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ABSTRACT OF THE DISSERTATION 

 

Critical Care in a Healthcare Crisis:  

Applying Reliability and Microsimulation Methods  

to Understand Implications of a Proposed Resource Allocation Policy 

 

by 

 

Iheanacho Obinnaya Emeruwa 

Doctor of Philosophy in Health Policy and Management 

University of California, Los Angeles, 2023 

Professor Moira Inkelas, Chair 

 

The COVID-19 pandemic demonstrated the potential for healthcare systems to lack capacity to 

meet demand for critical care in times of crisis. Recent research suggests a rise in the utilization 

of intensive care unit (ICU) resources and the potential misallocation of resources to patients 

without clinical need or hope of benefit. Several authorities have published resource allocation 

policies to guide healthcare systems, commonly relying on measures of illness severity to 

determine the priority by which ICU resources would be allocated. This raises concerns about 

the properties of and the potential for allocation criteria to exacerbate racial disparities in clinical 

outcomes. Policymakers intend that such policies would maximize the number of lives saved by 

prioritizing provision of critical care services to patients most likely to benefit. This dissertation 

examines the interrater reliability of the University of California’s Scarce Resource Allocation 

Policy (SRAP) in determining the allocation priority of a cohort of consecutively admitted ICU 

patients at the University of California, Los Angeles (UCLA) Health System. Use of the SRAP 

had relatively poor reliability in determining allocation priority as laid out within the policy itself. A 

microsimulation model examined the likely impact of allocation decisions and likelihood of 

allocation of resources under four defined scenarios of resource constraint, for the outcome of 

ICU mortality. Mortality differed significantly across tested constraint levels compared to the 
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case of no constraint (i.e., current capacity). Mortality was greater in subgroups with lower 

priority for constrained ICU resources. A mediation analysis examined if observed differences in 

mortality risk among racial groups are related to the use of SOFA scores or the selected 

comorbid conditions. Results suggest that these policy criteria do not mediate the effect of race 

on mortality. Understanding the projected outcomes related to use of these policies and the 

policy criteria that drive observed differences among patient groups can better inform 

policymakers in shaping protocols to maximize lives saved and avoid worsening healthcare 

disparities. 
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Chapter 1: Background 

Current Research and Emerging Issues in Critical Care Resource Allocation 

The arrival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel 

coronavirus that causes COVID-19, has led to the pandemic in the United States and around 

the world that has rivaled the Spanish influenza pandemic of the early 20th century.  The World 

Health Organization (WHO) declared a COVID-19 pandemic on March 11, 2020.1  This 

declaration was shortly followed by declarations of states of emergency in the state of California 

and in the United States of America.2,3 As the scientific and medical communities worked rapidly 

to better understand the pathogenesis of this virus, healthcare systems both domestically and 

abroad have found themselves overwhelmed by the number of patients.  One of the most well-

known scenarios occurred in Lombardi, Italy as described by Grasselli and colleagues, where 

the healthcare system created almost 500 intensive care unit (ICU) beds in less than three 

weeks to address sharp increases in demand for critical care.4 

Even prior to the COVID-19 pandemic, there has been a documented rise in the use of 

critical care resources. While professional societies have published and actively maintained 

guidelines to ensure effective allocation of critical care beds,5 recent literature suggests that 

such guidelines have been ineffective. In 2015, Ward and Chong described a concerning trend 

in ICU utilization over the past 50 years – resources being allocated both to patients who may 

not need them and to patients who may not benefit from them.6 Given the observed experiences 

both domestically and internationally, the University of California (UC) sought to develop a 

critical care resource allocation system to be implemented in the event of a crisis in which 

supply of resources is outstripped by demand (“surge conditions”).  In developing the 

intervention, the organization operated under the causal hypothesis that misallocation of critical 

care resources in the setting of resource limitation (such as that imposed by a pandemic) will 
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lead to increasing mortality due to inability to provide necessary treatment.  The intervention 

hypothesis is that a standardized critical care triage and resource allocation protocol will 

improve resource utilization by allocating resources to the patients in highest need with highest 

likelihood of benefit, thus stabilizing or reducing critical care mortality. 

Existing Policies and Tools in Scarce Resource Allocation 

With the assistance of UCLA Library Services, I conducted an exhaustive review of multiple 

literature databases in search of previous work examining tools used for scarce resource 

allocation. Although many resource allocation policies exist, there is little to no literature on the 

operationalization of such policies through the electronic medical record or otherwise. While the 

COVID-19 pandemic has prompted a focus in the discussion of resource allocation in the field of 

critical care, the dilemma that is resource allocation in healthcare has been considered long 

before this crisis event. Literature databases reveal publications on health care resource 

allocation as far back as the 1907s, but the most relevant work to the scenarios considered in 

this dissertation appear in the early 2000s, around the time of the H1N1 influenza pandemic. 

Many of these publications consider the many ethical principles that potentially guide resource 

allocation policies. While the ethics of resource allocation is beyond the scope of this work, it is 

important to highlight the role these principles have played in the development of the policies 

that influence population-level health care decisions.  

In one review of these ethical principles, Persad and colleagues suggest considering 

eight ethical principles grouped into four categories reflecting the core ethical values underlying 

the principles.7 These four ethical values are: treating people equally, favoring the worst off, 

maximizing total benefit, and promoting and rewarding social usefulness. As the authors note, 

each of these eight principles is insufficient in that they will ignore morally relevant facts to the 

decision-making process. Thus, they advocate for multi-principle strategies to achieve a just 

framework for allocation. Building on this, White and colleagues propose a multi-principle 
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strategy for prioritization of ventilator and critical care bed allocation based on “patients’ 

likelihood of surviving to hospital discharge” as determined by an “objective measure of acute 

illness severity” and on “patients’ likelihood of achieving longer-term survival” as influenced by 

the “presence or absence of comorbid conditions that influence survival.”8 In making these 

recommendations, it is worth acknowledging that the authors take care not to make any 

categorical exclusions, noting that without clear justification as to how these patients are 

“ethically different” from others seeking critical care, such exclusions are ethically flawed. The 

UC policy is largely modeled on this framework. 

Development of the University of California Scarce Resource Allocation Policy 

The University of California tasked a multidisciplinary committee of clinicians and clinical 

ethicists, formed as the University of California Critical Care Bioethics Working Group, to 

develop guidelines for the Allocation of Scarce Critical Resources under Crisis Standards of 

Care (CSC), heretofore referred to as the Scarce Resource Allocation Policy (SRAP). The goal 

of this policy, explicitly designed to be implemented in surge conditions, is to standardize the 

process by which all critical care beds are allocated to patients who require such care.  While 

the impetus for drafting the policy was the rapid arrival of the COVID-19 pandemic, the policy 

itself was designed to be used in any surge conditions (e.g., natural disaster with mass injuries).  

The intervention to be evaluated consists of three (3) major components, each considered 

necessary but not individually sufficient to achieve the stated goal of maximizing the number of 

lives saved. 

Prioritization Algorithm to Determine Triage Category 

The foundation of the SRAP is the prioritization algorithm. This algorithm has been codified in a 

document, based on literature review of recommendations of major medical societies and other 

systems’ experiences, that is shared with the entire health system community. The Policy aims 

to optimize provision of critical care resources by applying consistent criteria by which all 
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patients are evaluated. The key outcome resulting from application of the prioritization algorithm 

is the Triage Category, a value by which patients are prioritized for allocation of critical care 

resources. There are six (6) such categories, in order of priority: Violet, Red, Orange, Yellow, 

Blue, and Green. Patients within the Violet category are deemed to have met one of a finite 

number of criteria that temporarily exempts them from the triage process, thereby giving them 

top priority for available resources. Patients within the Green category, under crisis standards of 

care, do not meet criteria for consideration of critical care and are managed outside of the ICU. 

Patients within the Blue category have an “acute catastrophic condition” that portends an 

extremely high risk of death and are systematically de-prioritized, receiving critical care 

resources only after all other patients have been allocated. Patients within all other categories 

are allocated resources as available according to priority.  

To determine these remaining categories, the Policy requires the calculation of a Triage 

Allocation Score. This score is a summation of points contributed by the Sequential Organ 

Failure Assessment (SOFA) score, the objective measure of illness severity as suggested by 

White and colleagues, and the presence of any one of a defined set of chronic medical 

conditions, recommended by White and colleagues. The SOFA score was originally published in 

1996 as a concise way of describing multiple organ dysfunction among six organ systems: 

respiratory, coagulation, liver, cardiovascular, central nervous system, and renal. It is worth 

noting here that the SOFA score was originally intended to be a descriptive, not predictive, tool 

used to complement existing scoring systems in patients with sepsis.9 Since its origin, however, 

the SOFA score has been validated as an assessment of multiple organ system dysfunction 

associated with mortality and useful over time in predicting such outcomes in ICU patients, 

particularly early in their course.10,11 Each of the organ system domains is assigned a score from 

0 to 4, the sum of which results in the overall SOFA score ranging from 0 to 24. Modified 

versions of the SOFA score that are less reliant on laboratory values, thus simplifying 
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calculation and application in resource-constrained settings, have been shown to perform well in 

comparison to the originally derived SOFA score.12 

Based on this, the SRAP leverages the SOFA or modified SOFA (mSOFA) as an 

objective indicator of “current overall clinical status” in its “multi-principle strategy to allocate 

critical care resources during crisis.”13 The SOFA score contributes between one and four points 

to the Triage Allocation Score. The other principle in this strategy calls for identification of "co-

occurring conditions that moderate mortality.” These conditions are divided into so-called “major 

comorbid conditions” and “severely life-limiting conditions” that contribute two or four points to 

the Triage Allocation Score, respectively. These Triage Allocation Scores determine the Triage 

Category depending on the time of assessment. The comorbidities are listed and summarized 

with reference labels in Table 1. 

At UCLA, the SOFA score was modified (uSOFA) to adequately capture the medical 

complexity of the patient population at the member hospitals. Specifically, the Cardiovascular 

component was updated to reflect the use of extracorporeal membrane oxygenation (ECMO), a 

highly specialized therapy for severe cardiac and/or respiratory failure. All SOFA measures and 

modifications are included in Appendix B: Various measures of severity of acute illness. 

Table 1: Prespecified comorbidities and associated reference labels 

Reference Label  Pre-specified Comorbidities 

 
Major comorbidities that are associated with increased risk of short-term mortality from 
critical illness 

Comorbidity M1 
Pre-existing neurological condition (dementia, stroke, other neurodegenerative disease) 
with baseline modified Rankin Score >= 4 

Comorbidity M2 ACC/AHA Stage C heart failure, NYHA Class II-IV 

Comorbidity M3 Severe, inoperable multi-vessel coronary artery disease or valvular disease 

Comorbidity M4 
WHO Class 3 pulmonary hypertension (symptomatic with minimal exertion, 
asymptomatic only at rest) 

Comorbidity M5 
Moderately severe chronic lung disease (e.g., COPD, IPF) but not requiring chronic 
oxygen or ventilation 

Comorbidity M6 End-stage renal disease on dialysis 

Comorbidity M7 Cirrhosis with MELD < 20 and history of prior decompensation 

 
Severely life-limiting comorbidities associated with high mortality even in absence of 
critical illness (survival typically ≤ 1 year), and which are correlated with significantly 
increased risk of short-term mortality from critical illness 

Comorbidity S1 Minimally conscious or unresponsive wakeful state from prior neurological injury 

Comorbidity S2 ACC/AHA Stage D heart failure 

Comorbidity S3 WHO Class 4 pulmonary hypertension 
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Reference Label  Pre-specified Comorbidities 

Comorbidity S4 
Severe chronic lung disease with FEV1 < 20% predicted, FVC < 35% predicted, or in the 
absences of PFTs, chronic home O2 at rest or mechanical ventilation 

Comorbidity S5 Cirrhosis with MELD score ≥ 20 

Comorbidity S6 
Metastatic cancer with expected survival ≤ 1 year despite treatment OR Refractory 
hematologic malignancy (resistant or progressive despite conventional initial therapy) 

Comorbidity S7 Terminal illness with Clinical Frailty Scale Score ≥ 8 

 

Formation of a Triage Team 

The clinical assessment necessary to determine the Triage Allocation Score and Triage 

Category requires the formation of a Triage Team, a team of clinicians and administrators who 

review all patients requiring or currently receiving critical care (“critically ill patients”) daily.  This 

Team is led by a Triage Officer, who is ideally a physician “with established expertise in the 

management of critically ill patients.” The Policy recommends that this Triage Officer is 

accompanied by “at least one other licensed health care professional (e.g. nurse and/or 

respiratory care practitioner) with acute care (e.g., critical care or emergency medicine) 

experience, and at least one administrative staff member.”13  

Chart Abstraction Protocol 

The final key component of the intervention is the protocol for the abstraction of relevant clinical 

data from the chart, a standardized review of each chart for key clinical information on which 

each patient’s Triage Category is based.  The Policy requires a timely, comprehensive review of 

various pieces of clinical information, including (but not limited to) patient history, bedside 

nursing assessments, and basic laboratory data to determine the patient’s Triage Category.  As 

the medical record is a complex array of information containing multiple data structures, this 

protocol was designed to streamline the collection and review process, as well as to ensure that 

patients are evaluated in an equivalent manner.  

University of California, Los Angeles and Implementation of the SRAP 

The University of California, Los Angeles (UCLA) Health System is a large academic healthcare 

system that includes four inpatient medical facilities, two of which provide critical care services 
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to adult patients.14 Ronald Reagan UCLA Medical Center (RR-UCLA) contains 520 inpatient 

beds, inclusive of 90 pediatrics beds. While the facility officially reports 120 adult intensive care 

beds and 13 adult coronary care beds, the health system notes that “each patient room has the 

capacity to convert into an intensive care unit (ICU) to allow for the continuous care of a critically 

ill patient in one room.”15 Santa Monica-UCLA Medical Center and Orthopaedic Hospital (SM-

UCLA) contains 281 inpatient beds, which includes 22 adult intensive care beds.16 

 Implementation of the SRAP at UCLA Health is achieved through integration into 

CareConnect, the health system’s electronic medical record (EMR) as the Triage Allocation Tool 

(TAT) to facilitate the collection and communication of data necessary to determine the Triage 

Allocation Priority Level. The TAT was created in an iterative process by clinicians (including 

this author) in collaboration with members of the health system’s informatics team with input 

from hospital leadership through virtual meetings that occurred over several months. Through 

the TAT, aspects of the chart abstraction protocol are automated. For instance, the TAT 

automatically retrieves the most recent laboratory and flowsheet values necessary to calculate 

the UCLA modified SOFA score. The Triage Allocation Score and resultant Triage Categories 

generated by this process are stored in the medical record. Adherence to the SRAP became 

mandated in the workflow – any patient who requires or is currently receiving critical care must 

have a Triage Allocation Priority Level determined by the TAT. The Triage Team has unique 

access to a patient list in the EMR that automatically displays all critically ill patients. The 

hierarchical nature of the TAT data collection process has implications for the analyses in this 

dissertation and is visualized in Figure 1. 
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Figure 1: Triage Allocation Tool data collection hierarchy 

 As part of the organization’s ongoing efforts to prepare for the COVID-19 pandemic, 

investigators at UCLA David Geffen School of Medicine collaborated with UCLA Health hospital 

leadership to conduct a pilot study implementing the allocation policy through the TAT. For the 

purposes of the analyses performed in this dissertation, the TAT was used as intended in surge 

conditions. The study applied to a consecutive cohort of ICU patients admitted to an adult 

intensive care unit at Ronald Reagan UCLA Medical Center and Santa Monica-UCLA Medical 

Center between May 26 and August 1, 2021. 

As the Policy guides allocation of all adult ICU beds, patients admitted to adult medical, 

cardiac, surgical, cardiothoracic, and neurological intensive care units were included in these 

analyses. The Policy examined in this analysis does not explicitly exclude pediatric populations. 

However, there exists debate in the literature around the ethical issues in allocating resources 

to, and potentially reallocating resources from, pediatric patients compared to adult patients 

during crisis standards of care based on the life-cycle principle. In a review of ventilator 

allocation guidelines at the state level, more than half of the existing policies included separate 

guidelines for pediatric patients.17 Some have noted that pediatric patients may need to be 
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considered separately for logistical issues related to their smaller size that might necessitate 

different equipment and personnel.18 While there was no age exclusion criterion for this study, 

we categorically excluded patients admitted to pediatric intensive care units to address this 

unsettled issue. 

Admission to the ICU occurred according to usual care. First, the clinical team caring for 

a given patient determined that the patient has developed a need for intensive care. This 

referring team consulted the ICU team for evaluation, and the ICU team made an independent 

determination regarding the need for critical care. If the intensivist team agreed that the patient 

required the ICU for ongoing care, the patient was transferred as soon as a bed was available. If 

no bed was available, the patient would “board” outside of an intensive care unit, meaning that 

the patient would be physically housed outside of a unit designated for critical care. In this case, 

provision of critical care may have been temporarily limited by unit staffing or technical 

capabilities. 

The study consisted of two phases. In the first phase, encompassing the period between 

May 26, 2021, and June 30, 2021, all eligible patients were scored by two users. The first user, 

or Primary User, was a clinician previously identified by the organization as a potential member 

of the Triage Team in the event that the SRAP was enacted for surge conditions. These Primary 

Users represented three clinical disciplines: physicians, holding a Medical Doctor (MD) or 

Doctor of Osteopathy (DO) degree; registered nurses in either a clinical or administrative role; or 

advanced practice providers (APPs) consisting of nurse practitioners (NPs), physician 

assistants (PAs), or clinical nurse specialists (CNS). The second user, or Investigator, was a 

clinician member of the pilot study team and consisted of six physicians in pulmonary and 

critical care medicine or emergency medicine. In the second phase of the study, encompassing 

the period between July 1, 2021, and August 1, 2021, all eligible patients were scored by a 

single user, who was a member of either the Primary User or Investigator pools. 
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For the purposes of the analyses contained in this dissertation, all individual patient data 

was obtained from CareConnect, the electronic health record at UCLA Health. The Triage 

Allocation Scores and Categories generated by the Investigators in Phase One of the pilot were 

calculated in a separate REDCap electronic data capture tool hosted at University of California 

Los Angeles, based on the same prioritization algorithm underlying the TAT in CareConnect. 

REDCap (Research Electronic Data Capture) is a secure, web-based software platform 

designed to support data capture for research studies, providing 1) an intuitive interface for 

validated data capture; 2) audit trails for tracking data manipulation and export procedures; 3) 

automated export procedures for seamless data downloads to common statistical packages; 

and 4) procedures for data integration and interoperability with external sources.19,20 This study 

was approved by the Institutional Review Board at the University of California, Los Angeles. 

Dissertation Aims 
 
In this dissertation, we aim to address three aspects of the UC SRAP. First, we assess the 

interrater reliability of the SRAP, hypothesizing that the policy will result in agreement in Triage 

Category determination. Next, we examine the impact of the SRAP on cohort mortality under 

varying levels of constraint, hypothesizing that implementation of the SRAP will result in 

statistically similar mortality under such conditions by allocating resources to those most likely to 

benefit. Finally, we investigate the mechanisms by which race might play a role in mortality 

disparities through the SOFA and Comorbidity components of the SRAP. 
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Chapter 2: Reliability of the Proposed Scarce Resource Allocation 

Policy in Determination of Prioritization Outcomes 

Background and Hypotheses 

Given the recent proliferation of resource allocation policies and relative lack of research 

exploring their usability in real-world settings, our first aim is to describe reliability among raters 

using the SRAP for resource allocation decision-making as a key implementation metric of the 

SRAP. As the SRAP is intended to guide determination of critical care allocation priority, it is 

vitally important that users of the policy agree on the interpretation of its parts. In other words, 

the Policy must be reliably applied to a given population. 

As it is the factor that ultimately determines priority, and therefore reasonably affects a 

given patient’s chance of surviving critical illness in surge conditions, our primary outcome of 

interest is determination of the Triage Category. Knowing that this primary outcome is, for most 

patients, dependent on the presence or absence of certain medical comorbidities, our key 

secondary outcome is determination of the presence of these prespecified comorbidities. Our 

first hypothesis is that use of the SRAP results in agreement in Triage Category determination 

as defined by ICC. As a corollary, we hypothesize that the use of the SRAP results in 

agreement in presence of prespecified comorbidities as defined by ICC. 

To our knowledge, this analysis is the first to leverage a commonly used statistic to 

assess reliability of a resource allocation policy. Intraclass correlation coefficients (ICC) have 

been proposed as a measure of interrater reliability (IRR) as far back as the late 1970s. Spence 

Laschinger reviewed and advocated for its use as a measure of IRR in nursing research over 

other more popular methods at the time, including percentage agreement among raters, 

Pearson’s coefficient, and Cronbach’s alpha.24 Importantly, the author noted that the latter 

methods are more accurately described as assessments in consistency among raters in scoring 
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a given observation. In reviewing the use of IRR in analyzing observational data, Hallgren 

defines reliability as the ratio of the variance in the true measurement of a subject to the 

variance in the observed measurement.25 As the variance in the observed measurement is the 

sum of the variance in the true measurement and the variance in the error measurement, 

reliability will increase as the variance in the error measurement decreases. In the context of 

this work, reliability is maximum when the measurement tool, the SRAP, produces consistent 

ratings independent of user – such that the error variance term approaches zero. 

Hallgren further describes several options for determining IRR, including ICC and 

Cohen’s kappa. ICC is a commonly used statistic for ordinal, interval, and ratio variables, and 

incorporate the magnitude of disagreement in the assessment of IRR such that larger 

magnitude disagreements result in lower ICC. This is unlike Cohen’s kappa, a statistic designed 

for categorical variables, which relies on all-or-nothing agreement to determine IRR. Also, unlike 

Cohen’s kappa, there are computational variants of ICC that allow the ICC to incorporate the 

impact of random effects of specific raters on the IRR.  

Koo and Li describe in detail ten different versions of the ICC whose applicability varies 

based on study design, initially described by McGraw and Wong.26,27 In this overview, the 

authors outline a method for choosing the appropriate computational variant based on four 

aspects of the research. The first two aspects – the set of raters and whether these raters are 

randomly sampled from a larger population or comprise a specific set – determine the “model” 

selection: one-way random effects, two-way random effects, or two-way mixed-effects. The third 

aspect – the reliability of a single rater or the mean value of multiple raters – determines the 

“type” selection: single rater, or mean of k raters, where k is the number of raters to be 

averaged. The final aspect – concern with agreement or consistency – determines the 

“definition” selection: absolute agreement or consistency.  

