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Abstract
Introduction: Cabozantinib, an inhibitor of MET, AXL, and 
VEGF receptors, significantly improved overall survival (OS) 
and progression-free survival (PFS) versus placebo in pa-
tients with previously treated advanced hepatocellular car-
cinoma (HCC). In this exploratory analysis, outcomes were 
evaluated according to plasma biomarker levels. Methods: 
Baseline plasma levels were evaluated for MET, AXL, VEGFR2, 
HGF, GAS6, VEGF-A, PlGF, IL-8, EPO, ANG2, IGF-1, VEGF-C, 
and c-KIT for 674/707 randomized patients; and Week 4 lev-
els were evaluated for MET, AXL, VEGFR2, HGF, GAS6, VEGF-

A, PlGF, IL-8, and EPO for 614 patients. OS and PFS were ana-
lyzed by baseline levels as dichotomized or continuous vari-
ables and by on-treatment changes at Week 4 as continuous 
variables; biomarkers were considered potentially prognos-
tic if p < 0.05 and predictive if p < 0.05 for the interaction 
between treatment and the biomarker. Multivariable analy-
ses adjusting for clinical covariates were also performed. Re-
sults: In the placebo group, high levels of MET, HGF, GAS6, 
IL-8, and ANG2 and low levels of IGF-1 were associated with 
shorter OS in univariate and multivariable analyses; these 
associations were also observed for MET, IL-8, and ANG2 in 
the cabozantinib group. Hazard ratios for OS and PFS fa-
vored cabozantinib over the placebo at low and high base-
line levels for all biomarkers. No baseline biomarkers were 
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predictive of a treatment benefit. Cabozantinib promoted 
pharmacodynamic changes in several biomarkers, including 
increases in VEGF-A, PlGF, AXL, and GAS6 levels and decreas-
es in VEGFR2 and HGF levels; these changes were not associ-
ated with OS or PFS. Conclusion: Cabozantinib improved OS 
and PFS versus placebo at high and low baseline concentra-
tions for all biomarkers analyzed. Low baseline levels of MET, 
HGF, GAS6, IL-8, and ANG2 and high levels of IGF-1 were 
identified as potential favorable prognostic biomarkers for 
survival in previously treated advanced HCC. Although 
cabozantinib promoted pharmacodynamic changes in sev-
eral biomarkers, these changes were not associated with 
survival. © 2021 The Author(s).

Published by S. Karger AG, Basel

Introduction

Hepatocellular carcinoma (HCC) is a clinically and 
molecularly heterogeneous disease, and this diversity has 
impeded the identification of prognostic plasma bio-
markers associated with the clinical outcome and predic-
tive plasma biomarkers associated with a treatment ben-
efit for specific therapies. Alpha-fetoprotein (AFP), the 
most thoroughly characterized protein in this context, 
has been associated with the prognosis of HCC, with low 
serum AFP levels associated with improved survival 
across stages of the disease [1, 2]. Previous studies have 
identified other plasma biomarkers as potential prognos-
tic factors in advanced HCC, including proteins related 
to angiogenesis and/or receptor tyrosine kinase signaling 
such as VEGF-A, ANG2, HGF, MET, IGF-1, and IGF-2 
and proteins related to inflammation such as IL-6 and 
IL-8 [3–6]. Predictive biomarkers associated with re-
sponse to a specific therapy have not been defined to date 
in HCC. Recently, a broad survey of plasma proteins 
identified several potentially predictive biomarkers for a 
survival benefit with the multitargeted receptor tyrosine 
kinase inhibitor (TKI) regorafenib versus placebo [6]. In 
addition, studies have shown a differential treatment ben-
efit for the anti-VEGFR2 antibody ramucirumab com-
pared with the placebo based on serum levels of AFP [7].

