent of each other and the expectation

of εh1 , εh2 , or εp equal to zero, we can express the covariance of cis-trans estimation in the

following way:

Cov(ĉ1, t̂)

= Cov(c+ εs + εh1 , t+ εp − εs − εh2)

= E[(c+ εs + εh1)× (t+ εp − εs − εh2)]− E[c+ εs + εh1 ]× E[t+ εp − εs − εh2 ]

= E[c·t]− E[ε2s]− E[c]·E[t]

= Cov(c, t)− Var(εs)

If there is no systematic error, the cis-trans covariance observed is the same as the true

cis-trans covariance.

4.4.2 The reduction of correlated error by the independent hybrid

method

In order to demonstrate the utility of this approach, we investigate two ASE datasets. The

first is an artificial dataset designed to be devoid of genetic variation in gene expression,

and is constructed purely from biological replicates of the same strain from [18]. The second

involves genetically distinct strains from [14] and therefore potentially exhibits compensatory

variation in gene regulation (for details, see §4.3).
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Synthetic hybrid and parental samples

Figures 4.1a–4.1b illustrate the estimation of cis and trans expression parameters both with

and without correcting for correlated error in a representative random partition of the ASE

dataset constructed without genetic variation between the parents. The negative correlation

in panel a is large in magnitude and highly significant (r = −0.67, p < 0.0001) while that

of panel b is small but in a positive direction (r = 0.14, p < 0.0001). Overall, when full

biological replication is employed for 500 times, correlation coefficients of the independent

hybrid scheme cluster around 0 (Figure 4.1c).

Experimental hybrid and parental samples

Figure 4.2 illustrates the estimation of cis and trans expression parameters of experimental

data obtained from [14]. Panel a is estimated with standard scheme. Panel b is estimated

with the independent hybrid scheme correcting for correlated error. The negative correlation

in panel a is large in magnitude and highly significant (r = −0.46, p < 0.0001) while in panel

b, there is no significant correlation (r = −0.028, p = 0.08).

4.5 Discussion

Given that the approach in [14] places cis and trans expression parameters in a likelihood

testing framework, it can address questions of compensatory evolution on a gene-by-gene

basis in a way purely correlative approaches cannot. For example, in [14], the overall corre-

lation between cis and trans was near zero in the independent estimates, offering no evidence

for compensatory evolution (Figure 4.2b, p-value = 0.08), compensating for a spurious con-

clusion of rampant compensatory evolution suggested by the correlated estimates (Figure

4.2a, r = −0.46, p-value < 10−15).
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However, by employing independent estimates of cis and trans, individual genes with evi-

dence for differential expression can be identified. Of the 850 genes significant for cis and/or

trans in the independent dataset of [14], 55% (466/850 with a 95% binomial confidence

interval on the proportion 51%–58%) fall into the compensatory category at a significance

threshold of 1%. Under a model of random expression variation, only 50% (425) are expected

to fall in compensatory categories – quadrants II and IV – by chance (16 genes were excluded

that have a cis estimate of 0 and cannot be classified as compensatory or reinforcing). Thus,

while no evidence for a negative correlation between cis and trans is apparent at the genome

level, the statistical evidence might support the action of compensatory evolution above the

background expectation for at most a small number of genes (∼41). Alternatively, because

of the nature of replication in [14] (replicate cultures were pooled before library preparation

and subsequent replicates came from the same library), the variation associated with library

preparation was not controlled, perhaps explaining the remaining small magnitude of excess

compensatory evolution observed in the study. Clearly, however, a substantial proportion of

the signal of compensatory variation was caused by correlated error arising from sequencing,

as the method of [14] reduced the correlation from −0.46 to −0.028.

This approach illustrates the utility of accounting for correlated error in a statistical inference

framework. The ability to make inferences on individual genes is an important advantage

in carefully measuring the extent of compensatory evolution. Indeed, any time estimates of

cis and trans are considered jointly to make biological conclusions, correlated error should

be considered, not just in cases of compensatory evolution. Modern datasets should be even

better suited to addressing such questions, as lower sequencing costs allow us to achieve

higher and higher replication, not only eliminating the correlated error problem, but also

improving statistical power. Indeed, it would be irresponsible not to replicate parental and

hybrid treatments in future ASE studies.
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(a) (b)

(c)

Figure 4.1: The effect of correlated error on estimation of cis and trans expression variation
ratios. The data considered in the figure was compiled from partitions of a highly-replicated
expression dataset in yeast [18] (for details see Materials and Method).

(a) Both cis and trans parameter estimates share a common sample of 11 hybrid individuals.
(b) Cis parameters are estimated from one set of 7 hybrid individuals and trans parame-
ters are estimated from a different set of 7 individuals. (c) Summary of τ (Kendall rank
correlation coefficient) for 500 randomly chosen partitions of both the correlated and inde-
pendent estimation schemes. Panels (a) and (b) are representative instances of these random
partitions.
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(a) (b)

Figure 4.2: The estimation of cis and trans expression parameters of experimental data
obtained from [14].

