
UC Irvine
UC Irvine Previously Published Works

Title
Explicit Calculation of Structural Commutation Relations for Stochastic and Dynamical 
Graph Grammar Rule Operators in Biological Morphodynamics.

Permalink
https://escholarship.org/uc/item/6j0274xk

Author
Mjolsness, Eric

Publication Date
2022-09-01

DOI
10.3389/fsysb.2022.898858
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6j0274xk
https://escholarship.org
http://www.cdlib.org/


Explicit Calculation of Structural Commutation Relations for 
Stochastic and Dynamical Graph Grammar Rule Operators in 
Biological Morphodynamics

Eric Mjolsness*

Departments of Computer Science and Mathematics, University of California, Irvine, CA, United 
States

Abstract

Many emergent, non-fundamental models of complex systems can be described naturally by 

the temporal evolution of spatial structures with some nontrivial discretized topology, such as 

a graph with suitable parameter vectors labeling its vertices. For example, the cytoskeleton of 

a single cell, such as the cortical microtubule network in a plant cell or the actin filaments 

in a synapse, comprises many interconnected polymers whose topology is naturally graph-like 

and dynamic. The same can be said for cells connected dynamically in a developing tissue. 

There is a mathematical framework suitable for expressing such emergent dynamics, “stochastic 

parameterized graph grammars,” composed of a collection of the graph- and parameter-altering 

rules, each of which has a time-evolution operator that suitably moves probability. These rule-level 

operators form an operator algebra, much like particle creation/annihilation operators or Lie group 

generators. Here, we present an explicit and constructive calculation, in terms of elementary 

basis operators and standard component notation, of what turns out to be a general combinatorial 

expression for the operator algebra that reduces products and, therefore, commutators of graph 

grammar rule operators to equivalent integer-weighted sums of such operators. We show how 

these results extend to “dynamical graph grammars,” which include rules that bear local 

differential equation dynamics for some continuous-valued parameters. Commutators of such 

time-evolution operators have analytic uses, including deriving efficient simulation algorithms and 

approximations and estimating their errors. The resulting formalism is complementary to spatial 

models in the form of partial differential equations or stochastic reaction-diffusion processes. We 

discuss the potential application of this framework to the remodeling dynamics of the microtubule 

cytoskeleton in cortical microtubule networks relevant to plant development and of the actin 
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cytoskeleton in, for example, a growing or shrinking synaptic spine head. Both cytoskeletal 

systems underlie biological morphodynamics.

Keywords

dynamical graph grammar; morphodynamics; operator commutator; cortical microtubule array; 
actin filament network; synaptic spine head; operator algebra; stochastic graph grammar

1 INTRODUCTION

Many emergent, non-fundamental models of complex systems can be described naturally 

by the temporal evolution of spatial structures with some nontrivial discretized topology, 

such as a graph with suitable discrete and/or continuous state-determining parameter vectors 

labeling its vertices. In materials science, there can be dynamic networks of fractures or 

extended crystal defects. Biological examples include the network of adjacent cells in a 

tissue or the dynamic polymeric cytoskeleton within a single cell. Such biological examples 

arise in development, where one has morphodynamics (dynamics of the form) at both 

the tissue and cellular level, and they are interrelated. In this study, our examples will 

mainly be taken from the domain of graph-like structural dynamics in the cytoskeleton, in 

these two domains of biological pattern formation and morphodynamics (Vos et al., 2004; 

Hotulainen and Hoogenraad, 2010; Sampathkumar et al., 2014; Chakrabortty et al., 2018; 

Bonilla-Quintana et al., 2020).

In previous work [(Mjolsness, 2019a), Propositions 1 and 2], we showed that the 

parameterized or labeled graph rewrite rule operator semantics specified there (in two 

versions, one without and one with hanging edge removal) is contained within a 

somewhat larger operator algebra closed under addition, scalar multiplication, and operator 

multiplication (and hence under commutation, as in a Lie algebra).

The purpose of this study is to show explicitly and combinatorially what this operator 

algebra is: under either semantics (hanging edges removed or not), the vector space spanned 

by the graph rewrite rule operators previously defined form an operator algebra and a 

Lie algebra among all such graph rewrite rule operators, under an explicit formula to be 

presented in Section 2.4. In particular, the product of the state-changing portions of two such 

operators can be written as a sum of such operators with nonnegative integer weights, and 

the full product and commutator of two such operators can be written as a sum of such 

operators with integer weights.

These results arise within a larger scientific scope discussed at length in Mjolsness (2019a), 

including grammar-like or rule-based structured models of molecular complexes (Blinov et 

al., 2004) and of tissues with dividing cells (Mjolsness et al., 1991; Prusinkiewicz et al., 

1993). Potential applications include cytoskeletal dynamics in cellular and developmental 

biology, neurobiology, and smart materials, as well as the dynamics of more abstract, 

non-spatial graphs in a wide variety of fields. We will illustrate with subcellular cortical 

microtubule biophysical dynamics that are important at the cellular and tissue level of plant 

development.
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Given state-changing operators W r for the rules in grammar, for example, as outlined in 

Section 2.2, the Master Equation for the stochastic dynamics is as follows (Mjolsness and 

Yosiphon, 2006):

d p
dt = W ⋅ p, (probability flows according to W ), where (1a)

W = ∑
r

W r, (rule operators sum up) (1b)

W r ≡ W r−Dr, (rules conserve probability) (1c)

Dr ≡ diag 1 ⋅ W r (total probability outflow per state) (1d)

[generalizing (Doi, 1976a; Doi, 1976b; Mattis and Glasser, 1998) for stochastic chemical 

reaction networks], where probability is defined over a suitable Fock space for varying 

numbers of graph nodes (with labels) and graph edges. Supplementary Section SC discusses 

how this framework can be used to model stochastic chemical reaction networks, using the 

algebras of elementary and compound Wr operators.

In this study, the goal is to explicitly calculate the key operator algebra identity for such 

operators W r, as exhibited in Eq. 16 of Section 2.4, with important corollaries in Sections 

3.4, 3.5, and proven in Section 3 and Supplementary Material SA, and to extend it to 

the differential equations case. The exposition will be organized in three successive levels 

of detail: first a statement of the main results (Section 2), then a sketch of the general 

computations and theorems, including their corollaries (Section 3), then a collection of 

examples (Section 3.7), followed by Supplementary Material, which refines the explicit 

operator semantics and contains the full calculations.

2 PROBLEM STATEMENT

We first recapitulate the required operator algebra definitions and then state our problems. 

In Section 2.1, we will define graphs, labeled graphs, and graph grammars. In Section 2.2, 

we will use operator algebra to define the semantics of graph grammar rules and graph 

grammars. Then, in Section 2.3, we will state the operator algebra problems, and in Section 

2.4, we will preview the main results of the study. The methods in this study will be purely 

theoretical: performing operator algebra calculations that establish concise results that solve 

the stated problems.

2.1 Graph Grammar Rule Syntax

The definitions of this section informally summarize the more systematic definitions of 

Mjolsness (2019a) (Supplementary Material). A graph is an unordered set V of “vertices” 

or “nodes,” together with a set E of “edges” or “links,” each of which is, or corresponds to, 

either 1) an unordered pair of vertices {u, v}, for an “undirected edge,” 2) an ordered pair of 
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vertices (u, v), for a “directed edge,” or 3) a singleton vertex {v} (or equivalently the ordered 

pair (v, v)), for a “self-edge.” An unordered pair of vertices cannot have both directed and 

undirected edges, except in the sense that a pair of oppositely directed edges can represent 

an unordered edge. An “undirected graph” has only undirected edges; a “directed graph” 

has only directed edges; either kind can allow self-edges or not. This notion of a graph 

encompasses undirected graphs and directed graphs, with or without self-loops, in a way that 

is compatible with the computational representation of a graph as an adjacency matrix.

A labeled graph adds the extra structure of a mapping from vertices in V to labels in label set 

Λ. Labeled graphs (with node labels as above) can be used to encode and implement many 

other kinds of graphs, such as multigraphs, edge-labeled graphs mapped to bipartite- (node-) 

labeled graphs, hypergraphs, and abstract cell complexes.

More technically, a numbered graph is a labeled graph in which the label set is an initial 

subset Λ′ = {1, …n} of the natural numbers, and the assigned node labels are unique (so 

∣Λ′∣≥∣V∣). In this case, there is an induced total ordering on the vertex set V, breaking 

the prima facie permutation invariance of the vertices of the graph. If all numbers in 

∣Λ′∣ are assigned (so ∣Λ′∣ = ∣V∣ by 1-1 correspondence), then such a numbered graph 

can be represented uniquely by a 0/1-valued adjacency matrix recording the presence or 

absence of directed edges (i = λ(u), j = λ(v)), where i and j are integer-valued “index” 

labels, with undirected edges encoded by the presence of two oppositely directed edges and 

self-edges recorded by diagonal matrix entries. The case ∣Λ′∣ > ∣V∣ is required just to define 

a consistent numbering of several graphs, not all of whose vertices can be identified across 

graphs.

A labeled graph can be represented (perhaps nonuniquely) by a numbered graph G together 

with a vector of labels ⟪λ1, …λi, …λn⟫ that map vertex indices i to vertex labels; the 

resulting labeled graph combination is denoted G⟪λ1, …λi, …λn⟫. Elements λ of the label 

set Λ can themselves take the form of a vector or tuple with d components; if d = 0, then 

there is only one label and the labeled graph is equivalent to an unlabeled graph again.

Given these definitions, the “syntax” of a graph grammar rewrite rule takes a form involving 

two labeled graphs that have been decomposed into two consistently numbered graphs and 

their label maps:

G λ1, …λn G′ λ1′, …λn′′ with ρ(λ1, …λn, λ1′, …λn′′ ) . (2)

Such an expression represents a discrete local transformation that can act or “fire” anywhere 

that the left-hand side (LHS) labeled graph G⟪λ1, …λi, …λn⟫ matches (occurs as a labeled 

subgraph, with matching edge structure and labels) within a potentially much larger system 

graph that comprises the current state of a system model. Of course, many rule firings may 

be possible for a given rule and system graph; it is up to the semantics outlined below to 

determine what actually happens with what probability and when. That will depend on the 

non-negative function ρ, the propensity, or rule firing probability per unit time. By making ρ 
a function of the λs, we allow that one syntactic rule, as above, can specify many grounded 

rules, each of which has all λs replaced with constant values, as in the integration semantics 
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provided in the next section. The integrable measure spaces in which labels λi live were 

outlined in Mjolsness and Yosiphon (2006).