Cabozantinib inhibits receptor tyrosine kinases impli-
cated in HCC progression, tumor immunosuppression, 
and resistance to antiangiogenic therapy, including VEGF 
receptors 1–3, MET, and the TAM family kinases TYRO3, 
AXL, and MER [8]. In the pivotal phase 3 CELESTIAL 
trial, cabozantinib significantly improved overall survival 
(OS) and progression-free survival (PFS) versus placebo 
in patients with advanced HCC previously treated with 

sorafenib and up to 2 prior systemic regimens. The me-
dian OS was 10.2 months for cabozantinib versus 8.0 
months for the placebo (hazard ratio [HR] 0.76, 95% con-
fidence interval 0.63–0.92; p = 0.005), and the median PFS 
was 5.2 months versus 1.9 months (HR 0.44, 95% confi-
dence interval 0.36–0.52; p < 0.001) [9].

Here, we present an exploratory analysis of OS and 
PFS in CELESTIAL based on plasma biomarker levels at 
baseline and on-treatment changes at Week 4. Biomark-
ers chosen for the study included cabozantinib targets 
(MET, AXL, VEGFR2, and c-KIT) and their ligands 
(HGF, GAS6, VEGF-A, PlGF, and VEGF-C) and other 
plasma proteins with reported prognostic significance in 
HCC (IL-8, EPO, ANG2, and IGF-1) [4]. Outcomes based 
on AFP levels in CELESTIAL have been previously re-
ported [10] and were not included in the current analysis.

Materials and Methods

Study Design and Patients
The study design and methods for the global, randomized, pla-

cebo-controlled phase 3 CELESTIAL trial (NCT01908426) have 
been previously reported [9]. Eligible patients had HCC that was 
not amenable to curative treatment, Child-Pugh A liver function, 
and Eastern Cooperative Oncology Group performance status of 
0 or 1. Patients must have received prior sorafenib and could have 
received up to 2 prior systemic regimens for HCC, with disease 
progression on at least one prior regimen.

Patients were randomized 2:1 to receive cabozantinib (60 mg 
orally, once daily) or a matched placebo. Randomization was strat-
ified by disease etiology; geographic region; and the presence of 
extrahepatic spread, macrovascular invasion, or both. Patients 
continued to receive study treatment as long as they experienced 
clinical benefit as judged by the investigator or until they experi-
enced unacceptable toxicity. Treatment interruptions and dose re-
ductions (to 40 mg and then to 20 mg) were used to manage ad-
verse events.

The study was conducted in accordance with the International 
Conference on Harmonization Good Clinical Practice guidelines 
and the principles of the Declaration of Helsinki. The Ethics Com-
mittee or institutional review board at each center approved the 
protocol, and all patients provided written informed consent.

Endpoints and Assessments
The primary endpoint was OS, and secondary endpoints were 

PFS and the objective response rate. The clinical outcome accord-
ing to plasma biomarker levels was an exploratory endpoint.

Tumor response and progression were assessed every 8 weeks by 
the investigator according to Response Evaluation Criteria in Solid 
Tumors, version 1.1 [11]. The data cutoff date was June 1, 2017.

Plasma samples were collected at baseline and on treatment at 
Week 4 (Week 5, Day 1). Samples were analyzed for soluble bio-
marker levels by the Luminex assay (Assay Gate, Ijamsville, MD, 
USA). Baseline biomarker levels were determined for 13 proteins 
(MET, AXL, VEGFR2, HGF, GAS6, VEGF-A, PlGF, IL-8, EPO, 
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ANG2, IGF-1, VEGF-C, and c-KIT), and Week 4 biomarker levels 
were determined for 9 proteins (MET, AXL, VEGFR2, HGF, 
GAS6, VEGF-A, PlGF, IL-8, and EPO) due to limited availability 
of plasma samples.

Statistical Analysis
Efficacy and safety outcomes for CELESTIAL have been previ-

ously reported [9]. The exploratory biomarker analyses reported 
here were not powered for statistical significance and are consid-
ered hypothesis-generating. Analyses were performed with SAS 
version 9.4 or R software version 3.5 or later.

On-treatment changes in biomarker levels were expressed as 
fold change at Week 4 from baseline using paired measurements 
for each patient. Fold changes were compared within each treat-
ment group and between treatment groups using linear modeling.