 As discussed in the introductory chapter, there has been sufficiently documented bias in 

many of the components of the SRAP among racial and ethnic groups, namely the SOFA score 
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and certain comorbid conditions. This has led to concern that the use of such criteria in resource 

allocation policies may systematically disadvantage members of certain racial and ethnic 

minorities. As the SRAP does not explicitly rely on racial and ethnic group identification for 

determination of Triage Category, we hypothesize that agreement in Triage Category 

determination as defined by intraclass correlation coefficient does not differ by racial or ethnic 

group. Again, as a corollary, we hypothesize that agreement in presence of prespecified 

comorbidities as defined by intraclass correlation coefficient does not differ significantly by triage 

allocation level or racial or ethnic group. 

Understanding Alternative Measures of Similarity 

Given the nature of decision-making required by the SRAP, we explore the application of a 

select number of other similarity statistics in this analysis. The Jaccard coefficient has been 

applied to many problem involving vectors of data containing information about the presence or 

absence of a feature such that for two such sets of data, the Jaccard (or Tanimoto) coefficient is 

defined as the ratio of their intersection to their union.29 In terms of the issues discussed here, 

we propose the Jaccard coefficient as an appropriate measure of similarity for any “yes/no” or 

“present/absent” determination, which is the case for the pre-specified comorbidities. The Rand 

index was developed as a method for cluster analysis but has been likewise expanded to 

problems such as those presented here.30 The Rand index concerns two sets which are 

themselves defined as partitioned subsets of a larger set. It defines four types of items in each 

subset – those that are present in both subsets, those that are absent in both subsets, those 

that are present in subset 1 and absent in subset 2, and vice versa. In a review of the 

proliferation of such coefficients and indices to describe similarities between sets, Brusco and 

colleagues used simulated data sets to show that the Jaccard coefficient and Rand index are 

highly correlated when the base rate (the rate of “presence”, number of “yes” responses) is high 

in the data set, which is intuitive.31 
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 For any “present/absent” determination in our analysis, the difference between the 

Jaccard coefficient and Rand index can be explained as follows. The Jaccard coefficient 

answers the question, “for all pairs in the data in which at least one rater determined ‘present,’ in 

how many pairs did both raters agree?” In contrast, the Rand index answers the question, “for 

all pairs in the data, in how many pairs did both raters agree either ‘present’ or ‘absent’?” With 

regards to the comorbidities included in SRAP, policymakers might be more interested in 

Jaccard coefficient if they are concerned primarily with agreement only when either rater 

determines the presence of the condition. Alternatively, the Rand index would be more 

appropriate if the concern is all forms agreement – in this case, both the presence and absence 

of the condition. The overlap between these similarity measures is shown in Figure 2. 

 

Figure 2: Comparison of Jaccard coefficient and Rand index 

Methods 

As briefly discussed in Chapter 1, this analysis is based on the pilot study performed at UCLA 

Health as part of the organization’s efforts to prepare for implementation of the SRAP. The 

study team recruited ninety-seven individuals as potential Triage Team members. Apart from 

one individual, all members of this group were clinically trained as a physician, registered nurse, 

and/or advanced practice provider. Excluding the non-clinician, this group formed the pool of 

Primary Users in assessment of patients admitted to an adult ICU between May 26, 2021, and 

June 30, 2021. The study team themselves formed the pool of Investigators from which the 

second rater was chosen. As previously mentioned, the Investigators were all physicians in 
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either pulmonary and critical care medicine or emergency medicine. The pools were 

compositionally distinct.  

Every day during this period, every patient in each of the six ICUs was scored by one 

Primary User using the TAT specifically designed for this purpose and previously discussed. All 

scorers were employed full-time in their roles, such that they performed patient scoring within 

the confines of their employment schedules. Due to staffing availability, some days had a 

combination of scorers for a given ICU, but each patient was scored by a single user. The 

Investigators performed an audit of this process by generating a score for four to five patients 

for each ICU every day. These numbers were chosen to achieve an audit sample representing 

fifteen percent of the triage encounters. The Primary User and Investigator were randomly 

assigned within the constraints of their availability, requested prior to the first day of scoring by 

the study team and continually updated throughout the study period as needed, with some 

resultant changes in assignment. In any situation in which the Investigator who was also a 

member of the Primary Users pool performed primary scoring, another Investigator performed 

the audit for that ICU on that day. We calculated that with 130 patient encounters scored by a 

Primary User and Investigator, we can estimate an ICC of 0.9 at an alpha level of 0.05 with a 

lower bound of 0.86. 

Data Collection and Preparation 

As previously described in the introductory chapter, REDCap was used to collect and store 

patient information for the reliability analysis. Five instruments were created to collect 

information for multiple planned studies – Demographics, Triage Tool Auditor, Triage Team 

Scores, Care Characteristics, and Social Vulnerability Index (SVI). Data for the present 

analyses were limited those collected from the first three instruments. Copies of all instruments 

used are included in Appendix E: Audit instruments used in reliability assessment.  
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For the audit process, each Investigator was tasked to independently review their 

assigned patients’ charts and input the requested information into REDCap via the 

Demographics and Triage Tool Auditor instruments. Each Investigator then reviewed the inputs 

of the Primary Users for each selected patient into the TAT and transcribed those inputs into 

REDCap via the Triage Team Scores instrument. As can be seen from the examples in the 

Appendix, the Triage Tool Auditor and Triage Team Scores instruments presented radio buttons 

for “present,” “absent,” and “could not determine” for the Investigators to select in assessing for 

the pre-existing comorbidities. There was no forced selection such that an Investigator could 

choose to select “absent” or leave all buttons unselected for a given comorbidity. This led to 

heterogeneity in the expression of absent comorbidities in the downloaded data between 0 

when “absent” was chosen and ‘NA’ when no selection was made. Review of the data entries 

found records in which the same patient had multiple entries of the Triage Team Scores 

instrument, with one entry containing 0 for several comorbidities and another entry containing 

‘NA’ for the same comorbidities. This led to the conclusion that no selection was made in cases 

of absent comorbidities. Additionally, the Policy states that, “in the absence of appropriate 

expertise … the patient is NOT docked for major comorbidities” – effectively giving patients 

benefit of the doubt to avoid potential error in lowering priority and withholding or withdrawing 

resources. Considering these facts, any comorbidity for which no selection was made or for 

which “could not determine” was selected was recoded as “absent.” 

Key Variables and Definitions 

In this analysis, we define two outcomes to understand agreement in determination of Triage 

Category. Our outcome of interest for the primary analysis is the Triage Category, which has 

been previously defined as an ordinal categorical variable with six levels. To allow for ICC 

calculation for this outcome, the Triage Categories were re-coded as a numerical ordinal 

variable, with Violet representing the highest priority coded as 6, Red coded as 5, Orange coded 
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a 4, Yellow coded as 3, Blue coded as 2, and Green coded as 1. The second outcome of 

interest is the presence of comorbidities. Based on the issues discussed in the Data Collection 

and Preparation subsection, each of the prespecified comorbidities were coded as 0 for “absent” 

or 1 for “present.”  

Based on observations in exploration of the data, we also decided to examine whether 

there was agreement on indication for ICU level of care, presence of an exemption criterion, or 

presence of a catastrophic condition. In other words, we determined the ICC specific to the 

Triage Categories Green, Violet, and Blue, respectively. For these analyses, a new variable was 

created for each encounter and set to 1 if the rater assigned to the Triage Category of interest 

and 0 otherwise. Table 2 summarizes the IRR or similarity statistic proposed for each part of the 

analysis in this chapter.  

Table 2: Summary of Outcome Variables and Statistics Used in Analyses 

Concern Variable(s) Type Values Statistic(s) 

Agreement in Triage 
Category determination 

Triage Category Ordinal / Categorical 

Violet (6), Red 
(5), Orange (4), 
Yellow (3), Blue 
(2), Green (1) 

Two-way random 
effects ICC, 
Cohen’s kappa 

Agreement in presence 
of ICU indication 

Triage Code Green Binary 

1 if Triage 
Category = 
Green, 
0 otherwise 

Jaccard coefficient, 
Rand index 

Agreement in presence 
of catastrophic condition 

Triage Code Blue Binary 
1 if Triage 
Category = Blue, 
0 otherwise 

Jaccard coefficient, 
Rand index 

Agreement in presence 
of exemption criterion 

Triage Code Violet Binary 

1 if Triage 
Category = 
Violet, 
0 otherwise 

Jaccard coefficient, 
Rand index 

Agreement in presence 
of comorbidities 

Comorbidities M1-
7, S1-7 

Binary 
1 if comorbidity 
present, 0 
otherwise 

Jaccard coefficient, 
Rand index 

 
Rater background was captured as a categorical variable with three values: ‘physician,’ 

‘nurse,’ or ‘advanced practice provider (APP)’. Each of the comorbidities were also captured as 

categorical variables, with values of ‘present’ or ‘absent.’ To examine the association of 

difference in rater background with difference in Triage Category determination, we define a 

new variable “Difference in Triage Category” both as a binary variable, with 0 representing no 
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difference and 1 representing any difference, and as a multilevel categorical variable in which 0 

again represents no difference, but we differentiate cases in which the Investigator assigned a 

lower priority Triage Category (variable takes on a value of 1) from cases in which the 

Investigator assigned a lower priority Triage Category (variable takes on a value of 2). The 

exposure variable, Difference in Rater Background, is a binomial variable which equals 0 if the 

raters are of the same background and 1 if they are not. A representative schematic of how 

these variables were analyzed is shown in Figure 3. 

 

Figure 3: Structure of data for reliability analyses 

Statistical Analysis 

The protocolization of the resource allocation process assumes reproducibility of results among 

a variety of users. By calculating the ICC for both Triage Category and presence of comorbid 

conditions, we formally assess this assumption with standardized statistical testing.24 

We examine the distribution of Triage Categories among the groups of Primary Users 

and Investigators and use pairwise chi-squared testing to determine differences in frequencies 

between the groups. Finally, we use two-way random effects ICC to define agreement between 

the two groups to account for a random subset of 2 raters from each pool evaluating n number 

of patients from the total cohort.32,33 Conclusions about clinical significance are adopted from 

guidelines based on review of prior literature, with ICC less than 0.4 indicating poor reliability, 

ICC between 0.4 and 0.59 indicating fair reliability, ICC between 0.6 and 0.74 indicating good 

reliability, and ICC 0.75 and greater indicating excellent reliability.34 We also examine Cohen’s 

kappa to compare conclusions from different testing methods. While the original study was not 

Difference in 

Triage Category
ComorbidityTriage Category

Difference in Rater 

Background
Rater BackgroundRater

Triage 

Encounter

1

2



 19 

designed to detect high IRR within patient subgroups, we calculate the ICC for Triage Category 

by race in an exploratory manner to identify potential associations of race with reliability.  

We repeat this approach using the prespecified comorbidities as the outcome of interest. 

Since comorbidities were assessed only for patients who were not assigned to the Green, 

Violet, or Blue Triage Categories, we limited the analyses for this outcome to patients assigned 

Red, Orange, or Yellow. We examine the rate of detection of comorbidities by Primary Users 

and Investigators and calculate two-way random effects ICC to define agreement. Given the 

binary nature of the outcome here, we compare the ICC to the Jaccard and Rand coefficients to 

compare conclusions from different methods of measuring agreement or similarity. We perform 

a similar subgroup analysis on Rand coefficients for comorbidities by racial groups to explore if 

comorbidity agreement differs significantly between these groups. 

Finally, we conduct both simple and multinomial logistic regressions of Difference in 

Triage Category on Difference in Rater background to determine any association between a key 

rater characteristic and determination of Triage Category. All analyses were conducted in R.35 

Results 

There were 296 total triage encounter scores generated by Primary Users and Investigators for 

130 unique patients. There was an asymmetry in the number of encounters scored by each 

group, reflecting missed encounters in the Primary Users group. Calculation of reliability 

statistics was limited to encounters scored by both a Primary User and an Investigator, of which 

there were 139. 

 Table 3 shows the baseline demographics of the patients represented in all encounters 

during the study period. The average patient was 61 years old, and the plurality of patients 

identified as White (43%). 33 percent of patients identified as of Hispanic or Latino ethnicity. The 

sample was almost evenly split between male and female gender. 
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Table 3: Demographic information of patients in study sample 

Patient Characteristics N (%)1 

Total Number of Unique Patients 130 

Age (Years), mean [SD] 62 [20] 

Race  

White 60 (46%) 

Black or African American 14 (11%) 

American Indian or Alaska Native 0 

Asian 14 (11%) 

Native Hawaiian or Other Pacific Islander 1 (0.8%) 

Mixed 0 

Other 39 (30%) 

Decline or Missing 2 (1.5%) 

Ethnicity  

Hispanic or Latino 37 (28%) 

Not Hispanic or Latino 91 (70%) 

Decline or Missing 2 (1.5%) 

Gender  

Male 70 (54%) 

Female 60 (46%) 

Other/Decline 0 

Missing 0 
1Unless otherwise specified 

 
The demographic information for the rater types is shown in Table 4. Investigators were 

all physicians within critical care, of either Black or White race, majority still in training, and 

almost evenly split by gender. Primary Users, on the other hand, were majority female, mostly 

nurses within critical care, majority White or Asian, and had several years’ experience. 

Table 4: Demographics of raters by type 

 
Raters 
N (%) 

Demographic 
Primary Users 

N = 97 
Investigators 

N= 5 
All 

N = 102 

Gender    

Female 68 (70.1%) 2 (40%) 70 (68.6%) 

Male 25 (25.8%) 3 (60%) 28 (27.5) 

Other 1 (1%) 0 1 (1%) 

Missing 3 (3%) 0 3 (2.9%) 

Role    

Advanced Practice Provider 3 (3.1%) 0 (0%) 3 (2.9%) 

Physician 21 (21.6%) 5 (100%) 26 (25.5%) 

Registered Nurse 70 (72.2%) 0 70 (68.6%) 

Something else 2 (2.1%) 0 2 (2%) 

Missing 1 (1%) 0 1 (1%) 

Specialty Group    

Critical Care 94 (96.9%) 5 (100%) 99 (97.1%) 

Unknown 3 (3.1%) 0 3 (2.9%) 

Race    

American Indian or Alaska Native 1 (1%) 0 6 (5.9%) 

Asian  38 (39.2%) 0 42 (41.2%) 

Black or African American 4 (4.1%) 2 (40%) 1 (1%) 
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Raters 
N (%) 

Demographic 
Primary Users 

N = 97 
Investigators 

N= 5 
All 

N = 102 

White or Caucasian 39 (40.2%) 3 (60%) 38 (37.3%) 

Mixed 4 (4.1%) 0 4 (3.9%) 

Missing 11 (11.3%) 0 11 (10.8%) 

Ethnicity    

Hispanic, Latinx, or Spanish origin 6 (6.2%) 0 6 (5.9%) 

Non-Hispanic, Latinx, or Spanish origin 81 (83.5%) 5 (100%) 86 (84.3%) 

Prefer not to answer 6 (6.2%) 0 6 (5.9%) 

Missing 4 (4.1%) 0 4 (3.9%) 

Education    

Academic Doctorate degree 4 (4.1%) 1 (20%) 5 (4.9%) 

Associate degree 4 (4.1%) 0 4 (3.9%) 

Bachelor's degree 51 (52.6%) 0 51 (50%) 

Master's degree 17 (17.5%) 0 17 (16.7%) 

Professional School degree 18 (18.6%) 4 (80%) 22 (21.6%) 

Missing 3 (3.1%) 0 3 (2.9%) 

Years of Training/Experience    

≤2 5 (5.2%) 1 (20%) 6 (5.9%) 

3-5 21 (21.6%) 1 (20%) 22 (21.6%) 

6-10 16 (16.5%) 0 16 (15.7%) 

10-20 33 (34%) 0 33 (32.4%) 

≥21 14 (14.4%) 0 14 (13.7%) 

I am still in training 5 (5.2%) 3 (60%) 8 (7.8%) 

Missing 3 (3.1%) 0 3 (2.9%) 

 
The frequency of Triage Categories by rater type is shown in Table 5 and a histogram 

demonstrating the distributions for each group is shown in Figure 4. Pairwise chi-squared tests 

showed that the distributions were significantly different. Primary Users were more likely to 

determine that a patient had an exemption criterion while Investigators tended to assign higher 

Triage Categories for patients without exemptions or catastrophic conditions. 

Table 5: Frequency of Triage Category by Rater Type 

 Outcome 
Number of Patient Encounters 

N (%) 
p-value1 

 Triage Category 
Primary Users 

N = 139 
Investigators 

N = 139 
All 

N = 278 
< 0.001 

Need for ICU Green 8 (5.8%) 5 (3.6%) 13 (4.7%)  

Exemption Criteria Violet 14 (10%) 4 (2.9%) 18 (6.5%)  

Catastrophic Conditions Blue 4 (2.9%) 2 (1.4%) 6 (2.2%)  

Acute Illness + 
Comorbidities 

Red 40 (29%) 58 (42%) 98 (35%)  

Orange 26 (19%) 51 (37%) 77 (28%)  

Yellow 42 (30%) 16 (12%) 58 (21%)  

 
Code Not Calculated / 

Missing 
5 (3.6%) 3 (2.2%) 8 (2.9%)  

1Represents results of pairwise Pearson’s chi-squared tests between groups 
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Figure 4: Histogram of Triage Categories by Rater Type 

The number of patients in which a given comorbidity was marked present and the 

corresponding percentage of total patients by rater type is shown in Table 6 and a bar chart 

depicting detection rates for each rater group is shown in Figure 5. Rates of detection were low 

across both groups, ranging from 0 to 14 percent. Pairwise chi-squared tests showed that the 

rate of detection of each of the comorbidities did not differ by rater type. 

Table 6: Rate of detection of pre-specified comorbidities by rater type 

Outcome 
Number of Patient Encounters 

N (%) 
p-value1 

 
Primary Users 

N = 139 
Investigators 

N = 139 
All 

N = 278 
 

Major Comorbidities     

Pre-existing neurological condition (dementia, 
stroke, other neurodegenerative disease) with 

baseline modified Rankin Score >= 4 
4 (2.9%) 8 (5.8%) 12 (4.3%) 0.4 

ACC/AHA Stage C heart failure, NYHA Class 
II-IV 

16 (12%) 18 (13%) 34 (12%) 0.9 

Severe, inoperable multi-vessel coronary 
artery disease or valvular disease 

1 (0.7%) 3 (2.2%) 4 (1.4%) 0.6 

WHO Class 3 pulmonary hypertension 
(symptomatic with minimal exertion, 

asymptomatic only at rest) 
5 (3.6%) 6 (4.3%) 11 (4.0%) > 0.9 

Moderately severe chronic lung disease (e.g., 
COPD, IPF) but not requiring chronic oxygen 

or ventilation 
1 (0.7%) 3 (2.2%) 4 (1.4%) 0.6 

End-stage renal disease on dialysis 14 (10%) 14 (10%) 28 (10%) > 0.9 

Cirrhosis with MELD < 20 and history of prior 
decompensation 

4 (2.9%) 4 (2.9%) 8 (2.9%) > 0.9 

Severely Life-Limiting Comorbidities     

0
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Outcome 
Number of Patient Encounters 

N (%) 
p-value1 

 
Primary Users 

N = 139 
Investigators 

N = 139 
All 

N = 278 
 

Minimally conscious or unresponsive wakeful 
state from prior neurological injury 

0 0 0 N/A 

ACC/AHA Stage D heart failure 12 (8.6%) 14 (10%) 26 (9.4%) 0.8 

WHO Class 4 pulmonary hypertension 6 (4.3%) 6 (4.3%) 12 (4.3%) > 0.9 

Severe chronic lung disease with FEV1 < 20% 
predicted, FVC < 35% predicted, or in the 

absences of PFTs, chronic home O2 at rest or 
mechanical ventilation 

19 (14%) 19 (14%) 38 (14%) > 0.9 

Cirrhosis with MELD score ≥ 20 14 (10%) 13 (9.4%) 27 (9.7%) > 0.9 

Metastatic cancer with expected survival ≤ 1 
year despite treatment OR refractory 
hematologic malignancy (resistant or 

progressive despite conventional initial 
therapy) 

4 (2.9%) 4 (2.9%) 8 (2.9%) > 0.9 

Terminal illness with Clinical Frailty Scale 
Score ≥ 8 

0 2 (1.4%) 2 (0.7%) 0.5 

 

 

Figure 5: Bar Chart of Comorbidity Detection Rate by Rater Type 

Results for the primary analysis are shown in Table 7. The ICC for Triage Category was 

0.37, indicating poor reliability. While the study was not powered to determine excellent 

reliability for the three levels shown, these are included as an exploratory analysis given the 

results from the main analysis. Table 8 shows the IRR as measured by the ICC and Cohen’s 

kappa for the Triage Category outcome. While conclusions about statistical significance cannot 

be drawn about the difference between the measurements, the data suggest that agreement is 

similar as assessed by the two measurements. 
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Table 7: Intraclass correlation coefficients for all Triage Categories and special populations 

 Intraclass Correlation Coefficient (ICC) 

Triage Category Estimate 95% CI (Lower, Upper) 

All 0.37 0.22, 0.50 

Green 0.50 0.37, 0.62 

Blue 0.31 0.16, 0.46 

Violet 0.33 0.18, 0.47 

 
Table 8: Interrater reliability measures for Triage Category 

IRR Measurement Estimate 95% CI (Lower, Upper) 

ICC 0.37 0.22, 0.50 

Cohen’s Kappa 0.32 0.21, 0.42 

 
Results for the subgroup analysis of interrater reliability by patient racial group are shown in 

Table 9. While conclusions about statistical significance cannot be drawn with regards to the 

differences in these estimates, these point estimates range from poor to good reliability. 

Table 9: Intraclass correlation coefficients for Triage Category by patient racial group 

  Interrater Reliability for Triage Category 

Race N1 ICC 95% CI (Lower, Upper) 

White 58 0.33 0.08, 0.63 

Asian 14 0.64 0.21, 0.53 

Black or African American 15 0.24 0, 0.65 

Native Hawaiian or  
Other Pacific Islander 

2 0 0, 0.99 

Other 49 0.40 0.13, 0.61 
1Represents number of matched observations per rater type such that 2N is total number of observations included in analysis 

 
Interrater reliability and similarity statistics for each of the pre-specified comorbidities identified 

for assessment in the SRAP are shown in Table 10 and Table 11.  