Such a graph rewrite rule is expressed in terms of a single consistent numbering of the 

vertices of the two numbered graphs. Therefore, vertices in G and G′ that share a vertex 

number are regarded as “the same” vertex v, before and after rewriting, and any graph edges 

contacting v but not mentioned in the rewrite rule are preserved. In this way, graph rewrite 

rules can operate within a broader graph context. On the other hand, the particular consistent 

numbering chosen is arbitrary and does not matter. The semantics in the next section will be 

invariant with respect to permutations of the consistent numbering.

For example, Eq. 3 below specifies a part of the refinement process for 2D triangular 

meshes. Each graph node bears an integer parameter l denoting a local level number for the 

depth of refinement. This rewrite rule is one of four that suffice to implement a standard 

triangular mesh refinement scheme. The other three rules handle partially refined triangle 

edges, an unavoidable consequence of the previous refinement of adjacent triangles. Further 

details are provided by Mjolsness (2019a). The labeled graph rewrite rule is

(3)

with some constant propensity ρ (omitted). Of course, it is also possible to provide a linear, 

textual representation of a numbered graph G, if only as a list of its edges between ordered 

pairs of index values.

2.2 Graph Grammar Rule Semantics

Let indices i1, …ik range over many graph nodes that can each be allocated to model the 

state of some object in a modeling domain.

In the following, as elaborated in Mjolsness (2010) and Mjolsness (2013), stochastic labeled 

graph grammar (SLGG) rule semantics with vectors λ, λ′ of incoming and outgoing graph 

node labels can be thought of as stochastic parameterized graph grammar (SPGG) semantics 

when the labels are taken to be functions λ(X) and λ′(X) of some vector of parameters or 

variables X. The rule semantics is obtained by integrating over all possible values of a vector 

of rule variables X that appear in the graph labels λ, λ′; as a special case, some labels 

and/or parameters could be constant. Then,
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W r = ∫ dμr(X)W r λ(X), λ′(X) , (4)

where μr(X) is a suitable measure that could be discrete in one or several dimensions (so, 

the integral becomes a sum or multiple sum) or continuous in one or several dimensions 

(so the integral may be a multiple integral), or a multidimensional combination of discrete 

and continuous components. However, any continuous measures can be approximated by 

discrete ones to retain the essentially combinatorial nature of the proofs below. In addition, 

the label functions λ(X) and λ′(X) can include extra components, which are constant, for 

the given rule number r. These are not to be integrated over, so they are not part of the 

variable X.

We provided examples of such graph grammar rules for mesh refinement in Mjolsness 

(2019a) and will exhibit graph grammar rules for coarse-grained models of plant cortical 

microtubule dynamics in Section 3.7.1.

Consider a graph rewrite rule expressed, in part, as Gr in(λ(X)) → Gr out(λ′(X)), where Gr in 

and Gr out are graphs with the given vectors of labels and an arbitrary but shared numbering 

of their nodes. Define “∑⟨i1,…ik⟩≠…” to be a sum over indices (i1, …ik) constrained so that 

each il is unequal to all the others. Then, in the simplest case (but see Supplementary Section 

SA.4.3), we define the time-evolution operator of a graph rewrite rule:

W r = 1
Cr (Nmax free)∫ dμr (X) ρr λ(X), λ′(X)

× ∑
〈i1, …ik〉≠

ai1, …ik (Gr out)ai1, …ik (Gr in) (5)

where, as explained by Mjolsness (2019a), the graph grammar rule operator first annihilates 

all the edges and labeled nodes in the incoming “left hand side” graph G = Gr in and then, 

but uninterruptibly and with zero time delay, creates the corresponding elements of the 

outgoing “right-hand side” graph G′ = Gr out:

ai1, …ik(G′) = ai1, …ik(Glinks′ )ai1, …ik(Gnodes′ )

= ∏
s′, t′ ∈ rhs(r)

ais′it′
g s′t′′ ∏

v′ ∈ rhs(r)
aiv′λ v′′

= ∏
s′, t′ ∈ Glinks′

ais′it′ ∏
v′ ∈ Gnodes′

aiv′λ v′′

ai1, …ik (G) = ai1, …ik (Glinks)ai1, …ik(Gnodes) = ∏
s, t ∈ lhs(r)

aisit
gst ∏

v ∈ lhs(r)
aivλv .

= ∏
(s, t) ∈ Glinks

aisit ∏
v ∈ Gnodes

aivλv

.

(6)

The sets lhsr and rhsr comprise the nodes or vertices in the left-hand side and right-hand 

side graphs, G and G′, with adjacency matrices g and g′, of rule r. The creation and 
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annihilation operators aα and aα are the 2 × 2 {0, 1}-valued matrices that add or remove 

a “particle” (a graph node or link) if possible and, otherwise, yield a probability vector of 

zero in a many-particle-type Fock space (Mjolsness and Yosiphon, 2006, Sections 3.2, 3.3), 

simplified from Reed and Simon (1980). They are closely related to the Doi formulation of 

chemical reaction networks (Doi, 1976a; Doi, 1976b; Mattis and Glasser, 1998) described 

in Supplementary Material SC, as discussed by Mjolsness and Yosiphon (2006), except 

that the maximum number of identical “particles” of each subscript combination is taken 

to be one rather than countable infinity. Node labels λv take values in a discrete set or a 

continuum well approximable in computational implementations by discrete sets such as 

the set of floating-point numbers. The “probabilistic Fock spaces” comprising probability 

distributions over graph nodes and edges, on which all these operators act, apply to discrete 

and/or continuous node labels, including edge information.

The two matrices g and g′ share the same consistent numbering of graph nodes (i.e., graph 

vertices) so that a given node number s can be directionally connected to other nodes t in 

graph g iff gs t = 1, graph g′ iff g′s t = 1, or both; and the corresponding individual links 

(i.e., graph edges) given by nonzero entries in these two matrices can be independently 

present or absent. Because of the “∑⟨i1,…ik⟩≠…” form of this operator (Eq. 5), each such 

operator is invariant under any global permutation Σ operating on the object-modeling 

domain graph nodes indexed by is, and it is also invariant under any permutation σ operating 

on the consistent graph numbering of the graph rule nodes indexed by s, t. This permutation 

invariance is essential in making the rewrite rule apply to graphs, which do not have 

an intrinsic ordering to their vertices. However, the permutation symmetry can be and 

usually is partially broken by graph labels and/or connectivity. The normalizing factor of 1/

Cr(Nmax free) in Eq. 5 may be required to account for the numbering degeneracy of possible 

new graph nodes added by the right-hand side graph, as shown in Supplementary Section 

SA.2.

The denominator 1/Cr(Nmax free) in Eq. 5, like the sum over permutations “∑⟨i1,…ik⟩≠…” 

helps account for the change of representation between abstract graphs with their unordered 

nodes, and computer-representable nodes that are associated with an arbitrary but ordered 

integer index ik such as location in computer memory. In particular, the representation 

of one or more new graph nodes required by the firing of rule r must be drawn from 

some available pool of one or more available indexed nodes. This is an arbitrary choice. 

1/Cr(Nmax free) counts the number of ways this choice can be made, weighted equally, and 

ensures their total propensity adds up to what is required by the rest of the expression in 

Eq. 5. The actual count depends on the details of memory management as discussed in 

Supplementary Sections SA.2, SA.4.2; it could be as low as Cr = 1, but that may require a 

serial implementation of the simulation computation.

Undirected graphs can be encoded as a special case in which matrix g is symmetric. Node- 

and edge-labeled graphs can be encoded as a special case in which node labels come in two 

colors, the graph is bipartite (alternating node-colored with edge-colored nodes), and all the 

edge-colored nodes have degree two.
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Another useful form of Eq. 5 is to factor out any graph K that is completely unchanged. This 

form is exhibited in Supplementary Section SA.1.

Returning to Eqs 5, 6, we can combine them to write out more explicitly

W r = 1
Cr (Nmax free)∫ dμr (X) ρr λ(X), λ′(X)

× ∑
〈i1, …ik〉≠

∏
s′, t′ ∈ rhs(r)

ais′it′
g s′t′′ ∏

v′ ∈ rhs(r)
aiv′λ v′′

× ∏
s, t ∈ lhs(r)

(aisit)
gs t ∏

v ∈ lhs(r)
aivλv .

(7)

Two models defined by the Master Equation (ME) will be “equivalent” if their state 

variables can be identified so that solutions of the Master Equation are identical in all 

statistically observable respects: in all moments of all number operators at all choices of 

observation times. If α indexes the observable numbers nα of objects and relationships and 

Nα is the corresponding number operator, then we can read out a broad range of joint 

probabilities with the moments of Kronecker delta functions:

PrME nα q tq ∣ q = ∏
q

δ Nα q tq − nα q Iα q
ME

(8)

where a collection indexed by q of values nα(q) of number operators Nα(q) are measured 

at times tq and the ensemble average taken. As the operative definition of equivalence, we 

demand equality of all such moments. Other observables ⟨f ([Nα(q)(tq)∣q])⟩ME (where f is 

applied component-wise to diagonal matrices) follow from Eq. 8 as a linear basis.