For survival analyses, differences were tested using log-rank 
statistics, median durations were estimated by the Kaplan-Meier 
method, and HRs were estimated using Cox regression models. 
Where indicated, multivariable models were used, adjusting for 
macrovascular invasion (no or yes), extrahepatic spread (no or 
yes), AFP level (<400 or ≥400 ng/mL), Eastern Cooperative Oncol-
ogy Group performance status (0 or ≥1), and albumin-bilirubin 
grade (1 or ≥2) [12]; these clinical covariates and cutoffs were cho-
sen based on a multivariable analysis of pooled phase 3 studies with 
sorafenib [13] and univariate analyses of CELESTIAL [14]. No ad-
justments were made for multiple comparisons.

OS and PFS were evaluated according to baseline biomarkers, 
with protein levels expressed either as discrete variables dichoto-
mized at the median of the combined treatment groups or as con-
tinuous variables. For subgroup analyses comparing cabozantinib 
versus placebo, baseline biomarker levels dichotomized at the me-
dian were also used. To identify potential prognostic factors, out-
comes were evaluated for high versus low biomarker levels within 
each treatment group, with biomarker levels expressed either as 
dichotomized variables or continuous variables, using the log2-
transformed protein concentrations. Biomarkers were considered 
potentially prognostic if p < 0.05 in these analyses. The association 
of on-treatment changes in biomarker levels with OS and PFS was 
evaluated using continuous analyses of the log2-transformed fold 
change from baseline at Week 4. HR <1 indicates that longer sur-
vival was associated with higher protein levels in the dichotomized 
or continuous baseline analyses and with increased protein levels 
at Week 4 compared with baseline in the on-treatment analyses; 
whereas, an HR >1 favors lower protein levels at baseline or de-
creased levels at Week 4 for longer survival.

To identify potential predictive factors, the interaction between 
the biomarker and treatment was assessed using a Cox propor-
tional hazards model with an interaction term. Biomarkers were 
considered potentially predictive if pinteraction <0.05 for the interac-
tion between treatment and the biomarker level.

Results

As of June 1, 2017, 707 patients were randomized 2:1 
to receive cabozantinib or the placebo. Baseline charac-
teristics were generally balanced between the treatment 
groups [9]. At baseline, plasma samples for biomarker 

analysis were available for 447/470 (95%) patients in the 
cabozantinib group and 227/237 (96%) patients in the 
placebo group. Plasma samples at both baseline and Week 
4 were available for 399 (85%) patients in the cabozan-
tinib group and 215 (91%) patients in the placebo group.

Baseline levels of 13 biomarkers (MET, AXL, VEG-
FR2, HGF, GAS6, VEGF-A, PlGF, IL-8, EPO, ANG2, 
IGF-1, VEGF-C, and c-KIT) were tested for potential 
prognostic significance within each treatment group by 
comparing OS for high versus low dichotomized bio-
markers using both univariate analyses and multivariable 
analyses adjusted for clinical covariates. Complementary 
continuous analyses were also performed. In the cabo-
zantinib group, high levels of MET, HGF, IL-8, and ANG2 
were associated with shorter OS in both univariate and 
multivariable dichotomized analyses (p < 0.05; Table 1). 
The associations of MET, IL-8, and ANG2 (but not HGF) 
were also observed by continuous analyses (online suppl. 
Table 1; see www.karger.com/doi/10.1159/000519867 for 
all online suppl. material), suggesting possible prognostic 
significance with cabozantinib. In the placebo group, 
high levels of MET, HGF, GAS6, IL-8, and ANG2 and low 
levels of IGF-1 were associated with shorter OS in both 
univariate and multivariable dichotomized analyses (Ta-
ble  1); these results were also observed by continuous 
analyses (online suppl. Table 1), suggesting possible prog-
nostic significance with the placebo. Other biomarkers 
were associated with OS in univariate dichotomized and 
continuous analyses but not when adjusted for clinical 
covariates; these included AXL, GAS6, EPO, and IGF-1 
in the cabozantinib group and VEGF-A in the placebo 
group (Table 1; online suppl. Table 1).