Table 10: Intraclass correlation coefficients for all pre-specified comorbidities 

 Intraclass Correlation Coefficient (ICC) 

Outcome Estimate 95% CI (Lower, Upper) 

Major Comorbidities   

Pre-existing neurological condition (dementia, stroke, 
other neurodegenerative disease) with baseline 

modified Rankin Score >= 4 
0.66 0.55, 0.74 

ACC/AHA Stage C heart failure, NYHA Class II-IV 0.47 0.33, 0.59 

Severe, inoperable multi-vessel coronary artery 
disease or valvular disease 

0.50 0.36, 0.61 

WHO Class 3 pulmonary hypertension (symptomatic 
with minimal exertion, asymptomatic only at rest) 

0.72 0.63, 0.79 

Moderately severe chronic lung disease (e.g., COPD, 
IPF) but not requiring chronic oxygen or ventilation 

0 0, 0.17 

End-stage renal disease on dialysis 0.76 0.68, 0.82 

Cirrhosis with MELD < 20 and history of prior 
decompensation 

0.83 0.77, 0.88 

Severely Life-Limiting Comorbidities   

Minimally conscious or unresponsive wakeful state 
from prior neurological injury 

N/A N/A 
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 Intraclass Correlation Coefficient (ICC) 

Outcome Estimate 95% CI (Lower, Upper) 

ACC/AHA Stage D heart failure 0.75 0.66, 0.81 

WHO Class 4 pulmonary hypertension 0.90 0.86, 0.93 

Severe chronic lung disease with FEV1 < 20% 
predicted, FVC < 35% predicted, or in the absences of 

PFTs, chronic home O2 at rest or mechanical 
ventilation 

0.58 0.45, 0.68 

Cirrhosis with MELD score ≥ 20 0.88 0.83, 0.91 

Metastatic cancer with expected survival ≤ 1 year 
despite treatment OR refractory hematologic 
malignancy (resistant or progressive despite 

conventional initial therapy) 

0.74 0.66, 0;81 

Terminal illness with Clinical Frailty Scale Score ≥ 8 0 -0.16, 0.16 

 
Table 11: Alternative similarity statistics for all pre-specified comorbidities 

 Similarity Statistic 

Outcome Jaccard Coefficient Rand Index 

Major Comorbidities   

Pre-existing neurological condition (dementia, stroke, 
other neurodegenerative disease) with baseline 

modified Rankin Score >= 4 
0.5 0.96 

ACC/AHA Stage C heart failure, NYHA Class II-IV 0.36 0.77 

Severe, inoperable multi-vessel coronary artery 
disease or valvular disease 

0.33 0.98 

WHO Class 3 pulmonary hypertension (symptomatic 
with minimal exertion, asymptomatic only at rest) 

0.57 0.94 

Moderately severe chronic lung disease (e.g., COPD, 
IPF) but not requiring chronic oxygen or ventilation 

0 0.93 

End-stage renal disease on dialysis 0.64 0.89 

Cirrhosis with MELD < 20 and history of prior 
decompensation 

0.6 0.96 

Severely Life-Limiting Comorbidities   

Minimally conscious or unresponsive wakeful state 
from prior neurological injury 

N/A 1 

ACC/AHA Stage D heart failure 0.63 0.91 

WHO Class 4 pulmonary hypertension 0.71 0.98 

Severe chronic lung disease with FEV1 < 20% 
predicted, FVC < 35% predicted, or in the absences 

of PFTs, chronic home O2 at rest or mechanical 
ventilation 

0.46 0.80 

Cirrhosis with MELD score ≥ 20 0.8 0.94 

Metastatic cancer with expected survival ≤ 1 year 
despite treatment OR refractory hematologic 
malignancy (resistant or progressive despite 

conventional initial therapy) 

0.6 0.98 

Terminal illness with Clinical Frailty Scale Score ≥ 8 0 0.98 

 
The Rand index reflecting assessment similarities for each pre-specified comorbidity by patient 

racial group are shown in Table 12. 

Table 12: Rand index for all pre-specified comorbidities by patient race 

 Rand Index 

Outcome White Asian Black NHPI Other 

Major Comorbidities      



 26 

 Rand Index 

Outcome White Asian Black NHPI Other 

Pre-existing neurological condition (dementia, 
stroke, other neurodegenerative disease) 
with baseline modified Rankin Score >= 4 

0.95 1 0.82 1 1 

ACC/AHA Stage C heart failure, NYHA Class 
II-IV 

0.74 0.82 1 1 0.71 

Severe, inoperable multi-vessel coronary 
artery disease or valvular disease 

0.95 1 1 1 1 

WHO Class 3 pulmonary hypertension 
(symptomatic with minimal exertion, 

asymptomatic only at rest) 
0.90 1 1 1 0.95 

Moderately severe chronic lung disease (e.g., 
COPD, IPF) but not requiring chronic oxygen 

or ventilation 
0.95 0.82 1 1 0.90 

End-stage renal disease on dialysis 0.90 1 1 1 0.82 

Cirrhosis with MELD < 20 and history of prior 
decompensation 

0.95 1 1 1 0.95 

Severely Life-Limiting Comorbidities      

Minimally conscious or unresponsive wakeful 
state from prior neurological injury 

1 1 1 1 1 

ACC/AHA Stage D heart failure 0.82 1 1 1 0.95 

WHO Class 4 pulmonary hypertension 0.95 1 1 1 1 

Severe chronic lung disease with FEV1 < 
20% predicted, FVC < 35% predicted, or in 
the absences of PFTs, chronic home O2 at 

rest or mechanical ventilation 

0.90 0.67 0.82 1 0.71 

Cirrhosis with MELD score ≥ 20 0.90 0.82 1 1 1 

Metastatic cancer with expected survival ≤ 1 
year despite treatment OR refractory 
hematologic malignancy (resistant or 

progressive despite conventional initial 
therapy) 

1 1 1 1 0.95 

Terminal illness with Clinical Frailty Scale 
Score ≥ 8 

0.95 1 1 1 1 

 
Results for simple and multinomial logistic regressions are shown in Table 13 and Table 14, 

respectively. 

Table 13: Logistic Regression Results for Difference in Rater Background and Any Difference in Triage Category 

 Coefficient p-value 

Intercept 1.3041 < 0.001 

Difference in Rater Background -0.7062 0.121 
1Represents results of Wald test at 𝛼 = 0.05, less than or equal to 0.05 considered significant 

 
Table 14: Logistic Regression Results for Difference in Rater Background and Difference in Triage Category 

Determination 

 No Difference 
Investigator Lower Investigator Higher 

Coefficient p-value1 Coefficient p-value1 

Intercept 

Reference 

0.4568 0.119 0.7444 0.007 

Difference in Rater 
Background 

-0.6574 0.220 -0.7444 0.143 

1Represents results of Wald test at 𝛼 = 0.05, less than or equal to 0.05 considered significant 
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Discussion 

Determining Triage Category and Presence of Comorbidities 

The results of this study suggest overall that the SRAP demonstrates poor reliability in guiding 

determination of resource allocation priority. This is first evident in the distribution of Triage 

Categories as visualized in Figure 4. The p-value of less than 0.001 from the Omnibus test for 

differences in any of the ratings further suggests that these distributions are significantly 

different and that the two groups in the study differently determined Triage Category for a given 

patient. The similarity between the ICC and Cohen’s kappa calculations further supports the 

conclusions drawn. The study was not powered to detect differences in ICC in race subgroup 

analyses, and extreme caution should be taken in interpreting any such results given the small 

number of observations in most of the groups. However, the large range of the estimates 

encompassing the five subgroups (0 to 0.64) is worthy of attention in future studies.  

 While the policy demonstrated poor reliability in determination of Triage Category, the 

results for the pre-specified comorbidities were more promising. The exploratory comparison of 

detection rates across comorbidities argues against this being a likely cause of differences in 

Triage Category determination and is supported by the subsequent analyses. Even the ICC 

values, arguably the least accurate statistic for measuring similarity in these cases, are 

noticeably higher for the comorbidities than for the Triage Category. The Jaccard coefficients 

and Rand indices for each comorbidity are lower and higher, respectively, than the ICC. This is 

likely because the Jaccard coefficient systematically ignores all cases in which both raters 

determined that a comorbidity was absent, removing the same quantity from both the numerator 

and denominator of the measure thereby reducing the value compared to the Rand index. 

 Given primary concern for agreement, as opposed to accuracy, we did not define a “gold 

standard” measurement. In doing so, we suggest that establishing agreement if sufficient to 

support policy use, but it should be noted that raters might agree on the “wrong” allocation 
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decision. It is a separate but worthwhile question to ask how well a random group of raters 

might correctly determine allocation priority according to an identified standard.   

Choosing the Appropriate Similarity Measure 

With regards to which measure is more appropriate, this is dependent on whether negative or 

absence matches are of importance to the policy implementers. One might argue that focusing 

on positive matches, those in which both raters agree that a comorbidity is present, allows the 

policymakers to emphasize reliability in the aspects of the policy that systematically lower a 

patient’s priority for resources, recalling that the presence of any comorbidity adds at least two 

points to the Triage Allocation Score, potentially lowering the Triage Category. In this case, the 

Jaccard coefficient would be the appropriate measure of reliability. On the other hand, one could 

argue that both positive and negative matches are important because the combination of these 

represent pure agreement – regardless of direction. Agreeing on absence of a comorbidity gives 

a patient a relative advantage in the prioritization process, so it seems reasonable to determine 

whether raters agree that this advantage should be conferred. In this case, the Rand index is 

more appropriate. 

Relationship between Rater Background and Reliability 

Finally, the results of the logistic regression further suggest poor reliability in determination of 

the primary outcome, Triage Category. Turning to the results shown in Table 13, the probability 

of a difference in Triage Category is quite high at baseline, which in the context of this analysis 

refers to no difference in rater background and is represented by the intercept in the regression. 

This intercept, which was statistically significant, corresponds to an odds ratio of 3.68, which 

translates to a probability of 78.6 percent that two physicians would assign a different Triage 

Category to a given patient. This high probability of disagreement among two raters of the same 

background is particularly concerning when compared to the probability of disagreement given 

random chance. With six Triage Categories for each rater to choose from, there exists 36 
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possible combinations of Triage Categories. There are six combinations that represent 

agreement in Triage Category, and thus the probability that the raters agree is 
6

36
 or 16.7 

percent. The probability of disagreement is then 1 minus this value, or 83.3 percent, which falls 

within the 95% confidence interval of the probability estimate from the logistic regression. This 

analysis suggests that the use of the SRAP does not significantly improve the probability of 

disagreement among two raters of the same background compared to chance alone. 

While the p-value for the coefficient for difference in rater background did not meet 

criteria for statistical significance, the results are perplexing in that the negative coefficient 

suggests that a difference in rater background reduces the likelihood of a difference in Triage 

Category determination. In this case, the odds ratio for difference in rater background is 1.82, 

which corresponds to a 64.5 percent probability in difference in Triage Category determination 

when the raters come from different professional backgrounds.  

Implications 

This analysis is the first work to our knowledge to examine the reliability of a resource allocation 

policy among a trained group of users in deciding allocation priority. Furthermore, this work 

analyses a key component of an allocation policy in determination of this priority as well as 

patient and rater factors that might influence these determinations. The study was designed to 

detect high interrater reliability with adequate power. In addition, our study considers multiple 

measures of reliability that might be of interest in the application of such policies. While ICC is 

an appropriate measure for the Triage Category outcome, the robustness of the estimate is 

supported by similar results in the calculation of Cohen’s kappa. The data supporting the study 

was largely complete and missingness was negligible in the variables and outcomes of interest. 

With regards to reliable assessment of the Comorbidities, our analyses highlight the 

importance of defining reliability. While the Jaccard coefficient is commonly used to assess 

similarity in binary traits, its definition ignores the agreement in the absence of such traits. The 
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Rand index, on the other hand, measures agreement in both the absence and presence of such 

traits. In this sense, the Rand index may be more informative in the assessment of reliability for 

our purposes. This is particularly compelling in the assessment of the SRAP’s prespecified 

comorbidities. In the example of Comorbidity M5, the Jaccard coefficient communicates that 

there is no agreement among raters in the presence of “moderately severe chronic lung disease 

(e.g., COPD, IPF) but not requiring chronic oxygen or ventilation.” Reasons for such poor 

agreement could be that the SRAP does not more explicitly define the parameters needed to 

mark the Comorbidity as “present,” thus leaving room for variable interpretation. The Rand index 

of 0.94 for the same Comorbidity, on the other hand, would suggest that users mostly agree on 

whether this Comorbidity is present or absent in each patient. These seemingly incongruent 

results are explained by the fact that there are no positive matches for Comorbidity M5 and only 

four of the 139 observations represent mismatches, such that the high Rand index is driven by 

agreement in the absence of Comorbidity M5. Low Jaccard coefficients might support the notion 

that poor agreement among the Comorbidities impacts the overall agreement in Triage 

Category. However, the high Rand indices, reflecting agreement among users regarding both 

the presence and absence of the Comorbidities, suggest that they are less likely to explain the 

overall poor reliability of the SRAP in determining Triage Category. 

Limitations  

Regarding threats to validity, this study has a few limitations. In the initial design, the 

Investigator group, who served as auditors, was limited in size and variety as compared to the 

Primary Users. There was no variation in role, and several raters in this group were still in 

training at the time of the study. This small size limits the external validity of our findings as it is 

possible that the distribution of ratings in the Investigator pool is due to individual raters in this 

pool rather than due to true differences in application of the SRAP. Additionally, the 

homogeneous nature of the Investigator group constrains our conclusions about the impact of 
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rater background on Triage Category determination to physician-non-physician comparisons. 

With regards to type of clinical experience, there was minimal representation of non-critical care 

backgrounds among all raters. While this is likely desirable by those implementing the policy 

(and to an extent explicitly called for by the policy), this limits the ability to assess the impact of 

critical care experience on differences in Triage Category determination. From the author’s 

experience as a study participant, we know that different clinical roles are presented with user 

interfaces in the EMR unique to those roles, which may have impacted the accessibility of 

information necessary for the Triage Category determination. Additionally, certain providers are 

more likely to access certain types of clinical information more regularly – for example, 

physicians are more likely to know where to find pulmonary function testing data, which is 

necessary for determining the presence of Comorbidity S4. Such differences in workflow may 

have consequently affected reliability assessments. 

As mentioned in the Data Collection and Preparation section, the instruments used led 

to heterogenous expression of “absent” comorbidities, which we handled by coding all non-

responses as “absent.” While this could in theory lead to inaccurate analysis of the data, this is 

such recoding is unlikely to misrepresent the actual conclusions drawn by the raters, as we 

would expect that detection of any individual comorbidity would be marked as “present.”  

In our study, the SRAP was operationally implemented via the TAT in the electronic 

medical record. While this greatly facilitated data collection and determination of Triage 

Category for allocation purposes, the use of the TAT is, to our knowledge, available only in our 

institution and thus limits the ability to replicate this experiment in other study settings. 

Moreover, our study does not allow us to assess how the automation of the process via the TAT 

impacts the reliability of the SRAP, but one would suspect that such automation would reduce 

random user error and improve reliability. 

 The following chapter focuses on expected mortality outcomes as a function of the 

prioritization decisions guided by the SRAP using simulation methods.  
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Chapter 3: Evaluating the Impact of the Scarce Resource 

Allocation Policy on Population Mortality Using Simulation 

Methods 

Background and Hypotheses 

Resource Allocation Policies in Societal Context 

The SEIR model, a popular framework in epidemiology was first described in 1927 as a 

mathematical model to better understand the spread of diseases.21 The model commonly 

divides a given population into four stages: susceptible, exposed (not included in the original 

description), infected, and recovered. More recently, this model has been foundational to 

understand the spread of COVID-19 in varying distinct populations around the world. 

Inthamoussou and colleagues extended the framework in a simulation analysis to provide data 

to Argentinian policymakers in decisions around vaccination and reopening policies.22 Shin 

modified the model to incorporate death rates and used it in a multi-stage process to more 

accurately predict the progress of the pandemic in Korea.23  

 As the UC SRAP strictly dictates the allocation of critical care resources within a hospital 

setting, its scope can be considered limited to the space between the “infected” stage, 

representing those individuals who require hospitalization and evaluation for critical care 

resources, and the “recovered” stage. Some individuals may not require hospitalization and thus 

may not be at all affected by implementation of this policy. This concept is visually described in 

Figure 6. The inset diagram provides the framework for the simulation-based analysis of the UC 

SRAP that is described in this chapter. 
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Figure 6: Modified SEIR framework contextualizing role of resource allocation policies 

Simulation in Scarce Resource Allocation 

A challenge in designing studies on the impact of resource allocation policies on population 

outcomes is their implementation. A trial of the policy would require enacting a proposed policy 

in one setting while continuing standard practice in another setting with similar resources and 

patients. An alternative design is recording outcomes prior to implementation for a determined 

period, followed by an observation of outcomes under implementation of the policy, followed 

again by a period of observation with de-implementation of the policy, in an ABA design. These 

designs have ethical as well as practical considerations. Simulation methods offer a practical 

investigative solution to a complex clinical and operational problem.  

Kreke and colleagues encourage expanded use of simulation modeling in critical care, 

with a focus on three types of simulation methods.36 Simulated decision models in critical care 

have relied heavily on state-transition cohort models, such as Markov models.36 These models 

have some applicability in critical care but require limiting assumptions about transitions through 

future states, namely that such transitions do not depend on prior states. Additionally, Markov 

models are cohort-oriented and do not allow the simulator to incorporate attributes to specific to 
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the individuals in the cohort in the analysis of outcomes. Discrete-event simulation includes 

individual attributes for more robust modeling. This involves greater data requirements and 

increased computational time and increases the risk of model overspecification.37 

 Existing simulation studies lack the richness or responsiveness to the question posed in 

this study. Recent simulation studies examining resource allocation policies on outcomes in 

critically ill patients have been concerned with a limited scope of critical care resources (e.g., 

ventilators) or patient populations (e.g., patients diagnosed with COVID-19) or lacked real-world 

data to compare with model output. Most have used Monte Carlo simulation which limits the 

generalizability of their findings.  

 For example, Bhavani and colleagues recently studied four distinct ventilator allocation 

protocols among critically ill patients with COVID-19, using Monte Carlo methods to simulate 

reduction in ventilator capacity by 50 percent and recording allocation to the patient with a 

higher priority score under each protocol based on static data. Their conclusions about the 

impact of these policies are limited by the population of interest, the lack of standardized 

indications for mechanical ventilation, and the inability to account for the evolving illness history 

for individual patients that might lead to dynamic changes in allocation priority.38In a more recent 

publication evaluating the impact of implementation of the proposed resource allocation policy in 

the state of Massachusetts, Riviello et. al. examine the expected outcomes from policy 

implementation on expected mortality and racial disparities from a retrospective cohort of 

patients from six Boston hospitals.39 Similar to the UC SRAP, the Massachusetts guidelines use 

a multi-principle strategy based on SOFA scores and assessments of comorbidities, although 

operationalization of the latter component was modified in April 2020 to reflect assessment of 

near-term mortality (five years versus one year).40 Their analysis included only patients for 

whom priority scores were completed during their admission, limiting their ability to reliably 

assess the impact of the proposed policy. Unlike the Bhavani study, their analysis included all 

patients admitted to the ICU, but again, their resource allocation concern was limited to 
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mechanical ventilation. Finally, their method for simulating resource constraint assumed 

availability of resources for all patients within a priority group, as they chose to constrain by 

simulating allocation of ventilator to all patients above a priority score threshold and to no 

patients below that threshold. This more closely resembles a Markov model, considering 

cohorts within a cohort, which prevents experimental handling of the possibility that patients of 

equal priority may compete for limited resources. 

 Microsimulation leverages the state-based transition modeling of Markov models but 

relaxes the limiting assumptions and simulates individual trajectories for patient cohorts to more 

accurately assess the impacts of policies and interventions on heterogenous populations.41 

Krijkamp and colleagues modified the Sick-Sicker model (Figure 7), originally proposed by Enns 

and colleagues, to build a microsimulation model to understand cost-effectiveness related to 

treatment of a disease.41,42 In the figure, the circles represent transition states, the collectively 

exhaustive set of conditions representing patients in the system, and the arrows represent 

transition probabilities, the probability that patients transition from one state to another.  

 

Figure 7: Sick-Sicker simulation model modified by Krijkamp et. al. 
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Krijkamp and colleagues use microsimulation (as an intermediary in calculating a cost-

effectiveness value) to understand individual and cohort outcomes with determined transition 

probabilities. Microsimulation models define mutually exclusive and exhaustive transition states 

– in other words, the transition states in the model are the only states in which patients can 

exist, and patients can only occupy one state at a time. The transition state model used in our 

microsimulation, based on the microsimulation used by Krijkamp and colleagues, is shown in 

Figure 7, and the definitions of each transition state are summarized in Table 17. 

 

Figure 8: Microsimulation states 

In evaluating the implementation of resource allocation policies such as the SRAP, researchers 

acknowledge that the transition probabilities are not known a priori. The microsimulation model 

offers a framework by which we might understand how these transition probabilities, which 

represent likelihood of resource allocation or mortality from withholding of resources, vary by 

patient or policy factors. 

Conceptual Framework 

The SRAP aims to maximize lives saved by allocating critical care resources using an algorithm 

to identify patients who are most likely to benefit from such resource allocation. A proposed 

framework depicting the relationship between the Policy, the allocation outcome, and mortality is 
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shown in Figure 9. This framework incorporates Patient Characteristics as possible co-variates 

in the model (denoted by the dashed arrow). 

 

Figure 9: Conceptual framework relating SRAP to ICU mortality 

Methods 

Data Collection and Preparation 

The data for this study was obtained from the institution’s electronic health record. The 

population of interest included all patients aged 18 years and older admitted to an adult ICU 

between May 26 and August 1, 2021. Data types included patient demographics, patient 

identifiers, encounter information, hospital unit information, encounter diagnoses, procedures 

completed, problem lists, vital signs and other flowsheet data, laboratory test results, medication 

orders or administration, and social history. A more detailed description of these data can be 

found in Appendix F: Medical Record Data Fields and Dictionary. 