2.2.1 Application to ODE Rules—There is a natural application of the foregoing 

class of operator to incorporate ordinary differential equation (ODE) dynamics on 

parameters appearing in the graph labels, for example, the positions and other continuous 

state information of particles denoted by labeled graph nodes. We define a stochastic 

parameterized graph grammar incorporating differential equation bearing rules as dynamical 

graph grammar (DGG). Suppose the concatenated vector x of real-valued node parameters in 

a local graph neighborhood matching graph Gr(x), which is otherwise unchanged from the 

left-hand side to right-hand side of the rule, obeys the coupled differential equation system 

dx/dt = v(x). As shown by Eq. 21 in Mjolsness (2013), using Dirac delta functions in a 

physicist’s style of calculation rather than a mathematical analyst’s, it suffices to consider an 

operator of an especially simple form, with the same graph nodes and edges on the left and 

right sides, and changes only to node labels:

W ODE r = W r = ∫ dμr (x)dμr (y) ρr (y, x)

∑
〈i1, …ik〉≠

ai1, …ik (Gr (y))ai1, …ik(Gr (x)), where (9a)
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ρr (y, x) = − ∇y ⋅ v(y)δ(y − x)

= − ∑
a

∇ya va(y)∏
b

δ(yb − xb) .
(9b)

It is important that the combined definitions of integration measure μ, derivative ∇, and 

Dirac delta function δ should support integration by parts in Eq. 9, as, for example, 

Lebesgue does with the usual derivative operator and Dirac delta choices. We will assume 

the same can be said for whatever finite approximation of differential equation solving is 

to be run on a computer implementation, noting in support of this assumption the extensive 

literature on summation by parts and its generalization to memetic differential equation 

solution methods satisfying the identities ofvector differential and integral calculus (Corbino 

and Castillo, 2020); as further support, we have noted the existence of a DGG simulation 

algorithm with a running implementation (Yosiphon, 2009; Mjolsness, 2013).

Clearly, the top line of Eq. 9 is a special case of our general algebraic form for W r
if Dirac delta functions are admitted into the expressions for ρr. Moreover, if not, we 

can take a suitable σ → 0 parametric limit of width-σ Gaussians to approach all the 

Dirac deltas at the end of all other calculations. This expression (Eq. 9) is already flux-

balanced, so the corresponding DODE r = 0 and W ODE r = W ODE r. However, an important 

mathematical difference is that these ρ functions can no longer be guaranteed to be non-

negative because velocities v in the ODEs have no sign restriction. A second important 

mathematical difference will be encountered in the commutation relations for creation/

annihilation operators parameterized by the below real-valued labels: Kronecker deltas 

become Dirac deltas. The resulting approach based on Eq. 9 leads to Proposition 1 of 

Section 3.6.

In this way, the proofs of Theorems 1 and 2 remain essentially unchanged, but their function 

spaces are reinterpreted to yield a nontrivial generalization in the expressive power of 

the rules, generalizing from stochastic parameterized graph grammars to dynamical graph 

grammars. A simulation algorithm for dynamic graph grammars is described in Mjolsness 

(2013). Mjolsness and Yosiphon (2006) and Mjolsness (2010) also show how to further 

extend this approach of Eq. 9 to stochastic differential equations (SDEs).

2.2.2 Products and Commutators of Graph Rewrite Operators—From Eqs 5, 6, 

we can compute the product:
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W r2W r1 = 1
Cr1 (Nmax free)

1
C2 (Nmax free)∬ dμr1 (X1)dμr2 (X2)

ρr1 λ1(X1), λ1′ (X1)
× ρr2 λ2(X2), λ2′ (X2) ∑

〈j1, …jk2〉≠
∑

〈i1, …ik1〉≠
aj1, …jk2 (Glinks

r2 out)

× aj1, …jk2 (Gnodes
r2 out)aj1, …jk2 (Glinks

r2in )aj1, …jk2(Gnodes
r2 in ) × ai1, …ik1

(Glinks
r1 out)

× ai1, …ik1 (Gnodes
r1 out)ai1, …ik1 (Glinks

r1 in)ai1, …ik1 (Gnodes
r1 in ),

(10)

and consequently,

W r2W r1 = 1
Cr1 (Nmax free)

1
C2 (Nmax free)∬ dμr1 (X1)dμr2 (X2)

ρr1 λ1(X1), λ1′ (X1)
× ρr2 λ2(X2), λ2′ (X2) ∑

〈j1, …jk2〉≠
∑

〈i1, …ik1〉≠
aj1, …jk2 (Glinks

r2 out)

× aj1, …jk2 (Gnodes
r2in )ai1, …ik1 (Glinks

r1out) ai1, …ik1(Glinks
r1in )

× aj1, …jk2 (Gnodes
r2 out) aj1, …jk2 (Gnodes

r2 in )ai1, …ik1 (Gnodes
r1 out) ai1, …ik1

(Gnodes
r1 in ) .

(11)

We now discuss the emergence of a new combined propensity function ρr2;1 (Y2, Z, X1) for 

the product of rule operators in Eq. 11, which will arise from delta functions that appear in 

commutators of elementary operators. The form of ρr2;1 is given in Eq. 14.

In general, the commutator of elementary operators will either be zero or proportional 

to a Kronecker or Dirac delta function, which removes one of the multiple summations 

or integrations over parameters in the foregoing expression. For example, in the case of 

continuous parameters X, we may have dμ(X) = Lebesgue measure, encountering Dirac 

delta functions arising from the operator algebra:

∫ dy2dx2∫ dy1dx1ρr2(y2, x2)ρr1(y1, x1)δDirac(x2 − y1) O (y2, x2, y1, x1)

= ∫ dy2dzdx1ρr2; 1(y2, z, x1) O (y2, z, z, x1) .
(12)

Likewise, for discrete label variables, we will have dμ(X) = a discrete measure so that the 

integral is a sum, together with Kronecker deltas arising from the operator algebra:

∑
α2 β2

∑
α1 β2

ρr2 (β2, α2)ρr1 (β1, α1)δKronecker(α2, β1) O (β2, α2, β1, α1)

= ∑
β2 γ α1

ρr2; 1 (β2, γ, α1) O (β2, γ, γ, α1) (13)
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where  is a suitable operator expression and where scalar functions combine simply by 

multiplication and delta-induced parameter substitution:

ρr2; 1(Y 2, Z, X1) ≡ ρr2(Y 2, Z)ρr1(Z, X1), (14)

where the capital letter parameters are vectors of discrete and/or continuous parameters. Eq. 

14 preserves the non-negativity of ρ scalar functions if rules r1 and r2 have it. Following Eq. 

10, the variables Z will subsequently be integrated out. This parallelism between discrete 

and continuous versions of the identity ∫dμ(x)δ(x − y)f(x) = f(y) is the fundamental reason 

that Theorems 1 and 2 can be extended to the continuous case described in Proposition 1.

Given a formula for the product W r2W r1 of two (in general non-elementary) graph rewrite 

rule operators, their commutator is of course just

W r2, W r1 = W r2W r1 − W r1W r2 (15)

The products and commutators of full probability-conserving rule operators of the form 

W r = W r − Dr also follow directly. Nevertheless, the operator commutator is mathematically 

a fundamental object.

2.3 Three Problems to Solve

We can now state the central problems of this study:

1. Up to equivalence, can the product of two graph grammar rewrite rule operators 

be expressed in terms of a sum of such operators, and if so, how?

2. Likewise for the commutator of such operators: up to equivalence, can the 

commutator of two graph grammar rewrite rule operators be expressed in terms 

of a sum of such operators, and if so, how?

3. Do these results extend to dynamical graph grammars, which by definition 

include rules that bear differential equations?

2.4 Preview of Main Results

After a calculation and several arguments, the main result that answers the foregoing 

questions will be an operator algebra equivalence that turns a product of graph rewrite 

operators into a sum of other graph rewrite operators. The required sum is taken over two 

sets of recognizable combinatorial objects: first, the possible edge-maximal subgraphs H in 

the output side of rule r1 that match the structure and labels of some subgraph H of the input 

side of rule r2, representing their possible overlap of rule firing action, and second, the one 

or more possible distinct maps h along which such a one-to-one matching can occur. The 

equation is
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W Gr2 in Gr2 outW Gr1 in Gr1 out

≃ ∑
H ⊆ Gr1 out ≃ H ⊆ Gr2 in

∣ edge − maximal

∑
ℎ:H

1 − 1
H

W G1; 2 in H ℎ G1; 2 out(H) (16)

where the new labeled graphs, roughly given by

G1; 2 in H = Gr1 in ∪. Gr2 in ∖ H
G1; 2 out(H) = Gr2 out ∪. Gr1 out ∖ H ,

(17)

and their labeled graph overlap will be defined more carefully in Section 3. The binary set 

difference “\” and disjoint union “∪⋅ ” operators apply directly to the vertices in the respective 

graphs but extend to all associated edges to result in valid graphs. Scalar functions ρr will 

combine by multiplication and parameter substitution, as in Eq. 14. Note that all integer 

weights on the left-hand side of Eq. 16 are nominally zero or one. However, because the 

same or equivalent operators could arise multiple times, the weights are actually nonnegative 

integers.

In this way, the operator algebra of graph rewrite rules is “lifted” from the level of creation/

annihilation operators on elementary binary random variables to the more abstract and 

structural level of well-formed labeled graph rewrite rules.

This result will be shown without (Theorem 1, Section 3.4, and Supplementary Section 

SA.5) and with (Theorem 2, Section 3.5, and Supplementary Section SA.6) hanging edge 

cleanup semantics. First (Sections 3.1-3.3 and Supplementary Sections SA.2-SA.4), we will 

discuss some of the used operator algebra calculational techniques and strategies without 

claiming any optimality for them.

As direct corollaries (Corollaries 1 and 5, Sections 3.4, 3.5), the full operators W r = W r − Dr
obey a similar product ≃ integer-weighted sum operator equivalence, except that the integer-

weighted sum over graph rewrite rule operators on the right-hand side can have both positive 

and negative integer weights. Also, as direct corollaries (Corollaries 2 and 6, Sections 3.4, 

3.5), the same is true for the commutators:

W Gr2 in Gr2 out, W Gr1 in Gr1 out ≃ ∑
H ⊆ Gr1 out ≃ H ⊆ Gr2 in

H ≠ ∅ ∧ edge − maximal

∑
ℎ: H

1 − 1
H

W G1; 2 in H ℎ G1; 2 out(H)

− ∑
H ⊆ Gr2 out ≃ H ⊆ Gr1 in

H ≠ ∅ ∧ edge − maximal

∑
ℎ: H

1 − 1
H

W G2; 1 in H ℎ G2; 1 out(H)
(18)

except that the integer-weighted sum over graph rewrite rule operators on the right-hand side 

can have both positive and negative integer weights, and the H = ∅ terms always drop out.