The association between PFS and baseline biomarker 
levels was also evaluated using dichotomized and con-
tinuous analyses, both unadjusted and adjusted for clini-
cal covariates. The only biomarker in either treatment 
group that was consistently associated with PFS using the 
4 different approaches was ANG2 in the cabozantinib 
group, in which high baseline levels were associated with 
shorter PFS (online suppl. Tables 2, 3). High HGF in the 
cabozantinib group and high MET in the placebo group 
were associated with shorter PFS in the unadjusted and 
adjusted dichotomized analyses (online suppl. Table 2), 
but these results were not observed in the continuous 
analyses (online suppl. Table 3).

OS and PFS were also evaluated for cabozantinib ver-
sus placebo in subgroups defined by baseline biomarker 
levels dichotomized at the median. HRs favored cabozan-
tinib over the placebo for both OS and PFS at low and 
high levels for all biomarkers analyzed (Fig. 1). Among all 
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baseline biomarkers, the lowest HR for OS was 0.65 for 
low AXL, and the highest HR for OS was 0.92 for high 
AXL; the lowest HR for PFS was 0.41 for high IGF-1, and 
the highest HR for PFS was 0.54 for low IGF-1.

Baseline biomarkers were evaluated for potential pre-
dictive significance by modeling the interaction between 
treatment and the biomarker level. No baseline biomark-
ers were associated with a predictive effect for OS or PFS 
at a significance level of 0.05 (Fig. 1). The lowest pinteraction 
for OS was observed for AXL; pinteraction was 0.087 in the 
dichotomized analysis and 0.114 in the dichotomized 
analysis adjusted for clinical covariates (not shown). The 
forest plot shows the greater relative OS treatment benefit 
with cabozantinib at low versus high baseline AXL levels; 
this benefit did not reach statistical significance.

The change in plasma levels from baseline to Week 4 
was determined for 9 biomarkers (MET, AXL, VEGFR2, 
HGF, GAS6, VEGF-A, PlGF, IL-8, and EPO). As shown 
in Table 2, the largest median fold decreases with cabo-
zantinib were observed for VEGFR2 (0.60-fold change) 
and HGF (0.71-fold change), and the largest median fold 
increases were observed for PlGF (4.28-fold change) and 
VEGF-A (3.80-fold change). Cabozantinib also promot-
ed smaller increases in the levels of AXL, GAS6, and EPO 
from baseline that were statistically different versus 
changes with the placebo. Although on-treatment MET 
levels increased in the cabozantinib group, this change 

was not significant compared with the increase observed 
with the placebo. Small but statistically significant chang-
es from baseline were also seen for several biomarkers in 
the placebo group, including increases in PlGF, VEGF-A, 
MET, and VEGFR2 and decreases in EPO and GAS6.

The association of on-treatment changes in biomarker 
levels with OS and PFS was evaluated by continuous anal-
ysis based on the log2-fold change in biomarker levels at 
Week 4 from baseline. Increasing VEGFR2 was associated 
with longer OS in the cabozantinib group in univariate 
analysis but not when adjusted for clinical covariates (Ta-
ble  3). In the placebo group, increasing levels of MET, 
AXL, VEGFR2, HGF, GAS6, and IL-8 were associated 
with shorter OS in both univariate and multivariable anal-
yses (Table  3), suggesting potential prognostic signifi-
cance. Increasing levels of AXL and HGF were also associ-
ated with shorter PFS in the placebo group in both uni-
variate and multivariable analyses (online suppl. Table 4).

On-treatment changes in biomarker levels at Week 4 
were tested for predictive significance by modeling the 
interaction between treatment and the biomarker level. 
Increases in the plasma levels of MET, AXL, VEGFR2, 
HGF, GAS6, and IL-8 were identified as potential predic-
tive factors for relatively worse OS with placebo com-
pared with cabozantinib (Table 4). No plasma biomark-
ers were associated with a differential treatment benefit 
for PFS (online suppl. Table 5).