In the study, each ICU was assigned a Triage Officer to complete scoring for every 

patient in the unit (Chapter 2 describes this method). Team members were encouraged to 

complete the scoring early in the day although the demands of clinical duties resulted in scoring 

taking place throughout the day. 

The Patient Demographics, Patient Identifiers, and Triage Allocation flowsheets were 

merged by the unique ‘IP_Patient_ID’ variable. Patients were re-scored every 72 hours except 
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in the event of resolved need for ICU, development of an exemption, or development of a 

catastrophic condition. As such, during the data collection, many patients were in an ICU and 

had study days without a Triage Category filed. Any patient who did not meet the exceptions 

previously stated was assumed to have the same Triage Category, effectively carrying forward 

the most recent Triage Category determination until the next known value as shown in Figure 

10. This resulted in a master dataset of 3773 triage encounters for 974 unique patients over 68 

study days. We excluded any patient for whom a Triage Category could not be determined at 

any time during the study. This resulted in a simulation dataset of 3626 triage encounters for 

963 unique patients as shown in Figure 11. 

 

Figure 10: Diagram showing triage category data completion for sample ICU patients 

 

Figure 11: Inclusion and exclusion diagram for microsimulation study cohort 

Key Variables and Definitions 

The simulation examines how mortality is impacted by the level of constraint on critical care 

resources. We tested two definitions of cohort mortality. In one model, cohort mortality is 

Study Day

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

Patient A

Patient B

Patient C EXPIRED

Patient D

SOLID Triage Category directly filed

SHADED Triage Category filled in from prior known value
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represented by the expired fraction, a continuous variable between 0 and 1, measuring the 

fraction of times in the simulation that a patient expires. In another model, cohort mortality is 

represented by the expired count, a count variable measuring the number of times that a patient 

expires in the simulation. 

 Patient Characteristics are demographic variables that were available in the medical 

record. These include age, a continuous integer variable; sex, a binary categorical variable; and 

race, ethnicity, marital status, sexual orientation, gender identity, and language, all categorical 

variables. Variable values were defined from the unique values extracted from those fields in the 

medical record. Race, ethnicity, marital status, sexual orientation, gender identity, and language 

were recoded to facilitate interpretation of analyses.  

 Policy Criteria include illness severity and comorbidity. The “objective measure of acute 

illness severity” is summarized by the SOFA Component, which is determined by the uSOFA 

score at the time of evaluation. SOFA Points takes on an integer value between 1 and 4. The 

“co-occurring conditions that moderate mortality” are summarized by the Comorbidity 

Component, which is determined by the presence of one or more prespecified comorbidities. 

Comorbidity Component takes on a value of 0, 2, 4, or Unknown/Unavailable. All variables, their 

recoded values, and their relationships to each other are summarized in Table 15. 

Table 15: Summary of Exposure and Outcome Variables 

 Variable Type Values 

Outcome 

Mortality   

Expired fraction Continuous 0 – 1  

Expired count Count 1 – 1000 

Exposure 

Patient Characteristic   

Age Continuous  

Sex Binary Categorical Female, Male 

Race Categorical 

White or Caucasian, Black of African 
American, Asian, Native Hawaiian or 
Other Pacific Islander, Middle Eastern or 
North African, American Indian or Alaska 
Native, Do Not Identify, Other, Unknown 

Ethnicity Categorical 
Hispanic/Latino, Not Hispanic Latino, 
Other, Unknown 

Marital Status* Categorical Partnered, Not Partnered, Unknown 

Sexual Orientation* Categorical 
Straight, Lesbian or Gay, Bisexual, Other, 
Unknown 
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 Variable Type Values 

Gender Identity* Categorical 
Male, Female, Transgender Male, 
Unknown 

Language Categorical English, Non-English, Unknown 

Policy Criteria   

SOFA Component Integer 1 – 4 

uSOFA score Integer 0 – 24 

Comorbidity Component Nominal 

0, 2 (if any present from Comorbidities 
M1-7), 4 (if any present from 
Comorbidities S1-8), 
Unknown/Unavailable 

Comorbidities M1-7 Binary 0 (Absent), 1 (Present) 

Comorbidities S1-8 Binary 0 (Absent), 1 (Present) 
*Represents data included in the medical record but excluded from regression models 

 

Simulation Methods 

Our microsimulation model simulates the policy effects by constraining the number of ICU beds 

that are available daily. Policymakers might think in terms of constraints or in terms of excess 

demand. The constraint levels and the excess demand that the constraints are equivalent to in 

the simulation are described in Table 16. We apply the Policy in the model by allocating ICU 

beds as the policy dictates and recording these allocations as outcomes. 

Table 16: Simulation Scenarios 

Constraint Level Bed Reduction Excess Demand 

Base None None 

Moderate 50% 2-fold increase in patients 

Severe 67% 3-fold increase in patients 

Extreme 75% 4-fold increase in patients 

 
Table 17: Definition of Microsimulation Transition States 

Transition State Definition 

Hospital 
Initial state for all patients, may include Green patients who do not meet criteria 
for ICU resource allocation 

ICU Patients who are allocated ICU resources 

Out Patients who are removed from ICU 

Expired Absorbing state, patients who died in simulation 

 
Transition probabilities represent the chance that a patient moves from one state to 

another and can vary by individual patient in microsimulation models. The transitions in this 

simulation are denoted by the arrows in Figure 8. Possible directions of transition are indicated 

by arrowheads. The transition probabilities are referred to as 𝑝𝐴𝐵, where the subscripts A and B 

represent the initial state and final state, respectively. For example, 𝑝𝐻𝐼 represents the transition 
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probability for moving from Hospital to ICU. The eight transition probabilities are summarized in 

Table 18.  

Table 18: Transition Probabilities and Definitions 

 Conditional On  

Transition Probability 
Triage 

Category 
Initial  
State 

Definition 

𝑝𝐻𝐼  
 

Probability of being admitted to the ICU once 
hospitalized 

𝑝𝐼𝐻 
 

 
Probability of transitioning out of the ICU back to the 
hospital ward 

𝑝𝐻𝑂 
 

 
Probability of ICU bed being withheld once 
hospitalized 

𝑝𝑂𝐻 
 

 
Probability of no longer requiring ICU after ICU bed 
withdrawn 

𝑝𝐼𝑂 
 

 Probability of ICU bed being withdrawn 

𝑝𝑂𝐼  
 

Probability of being readmitted to the ICU after bed 
has been withdrawn 

𝑝𝐼𝐸  
 

Probability of death while in the ICU 

𝑝𝑂𝐸  
 

Probability of death after ICU bed withdrawn 

 
As stated previously in this chapter, it is important to note that our microsimulation model 

examines the dynamics of resource allocation related to implementation of the SRAP. In that 

sense, the transition probabilities are not defined a priori but are determined by the allocation 

outcomes of each patient in the simulation category. In this analysis, the transition probabilities 

are calculated after each simulation to understand their variability as a function of resource 

constraint and allocation priority. This is possible because the SRAP determines the allocation 

decision of each patient according to their Triage Category, and these allocation decisions are 

captured per cycle as presence in the “ICU” or “Out” transition states.  

The microsimulation models the application of the SRAP to a cohort of ICU patients 

using the variables shown in Figure 12. 
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Figure 12: Simulation Data Structure 

Study day is an integer value defined as the number of days between the study date and 

the beginning of the study, such that study day 0 corresponds to the first day of the study, May 

26, 2021. The death day variable is a binary value that is 1 if the patient’s death date (from the 

Patient Identifiers file) is equal to the study date, and 0 otherwise. This set of patients is then 

processed using the following steps: 

1. Each patient starts the simulation in the Hospital state, represented by the Initial State 

assigned “Hospital.” 

2. During each cycle, corresponding to a calendar day, the patients are arranged in 

descending order of Triage Code. Triage Code is derived from the Triage Category as 

described in Table 19, reflecting the order of priority for ICU beds such that 1 reflects 

highest priority. 

Table 19: Triage Categories and Corresponding Triage Codes 

 Triage Category Triage Code 

Exemption Criteria Violet 1 

Acute Illness + Comorbidities 

Red 2 

Orange 3 

Yellow 4 

Catastrophic Conditions Blue 5 

Absence of ICU Indications Green 6 

 
3. Patients transition to the ICU state, represented by the Final State assigned “ICU” 

unless: 

a. Their position in the list is greater than the set ICU capacity, in which case the 

Final State is assigned “Out,” 

b. They have a Triage Category of Green, in which case the Final State is assigned 

“Hospital,” or 

Final StateInitial StateTriage CodeDeath DayStudy DayPatient ID
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c. They are known to have expired, indicated by Initial State assigned “Expired” or 

Death Day equal to 1, in which case the Final State is assigned “Expired.” 

4. Eight indicator variables – HI, HO, IH, OH, IO, OI, IE, OE – matching the 8 transition 

probabilities were defined to capture each patient’s movement between states on a 

given day. Each variable was set to 1 if the patient started and ended in the 

corresponding states and 0 otherwise. 

5. At the end of each day, the number of patients, in total and by Triage Category, in each 

state was calculated. 

Model Assumptions 

The assumptions included in the microsimulation model reflect the implemented resource 

allocation policy and are as follows: 

1. All-or-nothing: Critical care resources are bundled and cannot be dissolved – that is, a 

patient who is not assigned to an ICU bed cannot receive component resources such as 

mechanical ventilation or continuous renal replacement therapy. In the context of our 

simulation, only patients in the “ICU” state receive critical care resources. 

2. Random allocation: If critical care resources are not available for all patients within a 

given Triage Category, all patients (including those already receiving ICU resources) are 

randomly allocated the available resources – that is, patients of the same Triage 

Category have an equal probability of receiving critical care resources. In the simulation, 

patients are randomly ordered every study day, regardless of their simulation state 

(except Expired), to determine allocation of critical care resources. 

3. Non-allocation mortality: ICU-eligible patients are only removed from an ICU bed under 

the policy if there exists another patient in an equal or higher Triage Category. Any 

patient who is removed from an ICU bed under these circumstances is assumed to 

continue to meet allocation criteria for critical care resources. If the patient is unable to 
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receive critical care resources within 1 day, probability of mortality (referred to as the 

non-allocation mortality) is 100 percent. 

4. The “Expired” state is absorbing, meaning that patients do not transition out of the state. 

Operationalization of non-allocation mortality was achieved by counting the number of cycles 

spent in the “Out” state. In the base case scenario, this meant that any patient for whom the 

final state was “Out” in both the current cycle and the previous cycle would transition to a final 

state of “Expired” in the current cycle. Cohort mortality was determined by counting the number 

of patients in the “Expired” state at the end of each simulation. The simulation runs are defined 

by three (3) variables: 

• N, the number of ICU beds available; 

• S, the number of simulations to run; and 

• Dc, the number of cycles after which any patient who has not been allocated an 

ICU bed in the “Out” state expires (“non-allocation mortality clock”). 

The cycle unit in the simulation is one (1) day. After each cycle, a mortality indicator is recorded 

for each patient. At the end of each simulation, the cohort mortality is calculated. Each scenario 

was run one thousand (1000) times for an identical number of cycles representing the length of 

the initial data collection, sixty-eight (68) days. 

Statistical Analysis 

As discussed in the Key Variables subsection, expired fraction is used as the outcome variable 

in a linear regression as a summary measure of mortality in the simulation. Univariate logistic 

regression was performed for select Patient Characteristics variables and Policy Criteria 

variables to determine the unadjusted impact of each on mortality with expired fraction as the 

outcome of interest. 
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 Expired fraction is converted to expired counts by multiplying by 1000, returning the 

number of simulations in which a patient expired. This is then used as the outcome variable in a 

negative binomial regression as the summary measure of mortality in the simulation. 

 The resulting mortality outcomes from the simulation scenarios (both expired fraction 

and expired counts) were non-normal in distribution. Most scenarios demonstrated a bimodal 

distribution, which made mean and median values imprecise summary statistics to describe the 

population. To determine the differences in outcomes across constraint levels, we defined 

mortality profiles for each scenario by dividing the population into three mortality groups: 

• Patients who always died (“always”), for whom expired fraction equals 1; 

• Patients who never died (“never”), for whom expired fraction equals 0; and 

• Patients who sometimes died (“sometimes”), for whom expired fraction was any value 

greater than 0 or less than 1. 

We performed Friedman rank sum testing to determine significant differences in the proportions 

across each constraint level. 

 In the multivariable analysis, we defined five models to examine the relationships 

between patient and/or policy factors and mortality. In the final, most comprehensive model, we 

performed two types of regression analyses: linear regression with expired fraction as the 

dependent variable, and negative binomial regression with expired counts as the dependent 

variable. In all other models, our analyses were limited to the linear regression approach. 

In the first model, we examined the policy as written by testing the association between 

the SOFA Component and Comorbidity Component and mortality. In the second model, we 

deconstructed the Policy Criteria variables and examined the association of the uSOFA score 

and the individual prespecified comorbidities with mortality. In the third model, we incorporated 

the Patient Characteristics to determine how accounting for these variables impacted the 

association of Triage Category with mortality. We modified this approach in the fourth model by 

replacing Triage Category with the SOFA Component and Comorbidity Component variables. 
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Finally, in the fifth model, we again deconstructed the Policy Criteria variables and examined 

how the addition of the Patient Characteristics impacted the association of these variables with 

mortality. In addition to performing the different regressions described above for Model 3, we 

also performed the linear regression under the defined constraint levels to examine how these 

associations varied with resource constraint. 

We performed a sensitivity analysis around the non-allocation mortality clock assumption 

by varying the dc simulation variable over the values 1 through 3, calculating the mortality 

profiles for each constraint level across these three values, and performing the Friedman rank 

sum test across the resulting table to look for statistically significant differences. 

 All analyses were conducted in R35 and Microsoft Excel.43 

Results 

The Patient Characteristics and Policy Criteria variables among the study population are 

described in Table 20 and Table 21. The patients were majority male, not Hispanic or Latino, 

and English-speaking. Data was largely unknown for sexual orientation and gender identity. 

The mortality profile for each constraint level is shown in Table 22. The proportion of 

patients with 100 percent risk of mortality under the allocation policy rose by 56 percent under 

severe constraint and by 62.5 percent under extreme constraint. The Friedman rank sum test of 

proportions suggested a significant difference in the mortality profiles of the cohort across 

constraint levels. Given this result, we performed a Wilcoxon signed rank test for each of the 

constraint pairs: base-moderate, base-severe, base-extreme, moderate-severe, moderate-

extreme, and severe-extreme. The p-values for all these tests were less than 0.001, suggesting 

a significant difference in the mortality outcomes between any of the defined constraint levels. 

Table 20: Demographic composition of study population 

Patient Characteristics N (%)1 

Total Number of Unique Patients 963 

Age (Years), mean [SD] 59.5 [17.0] 

Sex  

Male 557 (57.8%) 
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Patient Characteristics N (%)1 

Female 406 (42.2%) 

Race  

White or Caucasian 405 (42.1%) 

Black or African American 103 (10.7%) 

American Indian or Alaska Native 2 (0.2%) 

Asian 81 (8.4%) 

Middle Eastern or North African 17 (1.8%) 

Native Hawaiian or Other Pacific Islander 5 (0.5%) 

Multiple Races 28 (2.9%) 

Do Not Identify 17 (1.8%) 

Other 245 (25.4%) 

Unknown 60 (6.2%) 

Ethnicity  

Hispanic or Latino 213 (22.1%) 

Not Hispanic or Latino 663 (68.8%) 

Other 51 (5.3%) 

Unknown 36 (3.7%) 

Marital Status  

Partnered 468 (48.6%) 

Not Partnered 488 (50.7%) 

Unknown 7 (0.7%) 

Sexual Orientation  

Straight 420 (43.6%) 

Lesbian or Gay 22 (2.2%) 

Bisexual 4 (0.4%) 

Other 3 (0.3%) 

Unknown 514 (53.3%) 

Gender Identity  

Male 256 (26.6%) 

Female 221 (22.9%) 

Transgender Male 2 (0.2%) 

Unknown 484 (50.2%) 

Language  

English 804 (83.5%) 

Non-English 157 (16.3%) 

Unknown 2 (0.2%) 
1Unless otherwise specified 

 
Table 21: Description of triage encounters by policy criteria 

Policy Criteria N (%)1 

Total Number of Triage Encounters 3626 

uSOFA Score, median [IQR] 7 [5-11] 

SOFA Component  

1 672 (18.5%) 

2 683 (18.8%) 

3 339 (9.3%) 

4 324 (8.9%) 

N/A2 1608 (44.3%) 

Comorbidity Component  

0 705 (19.4%) 

2 313 (8.6%) 

4 965 (26.6%) 

Unknown/Unavailable 35 (1.0%) 

N/A2 1608 (44.3%) 

Prespecified Comorbidities  

Comorbidity M1 81 (2.2%) 

Comorbidity M2 182 (5.0%) 
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Policy Criteria N (%)1 

Comorbidity M3 20 (0.6%) 

Comorbidity M4 94 (2.6%) 

Comorbidity M5 27 (0.7%) 

Comorbidity M6 268 (7.4%) 

Comorbidity M7 52 (1.4%) 

Comorbidity S1 22 (0.6%) 

Comorbidity S2 234 (6.5%) 

Comorbidity S3 75 (2.1%) 

Comorbidity S4 230 (6.3%) 

Comorbidity S5 367 (10.1%) 

Comorbidity S6 102 (2.8%) 

Comorbidity S7 33 (0.9%) 

Triage Category  

Violet 620 (17.1%) 

Red 769 (21.2%) 

Orange 478 (13.2%) 

Yellow 723 (19.9%) 

Blue 62 (1.7%) 

Green 974 (26.9%) 
1Unless otherwise specified 
2Represents Violet, Blue, and Green patients for whom data collection did not occur 

 
Table 22: Mortality profile by constraint level 

 Proportion of Patients 

Constraint Level Always Sometimes Never 

Base 0.032 0 0.968 

Moderate 0.032 0.194 0.774 

Severe 0.05 0.359 0.59 

Extreme 0.052 0.434 0.513 
Friedman rank sum: p = 0.039 

 
The results of linear regression models of expired fraction are shown in Table 23 and  

Table 24. The variables sexual orientation and gender identity were omitted given the large 

proportion of unknown values in the patient population and because we lacked a specific 

hypothesis of their relevance to the outcome of interest. Patient Characteristics variables were 

largely unassociated with mortality in these unadjusted analyses. Native Hawaiian or Other 

Pacific Islander race was associated with relatively large increases in expired fraction across 

constraint levels, including the base case, although the small sample size should be noted. 

Table 23: Univariate Logistic Regression of Selected Patient Characteristics Variables on 100 x Expired Fraction 

  Coefficients by Constraint Level 

 N Base Moderate Severe Extreme 

Patient Characteristics      

Age 954 0.06 0.004 -0.01 -0.07 

Sex      

Male 557 Reference 

Female 406 1.67 4.788 0.63 0.66 

Race      
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  Coefficients by Constraint Level 

 N Base Moderate Severe Extreme 

White or Caucasian 405 Reference 

Black or African American 103 -0.05 0.73 2.70 3.80 

Asian 81 4.44* 1.50 3.58 5.32 

Native Hawaiian or Other Pacific Islander 5 17.04* 29.13* 28.90* 30.66* 

Middle Eastern or North African 17 -2.96 -7.05 -0.99 1.21 

American Indian or Alaska Native 2 -2.96 -10.36 -10.02 -20.10 

Multiple Races 28 -2.96 -8.77 -10.22 -8.70 

Do Not Identify 17 -2.96 0.77 -0.76 -3.85 

Other 245 0.71 1.51 3.13 5.16 

Unknown 60 -2.96 -5.98 -6.40 -5.88 

Ethnicity      

Not Hispanic or Latino 663 Reference 

Hispanic or Latino 213 0.59 2.47 5.45* 8.39** 

Other 51 0.75 5.75 6.67 5.40 

Unknown 36 -3.17 -9.22* -12.49* -13.32* 

Language      

English 804 Reference 

Non-English 157 1.47 6.57** 11.18** 10.86*** 

Unknown 2 -2.98 -9.44 -16.52 -15.28 
* p < 0.05; ** p < 0.01; *** p < 0.001 

 
Table 24: Univariate Logistic Regression of Policy Criteria Variables on 100 x Expired Fraction 

  Coefficients by Constraint Level 

 N Base Moderate Severe Extreme 

Policy Criteria      

SOFA Component 455 4.76*** 11.73*** 12.04*** 9.09*** 

uSOFA Score 455 1.24*** 2.77*** 2.81*** 2.11*** 

Comorbidity Component      

0 204 Reference 

2 83 3.57 14.68*** 27.42*** 21.98*** 

4 147 6.39*** 38.69*** 37.19*** 22.14*** 

Unknown/Unavailable 21 -2.54 -2.78 -2.10 -3.91 

Prespecified Comorbidities      

Comorbidity M1 22 -3.29 -0.33 3.29 5.69 

Comorbidity M2 38 4.87 10.48* 37.25** 39.93*** 

Comorbidity M3 9 -3.25 8.14 24.85* 29.24* 

Comorbidity M4 9 -3.25 21.11* 38.98*** 53.26*** 

Comorbidity M5 3 -3.23 -4.67 11.26 12.99 

Comorbidity M6 43 13.67*** 37.21*** 41.75*** 38.95*** 

Comorbidity M7 14 3.98 7.70 19.98* 21.14* 

Comorbidity S1 6 13.53 65.82*** 44.7*** 38.92** 

Comorbidity S2 25 0.80 30.73*** 43.63*** 43.70*** 

Comorbidity S3 6 -3.24 44.72*** 30.66* 24.15 

Comorbidity S4 37 13.51*** 45.64*** 45.39*** 40.53*** 

Comorbidity S5 58 7.58** 41.41*** 37.47*** 29.36*** 

Comorbidity S6 31 16.67*** 26.18*** 34.35*** 28.57*** 

Comorbidity S7 8 -3.25 5.97 17.95 14.64 

Triage Category      

Violet 221 Reference 

Red 228 0.84 3.15 10.93*** 24.23*** 

Orange 98 0.68 14.58*** 43.49*** 48.77*** 

Yellow 112 11.14*** 49.19*** 51.27*** 47.94*** 

Blue 20 18.64*** 32.29*** 30.58*** 37.77*** 

Green 284 -0.30 0.76 1.33 0.17 
* p < 0.05; ** p < 0.01; *** p < 0.001 
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Transition States 

To understand the allocation of critical care resources, redistribution of those resources, 

mortality outcomes as a function of resource constraint, we generated stacked column charts for 

the ICU, Out, and Expired states under each constraint level. Each chart is constructed such 

that higher priority patients appear at the bottom of the stack. 