In addition, in the course of proving these two theorems, we exhibit in each case a 

constructive mapping (Corollaries 3 and 7, Sections 3.4, 3.5) from the graph rewrite 
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rule operator algebra semantics to the elementary bitwise (two-state) operator algebras of 

Supplementary Section SA.3.1.

Finally, Corollaries 4 and 8 (Sections 3.4, 3.5) point out that H = ∅ cancels out all the 

commutators of Corollaries 2 and 6.

Theorems 1 and 2 will extend straightforwardly, as stated in Proposition 1, to the dynamical 

graph grammar (DGG) case, in which some rule operators express dynamical systems in the 

form of systems of ordinary differential equations, as sketched in Section 2.2.1 and Eq. 14. 

In like manner, some rules could be SDE-bearing rules whose operator expression is given in 

Mjolsness and Yosiphon (2006) and Mjolsness (2010).

3 RESULTS

In this section, we will sketch the main calculations of this study, which appear in much 

greater detail in Supplementary Material SA, interleaved with mathematical statements of 

the results of those calculations. The sketch will take the following form: 1) preliminary 

definitions and notation, including the two different graph grammar operator semantics that 

differentiate Theorem 1 from Theorem 2 (Sections 3.1-3.3); 2) an operator product problem 

statement for the first semantics, followed by the statements of Lemma 1 and Theorem 1 

each followed by a link to Supplementary Material SA for its proof, followed by a series of 

four corollaries with short proofs (Section 3.4); 3) an operator product problem statement 

for the second semantics, followed by a proof sketch for the removal of hanging edges, 

followed by the theorem statement of Theorem 2 and a link to Supplementary Material SA 

for its full proof, which expands on but does not depend on the proof sketch, followed by 

a series of four corollaries with short proofs (Section 3.5); 4) further observations based on 

earlier equations that are gathered together to prove Proposition 1, followed by the statement 

of Proposition 1 (Section 3.6). In addition, we will provide selected example calculations 

(Section 3.7) involving cytoskeleton in plant cells and synapses.

For the sketch, we will set 1/Cr(Nmax free) = 1 by using a choice function for the next-needed 

unallocated graph node. This choice is, of course, multiplicative, but other ways of achieving 

that property are discussed in Supplementary Section SA.2.

3.1 Algebra of Binary and Mutual Exclusion State Changes

The expressions […] in square brackets in Eq. 11 for W r2W r1 need to be restored to normal 

order, with annihilators aα to the right of (preceding) creation operators aα. To this end, we 

need various operator rules for 2 × 2 elementary operators:

a = 0 0
1 0 , a = 0 1

0 0 implies (19a)

aa = N ≡ 0 0
0 1 , aa = Z ≡ I − N = 1 0

0 0 , and (19b)
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aα, aβ = δαβ(Iα − 2Nα)I Alternative for normal form calcs : (19c)

aαaβ = aβaα − 2δαβaαaα + δαβIα (19d)

aαaβ = 1 − δαβ aβaα + δαβZα . (19e)

Delta functions δαβ are by default Kronecker deltas or products thereof, but if α indexes 

a (node, label) pair and the label includes continuous variables, then δαβ for continuous 

variables should receive Dirac delta factors instead so that the composition rule of Eq. 

14 is equally valid for discrete and continuous variables. It is important not to use 

anticommutators for these 0/1-valued random state vectors, even though, in the case α 
= β, the foregoing commutation relations are equivalent to anticommutation relations for 

fermions in quantum mechanics because, in the case α ≠ β, the corresponding operators 

commute and therefore do not anticommute.

For edges at least, we will also need the 2 × 2 “erasure” operator:

Eα = Zα + aα = 1 1
0 0 , (20)

which is a projection operator to the nα = 0 state.

We can enforce a higher-level mutual exclusion (“winner-might-take-all” or “one or zero 

hot”) logic of binary labels by fiat using axioms

ai, λai, λ′ = 0
ai, λai, λ′ = 0
ai, λai, λ′ = δλλ′Y i, λ′ .

(21)

where Ni, λ′
(a)  and Yi, λ′ are diagonal in the number basis and idempotent. This leads to a 

crucially more constraining version of Eq. 19e in the case of labels

aj, λai, λ′ = 1 − δij ai, λ′aj, λ + δijδλλ′Y j, λ . (22)

Here, operator Yj, λ has eigenvalue 1 if node j is in the undecided state and also is not in 

the label λ state; otherwise, it is 0. The detailed mapping from Eqs 19-22 is discussed in 

Supplementary Section SA.4.1.

3.2 Removal of Hanging Edges

The hanging edge removal variant of graph grammar rule semantics is
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W r = 1
Cr (Nmax free)∫ dμr (X) ρr λ(X), λ′(X)

× ∑
〈i1, …ik〉≠

Ecleanup(Gr)ai1, …ik(Gr out)a i1, …ik(Gr in) (23)

where, as in Eq. 6,

Ecleanup(Gr in, Gr out) = ∏
p ∈ Gnodes

rin ∖ Gnodes
rout

∏
i ∈ U

Eip i

∏
p ∈ Gnodes

rin ∖ Gnodes
rout

∏
i ∈ U

Ei ip

ai1, …ik(G′) = ai1, …ik (Glinks
′ )ai1, …ik (Gnodes

′ )

≡ ∏
(s′, t′) ∈ Glinks

′
ais′it′ ∏

v′ ∈ Gnodes
′

aiv′λv′′

ai1, …ik(G) = ai1, …ik (Glinks)ai1, …ik (Gnodes)

≡ ∏
(s, t) ∈ Glinks

aisit ∏
v ∈ Gnodes

aivλv ,

(24)

A \ B is again the set difference, that is, the subset of A not containing members of B, and 

is the universe of object-modeling domain graph nodes.

3.3 Index Notation

In order to calculate operator products, we introduce systematic index set notation as 

follows.

Define Lχ, Rχ, ℒχ, ℛχ, for χ ∈ {1, 2}:

lhs nodes(r1) ℐ ℐ (Gnodes
1 in ) ≡ L1 rhs nodes(r1) ℐ ℐ (Gnodes

1 out ) ≡ R1
lhs nodes(r2) J J (Gnodes

2 in ) ≡ L2 rhs nodes(r2) J ℐ (Gnodes
2 out ) ≡ R2;

lhs links(r1) ℐ ℐ (Glinks
1 in ) ≡ ℒ1 rhs links(r1) ℐ ℐ (Glinks

1 out) ≡ ℛ1
lhs links(r2) J J (Glinks

2 in ) ≡ ℒ2 rhs links(r2) J ℐ (Glinks
2 out) ≡ ℛ2 .

(25)

In this notation, the no-edge-cleanup semantics of Eq. 6 becomes (making the parameter 

integrals implicit now, to limit the notational expansion):
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W rχ = 1
Crχ (Nmax free)

ρrχ λ(χ), λ′ (χ) ∑
ℐχ :Lχ ∪ Rχ

1 − 1
U

× ∏
(i1, i2) ∈ ℛχ

ai1i2 ∏
i5 ∈ Rχ

ai5′ , λℐ−1(i5)
(1) ∏

(i3, i4) ∈ ℒχ
ai3i4

∏
i6 ∈ Lχ

ai6, λℐ−1(i6)
(1)

(26)

for χ ∈ {1, 2}, where ℐχ=1 ≡ ℐ and ℐχ=2 ≡ I. Notation “
1 − 1

” denotes any one-to-one 

map from whole of the stated domain into the stated range. Note that the middle square-

bracketed terms commute trivially as elementary node and link operators operate in different 

spaces.

Also in this notation, node maps ℐ and  can have overlapping images in . This 

relationship is parameterized by a set S (the inverse image of the overlap, under ℐ) and 

an induced map h from S into the domain of  (from the inverse image of the overlap under 

ℐ to the inverse image of the overlap under ):

S = rhs1 ∩ ℎ−1 (lhs2) = Gnodes
r1 out ∩ ℎ−1 (Gnodes

r2in )
ℎ(S) = lhs2 ∩ ℎ (rhs1) = Gnodes

r2in ∩ ℎ−1 (Gnodes
r1 out)

ℐ (S) = J (ℎ(S)) = L2 ∩ R1

ℐ (S) = L2 ∩ R1 = L2 ∪ R1 .

(27)

Note also that

ℒχ ⊆ Lχ × Lχ and ℛχ ⊆ Rχ × Rχ (28)

should be preserved inductively by rule firing semantics.

Define χ(i1, i2) = a predicate that determines which edges Ei1,i2 are hanging, if 

present, and should be deleted, where χ ∈ {1, 2}. It may be a predicate function: 

Pχ [Lχ, Rχ, …, Glinks
χ in , Glinks

χ out](i1, i2). Also, PT(i1, i2) ≡ P(i2, i1). We will use one of several 

equivalent possibilities:

Pχ = Lχ ∖ Rχ × U dual Pχ
⋆ = Pχ

T = U × Lχ ∖ Rχ (29)

As before,  = the universe of possible node indices i.