Table 1. OS within each treatment group comparing high versus low baseline biomarker levels

Plasma 
biomarker

Cabozantinib Placebo

univariate multivariable adjusted for 
clinical covariates

univariate multivariable adjusted for 
clinical covariates

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

MET 1.64 (1.31–2.06) <0.001 1.32 (1.04–1.68) 0.024 1.63 (1.19–2.23) 0.002 1.74 (1.25–2.41) 0.001
AXL 1.53 (1.22–1.92) <0.001 1.03 (0.80–1.33) 0.804 1.12 (0.82–1.53) 0.475 0.86 (0.61–1.21) 0.377
VEGFR2 0.98 (0.78–1.23) 0.850 1.05 (0.84–1.33) 0.653 0.85 (0.62–1.16) 0.312 1.08 (0.77–1.51) 0.656
HGF 1.73 (1.38–2.18) <0.001 1.37 (1.07–1.76) 0.014 2.05 (1.50–2.82) <0.001 1.87 (1.33–2.64) <0.001
GAS6 1.60 (1.27–2.01) <0.001 1.00 (0.77–1.30) 0.994 1.42 (1.04–1.94) 0.027 1.41 (1.00–1.98) 0.048
VEGF-A 1.21 (0.96–1.52) 0.107 1.15 (0.91–1.45) 0.238 1.48 (1.08–2.03) 0.015 1.33 (0.97–1.85) 0.081
PlGF 1.09 (0.86–1.38) 0.476 0.88 (0.69–1.12) 0.303 1.30 (0.94–1.78) 0.112 1.29 (0.93–1.79) 0.132
IL-8 1.80 (1.43–2.27) <0.001 1.56 (1.23–1.97) <0.001 1.71 (1.25–2.34) 0.001 1.54 (1.11–2.14) 0.011
EPO 1.52 (1.21–1.91) <0.001 1.24 (0.98–1.57) 0.075 1.28 (0.94–1.75) 0.117 1.35 (0.98–1.87) 0.069
ANG2 2.05 (1.62–2.58) <0.001 1.69 (1.32–2.16) <0.001 2.27 (1.65–3.13) <0.001 1.95 (1.40–2.72) <0.001
IGF-1 0.68 (0.54–0.85) 0.001 0.88 (0.69–1.13) 0.320 0.60 (0.44–0.82) 0.001 0.61 (0.44–0.85) 0.003
VEGF-C 1.04 (0.83–1.31) 0.715 1.28 (1.02–1.62) 0.036 0.89 (0.65–1.22) 0.469 0.81 (0.59–1.11) 0.190
c-KIT 0.95 (0.75–1.19) 0.631 0.85 (0.68–1.08) 0.185 0.75 (0.55–1.03) 0.075 0.83 (0.60–1.14) 0.246

Baseline biomarker levels were dichotomized at the median of the combined treatment groups. HRs <1 favor high over low biomarker 
levels. p values <0.05 are in bold. CI, confidence interval; HR, hazard ratio; OS, overall survival.
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Fig. 1. Forest plots of OS and PFS for cabozantinib versus placebo by baseline biomarker levels. Baseline bio-
marker levels were dichotomized at the median of the combined treatment groups. pinteraction was obtained from 
a separate model that included the interaction between treatment and the biomarker level. OS, overall survival; 
PFS, progression-free survival; CI, confidence interval; HR, hazard ratio.
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Discussion

The phase 3 CELESTIAL trial evaluated the efficacy 
and safety of cabozantinib compared with the placebo in 
patients with advanced HCC previously treated with 
sorafenib and demonstrated significantly improved OS 
and PFS with cabozantinib versus placebo [9]. Consistent 

with the results of the primary analysis, subgroup analy-
ses based on baseline plasma biomarker levels showed 
improved OS and PFS with cabozantinib versus placebo 
at high and low concentrations for all biomarkers ana-
lyzed.