(a) Both cis and trans parameter estimates share a common hybrid sample. (b) cis pa-
rameters are estimated from one hybrid sample and trans parameters are estimated from a
different hybrid sample.
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Figure 4.3: Work flow for the synthesis of hybrid and parental samples from 44 replications
of haploid yeast expression. For the standard scheme (yellow), the 44 were partitioned into
four subsets of 11 samples each, representing two “alleles” (strain A and strain B) by two
“conditions” (hybrid and parental). For the independent hybrid scheme (blue), 42 of the
44 remaining samples were partitioned into six subsets of 7 samples each, representing two
“alleles” (strain A and strain B) by three “conditions” (hybrid 1, hybrid 2, and parental).
To get the distribution of correlation, 500 replicates was done.
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Chapter 5

Conclusion

My three projects explore the cis and trans mechanisms for gene expression variation. The

underlying cause of expression variation is denoted cis if it affects gene expression in a non-

diffusible way, for example, the variation of the promoter sequences. On the other hand, the

variation is defined as trans if it affects gene expression in a diffusible way, such as changes

transcription factors [15, 62].

Gene duplication is an important mechanism in genome evolution. It directly provides new

genetic material, which serves as the raw material for the origins of novel gene function

[46]. When a new duplication occurs, it immediately changes the cis-element of the gene

by doubling the RNA polymerase target. Some duplicates lose important elements as a

consequence of the mutation itself. However, some duplicates preserve the complete sequence

and are capable of expression. Gene expression is controlled by both cis and trans elements,

so doubling the sequence does not mean the expression level doubles. There are several

possible situations. One possible scenario is that gene has an important function and is

tightly monitored by the regulatory network. As a result, the expression may be controlled

by some feedback loop and the dosage-sharing model applies [56, 21]. Alternatively, the trans
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effect is not independent of the cis effect [67, 62]. For example, the same regulatory network

may have different effects on the two identical sequence copies, depending on the position

of the sequence or the state of the chromatin in that part of the chromosome. Within the

scope these expected confounders, we still hope to draw some general conclusions about the

consequences for expression resulting newly duplicated genes.

In the paralog-specific expression project, I performed a preliminary survey of the expression

level of 35 newly duplicated genes in A3 and A4 strains exhibiting complete duplication of

their gene sequences (Drosophila melanogaster). We can not differentiate the RNA read

counts for each paralog if they are 100% identical in the sequence. For these genes, we could

only measure their total expression level. For a subset of genes, we can not only differentiate

the reads counts but also tell whether the paralog is original or derivative. We observed

that the two paralogs usually express differently. We also found that the new copies tend to

express less than the original copy. The total expression does not show a clear relationship

to their copy number, except that duplication typically leads to at least nominal increases in

expression. However, the realized expression level may be higher or lower than that predicted

by the copy number change.

Although these 35 genes are originally selected without regard to whether or not they con-

tribute to fitness differences, they include a small group of duplicated genes that are candi-

dates for positively selected or at least neutral. Since we selected mutations that are present

one of A3 or A4 and not the other, we have imposed an ascertainment bias that makes them

more likely to exhibit higher allele frequencies than mutations without such asertainment

biases. As a consequence, these mutations are very likely to be enriched for beneficial alleles.

This means that the expression change we observed sample biased towards containing bene-

ficial expression changes and would not be suitable for predicting the effect of a duplication

event. On the other hand, regardless of its affect on fitness, a mutation that changes a gene’s

expression is always of interest to molecular geneticists who try to connect DNA sequence to
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the phenotype. In any event, it would be good to have population data instead of just two

assemblies, so that we can measure the expression level across the full frequency spectrum

and remove the ascertainment bias.

In the allele-specific expression project, I expand the paralog-specific project into a more

general perspective of how to correctly measure cis variation. The number of biological

replicates for the gene expression experiments has been discussed for many years. Many

studies have been done to find out the balance between the accuracy of scientific results

and economic efficiency [59]. For normal differential expression experiments, three to six

replicates are acceptable. But for allele-specific experiments, the number of replicates and

a model to estimate the variance between replicates has long been neglected. In principle,

allele-specific expression experiment involves more precise measurement and more data fil-

tering steps. Both require more replicates. In this project, I describe a new implementation

of a beta-binomial model for the over-dispersed variance between replicates and demonstrate

its usage in 20 replicates of allele-specific measurement on a yeast hybrid. With so many

replicates, we can also down sample to demonstrate the consequences of using fewer repli-

cates. This project only discusses the cis variation measurement, but in principle would also

be applicable to trans variation measurement.

One important issue is the cis-trans interaction. The trans (regulatory network) variance

is not completely independent of cis variance. The current measuring scheme assumes that

the cis-trans effect is independent (one event of cis mutation always has the same effect on

expression level in any trans background). The problem has been noticed by several studies

[67], but the scheme is still popular for gene expression analysis. More sadly, cis and trans

estimations are widely used for evolutionary inferences.

The project “Inferring compensatory evolution of cis/trans regulatory variation” in Chapter

4 tries to correct a measurement error in the inference process. It demonstrates that the

previously used method introduces an artificial negative correlation between cis and trans,
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which should not be used to infer compensatory evolution. However, even if this problem is

fixed for future studies, the larger issue still exists. A clear method to analyze the cis/trans

and the interaction between them and using quantitative instead of a verbal model for their

evolutionary inference are very much in need.
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