3.4 Sketch of Commutation Calculation: No Edge Cleanup

The product of two such operators is (omitting for now the integral over parameters X)
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W r2W r1 = 1
Cr1 (Nmax free)

1
Cr2 (Nmax free)

ρr1 λ(1), λ′(1)
ρr2 λ(2), λ′(2) ∑

J :L2 ∪ R2
1 − 1

U

× ∑
ℐ :L1 ∪ R1

1 − 1
U

∏
j1, j2 ∈ ℛ2

aj1j2 ∏
j3, j4 ∈ ℒ2

aj3j4

∏
j5 ∈ R2

aj5′ , λJ−1(j5)
(2)

× ∏
j6 ∈ L2

aj6, λJ−1(j6)
(2) ∏

(i1, i2) ∈ ℛ1
ai1i2 ∏

(i3, i4) ∈ ℒ1
ai3i4

× ∏
i5 ∈ R1

ai5′ , λℐ−1(i5)
(1) ∏

i6 ∈ L1
ai6, λℐ−1(i6)

(1)

(30)

Then, we will use the relevant commutation relations to calculate the following:

Lemma 1. Let H(S, h) be the maximal common subgraph of both Gr1 out and Gr2 in, for any 

given choice of nodes S in Gr1 out and 1-1 corresponding nodes h(S) in Gr2 in. We can restrict 

S to sets of nodes whose labels match in Gnodes
r2 in

 and Gnodes
r1 out

. For any such H, we can commute 

the link operators as follows:

∏
(j3, j4) ∈ ℒ2

aj3j4 ∏
(i1, i2) ∈ ℛ1

ai1i2

= ∏
(i1, i2) ∈ ℐ Glinks

r1 out ∖ Hlinks

ai1i2 ∏
(j3, j4) ∈ J Glinks

r2 in ∖ ℎ−1 (Hlinks)

aj3j4

× ∏
(j7, j8) ∈ ℐ (Hlinks) ≡ ℒ2 ∩ ℛ1

Zj7j8

(31)

The last factor above implements the edge-checking or link correspondence portion of graph 

matching between a subgraph H(S, h) of the output graph of rule r1 and a corresponding 

subgraph of the input graph of rule r2.

Note that the 1-1 and onto node map ℎ:H H preserves edges and labels of labeled 

subgraphs H and H and thus is an isomorphism of labeled subgraphs.

By further calculation and careful interpretation of terms, we arrive at the main result, except 

limited to the case in which hanging edges are not removed by the rule semantics: for the 

hanging edge permissive semantics of Eqs 5, 6, or equivalently Eq. 26,
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W Gr2 in Gr2 outW Gr1 in Gr1 out

≃ ∑
H ⊆ Gr1 out ≃ H ⊆ Gr2 in

∣ edge − maximal

∑
ℎ: H

1 − 1
H

W Gr1 in ∪. Gr2 in ∖ H ℎ Gr2 out ∪. (Gr1 out ∖ H) (32)

In more detail, the summand graph rewrite rule is then defined by Theorem 1. Under the 

definitions of the compound label graphs in Eqs 34, 35, one can write the graph rewrite rule 

algebra as announced in Section 2.4.

Theorem 1. For the hanging edge-permissive semantics of Eqs 5, 6 or equivalently Eq. 26 

and assuming multiplicative normalization Cr, then

W Gr2 in Gr2 outW Gr1 in Gr1 out

≃ ∑
H ⊆ Gr1 out ≃ H ⊆ Gr2 in

∣ edge − maximal

∑
ℎ: H

1 − 1
H

W G1; 2 in H ℎ G1; 2 out(H) (33)

where the compound labeled graphs G1;2 in (H) and G1;2 out(H) are defined by

Gnodes
1; 2 in Hnodes = Gnodes

r1in ∪. Gnodes
r2 in ∖ Hnodes Gnodes

1; 2 out (Hnodes)
= Gnodes

r2 out ∪. Gnodes
r1 out ∖ Hnodes

≡ Gnodes
r1in ∪ ℎ−1 ⋆ Gnodes

r2in ∖ Hnodes ≡ Gnodes
r2 out ∪

ℎ⋆ Gnodes
r1 out ∖ Hnodes

Glinks
1; 2 in Hnodes = Glinks

r1in ∪ ℎ−1 ⋆ Glinks
r2in ∖ Hlinks Glinks

1; 2 out (Hlinks)
= Glinks

r2 out ∪ ℎ⋆ Glinks
r1 out ∖ Hlinks

(34)

and their label overlaps K1;2 are defined by

Ka = Gnodes
rain ∩ Gnodes

ra out

K1; 2 = (K1 ∖ Hnodes) ∪ ℎ−1 K2 ∖ Hnodes ∪ K1 ∪ ℎ−1 ⋆ (K2) .
(35)

The coefficients in Eq. 33 are all nonnegative integers (as the same graph grammar rule 

could arise several times by different means). Rate factors ρ multiply with parameter 

substitution, as in Eq. 14. Here, symbol ∪⋅  denotes disjoint union, and h★: Gr1 out → G1;2 out 

extends ℎ:H ⊆ Gr1 out H ⊆ Gr2 in by remapping the nodes of Gr1 along h if possible and to 

the disjoint union nodes if not, preserving all possible links except those in Hlinks, likewise 

for ℎ−1:H ⊆ Gr2 in H ⊆ Gr1 out and h−1★: Gr2 in → G1;2 in.

Proof: The proof of this theorem is provided in Supplementary Material SA, with Theorem 

1. It follows the proof sketch above but is written out in detail.
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Note that Eqs 34, 35 reflect a time-reversal L ↔ R duality. Examples of graph numbering 

and disjoint union ∪⋅  are given in Section 3.7. We now derive a series of corollaries presented 

only here, not in the detailed calculation sections.

Corollary 1. There is an algebraic reduction of operator products to sums, similar to 

Theorem 1, which applies to the Wr operators that subtract diagonal operators from W r to 

conserve probability as in Eq. 1, except that the coefficients can be any integer.

Proof: Note that substituting Zα = Iα − Nα in each elementary operator in Eq. 54 of 

Supplementary Section SA.1 and distributing multiplication over addition, yields an integer-

weighted sum of operators of the form of Eq. 53 of Supplementary Section SA.1 or 

equivalently Eq. 5. Therefore, Wr2Wr2 is equivalent to a sum of W s operators for a set 

of labeled graph grammar rules indexed by s. As Wr2 preserves probability, 1 · Wr2Wr1 = 

0 · Wr1 = 0. We can therefore subtract zero in the form of diag (1 · Wr2Wr1), applied term 

by term with the same sum of graph grammar rules substituted in for Wr2Wr1, and find that 

Wr2Wr2 is equivalent to a sum of full W = W s − diag(1 ⋅ W s) operators for a set of labeled 

graph grammar rules indexed by s.

Corollary 2. There is an algebraic reduction of commutators of labeled graph grammar rule 

state-change operators W r to sums of the same form, similar to Theorem 1, with integer 

coefficients and cancellation of H = ∅ = H summands:

W Gr2 in Gr2 out, W Gr1 in Gr1 out ≃ ∑
H ⊆ Gr1 out ≃ H ⊆ Gr2 in

H ≠ ∅ ∧ edge − maximal

∑
ℎ: H

1 − 1
H

W G1; 2 in H ℎ G1; 2 out(H)

− ∑
H ⊆ Gr2 out ≃ H ⊆ Gr1 out

H ≠ ∅ ∧ edge − maximal

∑
ℎ: H

1 − 1
H

W G2; 1 in H ℎ G2; 1 out(H)
(36)

Also, there is a similar algebraic reduction of commutators of labeled graph grammar rule 

full operator Wr commutators to sums of the same form, with integer coefficients.

Proof: As in Corollary 1, but with extra minus signs on some of the rule operators. 

Cancellation of H = ∅ = H summands follows from the r1 → r2 symmetric definitions of 

G1;2 in and G1;2 out in Eq. 34 in that special case.

Corollary 3. There exists (as exhibited in the proof of Theorem 1) a constructive mapping 

from the graph rewrite rule operator algebra semantics to the elementary bitwise operator 

algebras of Supplementary Section SA.3.1. Because it depends on an index allocation 

scheme which can be done in many ways, this mapping is not unique.

Corollary 4. One particular subgraph that always contributes to the product is 

H = ∅ = H, the empty graph. Its contribution always cancels out of the commutator 

[W r2, W r1] = W r2W r1 − W r1W r2 because H = ∅ and then nothing is shared between the 

two rule firings so their order does not matter.
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3.5 Sketch of Commutation Calculation: With Edge Cleanup

We now turn to the hanging edge cleanup semantics and prove (Theorem 2) that the same 

algebra as in Theorem 1 and Eqs 34 and 35, and 33 still applies.

An elaboration of rule operators W r can clean up hanging edges that may otherwise be left 

behind by a rule firing:

W r
cleaned = ∏

k1 ∈ Lr ∖ Rr
∏

k2 ∈ U
Ek1k2Ek2k1 W r

bare

≃ ∏
(k1, k2) ∈ S

Ek1k2 ∏
(k1, k2) ∈ S

Ek2k1 W r
bare

(37)

where  is the set of indices specified by

S = [(Lr ∖ Rr) × UA⋆ ] (38)

where A* = all node indices that have ever been allocated in a memory block, hence all 

memory-live node indices, and  = the whole universe of node indices, so that A* ⊆ .

The semantics is now

W rχ = 1
Crχ (Nmax free)∫ dμrχ(X) ρrχ λ[X], λ′[X] ∑

ℐχ :Lχ ∪ Rχ
1 − 1

U

∏
i′, i ∈ Pχ

Ei′ i ∏
i , i ′ ∈ Pχ∗

Ei i ′

× ∏
(i1, i2) ∈ ℛχ

ai1i2 ∏
(i3, i4) ∈ ℒχ

ai3i4 ∏
i5 ∈ Rχ

ai5, λℐχ−1(i5)
′

∏
i6 ∈ Lχ

ai6, λℐχ−1(i6) .

(39)

We now work to replace the product of Eij factors above with the exponential of a sum:

Eα = Zα + aα = Iα + (aαNα) = Iα + W α ∅ (40)

Defining ϵ = τ/m, we will see that

exp τ ∑
α ∈ S

W α ∅ = lim
m + ∞, ∊ − > 0+

∏
α ∈ S

(I + ∊W α ∅
m

. (41)

and we will compute that therefore asymptotically as τ = ρeraset → +∞,

Mjolsness Page 20

Front Syst Biol. Author manuscript; available in PMC 2023 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exp τ ∑
α ∈ S

W α ∅ = ∏
α ∈ S

Eα . (42)

So, complete erasure is the limiting behavior of this edge-by-edge stochastic erasure process, 

and it can be achieved simply by taking the limit ρerase → +∞.