A number of baseline plasma biomarkers in the pla-
cebo group were identified as potential favorable prog-

Table 2. Plasma biomarker levels at baseline and Week 4

Biomarker Cabozantinib Placebo Cabozantinib FC 
versus placebo 
FC, p valuemedian level, 

baseline*
median FC, 
week 4

FC, 
p value

median level, 
baseline*

median FC, 
week 4

FC, 
p value

MET 260.3 1.14 <0.001 257.8 1.09 <0.001 0.344
AXL 9,052 1.13 <0.001 9,077 1.00 0.597 <0.001
VEGFR2 10,690 0.60 <0.001 11,160 1.04 <0.001 <0.001
HGF 239.2 0.71 <0.001 229.1 0.93 0.100 <0.001
GAS6 30,360 1.28 <0.001 29,510 0.93 <0.001 <0.001
VEGF-A 17.7 3.80 <0.001 18.1 1.19 <0.001 <0.001
PIGF 1.2 4.28 <0.001 1.1 1.60 <0.001 <0.001
IL-8 20.2 0.98 0.908 22.2 1.02 0.109 0.196
EPO 23.1 1.10 <0.001 21.4 0.85 <0.001 <0.001
ANG2 5,174 ND ND 5,228 ND ND ND
IGF-1 30.1 ND ND 30.4 ND ND ND
VEGF-C 344.4 ND ND 360.5 ND ND ND
c-KIT 52.8 ND ND 54.9 ND ND ND

p values <0.05 are in bold. CI, confidence interval; FC, fold change; HR, hazard ratio; ND, not determined. * Concentrations in pg/mL 
except MET, IGF-1, c-KIT (ng/mL) and EPO (mIU/mL). Baseline and Week 4 measurements were paired for each patient to calculate fold 
changes.

Table 3. Continuous analysis of OS by on-treatment changes in biomarker levels

Plasma 
biomarker

Cabozantinib Placebo

univariate multivariable adjusted for 
clinical covariates

univariate multivariable adjusted for 
clinical covariates

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

MET 1.24 (0.85–1.80) 0.266 1.37 (0.93–2.03) 0.115 3.13 (1.85–5.30) <0.001 2.42 (1.42–4.13) 0.001
AXL 0.86 (0.59–1.25) 0.423 0.88 (0.60–1.30) 0.528 3.38 (1.71–6.70) <0.001 2.57 (1.28–5.17) 0.008
VEGFR2 0.76 (0.58–0.99) 0.041 0.77 (0.59–1.01) 0.060 2.06 (1.04–4.08) 0.037 2.41 (1.14–5.12) 0.022
HGF 0.83 (0.65–1.06) 0.135 0.96 (0.76–1.22) 0.743 2.39 (1.76–3.25) <0.001 2.77 (1.97–3.89) <0.001
GAS6 0.82 (0.62–1.08) 0.153 1.01 (0.77–1.33) 0.927 1.66 (1.11–2.50) 0.015 1.84 (1.22–2.79) 0.004
VEGF-A 1.07 (0.99–1.17) 0.098 1.05 (0.97–1.15) 0.234 1.06 (0.90–1.23) 0.497 1.12 (0.95–1.32) 0.187
PlGF 0.99 (0.90–1.08) 0.798 0.98 (0.89–1.08) 0.744 1.02 (0.88–1.19) 0.755 1.00 (0.86–1.17) 0.982
IL-8 0.88 (0.75–1.04) 0.134 0.90 (0.76–1.06) 0.220 1.52 (1.22–1.90) <0.001 1.47 (1.17–1.85) 0.001
EPO 0.94 (0.79–1.12) 0.507 1.02 (0.86–1.20) 0.860 1.13 (0.87–1.46) 0.373 1.25 (0.94–1.66) 0.119

Continuous analysis of the log2-transformed fold change in biomarker levels at Week 4 from baseline. HR <1 indicates longer OS with 
increased protein levels at Week 4 compared with baseline. p values <0.05 are in bold. CI, confidence interval; HR, hazard ratio; OS, overall 
survival.
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nostic biomarkers for OS, including low baseline levels of 
MET, HGF, GAS6, IL-8, and ANG2 and high levels of 
IGF-1. Among these, low baseline levels of MET, IL-8, 
and ANG2 were also potentially prognostic in the cabo-
zantinib group. Several of these prognostic factors have 
also been identified in previous clinical studies in patients 
with advanced HCC including MET [5, 6], ANG2 [3, 6], 
HGF [5], IGF-1 [15], and IL-8 [6, 16], providing further 
support for their significance. Pro-inflammatory cyto-
kines, including IL-8, have been linked to the pathogen-
esis of HCC and are negatively associated with clinical 
outcomes [16, 17]. However, none of the baseline bio-
markers were found to be predictive of a treatment ben-
efit with cabozantinib for OS or PFS. Most previous bio-
marker studies in HCC also failed to identify predictive 
factors for treatment benefit with the exception of a broad 
survey of plasma proteins done for the phase 3 rego-
rafenib trial in second-line HCC [6].

