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Porosity Hot Paper

Multivariate Machine Learning Models of Nanoscale Porosity from
Ultrafast NMR Relaxometry

Sophia N. Fricke,* Mia Salgado, Tamires Menezes, Kátilla M. Costa Santos,
Neal B. Gallagher, Ah-Young Song, Jieyu Wang, Kaitlyn Engler, Yang Wang, Haiyan Mao,
and Jeffrey A. Reimer

Abstract: Nanoporous materials are of great interest in many applications, such as catalysis, separation, and energy
storage. The performance of these materials is closely related to their pore sizes, which are inefficient to determine
through the conventional measurement of gas adsorption isotherms. Nuclear magnetic resonance (NMR) relaxometry
has emerged as a technique highly sensitive to porosity in such materials. Nonetheless, streamlined methods to estimate
pore size from NMR relaxometry remain elusive. Previous attempts have been hindered by inverting a time domain
signal to relaxation rate distribution, and dealing with resulting parameters that vary in number, location, and magnitude.
Here we invoke well-established machine learning techniques to directly correlate time domain signals to BET surface
areas for a set of metal-organic frameworks (MOFs) imbibed with solvent at varied concentrations. We employ this
series of MOFs to establish a correlation between NMR signal and surface area via partial least squares (PLS), following
screening with principal component analysis, and apply the PLS model to predict surface area of various nanoporous
materials. This approach offers a high-throughput, non-destructive way to assess porosity in c.a. one minute. We
anticipate this work will contribute to the development of new materials with optimized pore sizes for various
applications.

Introduction

The function of many porous materials designed for gas
adsorption, separation, or catalysis is closely tied to their
pore structure and geometry. Indeed, nanoporous materials
are ubiquitous in a wide sector of chemistries, from
processing to environmental remediation.[1,2] Despite the
importance of their role, though, scientists lack an efficient
screening tool to measure the size of nanopores in a high-
throughput manner. Gas adsorption isotherms are largely
the most common technique; however, they are time-
intensive to obtain—often requiring up to a day—and are
prone to inaccuracies if a material deviates from the
assumed mono-layer surface adsorption model.[3–5] Because
porous networks are known to be archetypal fractal
objects,[6,7] often with surface complexity greater than
2D,[8–10] an assumption of mono-layer surface adsorption is
not universally valid and may lead to systematic error[11,12] in
surface area and pore volume predictions.

NMR relaxometry is an experimental technique that is
not only highly sensitive to nanoporous environments, but is
also portable, non-destructive, and adapts to a range of
sample geometries, making it well-suited to high-throughput
process streams and in situ analysis.[13–15] By measuring the
transverse relaxation rates of nuclei within a material, one
may infer the microscopic pore environment, discriminate
between bulk phases, and track dynamic processes in a
system such as molecular relaxation, diffusion, and chemical
exchange. Probing these dynamic properties of solvent
nuclei within an imbibed molecule can therefore elucidate
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the geometry of the molecular environment in which the
solvent is confined. The transverse relaxation rate, R2, is
inversely related to the T2 parameter, and in the fast
diffusion limit, relates to surface area as:

1
T2
¼

1
T2b
þ 1

S
V
þ

1
12

D0g
2G2te

2 (1)

where the first term, 1
T2b
, expresses the bulk relaxation

rate.[13,16–18] The second term describes surface relaxation,
where 1 indicates surface relaxivity and S

V refers to the pore
surface area to volume ratio. The third term accounts for
coherence losses caused by inhomogeneities in the local
magnetic field, where D0 is the bulk self-diffusion coeffi-
cient, g is the gyromagnetic ratio of the detected nucleus, G
is a magnetic field gradient arising from DC field inhomoge-
neities or the local pore environment, and te is the pulse
sequence echo time. There may be multiple pore environ-
ments, each with unique surface relaxation, and therefore
multiple relaxation rates may occur. The observation of
broad distributions of transverse relaxation rates can hinder
precise analysis of nanopore geometry directly from T2

measurement.
Nonetheless, efficient methods to predict pore surface

area are necessary to translate NMR relaxometry measure-
ments to high-throughput porosity screenings. Moreover, it
is clear from Eq. (1) that there exists a linear relationship
between R2 and the pore surface area to volume ratio, S