Now, we apply these calculations to the actual hanging edge erasure operator:

exp τ ∑
(i1, i2) ∈ S

W (i1, i2) ∅ = exp τ ∑
(i1, i2) ∈ S

(Ei1, i2 − Ii1, i2)Ni2Zi1 (43)

Here, the node operator Zi checks for unallocated nodes i with no label.

Then, asymptotically as τ = ρeraset → +∞,

exp τ ∑
α ∈ S

W α ∅ = ∏
(i, j) ∈ S

Ei, jNjZi ≃ ∏
(i, j) ∈ P

Ei, j . (44)

So again, we get the product of forward edge erasures by an incremental process of deletion, 

run for a long effective time τ.

In Eq. 37,

W cleaned = ∏
(k1, k2) ∈ S

Ek1k2Ek2k1 W bare

= lim
n + ∞, ∊ 0+

I + ∊ ∑
(k1, k2) ∈ S

(ak1, k2Nk1, k2)Nk2Zk1

n

× I + ∊ ∑
(k1, k2) ∈ S

(ak2, k1Nk2, k1)Nk1Zk2

n
W bare

(45)

The core calculation within W r2
cleaned ⋅ W r1

cleaned is thus

W r2
bare ∊ ∑

(k1, k2) ∈ S
(ak1, k2 − Nk1, k2)Nk2Zk1

= ∊
Cr2

∑
ℐ

∑
(k1, k2) ∈ S

∏
(i1, i2) ∈ ℛ2

ai1i2 ∏
(i3, i4) ∈ ℒ2

ai3i4 (ak1, k2 − Nk1, k2)

× ∏
i5 ∈ R2

ai5, λℐ−1(i5) ∏
i6 ∈ L2

ai6, λℐ−1(i6) Nk2Zk1

(46)

By operator algebra calculation, we find
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∏
(i1, i2) ∈ ℛ2

ai1i2 ∏
(i3, i4) ∈ ℒ2

ai3i4 (ak1, k2Nk1, k2)

=

− ∏
(i1, i2) ∈ ℛ2

ai1i2 ∏
(i3, i4) ∈ ℒ2

ai3i4 if (k1, k2) ∈ ℒ2

Nk1, k2 ∏
(i1, i2) ∈ ℛ2

ai1i2 ∏
(i3, i4) ∈ ℒ2

ai3i4 if (k1, k2) ∈ ℛ2 ∖ ℒ2

(ak1, k2Nk1, k2) ∏
(i1, i2) ∈ ℛ2

ai1i2 ∏
(i3, i4) ∈ ℒ2

ai3i4 if (k1, k2) ∈ ℛ̄2 ∩ ℒ̄2 .

(47)

Further arguments in the detailed calculation section will show that all surviving terms 

behave as in the third line of Eq. 47, and the factor of a − N to the right of the second rule 

firing simply joins the infinite supply of such factors to its left.

Intuitively, this means that hanging edges can be eliminated nonspecifically by an overactive 

syntax-checking process rather than surgically in a way that depends on the details of each 

rule firing because the assumed form of the graph rewrite rules does not recognize or 

respond to hanging edges; all edges are verified to have two vertices before a rule can fire. 

As an aside, this explanation would not remain valid if the semantics were changed to allow 

things like the nonconforming operator W(i1,i2)→∅ above, so as to allow hanging edges 

as part of the normal graph grammar operation. Then, a more complex algebraic operator 

equation might result.

Thus, we find no change to the algebraic formula of Theorem 1 for the hanging edge 

removal semantics.

Theorem 2. For the hanging edges removal semantics of Eqs. 23, 24, or equivalently Eq. 

39, assuming finiteness of rules, index allocation blocks, and number of rule firings, and 

assuming multiplicative normalization Cr, then

W Gr2 in Gr2 outW Gr1 in Gr1 out

≃ ∑
H ⊆ Gr1 out ≃ H ⊆ Gr2 in

∣ edge − maximal

∑
ℎ: H

1 − 1
H

W G1; 2 in H ℎ G1; 2 out(H) (48)

where the compound labeled graphs G1; 2 in(H) and G1;2 out(H), and their label overlaps 

K1;2 are defined by Eqs 34, 35 in Theorem 1. The coefficients in this expression are all 

nonnegative integers (as the same graph grammar rule could arise several times by different 

means). Rate factors ρ multiply with parameter substitution, as in Eq. 14.

Proof: The proof of this theorem is provided in Supplementary Material SA, with Theorem 

2. It follows the proof sketch above but is written out in detail.
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We now derive another series of corollaries presented only here, not in the detailed 

calculation section.

Corollary 5. There is an algebraic reduction of operator products to sums, similar to 

Theorem 2, that applies to the Wr operators that subtract diagonal operators from W r to 

conserve probability, except that the coefficients can be any integer.

Proof: Exactly as for Corollary 1.

Corollary 6. There is an algebraic reduction of commutators of labeled graph grammar 

rule state-change operators W r to sums of the same form, similar to Theorem 2, with 

integer coefficients. Also, there is a similar algebraic reduction of commutators of labeled 

graph grammar rule full operator Wr commutators to sums of the same form, with integer 

coefficients.

Proof: As in Corollary 5 or 1, but with extra minus signs on some of the rule operators.

Corollary 7. There exists (as exhibited in the proofs of Theorems 1 and 2) a constructive 

mapping from the graph rewrite rule operator algebra semantics to the elementary bitwise 

operator algebras of Supplementary Section SA.3.1. As it depends on an index allocation 

scheme that can be done in many ways, this mapping is not unique.

Corollary 8. One particular subgraph that always contributes to the product is 

H = ∅ = H, the empty graph. Its contribution always cancels out of the commutator 

[W r2, W r1] = W r2W r1 − W r1W r2 because nothing is shared between the two rule firings so 

their order does not matter.

We note here that a previous attempt to prove Theorem 2 directly using the large product of 

E operators and , L, R, ℒ, R, among others, by Boolean logic ran aground in notational 

complexity. The method used here, with the exponential of a sum of E − I operators, seems 

more tractable.

3.6 Application to ODEs and Dynamical Graph Grammars

In Section 2.2.1, we showed that a graph grammar rule that expresses a differential equation 

by not adding or removing any graph edges and by changing only the node labels, not the 

presence or absence of graph nodes, can be expressed within the general framework by 

applying Theorems 1 and 2 using a particular form of rule rate function ρ which, however, 

may take values of either sign. All steps of Theorems 1 and 2 remain valid. The signs of the 

commutator-induced coefficients that multiply the rate functions ρ remain as stated in these 

theorems and their corollaries.

The only change is that when the time to derive a simulation algorithm for these semantics 

comes, the functions ρr for differential equation rules cannot be interpreted as propensities 

(unnormalized probabilities per unit time) because they can be negative. That is all right 

because Mjolsness (2013) derived a separate kind of algorithm for stochastic parameterized 

grammars that contain such rules, calling an ODE solver as a subroutine. Of course, Section 
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2.2.1 together with Eq. 49 below suggests another algorithm under a limiting procedure for 

small but discrete changes in parameter values.

Thus, we show the following:

Proposition 1. Theorems 1 and 2 extend to rules that express differential equations by way 

of semantics incorporating Dirac delta functions as in Eq. 9.

For example, we will see in Supplementary Material SB.3 that the operators [ DE 2, DE 1] 

of two differential equations for the same variables dx/dt = v1(x) and dx/dt = v2(x) have 

a commutator DE [2, 1] equivalent to a third differential equation dx/dt = v[2, 1](x) ≡ (v1 · 

gradx)v2(x) − (v2 · gradx)v1(x). In the same section, we will use the notation of Theorem 1 to 

exhibit the commutator of an ODE rule and a (non-ODE) SPG rule.

Alternatively to Eq. 9, one could eschew continuous parameters until the very end of a 

calculation by taking continuous “motion” of each real-valued parameter component xa 

under an ODE to consist of many small discrete uniform-sized steps ±Δx, with Δx > 0, with 

the sign chosen to be that of v in each component, and each step having a continuous-time 

propensity to occur given by ∣v(x)∣. Then, after integration by parts and assuming suitable 

boundary conditions can be imposed on v,

W ODE discr r = ∑
x, a

∣ va(x) ∣
Δx ∑

〈i1, …ik〉≠
[ai1, …ik (Gr (x + sign (va(x))Δxea))ai1, …ik

(Gr (x))
− ai1, …ik (Gr (x))ai1, …ik (Gr (x))]

(49)

where ea is the unit vector along axis a of the local parameter vector space containing x. 

On timescales Δt ≪ Δx/maxa∣va (x)∣, parameter jumps occur one at a time and add up in 

the expected manner. Again, one would take a parametric limit, this time in the limit Δx 
→ 0. This approach has the advantage of non-negative ρ functions and, thus, a probabilistic 

interpretation of the rule operator.

By either of these means, mixed stochastic graph dynamics and differential equation 

dynamics can be approximated arbitrarily closely by operators of graph grammar dynamics 

of the algebraic form we have assumed. Eq. 49 also hints at a different family of stochastic 

simulation algorithms, which may or may not lead to something efficient. Alternatively, as 

in Eq. 9 and Proposition 1, one can simply admit Dirac delta functions into the allowed 

expressions for ρr and selected commutators, and no parametric limit is needed; this will be 

our preferred approach.

3.7 Examples

Several biological models have been formulated in terms of structural rewrite rules for 

graphs and cell complexes (Mjolsness et al., 1991; Spicher and Michel, 2007; Giavitto and 

Spicher, 2008; Lane, 2015) and the literature on L-systems, all reviewed from the present 

operator algebra point of view in Mjolsness (2019a).

Mjolsness Page 24

Front Syst Biol. Author manuscript; available in PMC 2023 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, we will take as a working example a highly simplified stochastic parameterized graph 

grammar (SPGG) for microtubule dynamics, including treadmilling, bundling/zippering, and 

katanin-mediated severing in cytoskeleton dynamics as it appears in current plant biology.