 The average daily patient census in the ICU is shown in Figure 13. These charts show 

the overall change in the breakdown of Triage Categories over the study period as the degree of 

constraint increases. In general, as the constraint level increases, lower priority patients are less 

represented in the ICU over the course of the study period. 

 The average daily number of patients in the Out state is shown in Figure 14. In the base 

case, patients are never removed from the ICU. As constraint level increases, the number of 

days during the study in which patients are removed increases, although even under the 

extreme constraint level, there remain days over the course of the study in which no patients are 

removed. The patients removed are of lower Triage Category levels, and under no constraint 

level are Violet patients removed from the ICU.  

 The average daily number of patients in the Expired state is shown in Figure 15. Most 

notable is that in the base case, patients do not expire every day, and that this changes 

immediately upon applying a constraint such that patient expire daily. Under moderate 

constraint, most deaths occur in the lowest priority patients. Under severe and extreme 

constraints, there appears to be an emergence of deaths among Green patients who were 

deemed to be stable, not requiring critical care. This is an artifact of the simulation – as patients 

are removed from the ICU under varying constraint levels, their historical Triage Category 

values were not changed. Thus, some patients transitioned from ICU to Out to Expired, and 

while in the Expired state, took on a Triage Category value of Green. As their updated Triage 

Category occurred while in the Expired state, they appear among the expired patients for that 

study day.  
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Figure 13: Average Daily Patients in ICU by Constraint Level 
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Figure 14: Average Daily Patients Removed from ICU by Constraint Level  
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Figure 15: Average Daily Mortality by Constraint Level 
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Transition Probabilities 

To understand how resource allocation and re-allocation differed by constraint level, we 

constructed bar plots for each Triage Category under each constraint level for specific transition 

probabilities. In each plot, there are three lines for each Triage Category, each line representing 

conditions under each non-allocation mortality clock scenario. The diamond marker denotes the 

median value of the transition probability over the study period with the pipe symbols and 

horizontal bars connecting them represent the interquartile range (IQR). The individual dots 

represent the average daily transition probability for the specified group for each day in the 

study over the 1000 simulations. The number of dots per Triage Category group varies, as 

some groups did not undergo the specified transition every day. The groups are arranged from 

the origin in order of descending priority. 

 The transition probability for going from “Hospital” to “ICU” (𝑝𝐻𝐼), or the probability of 

receiving an ICU bed once hospitalized, is shown in Figure 16. This probability was 0 for Green 

patients (those without ICU indications) across the constraint levels, as by definition these 

patients were not allocated ICU beds due to lack of indication. Under moderate constraint, there 

were some days during which the lowest priority Blue (catastrophic conditions) and Yellow 

(highest Triage Allocation Scores) patients were less likely to receive ICU beds, but the median 

value was still 1. Under severe and extreme constraint, these distributions shift farther to the left 

for all patients except Violet, indicating lower likelihood of allocation of critical care resources as 

constraint increases. 

 Figure 17 shows the transition probability for going from “Hospital” to “Out” (𝑝𝐻𝑂), or the 

probability of having an ICU bed withheld once hospitalized. Again, this probability was 0 for 

Green patients across constraints, reflecting that these patients did not have indications for ICU 

and remained in the “Hospital” state. As constraint level increases, the distribution of this 
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probability shifts to the right for patients of lower priority, reflecting a general increase in the 

likelihood that an ICU bed is withheld. 

 Figure 18 shows the transition probability for going from “ICU” to “Out” (𝑝𝐼𝑂), or the 

probability of having an ICU bed withdrawn. These plots show that the likelihood of being 

removed of the ICU increases first for lower priority patients (Yellow under moderate constraint), 

but eventually increases for all but the highest priority patients (Violet) as constraint increases to 

extreme levels. 

 Figure 19 shows the transition probability for going from “Out” to “ICU” (𝑝𝑂𝐼), or the 

probability of being readmitted to the ICU after having a bed withdrawn. In the base case, beds 

are available for all patients, so patients never end up in the “Out” state and thus this probability 

cannot be calculated. Under even moderate constraint, patients may have beds withheld, but 

the median likelihood of being admitted is 100 percent for the highest priority patients (Violet, 

Red, and Orange) and high but less than 100 percent for the lower priority Yellow patients. 

These distributions shift to the left with increasing constraint for all groups except Violet, 

reflecting lower likelihood of readmission to the ICU as resources become less available. 

 The base case transition probabilities serve to validate that the simulation operated as 

intended. As can be seen in the figures, all patients receive an ICU bed (𝑝𝐻𝐼 equals 1), no 

patients have beds withheld, and no patients have beds withdrawn. Probability of being 

readmitted to the ICU after having a bed withdrawn (𝑝𝑂𝐼) cannot be calculated in the base case 

as patients never transition to the “Out” state. 

 In general, the Blue patients appear to be less subject to fluctuations in transition 

probability as a function of constraint level, but this is likely due to the relatively small number of 

encounters (1.7%) with Blue priority levels, such that Blue patients were not represented on 

most days during the study period. 
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Figure 16: Probability of being admitted to the ICU once hospitalized by constraint level 
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Figure 17: Probability of ICU bed being withheld once hospitalized by constraint level 
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Figure 18: Probability of ICU bed being withdrawn by constraint level 
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Figure 19: Probability of being readmitted to the ICU after bed has been withdrawn by constraint level 
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Multivariable Analyses 

The coefficients for the multivariable linear regressions in the base case scenario are shown in 

Table 25. In Models 1 and 2, the Policy Criteria representing the objective measure of acute 

illness was significantly associated with an increased risk of mortality, when not accounting for 

Patient Characteristics. A 1-point increase in the SOFA Component was associated with an 

increase in expired fraction of 0.044, and a 1-point increase in the uSOFA score was associated 

with an increase in expired fraction of 0.012. The Policy Criterion representing co-occurring 

illnesses was not significantly associated with mortality in Model 1, but when disaggregated into 

its component parts in Model 2, specific comorbidities were found to have a significant 

association with risk of mortality, again not accounting for Patient Characteristics. 

 Model 3 represents the operationalization of the Policy as written and effectively builds 

on the univariate analysis of Triage Category shown in Table 24 by incorporating Patient 

Characteristics. All else equal among the selected Patient Characteristics, Yellow and Blue 

Triage Categories remained significantly associated with increased risk of mortality. Notably, 

Asian race was significantly associated with increased risk of mortality, holding constant the 

allocation priority level. The impact of age was small but also statistically significant, predicting a 

0.0007-point increase in expired fraction. 

 Models 4 and 5 represent the incorporation of Patient Characteristics into Models 1 and 

2. Again, as in models 1 and 2, the SOFA Component in model 4 and uSOFA score in model 5 

were significantly associated with increase in expired fraction, with each variable predicting an 

increase of 0.046 and 0.013, respectively. Age remained statistically significant in these models, 

associated with a 0.0013-increase in expired fraction. 

Table 25: Coefficients of various linear regression models with expired fraction as outcome 

 Coefficients for selected variables against 100 * expired 
fraction 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 

Patient Characteristics      

Age -  0.07* 0.13* 0.13* 

Sex      
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 Coefficients for selected variables against 100 * expired 
fraction 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 

Male Reference 

Female -  1.36 3.80 3.74 

Race      

White or Caucasian Reference 

Black or African American -  0.49 1.62 -0.08 

Asian -  5.10* 10.99** 9.74* 

Native Hawaiian or Other Pacific Islander -  15.14 29.56* 24.23 

Middle Eastern or North African -  -1.53 -2.02 -2.66 

American Indian or Alaska Native -  0.09 NC NC 

Multiple Races -  -1.08 -3.14 -1.40 

Do Not Identify -  -3.99 -7.16 -5.45 

Other -  0.15 1.77 2.31 

Unknown -  -2.36 -3.36 -2.06 

Ethnicity      

Not Hispanic or Latino Reference 

Hispanic or Latino -  2.43 3.19 2.44 

Other -  1.10 -2.62 -4.58 

Unknown -  0.44 2.29 -0.86 

Language      

English Reference 

Non-English -  -0.78 -1.61 -2.23 

Unknown -  3.65 9.97 11.74 

Policy Criteria      

SOFA Component 4.38***  - 4.58*** - 

uSOFA score - 1.21*** - - 1.28*** 

Comorbidity Component      

0 Reference 

2 3.01  - 3.09 - 

4 3.69  - 3.38 - 

Unknown/Unavailable -3.22  - -3.53 - 

Prespecified Comorbidities      

Comorbidity M1 - -5.31 - - -4.41 

Comorbidity M2 - 5.85 - - 5.76 

Comorbidity M3 - -5.92 - - -3.32 

Comorbidity M4 - -1.25 - - -0.27 

Comorbidity M5 - -2.91 - - -3.71 

Comorbidity M6 - 7.98* - - 8.47* 

Comorbidity M7 - 3.05 - - 2.88 

Comorbidity S1 - 4.02 - - 5.54 

Comorbidity S2 - 2.67 - - 3.29 

Comorbidity S3 - -7.49 - - -10.57 

Comorbidity S4 - 10.0** - - 8.88* 

Comorbidity S5 - -1.89 - - -2.19 

Comorbidity S6 - 15.3*** - - 13.82*** 

Comorbidity S7 - -6.29 - - -10.32 

Triage Category -     

Violet Reference 

Red - - 0.70 - - 

Orange - - 0.41 - - 

Yellow - - 10.7*** - - 

Blue - - 18.3*** - - 

Green - - -0.55 - - 

Model Diagnostics      

N 455 455 954 449 449 

Adjusted R2 0.05 0.11 0.05 0.07 0.12 

AIC 4084.34 4067.01 8162.35 4042.03 4026.86 
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 Coefficients for selected variables against 100 * expired 
fraction 

Variable Model 1 Model 2 Model 3 Model 4 Model 5 

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
* p < 0.05; ** p < 0.01; *** p < 0.001 
NC: not calculated 

 
Table 26 shows the regression results for Model 3 across various constraint levels. This model 

was chosen specifically to examine how the policy’s operationalization of allocation priority 

varied with constraint levels when holding patient factors constant. With regards to the Patient 

Characteristics variables, age became statistically significant under all constraint levels when 

accounting for triage allocation priority. Female sex was significantly associated with a 0.033-

increase in expired fraction under moderate constraint, but was not significant under severe and 

extreme constraints, holding Triage Category constant. Asian race was no longer a significant 

predictor of risk of mortality when resources were constrained compared to White or Caucasian 

race. Non-English preferred language was significantly associated with increased risk of 

mortality when compared to English speakers, holding allocation priority and all other selected 

patient factors constant, predicting an expired fraction increase of 0.069 under severe constraint 

and 0.058 under extreme constraint. 

Table 26: Coefficients for model 3 linear regression by constraint level 

Model 3: Patient Characteristics and Triage Category on 100 * expired fraction 

 Constraint Level 

Variable Base Moderate Severe Extreme 

Patient Characteristics     

Age 0.07* 0.00 -0.02 -0.06 

Sex     

Male Reference 

Female 1.36 3.34* 0.09 0.81 

Race     

White or Caucasian Reference 

Black or African American 0.49 -1.27 -0.91 -0.47 

Asian 5.10* 1.44 3.43 5.00 

Native Hawaiian or Other Pacific Islander 15.14 14.75 12.94 17.54 

Middle Eastern or North African -1.53 -3.57 3.81 6.22 

American Indian or Alaska Native 0.09 -0.53 10.17 -1.08 

Multiple Races -1.08 -4.87 -6.21 -5.35 

Do Not Identify -3.99 -1.47 -3.44 -6.43 

Other 0.15 -1.56 -1.57 -0.63 

Unknown -2.36 -2.59 -3.95 0.21 

Ethnicity     

Not Hispanic or Latino Reference 

Hispanic or Latino 2.43 1.95 2.88 4.85 



 63 

Model 3: Patient Characteristics and Triage Category on 100 * expired fraction 

 Constraint Level 

Variable Base Moderate Severe Extreme 

Other 1.10 -0.08 -0.16 0.94 

Unknown 0.44 -2.53 -4.72 -4.11 

Language     

English Reference 

Non-English -0.78 3.48 6.88* 5.81* 

Unknown 3.65 3.09 -1.19 -1.73 

Policy Criteria     

Triage Category     

Violet Reference 

Red 0.70 2.76 10.28*** 23.07*** 

Orange 0.41 14.19*** 42.99*** 48.06*** 

Yellow 10.7*** 47.50*** 49.74*** 45.99*** 

Blue 18.3*** 30.95*** 28.28*** 35.21*** 

  Green -0.55 0.26 1.12 -0.23 

Model Diagnostics     

N 954 954 954 954 

Adjusted R2 0.05 0.35 0.33 0.33 

AIC 8162.35 8576.67 9007.32 9110.03 

p-value < 0.001 < 0.001 < 0.001 < 0.001 
* p < 0.05; ** p < 0.01; *** p < 0.001 
NC: not calculated 

 
 To test the robustness of the assumptions relied upon in using a linear model, we 

evaluated model 3 as a count model. The results of the negative binomial regression are shown 

in Table 27. Unlike in the linear model, age was significantly associated with risk of mortality 

across constraint levels (except under moderate constraint), and female gender was 

consistently associated with increased risk of mortality. In general, race was not consistently 

associated with increased risk of mortality, except under severe constraint when American 

Indian or Alaska Native patients were at lower risk of mortality, Asian patients at no increased 

risk, and all other groups at slightly higher risk of mortality, compared to White patients. This 

pattern was unchanged under extreme constraint, except that Asian patients were now at 

increased risk, compared to White patients. Results for ethnicity were inconsistent across 

constraint levels, with all groups experiencing higher or lower risk of mortality compared to non-

Hispanic or Latino patients depending on level of constraint. Non-English primary language was 

generally associated with higher risk of mortality, except in the base case. Finally, the Triage 

Category determination was almost always a significant predictor of mortality. Comparing all 

patients to the highest priority ICU-eligible patients (Violet), lower priority was typically 
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associated with higher risk of mortality. Yellow patients had a higher risk of mortality than the 

lowest priority Blue patients across all constraint levels. 

Table 27: Negative binomial regression coefficients (as incidence rate ratios) for model 3 by constraint level 

Model 3: Patient Characteristics and Triage Category on expired counts 

 Constraint Level 

Variable Base Moderate Severe Extreme 

Patient Characteristics     

Age 1.03*** 0.99 1.00*** 0.99*** 

Sex     

Male Reference 

Female 1.91*** 1.71*** 1.02*** 1.02*** 

Race     

White or Caucasian Reference 

Black or African American 0.79*** 0.83 1.02*** 1.04*** 

Asian 4.53*** 1.38 1.00 1.06*** 

Native Hawaiian or Other Pacific Islander 2.68*** 1.97 1.33*** 1.33*** 

Middle Eastern or North African 0 1.24 1.19*** 1.18*** 

American Indian or Alaska Native 0 0.022 0.32*** 0.07*** 

Multiple Races 0 0.18*** 0.44*** 0.61*** 

Do Not Identify 0 2.14* 1.65*** 1.23*** 

Other 1.69*** 0.99 1.04*** 1.03*** 

Unknown 0 1.27 1.02*** 0.91*** 

Ethnicity     

Not Hispanic or Latino Reference 

Hispanic or Latino 2.95*** 0.96 0.97*** 1.07*** 

Other 0.89*** 1.20 0.91*** 0.89*** 

Unknown 0 0.067*** 0.26*** 0.42*** 

Language     

English Reference 

Non-English 0.58*** 1.49* 1.25*** 1.16*** 

Unknown 5.00e14 0 0 0.44*** 

Policy Criteria     

Triage Category     

Violet Reference 

Red 1.14*** 0.85 1.62*** 2.26*** 

Orange 1.33*** 4.22*** 4.51*** 3.72*** 

Yellow 8.91*** 8.53*** 4.68*** 3.47*** 

Blue 8.83*** 5.82*** 1.91*** 1.71*** 

  Green 0.98 1.35 1.31*** 1.26*** 

Model Diagnostics     

N 923 923 923 923 

Dispersion parameter 323449.3 0.1004 738424.7 1949407 

Deviance (-2 x log-likelihood) NC -29903.7 NC NC 

AIC 711893 29950 1241942 1180913 
* p < 0.05; ** p < 0.01; *** p < 0.001 
NC: not calculated 

 

Sensitivity Analyses 

Bar charts showing the changes in mortality profile by non-allocation mortality clock are shown 

in Figure 20. The Friedman rank sum test of proportions under each constraint level was 
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statistically significant, all with a p value of 0.0497, suggesting that the mortality profiles were 

significantly different between clock values. 

 Given this result, we performed pairwise Wilcoxon signed-rank tests between the 

expired fraction results comparing the non-allocation mortality clock assumption of 1 day to 

assumptions of 2 days and 3 days under each level of constraint. This could not be performed 

under the base constraint scenario, as the expired fraction outcome was identical across non-

allocation mortality clock values since beds always were available for every patient in the 

simulation. The results for the comparisons within the moderate, severe, and extreme constraint 

levels are shown in Table 28. 

Table 28: Summary of distribution of expired fraction with varying non-allocation mortality clock 

 Constraint Level 

 Moderate Severe Extreme 

Non-Allocation 
Mortality (days) 

Mean Median IQR Mean Median IQR Mean Median IQR 

1 0.105 0 (0, 0) 0.183 0 (0, 0.195) 0.235 0 (0, 0.414) 

2 0.102 0 (0, 0) 0.181 0 (0, 0.208) 0.231 0 (0, 0.416) 

3 0.093 0*** (0, 0) 0.170 0 (0, 0.198) 0.218 0*** (0, 0.382) 
Results of Wilcoxon rank sum testing of difference in expired fraction distribution (compared to 1 day): 
*p < 0.05; **p < 0.01; ***p < 0.001 

 
These results suggest that, as non-allocation mortality clock increases, the proportion of 

patients that sometimes expire in the simulation decreases, and the proportion of patients who 

never expire increases. The statistical testing demonstrates no significant difference when the 

non-allocation mortality clock increases from 1 to 2 but demonstrates a significant difference 

when increasing from 1 to 3 (except for under the severe constraint). 
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Figure 20: Mortality profile under varying non-allocation mortality assumptions by constraint level  
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Discussion 

There are significant differences in the mortality profiles of the cohort across constraint levels. 

Our simulation results suggest that the SRAP does not lead to statistically similar risks of 

mortality for our cohort across different constraint levels as we hypothesized that it would. 

Furthermore, the fact that patients of different racial groups have different mortality outcomes in 

the simulation, despite the absence of the race as a factor in the resource allocation 

prioritization algorithm, suggests that the SRAP as currently designed may perpetuate or even 

exacerbate existing disparities in mortality.  

 The amount of the expired fraction data explained by the proposed models is relatively 

small as noted by the adjusted 𝑅2, ranging from 0.05 to 0.12. Interestingly, the models that 

disaggregated the Triage Category into its component parts, specifically the uSOFA score and 

the presence of prespecified comorbidities, tend to explain more of the simulated data. This 

suggests that the summarization of the Policy Criteria into the Triage Category may involve a 

loss of information associated with reduced ability to predict mortality. 

 The use of the Comorbidity Component in place of individual comorbidities appears to 

also have led to loss of information. In models 2 and 5, we found that the same three 

comorbidities – end stage renal disease on dialysis; severe chronic lung disease with FEV1 less 

than 20 percent predicted, FVC less than 35 percent predicted, or in the absence of pulmonary 

function tests (PFTs), chronic home oxygen at rest of mechanical ventilation; and metastatic 

cancer with expected survival less than or equal to 1 year despite treatment or refractory 

hematologic malignancy (resistant or progressive despite conventional initial therapy) – were 

significant predictors of increasing risk of mortality. Interestingly, cirrhosis with a MELD greater 

than or equal to 20, prevalent in 10 percent of the encounters, was not associated with any 

increased mortality risk even in the setting of no constraint, yet the SRAP uses it to deprioritize 

patients, possibly increasing their risk of mortality when constraints are applied. In models 1 and 
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4, where these comorbidities are collapsed into the Comorbidity Component, the impact of the 

SOFA Component (effectively the uSOFA score) on mortality increases. This is potentially 

problematic given recent research on disparities related to SOFA use, which will be explored in 

the next chapter of this dissertation. 

 Finally, our results identify patients most at risk of unexpected mortality because of 

resource allocation policies. The Green patients that appear in the charts reflecting constraint 

became Green after they expired in the simulated constraint scenarios, which only happened if 

the patient was removed from an ICU bed and did not return within one day. This means that 

they were known to have survived in the base case, and thus would not have died except for the 

implementation of the Policy related to the constraint imposed. This knowledge calls for further 

study of patient or policy factors to assess if the Policy may be inadvertently withdrawing 

resources from patients who are likely to survive.  

Implications 

To our knowledge, this is the first study to examine the impact of a published scarce resource 

allocation policy as written on a real-world patient population. To date, the literature reviewing 

implementation of existing policies have largely stopped short of outcomes, instead highlighting 

disparities in prioritization across various patient demographics (e.g., age, race). Additionally, 

previous studies have either been limited in the scope of their resource concerns (e.g., only 

ventilators) or lacked real-world data.  

 Our study offers insight into the feasibility of operationalizing an allocation policy. In our 

study that allocated priority prospectively, as would happen in actual implementation, the 

missingness of data was minimal – of 974 patients admitted to the ICUs over the study period, 

only 11 patients (1.1 percent) had to be excluded from simulation and analysis due to missing 

priority scoring data. In the Riviello study, the authors note that data was missing for 

approximately 18 percent of patients in the study period, likely due to retrospective collection.  
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 Our study limited assumptions to practical considerations in implementation. The “all-or-

nothing” assumption reflects standard practices in that patients who require intensive monitoring 

by limitation of personnel or facilities must move to an ICU. Even when critical care is moved 

physically outside of the ICU, this effectively increases the number of available “ICU” beds. Our 

simulation study methods allow for any assumptions to be easily adjusted, enabling others to 

assess for robustness of conclusions to any degree of change.  