V,
and that developing an empirically based relationship
between the two measurements may be possible. To this
end, machine learning has emerged as a powerful tool for
classification and prediction,[19] and its use is explored here.
Machine learning is a widely implemented subfield of
artificial intelligence (AI), broadly used for improving
algorithms for the distinct purposes of classification and
prediction.[20] In the years since its advent in the mid-20th
century, the field of machine learning has differentiated
from AI by moving toward an approach centered on a
probabilistic, statistical view of modeling, and away from
algorithms constructed with symbolic logic,[21] thereby main-
taining a connection to validation that is essential for
practical use. The key elements in a machine learning
approach to modeling are, first, pattern recognition to shape
a model (versus population inferences to posit a model a
priori, as in a purely statistical approach), and second,
optimization, often through the use of a loss function.[22]

Multilinear algorithms frequently use low-dimensional
representations[23] of data predictor and response variables
to perform regressions, thereby enabling these models to
work seamlessly with tensor representations of high-dimen-
sional and complex data that can be otherwise prohibitively
challenging to analyze.[24,25]

Results and Discussion

Clustering of high and low surface area materials based on
their NMR signals is accomplished herein with principal
component analysis (PCA).[26] PCA is an unsupervised

orthogonal linear transformation that projects high-dimen-
sional data into a reduced coordinate system where the
variance of the data is maximized. For this study, the NMR
relaxometry profiles were baseline corrected, normalized
using a 1-norm, and then mean-centered, and the data were
collected into a matrix X. Following preprocessing, the
eigenvalues and eigenvectors of XTX yield the principal
components (PCs). The first few PCs with the largest
eigenvalues capture the maximum sum of squares in XTX
and correspond to the PCA model of the data X. The PCs
are also called the principal axes of the data and the sample
scores are given by the projection of X onto the principal
axes. Scores show relationships between the relaxometry
profiles and can be plotted to elucidate patterns in the data.
Dimensionality reduction is accomplished by retaining only
the PCs, i.e. dimensions, that explain the majority of the
variance and removing all others.[27]

Partial least squares (PLS) can be used to model a
correlation between a matrix of responses X (here, NMR
signals) and a vector of reference measurements y (pore
surface area) using the following model:

Xb ¼ yþ e (2)

where the regression vector b is typically found by minimiz-
ing cross-validation error of eTe.[28,29] Here, the SIMPLS
algorithm was used to identify the model.[30] In PCA, the
PCs are found that maximize capture of sum-of-squares in
XTX. In contrast, PLS is a regression method that finds
rotations of the principal axes called latent variables (LVs)
that capture maximum covariance between X and y. The
number of LVs in a PLS model is less than or equal to the
number of independent variables in X and correspond to a
full rank sub-space that provides an approximation of X that
is most related to y.

In comparison to traditional linear regression, PLS offers
a mechanism for dealing with variance due to noise because
the regression is performed in the low-dimensional LV space
wherein the component number limits the number of
regression factors. Further, multi-collinearity—for example,
between correlated variables of solvent content and the
multi-exponential signal in terms of its ratio of decay rates—
causes traditional regression methods to fail, but is handled
with ease with PLS.

To demonstrate the ability of the PLS model to provide
predictions of pore surface area from NMR signals, the data
were split into a calibration set used to identify b and a test
set to assess predictive performance. As described in the
Supporting Information Appendix, the majority of the data
collected at varying solvent contents was used for calibra-
tion, and an additional subset collected at saturation was
used for subsequent validation.