3.7.1 MT Stochastic Graph Grammar—A diagrammatic presentation of a small 

subset of a plant cortical microtubule (MT) graph grammar, with subscripts for the rule-

local arbitrary but consistent numbering of vertices in left- and right-hand side graphs of 

each rule, is shown below. These rules and calculations are a subset of those presented in 

Supplementary Material SB. Discrete parameters will include a four-valued categorical label 

s ∈ {internal, grow_end, retract_end, junct} (or s ∈ {◦, ●, ■, ▲}) for status as interior 

segment, growth-capable end segment, retraction-capable end segment, or bundling junction 

segment, respectively:

(50)

Here, Yg is a diffusible MT growth factor such as tubulin itself or a catalyst or regulator 

of tubulin polymerization and/or nucleation, such as (perhaps) XMAP215 (Hamant et al., 

2019), and Yr plays the same role in catastrophe/retraction.

In working out the commutators, we will drop the propensity functions ρ, but they just 

multiply the results with appropriate variable identifications.

Further MT rules are provided in Supplementary Section SB.1.

3.7.2 Example MT Commutator Calculation—The commutator calculations for this 

minimal MT graph grammar’s Lie algebra can be outlined as follows:

[W 3, W 1]:

W 3 ⋅ W 1: shared same-label vertex sets run over by H and their mappings under h are 

∅; {(1↦1′)}; {(1↦2′)}; {(1↦3′)}; {(1↦1′), (2↦4′)}; {(1↦2′) (2↦4′)}; {(1↦3′), 

(2↦4′)}.

W 1 ⋅ W 3: shared same-label vertex sets run over by H and their mappings under h are ∅.
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H = ∅ always cancels in the commutator:

(51)

The reason the second line above involves a “rare coincidence” is that its left-hand side 

represents a collision of two long MTs very near to the growing end of both, assuming the 

MTs are generically quite long and thus have many internal nodes (open circles). Likewise, 

the fourth line requires a high bending energy (can thus be disfavored in a more detailed 

model) because of the loop of three small MT segments, two interior and one junction, in the 

RHS graph.

Further commutators are calculated in Theorems 1 and 2 and Proposition 1 in 

Supplementary Section SB.

For the restricted case in which one of the operators is a diagonal “observable,” a rule 

commutator calculation has been exhibited independently in the “double pushout” formalism 

(Section 4.2) for a particular set of basic biochemical binding/unbinding rules expressed in 

Kappa (Behr et al., 2020). The general combinatorial formula of Theorems 1 and 2 and the 

extension of Proposition 1 remain unique as far as we know.

The special case in which no graph edges are present, only graph nodes, corresponds to 

a well-mixed stochastic chemical reaction network. The commutation relations for such 

models are calculated in Supplementary Section SC, in the conventional representation in 

which all particles of a given type lose their identity and only their population numbers 

matter.

3.7.3 Actin Cytoskeleton Stochastic Graph Grammar Examples—Actin 

filament polymerization and depolymerization rules can be analogous to those for MTs. 

Branching occurs in a different way than the bundling rule for MTs, as for example in this 

two-dimensional rule:
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(52)

Here, O2 represents actin or short polymers of actin (which have a sense of directionality), 

● represents the Arp2/3 complex in solution, and ■ represents the Arp2/3 complex 

bound to actin and can serve as the nucleation site for a new actin filament. Also, the e 
parameters measure biomechanical energy owing to geometry, which can drive mechanics 

using differential equation rules. A simple prototype model of this sort has been simulated 

using the software of Yosiphon (2009).

In fact, MTs also have branching nucleation dynamics facilitated by other molecular players 

such as the augmin complex.

Other actin grammar rules, including polymerization-driven growth, can be modeled in a 

very similar manner to MT rules. For example, both kinds of filaments undergo catalyzed 

severing. Growing actin filaments may also acquire an end-cap, preventing further growth.

3.7.4 Related Kinds of Rewrite Rules—We have analyzed the semantics and given 

examples of stochastic parameterized graph grammar (SPGG) models.

Mjolsness and Yosiphon (2006) demonstrated how to use integer-valued Object ID (OID) 

parameters to encode such graph grammars within stochastic parameterized grammars 

(SPG) comprising parameter-bearing stochastic rewrite rules with operator algebra 

semantics. This reduction requires the use or dynamical emulation of a source of novel 

OIDs. Because the reverse inclusion is trivial, SLGGs, SPGGs, and SPGs are essentially 

different syntactic presentations for the same semantics; SPGGs may be easier to write since 

the OID encoding step is unnecessary.

Nevertheless, Mjolsness and Yosiphon (2006) showed how to add to SPG rules with 

ordinary and/or stochastic differential equation syntax and differential operator semantics, 

obtaining “dynamical grammars” (DGs). DGs can be a continuum limit (in label space and 

in time) of SPGs. If we allow differential equation rules and stochastic parameterized graph 

grammar rules, we arrive at dynamical graph grammars (DGGs), as defined here and the 

subject of Proposition 1.

Many other notational conveniences are possible while maintaining or generalizing the 

operator algebra semantics.
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3.7.5 Cell Complex Rewrite Rules—In Mjolsness (2019a), the operator algebra 

semantics for a labeled graph rewrite rule is generalized in several ways. One of these 

generalizations is to cell complexes (each of some maximal dimension d), which have been 

applied to developmental modeling (Spicher and Michel, 2007; Lane, 2015). Mjolsness 

(2019a) also provided a constructive implementation mapping from the generalized rewrite 

rules back to graph grammar rewrite rules. In principle, the graph grammar operator algebra 

of our Theorems 1 and 2 apply to these generalized settings—but whether the sum of graph 

grammar operators resulting from a higher-level product is also a sum of higher-level rewrite 

rules or not remains to be worked out.

Here, we point out a useful special case for cell complex dynamics: if a graph can be locally 

embedded in d dimensions (i.e., in d dimensional manifolds with ℝd as the usual case) 

in such a way that it becomes a Voronoi diagram or a power diagram (weighted Voronoi 

diagram), then its label set can be augmented by the resulting node positions, and, more 

importantly, there is a dual d-dimensional cell complex consisting of the boundaries at equal 

distance (in the Voronoi case) from two or more graph node positions, together with the 

d-dimensional single-node cells they bound. Then, local graph grammar rewrite rules will 

generically result in local updates to the embedding and the dual cell complex, inducing 

local cell complex changes describable as rewrite rules.

As a final point of discussion, in the Lie group theory, the Lie algebra is related to 

the curvature tensor of a group-invariant metric. Likewise, in differentiable manifolds, 

commutators of covariant derivatives are related to the manifold curvature tensor. The Lie 

algebras discussed here are generically in a much higher dimension but, in some cases, may 

also relate to geometric and/or topological structures.

4 DISCUSSION

4.1 Conclusion

We have computed the product and commutator for any two stochastic parameterized graph 

rewrite rule operators in a stochastic graph grammar possessing operator algebra semantics, 

in structural (graph-expressed, combinatorial) form. In this form, the product of the state-

changing portions (off-diagonal in the number basis) of two graph rewrite rule operators is a 

sum, with nonnegative integer coefficients, of other such operators. Non-negative real-valued 

rate multipliers are also carried along expectedly. The product of the full-graph rewrite rule 

operators and the commutator of off-diagonal or full-rule operators are likewise expressed 

as a sum with integer-valued weights of other full-graph rewrite rule operators. The algebra 

can also be applied to rewrite rules that bear ordinary differential equations for real-valued 

node parameters. The results are expressed in Theorem 1 and its corollaries for the case 

of semantics in which hanging edges are left behind and Theorem 2 and its corollaries for 

the case in which they are not. Proposition 1 demonstrates the application to the differential 

equation bearing rules. The algebra can be computed explicitly.

There is also a computer-implementable constructive mapping from the resulting graph 

rewrite rule algebra to many elementary two-state creation/annihilation operators. Because 

the algebra is expressed in the present work entirely in terms of identities relating to graph 
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rewrite rule operators (up to equivalence) rather than more general expressions built from 

the underlying elementary two-state creation/annihilation operators, Theorems 1 and 2 are a 

substantial improvement in utility and perspicuity over the corresponding Propositions 1 and 

2 in Mjolsness (2019a). Here, the operator algebra of graph rewrite rules is “lifted” from the 

concrete level of creation/annihilation operators on elementary binary random variables to 

the more abstract and structural level of well-formed labeled graph rewrite rules.

As a clarifying test case, the resulting graph-grammar level algebra was applied to an 

elementary example inspired by the dynamics of cortical microtubules in plant cells, one of 

many structure-changing dynamical systems in biophysics and other sciences that could be 

amenable to modeling by stochastic parameterized graph grammars.

4.2 Related Work

The present line of development for operator algebra semantics of chemical reaction 

networks and graph grammars began with expressivity studies (Mjolsness, 2005; Mjolsness 

and Yosiphon, 2006), including suitable measure spaces for a probabilistic foundation, 

followed by a combined SPG and DGG implementation (Yosiphon, 2009), which was 

applied to growing plant root models with cell division (Mjolsness, 2013), a direct 

graph semantics without object ID encoding (Mjolsness, 2010), a systematic derivation 

of stochastic simulation algorithms including differential equations (Mjolsness, 2013), the 

existence proof for rule product and commutator reduction in (Mjolsness, 2019a), and the 

calculations reported herein.

The larger context is diverse and includes L-systems (which generate tree-structured graphs 

without loops) and their generalizations, such as differential L-systems (Prusinkiewicz et al., 

1993) and stochastic L-systems (Eichhorst and Walter, 1990; Cieslak and Prusinkiewicz, 

2019). The earlier reference (Eichhorst and Walter, 1990) is related to Cieslak and 

Prusinkiewicz (2019) in part by being applied to computer science rather than biology and 

by projecting out stochastic event waiting times as described, for example, in Mjolsness and 

Yosiphon (2006) (Section 3.8), and by the Gillespie algorithm of Cieslak and Prusinkiewicz 

(2019) is just one possible sampling algorithm for an operator algebra semantics as 

derived, for example, in Mjolsness (2013). Further context also includes grammar-like 

“connectionist” models for biological development (Mjolsness et al., 1991) and plant 

developmental models incorporating cell division (Jönsson et al., 2006; Smith et al., 2006). 