 As the base case simulation represents application of the SRAP without any actual 

changes in resource allocation, this scenario offers valuable insight into the Policy’s ability to 

identify clinical factors associated with higher mortality. The expired fraction variable only takes 

on the values 0 and 1 because, in the base case scenario, only patients who were known to 

have died during the study period transitioned to the Expired state. Thus, the coefficients from 

the univariate and multivariate regressions in the base case describe associations between the 

selected variables and mortality in the observed population. Finally, our results are supported by 

their foundation in historical data, as the only assumptions of mortality outside the non-allocation 

mortality clock were based on observed deaths in the study sample. 

Limitations 

As many studies that precede ours, our findings are limited by the fact that the input data is 

derived from a single quaternary care academic institution, and thus conclusions about the 

implementation of the policy should be cautiously extrapolated. The population represented in 

the pilot study is noticeably different from the surrounding Los Angeles County.44 

 Systematically missing data may have affected the results. Data was collected in a 

hierarchical manner such that only data necessary at a given point in the triage algorithm was 

collected at that time. As the Triage Categories Violet, Blue, and Green did not require the 

collection of SOFA and Comorbidity Components, observations reflecting such triage 

encounters would be missing data for all those variables. These patients were excluded from 
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regression analyses examining the impact of these variables on mortality. Additionally, an 

individual patient could be assigned a new Triage Category on subsequent study days during 

which SOFA and Comorbidity Component data would be collected. Given this operationalization 

of the Policy within the medical record tool and data collection method, statistical analytical 

methods accounting for clustered data at the patient level (with multiple observations per 

patient) would have been ideal. We attempted to create such models with generalized linear 

models, using the gaussian distribution for the expired fraction outcome and the Poisson 

distribution for the expired counts outcome, but could not generate models that converged. This 

is likely because, while the number of clusters (patients) was sufficiently large, the number of 

observations per patient was low for some patients. 

 In addition, the conclusions drawn around the non-allocation mortality clock assumption 

are limited in generalizability in that the sensitivity analysis effectively used a Bernoulli 

distribution for mortality, such that 𝑝𝑂𝐷 was 0 until the Final State was “Out” and the number of 

cycles in the “Out” state was equal to the simulation variable dc, at which point 𝑝𝑂𝐷 became 1. 

This implies that all patients in the simulation have the same probability of survival without 

critical care, regardless of their acuity of illness or comorbid conditions. Given that both factors 

are expected to impact mortality, more robust sensitivity analyses allowing for greater variation 

in this probability are indicated to test the validity of this assumption, ideally incorporating those 

factors into the probability function. 

 The ability to conduct sensitivity analyses was further limited by the nature of the input 

data – since Triage Category was determined prior to simulation, it was not possible to 

determine the impact of specific Policy Criteria on mortality outcomes. In future work, the 

determination of Triage Category as a function of Policy Criteria (and Patient Characteristics) 

could be incorporated into the programming to allow investigators to simulate outcomes with 

factors differently weighted or omitted.  
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Chapter 4: Analyzing the Role of Policy Criteria in Allocation and Mortality 

Disparities Among Racial Groups Using Mediation Methods 

Background and Hypotheses 

Racial Disparities in Chronic Disease 

The Policy studied in this dissertation, like many of the publicly available proposed resource 

allocation policies, relies on the assessment of presence of several chronic conditions as a 

surrogate for estimating likelihood of longer-term survival. As mentioned in the introductory 

chapter, this strategy has the potential to introduce bias into the algorithm for determining 

allocation priority. By using factors highly correlated with an unmeasured attribute (in this case, 

race), such allocation algorithms might perpetuate existing racial disparities. Medical and public 

health literature is replete with publications that describe differences in the prevalence of, as 

well as disparities in outcomes related to, several of the prespecified comorbidities utilized in the 

UC SRAP. Miller and colleagues recently argued that the use of such comorbidities is likely to 

exacerbate disparities in health care, citing in particular the large difference in prevalence of 

end-stage renal disease in black and Latino patients compared to White patients.45 

 Chronic kidney disease (CKD) is well-documented as one of these comorbidities for 

which significant differences exist when considering prevalence among various racial groups. 

Using life-table methods to estimate lifetime risk of ESRD based on surveillance data from the 

United States Renal Data System (USRDS), Albertus and colleagues documented a greater 

than 2.5-fold increase in the lifetime risk of ESRD among non-Hispanic Black males compared 

to non-Hispanic White males, and a 3.3-fold increase in the lifetime risk among the female 

counterparts.46 The latest annual data report from USRDS stated that increase in ESRD 

prevalence was highest in Black patients among all racial groups, and prevalence of ESRD in 

Black patients was approximately double that in Hispanic patients, triple that in Asian patients, 

and nearly quadruple that in White patients.47 
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 Among the major comorbidities used in the UC SRAP, chronic obstructive pulmonary 

disease (COPD) has also been shown to disproportionately affect one racial group over others. 

As recently as 2018, COPD continues to remain more prevalent among non-Hispanic White 

patients, according to an analysis conducted by the American Lung Association based on 

National Health Interview Survey (NHIS) data. As of 2020, COPD mortality was also highest 

among non-Hispanic White patients, based on an analysis conducted using the Center for 

Disease Control and Prevention (CDC) Underlying Cause of Death database.48,49 

 Among the severely life-limiting comorbidities specified by the UC SRAP, the literature 

describes well-known disparities in the burden of cancer among several minority groups 

compared to White patients. The National Cancer Institute’s Surveillance, Epidemiology, and 

End Results (SEER) Program shows that, while cancer incidence and mortality have generally 

improved over the past several decades, disparities in both measures exists among racial 

groups. In particular, non-Hispanic African American men continue to have the highest 

incidence of and mortality from cancer across all cancer types.50 Researchers have studied the 

mechanisms underlying both the disproportionate rates of diagnosis and deaths from cancer 

among racial groups, and recent literature has emphasized the contribution of an individual’s 

socioeconomic status and healthcare system factors to the creation of disparities in access to 

cancer care and cancer mortality.51,52 

 Disparities in the allocation of resources and care to patients with cirrhosis, represented 

in both the major and severely life-limiting comorbidity lists, should also be mentioned given the 

relatively high prevalence in our population (Table 21). One review in the hepatology literature 

found that Hispanic patients have a higher prevalence of non-alcoholic fatty liver disease and 

alcoholic cirrhosis, higher incidence of complications chronic liver disease including 

hepatocellular carcinoma, and lower response to treatment for hepatitis C, which itself is a risk 

factor for cirrhosis.53 A more recent retrospective cross-sectional analysis of National Inpatient 

Sample data from 2009-2018 found a persistence in resource allocation and mortality disparities 
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by race. Over the course of the study, Black and Hispanic patients remained less likely to 

receive a liver transplant than White patients, and mortality from cirrhosis remained significantly 

higher among Black patients compared to White patients.54 

These examples illustrate how the presence of certain diagnoses might reflect the 

history of inequities in our healthcare system with regards to the increased risk of chronic illness 

for minority populations. Using these comorbidities to determine the allocation of resources in 

the acute setting carries the risk of perpetuating the existing racial disparities observed in the 

outcomes related to these conditions. Since policies such as the SRAP rely solely on the 

presence of such comorbidities, not the risk of mortality associated with such conditions, in 

determining priority for resource allocation, it is possible that such criteria might serve as a 

proxy for race, thereby leading to disparities in ICU mortality. 

Racial Bias in Measures of Acute Illness 

As do many of the resource allocation policies proposed in the setting of the COVID-19 

pandemic, the UC SRAP relies on the SOFA score as an “objective measure of acute illness 

severity.” Latest literature suggests, however, that this score may not be unbiased with respect 

to race. Based on an earlier retrospective study by Raschke et. al. that showed the SOFA score 

to be poorly predictive of mortality in COVID-19 patients, Tolchin and colleagues performed a 

retrospective analysis of more than 2300 patients across a single hospital system examining 

disparities in SOFA scores at the time of triage and found that non-Hispanic Black patients, but 

not Hispanic patients, had lower SOFA scores at time of triage compared to White patients.55,56 

While their study was limited to a single disease population as well as to one hospital system, 

the authors raised concern that such differences could lead to policies that rely on the SOFA 

score “would be more likely to deny non-Hispanic Black patients scarce medical resources such 

as ventilators and ICU beds.” 

 Miller and colleagues, contemporary to their work cited above, studied 111,885 ICU 

encounters representing more than 95,000 patients in the eICU Collaborative Research 
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Database, a multicenter, nationally representative database of ICU admissions representing 

three unique levels of data (patient, hospital, unit).57 Building on the study by Tolchin, this study 

compared the SOFA scores at the time of triage to observed mortality. In doing so, the authors 

found that mortality was, on average, lower for Black patients with a given SOFA score, 

compared to White patients.58 Their findings suggest that the SOFA score may be biased in its 

estimation of mortality for Black patients, further raising the concern that its use would lead to 

systematic de-prioritization of resources under crisis standards of care policies aimed at 

maximizing the number of lives saved. 

Conceptual Model 

The conceptual framework presented earlier in this dissertation is shown below in Figure 21, 

modified to highlight the specific aims of this chapter. The solid arrows in the figure highlight 

pathways implied by the policymakers – by selecting for lower SOFA and Comorbidity 

Components, the policy determines a Triage Category, which in turn optimizes (minimizes) 

mortality. The dotted arrows identify pathways to be explored in the analyses in this chapter. In 

particular, we ask whether disparities in measurements of acute illness (SOFA Component) and 

experiences with chronic illness (Comorbidity Component) propagate or compound disparities in 

allocation decisions and mortality. Given the concerns raised with the use of SOFA scores and 

certain comorbidities in resource allocation policies with regards to racial disparities, we focus 

on race among the Patient Characteristics and the potential for differences in race to be 

mediated by the SOFA and Comorbidities components of the UC SRAP. The dashed arrow 

represents unidentified relationships between other Patient Characteristics and Policy Criteria. 
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Figure 21: Conceptual model identifying potential race-mediated pathways 

 Acknowledging that there are many ways of modeling mediation, in this chapter, we 

explore mediation by measuring how the risk of mortality by might influenced by race through 

the use of the SOFA Component or the Comorbidity Component. By modeling the impact of 

race on mortality with and without these components, we measure these “indirect” effects to 

determine if they are statistically significant contributors to the risk of mortality. 

Methods 

Data Collection and Preparation 

The simulation results from the prior chapter provide the data for the analyses presented in this 

chapter. No further modifications to the dataset were necessary for the analyses described. 

Key Variables and Definitions 

In this chapter, we consider the Policy Criteria variables SOFA Component and Comorbidity 

Component as potential mediators. We focus on the Patient Characteristics variable race as the 

exposure variable. Mortality is represented by the continuous outcome variable expired fraction. 

These variables are summarized in Table 29. Triage Category is included as a mediator 
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variable, but as it is directly determined by the Triage Score, which itself is defined by a 

combination of the SOFA Component and the Comorbidity Component, it is omitted from the 

models given expected collinearity with the latter two variables.  

Table 29: Summary of Exposure, Mediator, and Outcome Variables 

 Variable Type Values 

Outcome 
Mortality   

Expired fraction Continuous 0 – 1  

Exposure 

Patient Characteristic   

Race Categorical 

White or Caucasian, Black or African 
American (AA), Asian, Native Hawaiian 
or Other Pacific Islander (NH/PI), Middle 
Eastern or North African (ME/NA), 
American Indian or Alaska Native 
(AI/AN), Do Not Identify, Other, Unknown 

Mediator 

Policy Criteria   

SOFA Component Integer 1 – 4 

Comorbidity Component Nominal 

0, 2 (if any present from Comorbidities 
M1-7), 4 (if any present from 
Comorbidities S1-7), 
Unknown/Unavailable 

Triage Category Categorical Violet, Red, Orange, Yellow, Blue, Green 

 

Statistical Analysis 

We began our analysis by exploring differences in the distribution of the mortality variable 

expired fraction among the different racial groups. As the data was not normally distributed, we 

compared the median values of expired fraction for each racial group. To determine statistical 

significance in any differences, we performed the Kruskal-Wallis test between expired fraction 

and race to determine if there existed any difference among the median values in the outcome 

among the groups. We repeated this analysis across constraint levels to examine the possibility 

that these associations might be moderated by strain on available resources. 

 Turning to the mediator variables, we generated contingency tables between the 

variable race and each of the Policy Criteria variables SOFA Component, Comorbidity 

Component, and Triage Category. These proportions were calculated along the row dimension, 

such that each cell represented the proportion of a racial group within a given level of the Policy 

Criteria variable. We then performed Fisher’s exact test to determine if there was an association 
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between membership in a racial group and the Policy Criteria variables. A p-value of 0.05 or 

less was considered statistically significant. 

 Finally, we determined degree of mediation by defining nested linear regression models. 

For each Policy Criteria variable, we defined a total effect model with expired fraction as the 

outcome and race (as well as the other identified Patient Characteristics variables) as the 

exposure variables. For the race variable, ‘White or Caucasian’ was used as the reference level. 

We defined a direct effect model with expired fraction as the dependent variable, now including 

the individual Policy Criteria variable among the independent variables. We extracted the 

coefficients from these models and determined the indirect effect of race, which represents the 

effect mediated by the Policy Criteria variable, as the difference between the coefficients in the 

total effect model and the coefficients in the direct effect model. Figure 22 shows the mediation 

pathways from the overarching framework explored in this analysis. The total and direct effects 

of race on mortality (𝑐𝑟𝑚 and 𝑐𝑟𝑚
′ , respectively) are represented by the coefficients from the 

corresponding models. The indirect effect of race on mortality is represented by the product of 

individual mediating effects in each pathway – 𝑐𝑟𝑠 *𝑐𝑠𝑚 for the SOFA Component, and 𝑐𝑟𝑐*𝑐𝑐𝑚 

for the Comorbidity Component. 
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Figure 22: Mediation diagram depicting direct and indirect effects of race on mortality through Policy Criteria variables 

 We used the original dataset from the previous microsimulation analysis to determine 

the population level total, direct, and indirect effects of race on mortality. To calculate the 

confidence intervals around the indirect effects, we performed bootstrapping analyses in which 

we sampled with replacement 963 observations from the original dataset, using the sampled 

dataset to perform the regressions described above. We repeated this process 1000 times, 

extracting the coefficients for each racial group and subtracting the direct effect coefficient from 

the total effect coefficient each time. We analyzed the summary statistics for the bootstrapped 

set of coefficients to determine the standard error. The 95% confidence intervals for the indirect 

effects were then calculated by adding and subtracting 1.96 times the standard error to the 

indirect effect coefficients. 

 All analyses were conducted in R.35 
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Results 

Racial Differences in Mortality Risk and Policy Criteria 

The summary of the distribution of expired fraction for each racial group under the specified 

constraint levels is shown in Table 30. The Kruskal-Wallis test for expired fraction grouped by 

race under each constraint level was statistically significant with all four test statistics having p 

values less than 0.001. Given this result, we performed pairwise Wilcoxon rank sum testing for 

expired fraction between each race and White or Caucasian as reference. The proportion of 

each Triage Category within each racial group is shown in Table 31. The results of Fisher’s 

exact test suggest that the composition of Triage Categories represented in each of the 10 

identified racial groups differ significantly. Table 32 shows the proportion of each SOFA 

Component score present in each racial group. Again, the results of Fisher’s exact test suggest 

that the difference in these compositions across race are statistically significant. Table 33 

similarly shows the proportion of each Comorbidity Component value present in each racial 

group. Again, these compositions differ significantly based on the results of Fisher’s exact test.   
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Table 30: Distribution statistics of expired fraction by racial group and constraint level 

  Constraint Level 

  Base Moderate Severe Extreme 

Race N Mean Median IQR Mean Median IQR Mean Median IQR Mean Median IQR 

White or 
Caucasian 

405 0.03 0 (0, 0) 0.105 0 (0, 0) 0.175 0 
(0, 

0.162) 
0.219 0 

(0, 
0.343) 

Black/AA 103 0.03 0 (0, 0) 0.112 0 (0, 0) 0.202 0 
(0, 

0.232) 
0.257 0.051 

(0, 
0.445) 

AI/AN 2 0 0 (0, 0) 0.002 0.002 
(0.001, 
0.002) 

0.075 0.075 
(0.038, 
0.113) 

0.018 0.018 
(0.009, 
0.027) 

Asian 81 0.074 0*** (0, 0) 0.12 0 (0, 0) 0.211 0 
(0, 

0.191) 
0.272 0.003 

(0, 
0.521) 

ME/NA 17 0 0 (0, 0) 0.035 0 (0, 0) 0.165 0 
(0, 

0.207) 
0.231 0 

(0, 
0.279) 

NH/PI 5 0.2 0 (0, 0) 0.396 0*** 
(0, 

0.982) 
0.464 0.321*** (0, 1) 0.526 0.628*** (0, 1) 

Multiple Races 28 0 0 (0, 0) 0.017 0*** (0, 0) 0.073 0*** 
(0, 

0.042) 
0.132 0*** 

(0, 
0.167) 

Do Not Identify 17 0 0 (0, 0) 0.112 0 (0, 0) 0.168 0 
(0, 

0.001) 
0.181 0 

(0, 
0.053) 

Other 245 0.037 0*** (0, 0) 0.12 0 
(0, 

0.001) 
0.207 0*** 

(0, 
0.264) 

0.271 0.043*** 
(0, 

0.57) 

Unknown 60 0 0 (0, 0) 0.045 0*** (0, 0) 0.111 0 
(0, 

0.046) 
0.16 0* 

(0, 
0.221) 

Results of Wilcoxon rank sum testing of difference in expired fraction distribution (compared to White or Caucasian): *p < 0.05; **p < 0.01; ***p < 0.001 
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Table 31: Triage Category Distribution in all Triage Encounters by Race 

  Triage Category (Proportion of N) 

Race N Violet Red Orange Yellow Blue Green 

White or Caucasian 1454 0.188 0.196 0.151 0.175 0.017 0.272 

Black or AA 390 0.118 0.246 0.133 0.2 0.036 0.267 

AI/AN 5 0 0 0 0.4 0 0.6 

Asian 275 0.222 0.284 0.087 0.156 0.011 0.24 

ME/NA 69 0.217 0.232 0.174 0.087 0 0.29 

NH/PI 33 0 0 0.212 0.667 0 0.121 

Multiple Races 75 0.173 0.187 0.16 0.08 0 0.4 

Do Not Identify 87 0.287 0.276 0.092 0.103 0 0.241 

Other 1027 0.118 0.210 0.107 0.282 0.019 0.263 

Unknown 211 0.308 0.19 0.161 0.057 0 0.284 
Fisher’s exact test: p < 0.001 

 
Table 32: SOFA Component Distribution in all Triage Encounters by Race 

  SOFA Component (Proportion of N) 

Race N 1 2 3 4 

White or Caucasian 1454 0.375 0.319 0.161 0.145 

Black or AA 390 0.302 0.391 0.115 0.191 

AI/AN 5 0.333 0 0 0.667 

Asian 275 0.322 0.377 0.199 0.103 

ME/NA 69 0.676 0.235 0.088 0 

NH/PI 33 0.172 0.724 0.103 0 

Multiple Races 75 0.343 0.229 0.257 0.171 

Do Not Identify 87 0.326 0.512 0.116 0.047 

Other 1027 0.253 0.333 0.199 0.215 

Unknown 211 0.544 0.233 0.144 0.078 
Fisher’s exact test: p < 0.001 
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Table 33: Comorbidity Component Distribution in all Triage Encounters by Race 

  Comorbidity Component (Proportion of N) 

Race N 0 2 4 
Unknown/ 

Unavailable 

White or Caucasian 1454 0.319 0.172 0.494 0.015 

Black or AA 390 0.455 0.123 0.417 0.004 

AI/AN 5 0 0.333 0.667 0 

Asian 275 0.466 0.219 0.288 0.027 

ME/NA 69 0.324 0.176 0.471 0.029 

NH/PI 33 0 0.069 0.931 0 

Multiple Races 75 0.486 0.286 0.229 0 

Do Not Identify 87 0.535 0.116 0.326 0.023 

Other 1027 0.317 0.124 0.54 0.019 

Unknown 211 0.367 0.189 0.4 0.044 
Fisher’s exact test: p < 0.001 
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Mediation of Race Effects by SOFA  

The results of the mediation analysis for the SOFA Component are shown below. Table 34 

shows the total effect as determined by the linear regression model including only the Patient 

Characteristics variables and the direct effect as determined by the model that incorporates the 

SOFA Component. In the base case of no resource constraint, the total and direct effects of 

race appeared to be significant for patients who identified as Asian (compared to patients 

identifying as White or Caucasian), but these effects were no longer statistically significant 

under any level of constraint. The results for Native Hawaiian or Other Pacific Islander patients 

compared to White patients should be interpreted with extreme caution, given the very small 

number of patients present in our study sample that may very well not be representative 

because of overspecification. Keeping this in mind, the total effect of race was significant under 

no constraint and moderate constraint but not under severe or extreme constraint. For these 

patients, the direct effect of race with respect to the SOFA Component became significant under 

moderate constraint and persisted under severe and extreme constraint levels.  

 For all racial groups under all constraint levels (compared to White patients), the effect of 

race mediated by the SOFA component was statistically insignificant, as shown by each of the 

bootstrapped 95 percent confidence intervals in Table 35. While these effects did not meet 

thresholds for significance, it is worth noting the wide range of magnitudes for the degree of 

mediation among the racial groups within a given constraint level. Even within the base case, for 

which actual outcomes were known, the percent mediation ranged from -1001.8 percent for 

patients identifying as Other to 27.7 percent for patients identifying as Middle Eastern or North 

African. The latter were the only group to have a positive mediation effect, while the remainder 

showed varying amounts of suppression and reversal of effect of race by SOFA score. 

 The change in degree to which race was mediated by SOFA across constraint levels 

was not uniform among the groups. For patients identifying as Asian, the percent mediation 

remained negative and greater than 100 across constraint levels, suggesting that SOFA 



 84 

suppressed and reversed the effect of race compared to White patients. This was not the case 

for Black or African American patients, for whom SOFA appeared to suppress but no longer 

reverse the effect of race under any level of constraint. Compared to White patients, for patients 

identifying as Native Hawaiian or Other Pacific Islander, SOFA appeared to reverse but not 

suppress the direct effect of race. Again, the reproducibility of these results should be 

questioned given the extremely small sample size in our population. 