Transformation of an NMR signal that decays due to
transverse relaxation can yield T2 distributions, as demon-
strated in Figure 1. This has been the common way to infer
pore environment through NMR relaxometry historically
when a solvent is imbibed within a porous structure, as
surface relaxation and pore confinement enhance relaxation
and introduce a fast relaxation component.[14,15] However,
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this approach rapidly becomes complicated when changes in
the macroscopic solvent content or microscopic distribution
of solvent affect the ratio and number of unique relaxation
components. Moreover, the presence of multiple sizes of
pores can introduce multiple R2, and hence T2 values, which
may be impossible to definitively separate from the effects
of surface relaxation from nuclei localized at the pore walls
or throat, versus in the pore centers, using an NMR
experiment alone.

As solvent is incrementally added to an activated MOF,
as shown in Figure 2, the small pores indicated by the faster
relaxing component fill first, starting with localization of
solvent molecules on the pore walls (i.e., fastest relaxation
with the largest R2 and shortest T2). This T2 component
lengthens as solvent is added, and when it stops changing
and pores are filled, a long T2 appears, representing bulk
water with the smallest R2. Occasionally, an intermediate T2

component appears, presumably indicating more freely
diffusing solvent molecules in the center of the pore or in
exchange between the center of the pore and the bulk water.

However, this can also indicate the presence of a larger
pore.

It is therefore advantageous to consider a porosity
screening method that bypasses the step of estimating T2,
and is operative at any solvent content. To develop such a
screening method, 3-way relaxometry data were collected
for 15 materials at varying solvent contents. Figure 3 shows
alternative ways that 3-mode data can be organized. Here,
the unfolded representation in Figure 3d was used to format
all data into a dataset object.[31] Factors that must be
considered in choice of data representation are computa-
tional efficiency and risk of overfitting.

Following a pre-processing step that included normaliz-
ing each transient to unit initial intensity, PCA was
performed for bulk clustering of data and detection of
outliers. As illustrated in Figure 4, it is immediately evident
that surface projection onto a coordinate system of the first
three principal components allows separation of low surface
area materials (purple) from high surface area materials
(yellow), as well as detection of outliers that are amorphous
or non-crystalline materials with degraded pore geometry as
points that fall outside the shaded 95% confidence ellipses.

Next, the data were treated with PLS to provide a coarse
regression model that is independent of solvent content, as
shown in Figure 5. Fifteen materials were tested with an
average of twenty solvent contents per material, resulting in
over 300 NMR time decays of 1000 points each, and
arranged in the unfolded representation of Figure 3d for
modeling. Model validation was performed with Venetian
blind 10-way cross validation, yielding a linear prediction
accuracy of R2=0.84 and RMSEC (root mean square error
of calibration) of 332.8 m2/g for all solvent contents.

It is also possible to plot the scores of the data on the
first three latent variables to classify data into the color-
coded surface area ranges marked by shaded 95% con-
fidence ellipses. As shown in Figure 6, in a manner similar

Figure 1. a) Exemplary NMR relaxometry data from a single CPMG
experiment in the time domain, shown inverted in b) to a distribution
of T2 via inverse Laplace transform. This experiment was performed on
MOF-808(Cr) with 0.9 mL/g of water to provide a signal from inside
and outside of the pores, corresponding to short and long T2 values,
respectively. The intermediate T2 can indicate an additional, large pore
structure is present or can be attributed to interfacial water.

Figure 2. T2 distributions shown as a function of solvent content with
Mg-MOF-meta-74 and water.

Figure 3. A comparison of data representations suitable for vector- or
tensor-based algorithms. In a), a matrix of data is an example of 2-way
data that are a function of two variables: here, time (Mode 1) and
material (Mode 2). This data representation is suited for vector- or
matrix-based algorithms. If a third variable is added, as indicated by
Mode 3 in b), the data can be stacked into a 3-way array. A relevant
example in c) shows solvent content being introduced as the Mode 3
variable; this form of data is suited for tensor-based algorithms. If the
3-way array of data is “unfolded,” or linearly concatenated into an
extended 2-way array, it can be treated with vector-based algorithms.
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to the PCA approach, examination of the first three latent
variables also offers a convenient way to perform rapid
classification of materials based on their differing surface
area.