Prior studies indicate that AXL plays a role in resis-
tance to antiangiogenic therapy, including sorafenib [18, 
19]. In an integrated analysis, a small cohort of patients 
with HCC who were treated with sorafenib and had high 
baseline serum levels of soluble AXL had shorter duration 
of sorafenib treatment and OS versus those with low base-
line levels [19]. AXL was also overexpressed in HCC cell 
lines and correlated with epithelial-to-mesenchymal 
transition and sorafenib resistance. In the current study, 
low baseline levels of AXL were favored over high levels 
for OS outcomes in both cabozantinib and placebo arms 
in univariate analysis, but this was not maintained in 
multivariable analysis.

Cabozantinib promoted an increase in the plasma lev-
els of VEGF-A and PlGF and a decrease in the level of 
VEGFR2, which are well-characterized pharmacody-
namic effects of VEGFR TKIs [20] that have been previ-
ously reported with cabozantinib in other tumor types 
[21, 22]. Pharmacodynamic changes were also observed 
in components of other signaling pathways inhibited by 
cabozantinib, including an increase in AXL and its ligand 
GAS6 and a decrease in HGF with cabozantinib com-
pared with the placebo. Although MET levels also in-
creased in the cabozantinib group, this change was not 
significant compared with the increase also seen in the 
placebo group. Cabozantinib-promoted increases in AXL 
and GAS6 have also been reported in a phase 2 study in 
metastatic castration-resistant prostate cancer [19, 21]; 
however, effects on MET and HGF have been less pro-
nounced and less consistent across trials, perhaps due to 
differences in tumor types or time points assessed [21, 
22].

Although cabozantinib promoted significant pharma-
codynamic effects, on-treatment changes in plasma cyto-
kine levels were not associated with OS or PFS with cabo-
zantinib. Likewise, extensive investigations of other 
VEGF signaling inhibitors have failed to find convincing 
evidence for a correlation between pharmacodynamic 
changes in plasma cytokines and angiogenic proteins and 
efficacy [20, 23, 24]. Consistent with these results, pre-
clinical studies with sunitinib in nontumor-bearing mice 
suggest that these pharmacodynamic changes induced by 
VEGFR TKIs may be a systemic response to treatment 
rather than a tumor-dependent response [25]. In con-

Plasma
biomarker

Unadjusted Adjusted for clinical covariates

HRinteraction (95% CI) pinteraction HRinteraction (95% CI) pinteraction

MET 0.35 (0.18–0.67) 0.001 0.49 (0.26–0.93) 0.029
AXL 0.24 (0.11–0.54) <0.001 0.35 (0.16–0.78) 0.010
VEGFR2 0.34 (0.17–0.71) 0.004 0.28 (0.13–0.63) 0.002
HGF 0.33 (0.22–0.48) <0.001 0.32 (0.21–0.47) <0.001
GAS6 0.46 (0.28–0.75) 0.002 0.51 (0.31–0.82) 0.006
VEGF-A 1.03 (0.87–1.24) 0.711 0.95 (0.79–1.14) 0.581
PlGF 0.99 (0.83–1.19) 0.950 1.02 (0.86–1.22) 0.807
IL-8 0.57 (0.43–0.74) <0.001 0.60 (0.46–0.80) <0.001
EPO 0.83 (0.61–1.15) 0.262 0.79 (0.57–1.10) 0.160

Continuous analysis of the log2-transformed fold change in biomarker levels at Week 4 
from baseline using a model that includes the interaction between treatment and the 
biomarker level. HR <1 indicates differential treatment benefit for cabozantinib versus 
placebo with on-treatment increase in biomarker levels. p values <0.05 are in bold. CI, 
confidence interval; HR, hazard ratio; OS, overall survival.