 Direct and indirect effects of race with respect to the SOFA Component could not be 

determined for American Indian or Alaska Native patients as their representative observations in 

the dataset did not include SOFA scores. 

Mediation of Race Effects by Comorbidities 

The results of the mediation analysis for the Comorbidity Component are shown in Table 36 and 

Table 37. Table 36 shows the total effect as determined by the linear regression model including 

only the Patient Characteristics variables, which as expected is identical to the Total columns in 

Table 34. The direct effect was determined by the model that incorporates the Comorbidity 

Component to the total effect model. Curiously, the direct effect of race was again statistically 

significant for Asian patients under extreme constraint. 

 Once again, for all racial groups under all constraint levels, the effect of race mediated 

by the Comorbidity component did not meet thresholds for statistical significance, as shown by 

each of the bootstrapped 95 percent confidence intervals in Table 37. It is again worth noting 

the wide range of magnitudes for the degree of mediation among the racial groups within a 

given constraint level despite the lack of statistical significance. In the base case, the percent 

mediation ranged from -1459.9 percent for patients identifying as Other to -28 percent for 

patients whose race was unknown. While the range was slightly wider, it appears that the 

Comorbidity Component uniformly suppressed and reversed the effect of race in the base case. 

While the mediation patterns for the Comorbidity Component were similar to those for the SOFA 

Component for Asian and Black or African American patients compared to White patients, there 



 85 

were slightly new patterns seen for Middle Eastern or North African and Native Hawaiian or 

Other Pacific Islander patients. Compared to White patients, comorbidities appeared to counter 

but not fully reverse the effect of race for Middle Eastern or North African Patients in the base 

case. For Native Hawaiian or Other Pacific Islander patients, we observed positive mediation 

under moderate and severe constraints compared to the SOFA Component. 

 As in the case of the SOFA Component analysis, the direct and indirect effects of race 

with respect to the Comorbidity Component could not be determined for patients identifying as 

American Indian or Alaska Native as the dataset observations corresponding to these patients 

did not include comorbidity data.  
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Table 34: Total and direct effect coefficients of race on risk of mortality and proportion mediated by SOFA Component by constraint level 

 Base Moderate Severe Extreme 

Race Total Direct Mediation (%) Total Direct Mediation (%) Total Direct Mediation (%) Total Direct Mediation (%) 

White or Caucasian Reference 

Black or AA 0.006 0.017 -190.8 0.004 -0.044 1271.1 0.032 -0.029 189.9 0.044 -0.025 156.2 

AI/AN -0.02 NC NC -0.075 NC NC -0.008 NC NC -0.162 NC NC 

Asian 0.05* 0.104** -110.1 0.008 0.02 -160.8 0.026 0.054 -109.2 0.047 0.106 -129.1 

ME/NA -0.027 -0.02 27.7 -0.075 -0.071 5.23 -0.006 0.034 652.3 0.019 0.09 -363.5 

NH/PI 0.174* 0.315 -80.7 0.282* 0.485** -72.3 0.288* 0.473* -64.1 0.297 0.497* -67.5 

Multiple Races -0.025 -0.029 -15.2 -0.091 -0.148 -62.5 -0.098 -0.109 -12.6 -0.09 -0.049 45.3 

Do Not Identify -0.048 -0.066 -38.9 -0.031 0.129 519.8 -0.061 0.146 339.6 -0.111 0.047 142.8 

Other 0.001 0.013 -1001.8 -0.014 -0.002 87.4 -0.017 -0.025 -42.1 -0.006 0 100 

Unknown -0.036 -0.038 -6.99 -0.066 -0.052 21.0 -0.074 -0.076 -3.27 -0.083 -0.092 -11.1 
* p < 0.05; ** p < 0.01; *** p < 0.001 
NC: not calculated 

Table 35: Indirect (mediated) effect of race on risk of mortality by constraint level, SOFA Component 

 Base Moderate Severe Extreme 

Race Coefficient 95% CI Coefficient 95% CI Coefficient 95% CI Coefficient 95% CI 

White or Caucasian Reference 

Black or AA -0.011 (-0.085, 0.063) 0.048 (-0.061, 0.157) 0.061 (-0.12, 0.242) 0.069 (-0.121,0.259) 

AI/AN NC NC NC NC NC NC NC NC 

Asian -0.055 (-0.261, 0.152) -0.013 (-0.283, 0.258) -0.028 (-0.328, 0.271) -0.06 (-0.383, 0.262) 

ME/NA -0.007 (-0.578, 0.563) -0.004 (-0.735, 0.728) -0.04 (-0.571, 0.491) -0.071 (-0.534, 0.392) 

NH/PI 0.141 (-0.747, 0.466) -0.204 (-1.10, 0.69) -0.185 (-0.986, 0.616) -0.2 (-0.993, 0.593) 

Multiple Races 0.004 (-0.072, 0.079) 0.057 (-0.375, 0.489) 0.012 (-0.444, 0.469) -0.041 (-0.425, 0.343) 

Do Not Identify 0.018 (-0.182, 0.219) -0.159 (-0.437, 0.119) -0.207 (-0.48, 0.065) -0.217 (-0.489, 0.054) 

Other -0.011 (-0.271, 0.247) -0.012 (-0.368, 0.344) 0.007 (-0.36, 0.374) 0.009 (-0.213, 0.232) 

Unknown -0.003 (-0.072, 0.077) -0.014 (-0.145, 0.118) 0.002 (-0.193, 0.198) -0.083 (-0.312, 0.147) 
NC: not calculated 
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Table 36: Total and direct effect coefficients of race on risk of mortality and proportion mediated by Comorbidity Component by constraint level 

 Base Moderate Severe Extreme 

Race Total Direct Mediation (%) Total Direct Mediation (%) Total Direct Mediation (%) Total Direct Mediation (%) 

White or Caucasian Reference 

Black or AA 0.006 0.018 -206.2 0.004 -0.036 1046.8 0.032 -0.026 179.7 0.044 -0.026 159.2 

AI/AN -0.02 NC NC -0.075 NC NC -0.008 NC NC -0.162 NC NC 

Asian 0.05* 0.115** -130.9 0.008 0.074 -851.8 0.026 0.107 -313.9 0.047 0.14* -199.8 

ME/NA -0.027 -0.035 -31.0 -0.075 -0.069 7.48 -0.006 0.012 295.7 0.019 0.058 -198.1 

NH/PI 0.174* 0.273* -56.6 0.282* 0.246 12.6 0.288* 0.259 10.0 0.297 0.377 -26.9 

Multiple Races -0.025 -0.034 -33.6 -0.091 -0.118 -29.3 -0.098 -0.121 -24.0 -0.09 -0.081 10.4 

Do Not Identify -0.048 -0.079 -65.4 -0.031 0.062 302.3 -0.061 0.088 243.6 -0.111 0.014 112.8 

Other 0.001 0.019 -1459.9 -0.014 0.018 236.5 -0.017 0.009 151.7 -0.006 0.028 573.5 

Unknown -0.036 -0.046 -28.2 -0.066 -0.046 29.2 -0.074 -0.067 8.7 -0.083 -0.088 -5.5 
* p < 0.05; ** p < 0.01; *** p < 0.001 
NC: not calculated 

 
Table 37: Indirect (mediated) effect of race on risk of mortality by constraint level, Comorbidity Component 

 Base Moderate Severe Extreme 

Race Coefficient 95% CI Coefficient 95% CI Coefficient 95% CI Coefficient 95% CI 

White or Caucasian Reference 

Black or AA -0.012 (-0.079, 0.055) 0.039 (-0.069, 0.148) 0.058 (-0.122, 0.237) 0.07 (-0.124, 0.264) 

AI/AN NC NC NC NC NC NC NC NC 

Asian -0.065 (-0.191, 0.062) -0.067 (-0.226, 0.092) -0.081 (-0.24, 0.077) -0.093 (-0.362, 0.176) 

ME/NA 0.008 (-0.053, 0.07) -0.006 (-0.197, 0.186) -0.018 (-0.233, 0.196) -0.038 (-0.293, 0.216) 

NH/PI -0.098 (-0.683, 0.487) 0.035 (-0.589, 0.66) 0.029 (-0.412, 0.47) -0.08 (-0.387, 0.228) 

Multiple Races 0.008 (-0.068, 0.085) 0.027 (-0.119, 0.173) 0.023 (-0.217, 0.264) -0.009 (-0.284, 0.266) 

Do Not Identify 0.031 (-0.075, 0.137) -0.093 (-0.46, 0.275) -0.149 (-0.576, 0.278) -0.125 (-0.543, 0.294) 

Other -0.017 (-0.087, 0.053) -0.032 (-0.123, 0.059) -0.026 (-0.139, 0.086) -0.034 (-0.151, 0.082) 

Unknown 0.01 (-0.396, 0.417) -0.019 (-0.539, 0.5) -0.006 (-0.495, 0.483) 0.005 (-0.5, 0.509) 
NC: not calculated 
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Discussion 

The results of this chapter suggest that the impact of race on mortality is not significantly 

propagated by the SOFA Component of the SRAP, all other Patient Characteristic variables 

held constant. Similarly, race does not appear to be significantly mediated by the Comorbidity 

Component in its effect on mortality risk, holding all other Patient Characteristic variables 

constant. While our results did not meet thresholds for statistical significance, the suggested 

magnitude of the mediation effects and the variation across constraint levels suggest that there 

may be more complex interactions between race, severity of acute illness, presence of chronic 

medical conditions, degree of resource constraint, and risk of mortality. 

 Methodologic issues that may explain this outcome include the inability to generate 

models based on clustered data as discussed in the previous chapter. In condensing the 

dataset to a single observation per patient, it is possible that information about SOFA scores 

and comorbidities were discarded. As mentioned in the microsimulation chapter, the use of 

linear models required a single observation per patient, and for 98 of the 963 patients in the 

sample, this meant relying on an observation for which the Triage Category was not the same 

as the subsequent Triage Categories for the patient. However, it was only the case in 2 of the 

patients that this reliance on the first observation resulted in a loss of SOFA and/or Comorbidity 

Component data, so this is unlikely to have significantly impacted our results. 

 Misspecification of racial groups is most likely contributing to our inconsistent findings. 

Of the patients who identified as ‘Other,” almost half (47.7 percent) identified as Hispanic or 

Latino ethnicity, but 36.7 percent identified as Not Hispanic or Latino and 15 percent identified 

their ethnicity as ‘Other,’ suggesting that this racial group was quite heterogenous. Similarly, in 

the patients of Unknown race, more than half (52.6 percent) identified as Hispanic or Latino. 

This suggests that some combination of race and ethnicity may be necessary to better identify 
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how these specific patient characteristics are associated with allocation priority and subsequent 

risk of mortality. 

Implications 

This analysis is the first to our knowledge to comprehensively examine the relationship between 

patient factors, policy criteria, and expected outcomes of implementation of a scarce resource 

allocation policy under crisis standards of care. Prior work, as previously discussed, has 

provided evidence of a relationship between race, the SOFA score, and specific chronic 

conditions. Our work further explores these relationships and offers insight into the relative 

contribution of race to allocation and mortality outcomes. 

 The methodology demonstrated here provides a framework for assessing mediation of 

other clinical factors currently absent from the UC SRAP and most other published policies, 

such as age, which will be discussed in the concluding chapter. Such clinical factors are used 

routinely in practice to ascertain a patient’s risk of having a specific medical condition or of 

succumbing to acute illness. The framework in Figure 22 can be modified such that race can be 

substituted for any Patient Characteristic variable for which data is available to determine how 

the effects of these variables on risk of mortality under varying constraint levels may be 

mediated by certain Policy Criteria variables. Similarly, the Comorbidity Component can be 

substituted for individual comorbid conditions to determine how, if at all, the effects of Patient 

Characteristics may be mediated by particular comorbidities. 

Limitations 

The analyses conducted are limited by the data collection strategy in the original study. Since 

SOFA scores and presence of comorbidities were not collected for Violet, Blue, and Green 

patients, the direct effect models provide regression coefficients based on data not missing at 

random. This would be expected to introduce bias in the coefficients for SOFA Component and 

Comorbidity Component, which would be reflected in the indirect effects of the race variable.  
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 This bias could occur in either direction. Patients in the Blue category, who are given 

lowest priority for critical care resources due to a catastrophic condition, might be severely 

chronically ill leading to refractory cardiac arrest, or might have been perfectly healthy until a 

traumatic event leading to a comatose state. These two patients are evaluated similarly by the 

policy in that the catastrophic condition is assessed first, and the presence or absence of 

comorbid conditions would not have been ascertained. Similarly, while the SOFA scores were 

automatically calculated in the medical record, the Triage Allocation Tool did not file these 

scores unless a Triage Category requiring the incorporation of these data were filed. 

 Additionally, the models proposed here rely on assumptions of linearity that are not fully 

met by the data. While the mean and median of the residuals for both the total effect and direct 

models were very close to 0, they were not exactly equal, suggesting slight skew and therefore 

asymmetric and non-normal distributions. 

 Finally, the racial composition of our study population and the prevalence of specific 

comorbidities limits the external validity of our results. As suggested by the number of patients 

and the number of triage encounters for each group in Table 30 and Table 31, respectively, 

several groups were substantially underrepresented relative to other groups in the sample. As 

Table 21 shows, several comorbidities are relatively rare in our population. Given that the 

presence of any one of these conditions would increase the Triage Allocation Score by at least 

2 points, significant difference in another population would deterministically lead to differences 

in distribution of Triage Categories. This would in turn potentially lead to changes in risk of 

mortality (as represented by each patient’s expired fraction value) and alternative conclusions 

about associations between this race, risk of mortality, and the degree to which that is mediated 

by policy criteria. 
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Chapter 5: Discussion on Future Research in Scarce Resource Allocation 

Policy Development 

Summary of Work 

Our research shows that there is significant work to be done before widespread adoption and 

implementation of research allocation policies like the UC SRAP. The rapid proliferation of these 

policies during the COVID-19 pandemic has been quickly followed by research raising 

substantial issues with the potential for exacerbation of disparities. This dissertation reiterates 

those concerns, in addition to raising new alarms related to the reliability of such policies. While 

this work could not establish an association of disagreement in allocation priority with mortality 

outcomes or racial disparities, the presence of such disagreement should give pause given the 

demonstrated association of lower Triage Category with risk of mortality. Acknowledging the 

limitations discussed within each of the analytical chapter, we demonstrate that the UC SRAP 

may not meet the hypothesized goal of preserving cohort mortality at baseline levels. While 

these analyses did not compare the SRAP to continuing current care, and therefore do not 

suggest that the SRAP is worse than no policy, this dissertation provides evidence that triage as 

protocolized by the SRAP is insufficient to maintain mortality at pre-constraint levels. 

Improving Interrater Reliability of Policies 

The reliability analyses presented here are impactful in their consideration of individual elements 

of the policy as well as incorporation of selected characteristics of the raters. Further 

improvements in this domain will require a deeper understanding of the rating process. While 

our work strongly suggests that the UC SRAP cannot be reliably applied as written, the high 

levels of agreement in specific aspects of the policy indicate that some policy elements may be 

more problematic than others. For example, the high Rand indices would suggest that policy 

users agreed, on a per patient basis, about the need for ICU and the presence of catastrophic 

conditions. While the Rand index for whether an exemption criterion was present was relatively 
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high at 0.85, it was noticeably lower than the prior two determinations, suggesting that the 

reliable identification of exemption criteria might be an area for further focus. From our 

knowledge of the study, we suspect that some of this disagreement may have been driven by 

inappropriate extension of the exemption – for instance, a patient who was more than 10 days 

out from transplant surgery should not have been given an exemption but may have been 

assigned Violet because they had received a transplant.  

Additionally, there was relatively high agreement in the determination of the presence or 

absence of the comorbidities by the Rand indices – only three comorbidities had a Rand index 

less than 0.9. These results support the addition of a calibration process that includes real-time 

feedback from raters to understand areas of ambiguity or confusion. Such calibration processes 

might include testing the removal of specific comorbidities and exemption criteria and assessing 

their impact on reliability. For instance, one might consider collapsing the heart failure 

Comorbidities M2 and S2 into a single condition, which would directly address the lower levels 

of agreement in Comorbidity M2, or removing these conditions from the policy entirely, given 

that they were not found to be associated with risk of mortality in the simulation studies. 

Future research around resource allocation policies should take care to design studies 

that reflect the real-world issues that impact implementation of such policies. For example, while 

interrater reliability measures can be calculated from two raters each evaluating the same 

number of patients, such a design would prevent any evaluation of variation among raters, 

which is a foreseeable issue in enacting a policy such as the UC SRAP that intends to train 

multiple individuals of varying backgrounds and experiences who will bring those to the rating 

process in the form of potential biases. Awareness of this component of the IRR measure is 

critical in optimizing these policies for reliable implementation. 
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Optimizing Mortality Outcomes Related to Policy Implementation 

Simulation methods like those leveraged here are a powerful tool in conducting an otherwise 

ethically difficult experiment. Given the abundance of ICU patient data collected across 

hospitals on a constant basis for the purposes of patient care, our healthcare system is 

fortunate to have arguably the most valid inputs into any microsimulation model aimed at 

assessing the impact of allocation policies that rely directly on individual patient data. As 

previously summarized literature and our model selection highlights, large datasets with 

heterogeneity at many levels (age, racial, ethnic, language, hospital, city, state, etc.) are ideal to 

fully exploit the power of microsimulation. 

 Finally, these simulation programs would be even more useful with the modifiable policy 

“built-in” such that criteria could be added and removed with immediate calculation of the impact 

on mortality outcomes. In the case of our dataset, the Triage Categories were given as input 

data, such that adding or removing a Policy Criteria variable would not have changed the 

allocation priorities or subsequent decisions. Incorporating the determination of the allocation 

decision variable into the simulation as based on other variables would offer an unmatched 

ability to further guide resource allocation policy development. 

Mitigating the Impact of Existing Disparities 

Larger datasets are needed to fully understand the impact of resource allocation policies on 

racial disparities. Although it cannot be definitively concluded given that almost one-third of our 

population’s racial identity was unknown, it is unlikely that our sample was representative of the 

Los Angeles demographic, let alone California or the United States, based on the most recent 

census data available.44,59,60 

 Furthermore, given the relatively low prevalence of any single comorbidity in our sample, 

as shown in Table 21, it is unlikely that our analyses would be powered to detect mediation 

effects of race by a particular comorbidity. In the context of the UC SRAP and other policies that 
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give equal weight to any one diagnosis within a set, sensitivity analyses can still be conducted 

around the inclusion and exclusion of specific comorbidities and the resulting change to the 

impact of the Comorbidity Component on risk of mortality. For example, one might ask how 

removing Comorbidity S5 (cirrhosis with a MELD > 20), which was present in approximately 10 

percent of our patient sample, from the list of severely life-limiting comorbidities would change 

the allocation decisions and expected cohort mortality. 

 Our work focused on disparities between racial groups driven by difference in SOFA 

scores and specific comorbidities like end-stage renal disease, cirrhosis, and cancer, but the 

microsimulation framework is agnostic to the choice of patient characteristic and can be applied 

to the study of other forms of disparities. Given the concerns raised about the role that 

socioeconomic status (SES) may play in the disproportionate burden of cancer in minorities, 

one might use our framework to explore how policy modifications such as the inclusion of the 

SVI could work to mitigate the impact of prior disparities on the resource allocation process. The 

SVI is a multi-domain indicator developed by the CDC to identify social vulnerable populations 

at risk of needing increased support during public health emergencies.61 Such a data point, 

when linked to individual chart-level data, could provide insight into how incumbent societal 

disadvantages impact the severity of presenting critical illness and/or the presence of comorbid 

conditions, furthering our understanding of existing disparities and potentially offering a 

mechanism to mitigate these otherwise unmeasured disparities in resource allocation. 

Future Directions 

There remains great potential for these frameworks to impact the quality and quantity of 

research conducted around healthcare resource allocation. As with all studies, the weight of the 

conclusions will rely heavily on the quality of the available data, which will require institutional 

investment in maintain high-quality medical records and optimizing workflows for such data 

collection. The modified SEIR framework presented in Chapter 3 also suggests that fully 
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understanding the outcomes of policies like the UC SRAP will require consideration of the input 

data. The patients who present for hospitalization and evaluation for critical care had a particular 

risk of requiring ICU care, that was born of their risks of exposure and susceptibility. Again, 

leveraging measures such as the SVI may allow researchers to understand these risks to create 

policies that are both equitable and effective in maximizing the number of lives saved.  