These include some kind of dynamic graph topology as part of the dynamical system 

to be modeled. Investigation of more formalized computer support for variable-structure 

developmental models based on topological cell complexes is shown in Spicher and Michel 

(2007) and Lane (2015).

Independently, cytoskeletal modeling simulators have been developed, including algorithmic 

provision for changing topology of filament networks due to, for example, dynamic 

crosslinking and/or bundling of microtubule or actin fibers, which necessarily change the 

graph topology that influences further biomechanical dynamics in both microtubule and 

actin fibers (Nedelec and Dietrich, 2007; Popov et al., 2016; Belmonte et al., 2017; Kim et 

al., 2022). In such dynamic cytoskeleton codes, there comes a moment when the structure of 

the graph changes, for example, as a consequence of some molecular binding or unbinding 
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event. At that moment, the problem of biomechanics changes locally but with potentially 

global consequences. So, it may be important to explore a more systematic formalization, 

such as the present operator algebra, of local structure-changing dynamics interacting with 

differential equation dynamics. Improvements in both algorithms and analyses may result.

There is an alternative category-theory-based approach to graph grammar semantics based 

on single or double pushout (DPO) commutative diagrams rather than operator algebras 

and a collection of “independence” conditions for two successive rule firings to have 

an order-independent result as explained by Ehrig et al. (2006). In our operator algebra 

language, these conditions would guarantee a zero commutator. The DPO approach was 

applied to molecular complexes in Danos and Laneve (2004). However, it requires the 

use of an abstract mathematical language (category theory) that poses a substantial barrier 

to understanding many biological modelers; direct use of the operator algebra developed 

by Heisenberg, Von Neumann, and others to formalize quantum mechanics in the 1920s 

is substantially more accessible, especially when, as in our case, it concerns probability 

distributions rather than quantum amplitudes.

Behr et al. (2016) and Behr et al. (2019) combined and connected both double-pushout 

and Master Equation semantics, using a restricted subset of the operator algebra implied by 

Propositions 1 or 2 in Mjolsness (2019a) or the more powerful Theorems 1 and 2 of this 

work. Commutators were introduced to this approach in Behr et al. (2016), but, apparently, 

without computing the explicit combinatorial result in Eq. 16, treating only the special 

case in which one of the operators, an “observable,” is diagonal in the number basis, a 

case which is potentially quite useful for pursuing moment closure approximation methods. 

They did not address the possibility in Proposition 1 of continuous parameters in the graph 

node labels or differential equation dynamics on those parameters. This approach has not 

been applied to the scientific domain of cell- or tissue-level morphodynamics in biological 

development.

Further discussion of the likely yet unproven relationship between our operator algebra 

semantics (Section 2.2) and the DPO semantics is provided in Mjolsness (2019a) 

(Supplementary Section S7.2.10).

Another work that associates a Lie algebra with a graph grammar is Marcoli and Port 

(2015). In this case, the basis Fock space over which the Lie algebra operators are defined is 

a space of labeled graphs G, rather than labeled graph grammar rules Gin → Gout, so it is a 

different and smaller operator Lie algebra than ours. It seems closely related to a subalgebra 

of “graph insertions,” comprising rules whose left-hand side graph is a single node.

A hypergraph variant of graph grammars has recently been used as the starting part for 

a dark-horse attempt to find a fully discrete-mathematical route to fundamental physical 

theory (Wolfram, 2020). Many evocative examples are given and visualized as evolving 

graphs embedded in low-dimensional visualization space. Our operator algebra formulation, 

including Theorems 1 and 2, does not appear, nor is there an integration (e.g., Proposition 1) 

with continuous-time differential processes we require for efficient simulation of emergent, 

non-fundamental processes.
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4.3 Domain of Applicability

The present line of research began as an approach to multicellular models of biological 

development that include cell birth, death, and geometry-induced changes in topology 

(Mjolsness et al., 1991; Jönsson et al., 2006; Mjolsness and Yosiphon, 2006). The graph 

grammar operator algebra was defined implicitly (by mapping to unique object IDs) in 

Mjolsness and Yosiphon (2006), a method used to implement general dynamical graph 

grammar models in Yosiphon (2009), and defined explicitly in Mjolsness (2010).

As discussed in Mjolsness (2019a), operator commutators provide an analytic tool when 

used with perturbation series expansions such as the Baker–Campbell–Hausdorff (BCH) 

theorem (as suggested for stochastic chemical reaction networks in Hellander et al. 

(2014) and rewrite operator algebras in Mjolsness and Yosiphon (2006) and Behr et al. 

(2019)) underlying operator splitting methods (Jahnke and Altıntan, 2010; MacNamara and 

Strang, 2016) or the Time-Ordered Product Expansion for Feynman diagrams underlying 

the Gillespie Stochastic Simulation Algorithm (SSA) and some of its generalizations, 

including integration with differential equations (Mjolsness, 2013), by which to derive 

both general and model-specific simulation algorithms and approximations and bound 

or estimate their errors from the perturbation series remainder terms. For example, 

operator splitting algorithms, including the exploitation of analytically solvable submodels 

(Jahnke and Altıntan, 2010) can be formulated and have their errors analyzed by way of 

commutation relations using BCH. If, for example, two rule firings are simulated out of 

order for algorithmic efficiency, their commutator (which could be zero) quantifies the error 

introduced. Operator commutators are also fundamental, of course, for understanding the 

causal structure of a dynamical model. For example, in the Wightman axioms for quantum 

field theory in the Minkowski metric, the “Locality” axiom specifies the commutation 

(or anti-commutation) of operators that act at points separated by spacelike displacements 

(Glimm and Jaffe, 1981).

Potential applications of dynamical graph grammars (including stochastic parameterized 

graph grammars) are legion, particularly in multiscale modeling. We claim they comprise a 

third major scientific computing paradigm on the same level of generality and applicability 

as 1) partial differential equations (PDEs) or 2) particle methods. These are the two most 

relevant parallel computing “design patterns” identified for high-performance computing 

(HPC) in the survey of Asanovic et al. (2009). The same source identifies graph algorithms 

as a design pattern ubiquitous across parallel computing fields, excluding HPC. This 

exclusion can now be removed. Dynamical graphs and their operators, optionally expressed 

by dynamical graph grammars, in principle, bring a third paradigm major into play for 

generic mathematical and algorithmic tools for computational science.

Examples and categories of examples that would be suitable for DGG description include 

the following:

• Cytoskeleton: application to plant cortical microtubule dynamics has been 

described already in Mjolsness (2019a) and will be a running example for 

Section 3.7.1 and Supplementary Material SB.1. An additional analogous 

example is the dynamic actin filament network in synapses during learning.
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• The originally intended domain for DGGs was multicellular models of biological 

development that include cell birth, death, and geometry-induced changes 

in the topology of networks of cells whose adjacency relationships form a 

graph (Mjolsness et al., 1991), including topology-changing models of plant 

development in the Arabidopsis shoot apical meristems as in Jönsson et al. 

(2006). An explicit one-dimensional DGG (in textual OID form) for pattern 

formation and growth in the Arabidopsis root apical meristems is presented 

in Yosiphon (2009) and Mjolsness (2013). DGGs for dynamic developmental 

topologies such as abstract cell complexes and stratified spaces, via graph slice 

categories, are discussed in Mjolsness (2019a).

• Physical applications may include the dynamics of topological dislocations, 

defects, and fractures in materials, treated as sparse extended objects in 

communication with the dense extended object(s) comprising the material [e.g., 

in “dislocation dynamics” (Devincre et al., 2008; Vattré et al., 2014)].

• Axonal and dendritic arbor growth and retraction in microscope imagery of 

animal development, under the regulatory influence of key genes such as 

DSCAM (Santos et al., 2018), comprise a dynamic spatially embedded graph.

• Agent-based systems running on interaction graphs are widely used models in 

epidemiology (Venkatramanan et al., 2018), social science (Klein et al., 2018), 

and multiscale biological modeling (Letort et al., 2019). When agent-based 

systems take agent-agent connectivity to be not only a factor affecting the 

dynamics of particle-like state-bearing agents but also a time-varying component 

of the system state governed by its own dynamics, then the underlying 

mathematics may be well described by the local graph dynamics of DGG rule 

operators and DGGs are a candidate mathematical formalism (at a higher level of 

abstraction than computer code) for expressing such models.

• Approximate solution algorithms for partial differential equations frequently 

proceed by way of spatial discretization first, resulting in a grid or mesh of 

dynamic variables connected to neighbors that appear on the right-hand sides 

of a local ordinary differential equation (dynamical system) description. Time 

is then discretized inside the solution algorithm for the resulting differential 

equations. If the grid graph is adaptive by local rules, the approximation can be 

described by a dynamical graph grammar.

• Hypergraph models can also be represented via the standard mapping of 

(labeled) hypergraphs to (labeled) bipartite graphs that connect hypervertex-

flavored vertices to hyperedge-flavored vertices and vice versa.

• There could be methodological connections to loop quantum gravity.

Most of these applications have in common some form of model reduction from a finer-

scale description that does not need dynamical graph description. The standard model of 

fundamental physics encompasses intertwined particles and fields but not dynamical graphs. 

On the other hand, coarse-graining or upscaling often introduces dynamical connectivity 

descriptions suitable for dynamical graphs, so any modeling framework that is to be 
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universal for or invariant under a broad class of model reductions needs something like 

the rule operators of DGGs.

Universality under model reduction is even better served if DGGs can also encompass partial 

differential equations (PDEs). As suggested above, DDGs, as described here, can express 

a wide variety of approximations to PDEs for spatial models, including approximations 

to continuum models described by PDEs. However, what is missing is the formalization 

entirely within DGGs of a graph limit that approaches continuous geometries, such 

as manifolds, cell complexes, and stratified spaces, as discussed in Mjolsness (2019a). 

Furthermore, a definition of graph limit based on the preservation of graph diffusion across 

scales was proposed by Scott and Mjolsness (2021). Graph diffusion has the advantage 

[over, e.g., graphons (Lovász, 2012)] that it is closely related to metric structure in the case 

of manifolds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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