Table 4. Continuous analysis of OS: 
interaction between treatment and 
changes in biomarker levels
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trast, decreased levels of serum AFP have been associated 
with improved OS across stages of HCC, including in ad-
vanced HCC with sorafenib, ramucirumab, regorafenib, 
cabozantinib, and the combination of atezolizumab and 
bevacizumab [10, 26–32].

Despite relatively modest on-study changes in bio-
marker levels in the placebo group, increasing levels of 
MET, AXL, VEGFR2, HGF, GAS6, and IL-8 were identi-
fied as possible negative prognostic factors for OS with 
the placebo and as potential predictive factors for a dif-
ferential treatment benefit for OS with cabozantinib ver-
sus placebo. Among these plasma proteins, high baseline 
levels of MET, HGF, GAS6, and IL-8 were also associated 
with negative prognosis for OS in the placebo group. Al-
though these analyses for predictive factors met the sta-
tistical significance level, their clinical utility is limited 
given that the results were driven by numerically small 
on-treatment changes in the placebo group, which none-
theless showed a statistically significant association with 
OS. In addition, the result was based on a continuous 
analysis rather than a defined cutoff for biomarker levels, 
thereby limiting practical utility.

The current results were based on a large, successful 
phase 3 trial that included a placebo control arm, with 
plasma samples available for the majority of patients. 
Furthermore, baseline biomarkers were judged as poten-
tially prognostic only when the results were observed us-
ing 4 different approaches, dichotomized and continu-
ous analyses both unadjusted and adjusted for clinical 
covariates. However, the study has several important 
limitations. This exploratory analysis was done post hoc, 
and the trial was not powered to test the correlation of 
biomarkers with outcomes. The study population size 
was chosen to assess main effects only, not to test interac-
tions which would require a substantially larger sample 
size to evaluate predictive effects at the significance level 
of 0.05 used here [33]. Additionally, no corrections were 
made for multiple comparisons. Furthermore, the pleo-
tropic and redundant nature of the signaling pathways in 
the tumor microenvironment of the biomarkers tested, 
along with the nontumor sources of the biomarkers, may 
confound the relationship between biomarker levels and 
outcomes. The study focused on plasma samples which 
are easier to obtain and therefore facilitate evaluation of 
biomarker changes over time. However, tumor biopsies 
may provide more information on the local tumor envi-
ronment, although lack of correlation with tumor MET 
and epithelial-to-mesenchymal transition marker ex-
pression with outcomes has also been observed, high-
lighting the complexities of tumor sampling and of se-

lecting the most appropriate assay for each marker [34, 
35]. Other caveats include that on-treatment changes 
were evaluated only at Week 4 and that PFS differences 
in the placebo group were difficult to assess because 
many patients had progressed at the time of the first tu-
mor assessment at Week 8. Also, patients who had a dose 
hold or reduction prior to Week 4 were included in the 
analysis. As this was an early time point, the proportion 
of patients who had a dose hold or reduction would be 
more limited than at later time points. Furthermore, be-
cause cabozantinib has a plasma half-life of ∼99 h [36], 
the influence of these patients on the overall results 
should be less pronounced than for a drug with a short 
half-life.

In conclusion, low baseline levels of MET, HGF, GAS6, 
IL-8, and ANG2 and high levels of IGF-1 were identified 
as potential favorable prognostic biomarkers for OS in 
patients with previously treated advanced HCC. Consis-
tent with the results of the primary analysis, cabozantinib 
improved OS and PFS compared with the placebo at high 
and low baseline concentrations for all biomarkers ana-
lyzed, and no baseline biomarkers were found to be pre-
dictive of a treatment benefit for OS or PFS. Overall, the 
results support the use of cabozantinib in patients with 
HCC previously treated with sorafenib, irrespective of 
plasma biomarker levels. Future studies, including the 
combination trial of cabozantinib and atezolizumab in 
first-line HCC [37], will explore both circulating and tu-
mor biomarkers related to angiogenic signaling, inflam-
mation, and immune-cell function.
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