 96 

Appendices 
 

Appendix A: Common Terms and Abbreviations 

 
Term or Abbreviation Definition 

  
CareConnect Electronic medical record for the University of California, Los Angeles Health System 

Catastrophic condition 
One of five conditions specified by the Scarce Resource Allocation Policy 
corresponding to the lowest priority Triage Category Blue (Table 2, Appendix B) 

COPD Chronic Obstructive Pulmonary Disease 
CSC Crisis Standards of Care 
ECMO Extracorporeal Membrane Oxygenation 
EMR Electronic medical record 

Exemption criterion 
One of five criteria specified by the Scarce Resource Allocation Policy corresponding 
to the highest priority Triage Category Violet (Table 5, Appendix B) 

ICC Intraclass correlation coefficient 
ICU Intensive Care Unit 

ICU indication 
One of five indications specified by the Scarce Resource Allocation Policy 
corresponding to the Triage Category Green (Table 1, Appendix B) 

IPF Idiopathic Pulmonary Fibrosis 
IRR Interrater reliability 
MELD Model for End-Stage Liver Disease 
mSOFA Modified Sequential Organ Failure Assessment 
SOFA Sequential Organ Failure Assessment 
SRAP Scarce Resource Allocation Policy 

Surge Conditions 
Time periods during which supply of critical care resources is surpassed by patient 
need or demand for such resources 

SVI Social Vulnerability Index 
TAT Triage Allocation Tool 
UC University of California 
UCLA University of California, Los Angeles 
uSOFA UCLA-modified Sequential Organ Failure Assessment 
WHO World Health Organization 
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Appendix B: Various measures of severity of acute illness 
 

Sequential Organ Failure Assessment (SOFA) Scoring System 
 

Organ System 0 1 2 3 4 

Respiratory      
PaO2/FiO2 on arterial 

blood gas 
≥ 400 300 – 399 200 – 299 100 – 199 < 100 

(or SpO2/FiO2 when 
ABG not available) 

(≥ 512) (357 – 511) (214 – 356) (89 – 213) (< 89) 

Coagulation      
Platelet count 

(103/L) 
≥ 150 100 – 149 50 – 99 20 – 49 < 20 

Liver      

Bilirubin (mg/dL) < 1.2 1.2 – 1.9 2.0 – 5.9 6.0 – 11.9 ≥ 12 

Cardiovascular      

Hypotension 
(vasopressor doses 

in mcg/kg/min) 
None 

MAP < 70 
mmHg 

Dopamine < 5 

Dopamine 6 – 
15 or 

Epinephrine < 
0.1 
or 

Norepinephrine 
< 0.1 

Dopamine > 15  
or 

Epinephrine ≥ 
0.1 
or 

Norepinephrine 
≥ 0.1 

Central Nervous 
System 

     

Glasgow Coma 
Scale (GCS) Score 

15 13 – 14 10 – 12 6 – 9 < 6 

Renal      
Creatinine (mg/dL) < 1.2 1.2 – 1.9 2.0 – 3.4 3.5 – 4.9 > 5 

(or urine output 
(mL/24h)) 

   (< 500) (< 200) 

 
Modified Sequential Organ Failure Assessment (mSOFA) Scoring System 

 
Organ System 0 1 2 3 4 

Respiratory      
SpO2/FiO2 on arterial 

blood gas 
(> 400) (316 – 400) (236 – 315) (151 – 235) (≤ 150) 

Liver 
No scleral 
icterus or 
jaundice 

  
Scleral icterus 

or jaundice 
 

Cardiovascular      

Hypotension 
(vasopressor doses in 

mcg/kg/min) 
None 

MAP < 70 
mmHg 

Dopamine < 5 

Dopamine 6 – 
15 or 

Epinephrine < 
0.1 
or 

Norepinephrine 
< 0.1 

Dopamine > 15 
 or 

Epinephrine ≥ 
0.1 
or 

Norepinephrine 
≥ 0.1 

Central Nervous 
System 

     

Glasgow Coma Scale 
(GCS) Score 

15 13 – 14 10 – 12 6 – 9 < 6 

Renal      
Creatinine (mg/dL) < 1.2 1.2 – 1.9 2.0 – 3.4 3.5 – 4.9 > 5 
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UCLA-modified Sequential Organ Failure Assessment (uSOFA) Scoring System 
 

Organ System 0 1 2 3 4 

Respiratory      
PaO2/FiO2 on arterial 

blood gas 
≥ 400 300 – 399 200 – 299 100 – 199 < 100 

(or SpO2/FiO2 when 
ABG not available) 

(≥ 512) (357 – 511) (214 – 356) (89 – 213) (< 89) 

Coagulation      
Platelet count 

(103/L) 
≥ 150 100 – 149 50 – 99 20 – 49 < 20 

Liver      
Bilirubin (mg/dL) < 1.2 1.2 – 1.9 2.0 – 5.9 6.0 – 11.9 ≥ 12 

Cardiovascular      

Hypotension 
(vasopressor doses in 

mcg/kg/min) 
None 

MAP < 70 
mmHg 

Dopamine < 5 

Dopamine 6 – 
15 or 

Epinephrine < 
0.1 
or 

Norepinephrine 
< 0.1 

Dopamine > 15  
or 

Epinephrine ≥ 
0.1 
or 

Norepinephrine 
≥ 0.1 

or 
ECMO 

Central Nervous 
System 

     

Glasgow Coma Scale 
(GCS) Score 

15 13 – 14 10 – 12 6 – 9 < 6 

Renal      
Creatinine (mg/dL) < 1.2 1.2 – 1.9 2.0 – 3.4 3.5 – 4.9 > 5 

(or urine output 
(mL/24h)) 

   (< 500) (< 200) 
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Appendix C: Excerpted criteria tables from the Scarce Resource Allocation Policy 
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Appendix D: Screenshots of the Triage Allocation Tool 
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Appendix E: Audit instruments used in reliability assessment 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Images of the instrument forms are included on the following pages. 
 



 109 

 



 110 

 



 111 

 



 112 

 



 113 

 



 114 

 



 115 

 



 116 

 



 117 

 



 118 

 



 119 

 



 120 

 



 121 

 



 122 

 



 123 

 



 124 

  



 125 

Appendix F: Medical Record Data Fields and Dictionary 
 

Patient Demographics: This table holds demographic information for the patients in the cohort. 

There is only one row per patient. 

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique 
ID number for the 
individual patient 
(assigned by IP for 
coding purposes) 

Use this variable to link to variables from all other files 
that contain patient information 

AGE Patient current age (as 
of data extraction date), 
or if patient is known 
deceased, age at death 
(if known) 

 

SEX Patient sex Values in CareConnect include: Male, Female, Other or 
Unknown 

RACE Patient race Patient race records are converted into more general race 
classifications (e.g., Chinese is represented as Asian). A 
detailed summary can be provided upon request. 

ETHNICITY Patient ethnicity List of possible values can be provided upon request 

VITAL_STATUS Vital status Known Deceased; Not Known Deceased 
 
Please note: Vital status is not known deceased or 
deceased status in EHR. Only in-hospital death is 
recorded, for the most part. Blank values in Care Connect 
are reported as "Not Known Deceased." Vital status data 
in CareConnect is not currently linked to the California 
death registry or any other sources e.g., CDC death data 

LANGUAGE Patient's primary 
language 

List of possible values can be provided upon request 

MARITAL_STATUS Patient marital status List of possible values can be provided upon request 

RELIGION Patient religion List of all possible values can be provided upon request 

GENDER_IDENT Gender Identity of the 
patient 

 

SEXUAL_ORIENT Patient's Sexual 
Orientation 

 

EDUCATION Neighborhood 
Education Level of the 
patient 

 

ADI_STATERANK Neighborhood area of 
deprivation index (ADI) 
ranked scores at the 
state level 

A raw score is the actual score a neighborhood receives 
based on the theoretical domains that the ADI measures. 
A decile groups the ADI scores into 10 equal sections., 
categorizing the individual block group/neighborhood, with 
those in the first percentile being the least disadvantaged, 
and those in the hundredth being the most. Deciles are 
created for each state individually. 

ADI_NATRANK Neighborhood area of 
deprivation index (ADI) 
ranked scores at the 
national level 

Link to Area Deprivation Index website: 
https://www.neighborhoodatlas.medicine.wisc.edu/  
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Patient Identifiers: This table holds identifying information for the patients in the cohort. There 

is only one row per patient. 

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique 
ID number for the 
individual patient 
(assigned by IP for 
coding purposes) 

Use this variable to link to variables from all other 
files that contain patient information 

MRN Patient medical record 
number (MRN) 

MRNs should have 7 digits. Please note that 
depending on how you import the data, some MRNs 
that have a leading “0” may show as only having 6 
digits. This is because the MRN is missing its leading 
“0”. Please correct this and add the leading 0 back 
into the dataset and also add the leading 0 back if 
looking up the patients in CareConnect for chart 
review. 

DOB Patient date of birth 
(DOB) 

Format: MM/DD/YYYY 

ZIP_CODE Patient postal address, 
zip code 

May be 9-digit zip code 

DEATH_DATE Patient death date (if 
known) 

Format: MM/DD/YYYY 

FIRST_ENCOUNTER_DATE Patient's first encounter 
date  

Format: MM/DD/YYYY 

LAST_ENCOUNTER_DATE Patient's last encounter 
date 

Format: MM/DD/YYYY 

LONGITUDE Patient Address X-axis 
Longitude 

 

LATITUDE Patient Address Y-axis 
Latitude 

 

SVI_SOCIO_ECON Percentile ranking for 
Socioeconomic theme 
according to the Social 
Vulnerability Index 

Null values show -999.  
This variable corresponds to RPL_THEME1. 
The CDC has used the 2018 American Community 
Survey 5-year dataset for their calculations.  
For more information visit: 
https://www.atsdr.cdc.gov/placeandhealth/svi/ 
documentation/SVI_documentation_2018.html 
(document also attached) 
 

SVI_HCOMP_LANG Percentile ranking for 
Household language 
theme according to the 
Social Vulnerability 
Index 

 

SVI_MINO_LANG Percentile ranking for 
Minority status and 
language theme 
according to the Social 
Vulnerability Index 

Null values show -999.  
This variable corresponds to RPL_THEME3. 
The CDC has used the 2018 American Community 
Survey 5-year dataset for their calculations.  
For more information visit: 
https://www.atsdr.cdc.gov/placeandhealth/svi/ 
documentation/SVI_documentation_2018.html 
(document also attached) 
 

SVI_HTYP_TRANS Percentile ranking for 
Housing type and 
Transportation theme 
according to the Social 
Vulnerability Index 
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Field Name Description Comment 

FIPS Concatenation of 
County FIPS, State 
FIPS & Tract 

Concatenation of County, Tract, and block group 
codes 

STCOFIPS Concatenation of State 
& County codes 

Code which uniquely identifies a County in the United 
States. It's made out of the concatenation of State & 
County codes 

TRACT_FIPS Concatenation of 
State, County and 
Tract FIPS codes 

This code can be used to match records to other data 
sources from the Census or any other organization 
that use the FIPS code at the census tract level as a 
reference 

OCCUPATION Patient occupation  

 
Encounters: This table holds data for encounters for the patient cohort. There can be multiple 

rows per patient, but only one row per encounter.  

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables 
from all other files that contain patient 
information 

IP_ENC_ID A de-identified, unique ID 
number for the encounter 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables 
from other tables with encounter 
information e.g., diagnoses, 
procedures, vital signs, etc. 

INPATIENT_DATA_ID The internal ID number of the 
record used to determine how 
inpatient data is stored for the 
encounter. 

 

EPIC_ENCOUNTER_TYPE Encounter type as recorded in 
Epic 

List of possible values can be 
provided upon request 

ENCOUNTER_DATE Encounter date Format: MM/DD/YYYY 

ENCOUNTER_AGE Age at time of encounter  

ADMIT_DATE Admit date and time Format: MM/DD/YYYY HH24:MI  

DISCHARGE_DATE Discharge date and time Format: MM/DD/YYYY HH24:MI  

HOSP_DISCHARGE_DISPOSITION Hospital discharge disposition List of possible values can be 
provided upon request 

IP_VISIT_TYPE Visit type Values include: ED, ED to IP, IP, 
Ambulatory visit, Non-Acute 
institutional stay, Other ambulatory 
visit, No information, Unknown, Other 

LOCATION Physical location of care  

 
Hospital Unit Transfers: This table holds within-hospital patient movement event data on 

admit, discharge, transfer time and location. 

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
all other files that contain patient 
information 

IP_ENC_ID A de-identified, unique ID 
number for the encounter 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
other tables with encounter information 
e.g., diagnoses, procedures, vital signs, 
etc. 
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Field Name Description Comment 

EVENT_TYPE Event type Admit; Admit/Discharge; Discharge; 
Transfer 

EVENT_DATETIME_IN Patient date and time in Format: MM/DD/YYYY HH24:MI  

LOCATION UCLA Location  

DEPARTMENT_ID Department ID number  

DEPARTMENT_NAME Department name  

 
Encounter Diagnoses: This table holds encounter diagnoses data for the patients in the 

cohort. There can be multiple rows per patient as well as multiple rows per encounter.  

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
all other files that contain patient 
information 

IP_ENC_ID A de-identified, unique ID 
number for the encounter 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
other tables with encounter information 
e.g., diagnoses, procedures, vital signs, 
etc. 

DIAGNOSIS_DATE Diagnosis date Format: MM/DD/YYYY 

ICD_TYPE ICD Type 9 = ICD-9; 10 = ICD-10; Please note 
ICD-9 codes are used prior to Oct 1, 
2015, and ICD-10 codes are used after 

ICD_CODE ICD Code  

ICD_DESCRIPTION ICD Diagnosis Code Description  

PRIMARY_DIAGNOSIS_FLAG Primary or secondary diagnosis P = Primary; S = Secondary; blank = no 
value 

ADMISSION_DIAGNOSIS_FLAG Admit diagnosis flag 1 = Yes; 0 = No 

PRESENT_ON_ADMISSION Diagnosis was present on 
admission 

1 = Yes; 0 = No 

HOSPITAL_FINAL_DIAGNOSIS Final hospital discharge 
diagnosis 

1 = Yes; 0 = No 

 
Procedures: This table holds procedure information for the patients in the cohort. There can be 

multiple rows per patient as well as multiple rows per encounter.  

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
all other files that contain patient 
information 

IP_ENC_ID A de-identified, unique ID 
number for the encounter 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
other tables with encounter information 
e.g., diagnoses, procedures, vital signs, 
etc. 

PROCEDURE_DATE Procedure date and time Format: MM/DD/YYYY HH24:MI 

PROCEDURE_TYPE Procedure type 9 = ICD9, 10 = ICD10, CPT, HCPCS; 
Please note ICD-9 codes are used prior to 
Oct 1, 2015, and ICD-10 codes are used 
after 

PROCEDURE_CODE Procedure code  

PROCEDURE_DESCRIPTION Procedure description  
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Problem Lists: This table holds problem list info for the patients in the cohort.  There can be 

multiple rows per patient. 

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
all other files that contain patient 
information 

IP_PROBLEM_LIST_ID A de-identified, unique ID 
number for the problem list 
(assigned by IP for coding 
purposes) 

 

ICD_TYPE ICD Type 9 = ICD-9; 10 = ICD-10; Please note ICD-
9 codes are used prior to Oct 1, 2015, 
and ICD-10 codes are used after 

ICD_CODE ICD Code  

ICD_DESCRIPTION ICD Diagnosis Code Description  

PROBLEM_DESCRIPTION Problem description This variable is a PHI/free text field  

PROBLEM_STATUS Problem status Values include: Active, Deleted, or 
Resolved  

 
Flowsheet Vitals: This table holds flowsheet information for vital signs for the patients in the 

cohort. There can be multiple rows per patient.  

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
all other files that contain patient 
information 

INPATIENT_DATA_ID The internal ID number of the 
record used to determine how 
inpatient data is stored for the 
encounter. 

 

VITAL_SIGN_ID The Vital Sign Measure ID 
associated with the Vital Sign 
Type 

 

VITAL_SIGN_TYPE Vital sign types Per the data elements template, providing 
data only on the patients’ height, bmi, and 
weight 

VITAL_SIGN_VALUE The measure result (number)  

VITAL_SIGN_TAKEN_TIME The date and time the measure 
was taken 

Format: MM/DD/YYYY HH24:MI  

 
Labs: This table holds all laboratory result information for the patients in the cohort. There can 

be multiple rows per patient as well as multiple rows per encounter. 

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
all other files that contain patient 
information 

IP_ENC_ID A de-identified, unique ID 
number for the encounter 

Use this variable to link to variables from 
other tables with encounter information 
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Field Name Description Comment 

(assigned by IP for coding 
purposes) 

e.g., diagnoses, procedures, vital signs, 
etc. 

IP_ORDER_PROC_ID A de-identified, unique ID 
number for the order (assigned 
by IP for coding purposes) 

 

COMPONENT_ID Laboratory component ID 
number 

 

COMPONENT_NAME Laboratory component name  

SPECIMEN_TAKEN_TIME Specimen taken date and time Format: MM/DD/YYYY HH24:MI  

RESULT_TIME Laboratory result date and time Format: MM/DD/YYYY HH24:MI  

RESULT Laboratory test result This variable is a PHI/free text field  

REFERENCE_UNIT Laboratory test result reference 
unit 

 

 
Medications: This table holds medication information for the patients in the cohort.  There can 

be multiple rows per patient as well as multiple rows per encounter. 

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
all other files that contain patient 
information 

IP_ENC_ID A de-identified, unique ID 
number for the encounter 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables from 
other tables with encounter information 
e.g., diagnoses, procedures, vital signs, 
etc. 

IP_ORDER_MED_ID A de-identified, unique ID 
number for the medication order 
(assigned by IP for coding 
purposes) 

 

START_DATE Medication start date  Format: MM/DD/YYYY HH24:MI  

END_DATE Medication end date Format: MM/DD/YYYY HH24:MI  

EPIC_MEDICATION_ID Medication ID number in 
CareConnect 

 

EPIC_MEDICATION_NAME Epic medication name  

MEDISPAN_GENERIC_NAME Medispan generic name  

MEDISPAN_CLASS_NAME Pharmaceutical class of 
medication 

 

MEDISPAN_SUBCLASS_NAME Pharmaceutical subclass of 
medication 

 

SIG Provider instructions to patient 
for taking the medication 

 

FREQUENCY Frequency of medication dosage  

 
Social History: This table holds social history information for the patients in the cohort. We 

included all values for the requested fields and provide only the latest value. 

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to variables 
from all other files that contain patient 
information 

SMOKING_TOBACCO_USER Smoking Tobacco user Values in the dataset include: Current 
Every Day Smoker, Current Some 
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Field Name Description Comment 

Day Smoker, Former Smoker, Heavy 
Tobacco Smoker, Light Tobacco 
Smoker, Never Assessed, Never 
Smoker, Passive Smoke Exposure - 
Never Smoker, Smoker, Current 
Status Unknown, Unknown If Ever 
Smoked 

SMOKING_START_DATE Smoking start date Format: MM/DD/YYYY 

SMOKING_QUIT_DATE Smoking quit date Format: MM/DD/YYYY 

ALCOHOL_USER Alcohol user Yes; No 

ALCOHOL_OUNCES_PER_WEEK Alcohol drinks per week 
(average) 

 

IV_DRUG_USER IV drug user Y = Yes; N = No 

ILLICIT_DRUG_FREQUENCY Illicit drug frequency  

ILLICIT_DRUG_COMMENTS Illicit drug comments (free-text) This variable is a PHI/free text field  

CONTACT_DATE Date of the encounter when this 
piece of information was 
recorded 

Format: MM/DD/YYYY 

SDH_EDUCATION_LEVEL Social determinants of health 
(SDH) question; categorical 
responses corresponding to 
highest level of school attended 

 

SDH_FINANCIAL_RES_STRAIN Social determinants of health 
(SDH) question about financial 
resource strain 

 

SDH_IPV_EMOTIONAL_ABUSE Social determinants of health 
(SDH) question about emotional 
abuse from an intimate partner 

 

SDH_IPV_FEAR Social determinants of health 
(SDH) question about fear of an 
intimate partner 

 

SDH_IPV_SEXUAL_ABUSE Social determinants of health 
(SDH) question about sexual 
abuse from an intimate partner 

 

SDH_IPV_PHYSICAL Social determinants of health 
(SDH) question about physical 
abuse from an intimate partner 

 

SDH_ALCOHOL_FREQ Social determinants of health 
(SDH) question about frequency 
of drinking alcohol 

 

SDH_ALCOHOL_DRINKS_P_DAY Social determinants of health 
(SDH) question about number of 
standard drinks consumed in a 
typical day 

 

SDH_ALCOHOL_BINGE Social determinants of health 
(SDH) question about binge 
drinking 

 

SDH_LIVING_W_SPOUSE Social determinants of health 
(SDH) question about whether or 
not the patient is currently living 
with spouse or partner 

 

SDH_DAILY_STRESS Social determinants of health 
(SDH) question about daily 
stress 

 

SDH_PHONE_COMMUNICATION Social determinants of health 
(SDH) question about how often 
the patient socializes with friends 
or family over the phone 
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Field Name Description Comment 

SDH_SOCIALIZE_FREQ Social determinants of health 
(SDH) question about how often 
the patient socializes with friends 
or family in person 

 

SDH_CHURCH_ATTENDANCE Social determinants of health 
(SDH) question about how often 
the patient attends religious 
services 

 

SDH_CLUB_MTG_ATTEND Social determinants of health 
(SDH) question about how often 
the patient attends club or other 
organization meetings in a year 

 

SDH_CLUB_MEMBER Social determinants of health 
(SDH) question about whether 
the patient is a member of any 
clubs or organizations 

 

SDH_PHYS_ACT_DAYS_P_WK Social determinants of health 
(SDH) question about how many 
days a week the patient 
exercises 

 

SDH_PHYS_ACT_MIN_P_SESS Social determinants of health 
(SDH) question about how 
minutes the patient exercises on 
days that they exercise 

 

SDH_FOOD_INSEC_SCARCE Social determinants of health 
(SDH) question about whether or 
not the patient had run out of 
food and was not able to buy 
more 

 

SDH_FOOD_INSEC_WORRY Social determinants of health 
(SDH) question about whether 
the patient worried about food 
running out in the past year or 
not 

 

SDH_MED_TRANS_NEEDS Social determinants of health 
(SDH) question about whether 
the patient had difficulty 
regarding transportation for 
medical appointments and 
medicine 

 

SDH_OTHER_TRANS_NEEDS Social determinants of health 
(SDH) question about whether 
the patient had difficulty 
regarding transportation for 
things other than medical 
appointments and medicine 

 

 
Flowsheets: This table holds flowsheet information for non-vital signs for the patients in the 

cohort. There can be multiple rows per patient.  

Field Name Description Comment 

IP_PATIENT_ID A de-identified, unique ID 
number for the individual patient 
(assigned by IP for coding 
purposes) 

Use this variable to link to 
variables from all other files that 
contain patient information 

INPATIENT_DATA_ID The internal ID number of the 
record used to determine how 
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Field Name Description Comment 

inpatient data is stored for the 
encounter. 

TEMPLATE_NAME Template Name of the flowsheet 
measure 

 

DISPLAY_NAME Display Name of the flowsheet 
measure 

 

MEASURE_NAME Measure Name of the flowsheet 
measure 

 

FLOWSHEET_MEASURE_ID The Flowsheet Measure ID 
associated with the Flowsheet 
Measure Type 

 

FLOWSHEET_MEASURE_TYPE Flowsheet measure types  

FLOWSHEET_MEASURE_VALUE The measure result  

FLOWSHEET_MEASURE_TAKEN_TIME The date and time the measure 
was taken 

Format: MM/DD/YYYY HH24:MI  
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