By splitting the data into a calibration set and a separate
validation set, it is possible to test the predictive capability
of the PLS model. Here, a separate set of solvent-saturated
samples were measured with NMR to test the PLS model on
new data; the results are reported in Figure 7. The root
mean square error of prediction, or RMSEP, is 263.5 m2/g.
Because the signal-to-noise increases with solvent content,
this suggests that NMR testing of solvent-saturated samples
is the best choice of solvent content for future material
analysis in this way. Further PLS model details are

summarized in Section III of the Supporting Information
Appendix.

It would be beneficial to calibrate similar PCA and PLS
models based on other solvents to provide an alternative for
materials known to lack stability in water. Ideally, the choice
of solvent could be matched to the synthesis so that drying
in the final step may be bypassed for this screening.

In summary, this screening method may be carried out
by following a protocol that involves the following steps.
First, a solvent (here, water) is added to a prepared material
in a vessel suitable for NMR measurement at any concen-
tration to yield a mixture with the consistency of a slurry.
Next, an echo train NMR experiment is performed as
described in Section II of the Supporting Information
Appendix. When the material is saturated with proton-rich
solvent, signal is abundant and sufficient signal-to-noise is
typically acquired within 30–60 seconds of scans. Immedi-
ately after it is recorded, the time decay of the echo train is

Figure 4. A screening step using 6-component PCA on NMR relaxom-
etry data from different materials at varying solvent content to separate
materials based on surface area by plotting their scores on the first
three principal components (PC). Surface areas (in m2/g) are color
coded on a gradient from low (purple) to high (yellow). It is also
possible to separate amorphous or non-crystalline materials with
degraded pore geometry by identifying any point that falls outside the
shaded 95% confidence ellipses.

Figure 5. Surface area prediction using the PLS model on NMR
relaxometry data from different materials at varying solvent. The 1 : 1
diagonal line is indicated in solid green, and the fit line is indicated in
red. Total RMSEC is 332.8 m2/g, corresponding to a linear fit R2 value
of 0.84. Cross validation was performed using Venetian blinds with 10
splits and a blind thickness of 1. The horizontal axis indicates the BET
surface area whereas the vertical axis indicates the predicted surface
area from an NMR relaxometry measurement at any solvent content.
Solvent content (in mL/g) is color coded on a gradient from low
(purple) to high (yellow).

Figure 6. Scores on the first three latent variables (LV) from the 6-
component PLS model of NMR relaxometry data from different
materials at varying solvent content. Cross validation was performed
using Venetian blinds with 10 splits and a blind thickness of 1. Surface
areas (in m2/g) are color coded on a gradient from low (purple) to high
(yellow).

Figure 7. Surface area prediction of test samples using the PLS model
on NMR relaxometry data at the most saturated solvent content of
2.5 mL water per gram material. The 1 :1 diagonal line is indicated in
solid green, and the fit line is indicated in red.
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input to the calibrated PCA and PLS models, whose outputs
are generated within a few seconds.

Conclusion

The purpose of the PCA classification and PLS regression
models presented here demonstrate the utility of a machine
learning approach for rapid screening of materials in a high-
pass sense. We propose this method as an easily calibrated,
benchtop tool that can be operated directly in a synthetic
chemistry lab with minimal interruption to workflow. This
approach offers a high-throughput, non-destructive way to
assess porosity in ~1 minute, resulting in a pore surface area
estimate ~1440 times faster than a gas adsorption isotherm
measurement which requires ~1 day to perform. The
technique proposed here is sensitive to pore sizes in the
range of approximately 0.5–100 nm and can be used to
characterize the pore structure of a wide range of materials.
The materials that pass this screening technique by cluster-
ing with high surface area materials would be identified as
potential candidates to undergo more accurate and time-
intensive porosity testing via BET analysis of gas adsorption
isotherms. Coupled together in this way, the throughput and
efficiency of synthetic labs could be greatly enhanced.
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