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Abstract

The control of the spin-Seebeck current is still a challenging task for the development of spin

caloritronic devices. Here, we construct a spin-Seebeck device by inserting a strongly correlated

quantum dot (QD) between the metal lead and magnetic insulator. Using the slave-particle ap-

proach and non-crossing approximation, we find that the spin-Seebeck effect increases significantly

when the energy level of the QD locates near the Fermi level of the metal lead due to the enhance-

ment of spin flipping and occurrences of quantum resonance. Since this can be easily realized by

applying a gate voltage in experiments, the spin-Seebeck device proposed here can also work as

a thermovoltaic transistor. Moreover, the optimal correlation strength and the energy level posi-

tion of the QD are discussed to maximize the spin-Seebeck current as required for applications in

controllable spin caloritronic devices.
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I. INTRODUCTION

One of the most interesting topics in spin caloritronics [1, 2] is the spin-Seebeck effect

(SSE) [3], in which pure spin current can be induced by a temperature gradient in materials

or heterojunctions. SSE has been observed in magnetic metals [3], semiconductors [4, 5]

and insulators [6–10], and various devices based on SSE have been proposed. Tremendous

research interest has been inspired to study the fundamental mechanisms of SSE, and to

explore new spin-Seebeck materials. Recent theoretical studies showed that spin-Seebeck

rectification and negative differential SSE can exist in junctions of a metal and magnetic

insulator (MI) if the electronic density of states (DOS) in the metal lead strongly fluc-

tuates [11]. Moreover, the spin-Seebeck diode effect was proposed in either a spin valve

nanopillar made of two permalloy circular disks [12], or in a two-dimensional junction

of functionalized materials [13]; both can produce unidirectional spin-Seebeck currents for

spintronic applications.

MIs [6, 7] are of particular interest since they can conduct pure spin currents without a

motion of charge carriers. In a metal-MI junction, electrons in metal flip their spin direction

when they absorb magnetization excitations (magnons in MI). When a temperature gradient

is introduced, magnons can be driven away from their equilibrium state at the interface of

MIs. As a sequence, a net spin current (i.e., the spin-Seebeck current) can be generated

in metal by the flows of magnons in MI. Clearly, the control of electron-magnon coupling

across the metal/MI interface is an effective route to optimize the spin-Seebeck current. In

a quantum-dot (QD) or a junction, considering that the exclusion principle forbids double

occupation of two electrons in the same quantum state, the spin flipping process is more

likely to occur when a nearest energy level is either empty or occupied by an electron with

the opposite spin direction. It is natural to expect that the SSE and spin-Seebeck current

can be remarkably enhanced by introducing a QD into SSE devices.

Here, we construct a spin-Seebeck device which has a QD inserted between the MI and

metal lead, as sketched in Fig. 1. It is known that the Coulomb blockade effect usually exists

in QDs and most QD systems may exhibit rich thermoelectric behaviors. For example, the

thermoelectric figure of merit of QD systems can be largely enhanced by increasing the

Coulomb blockade effect [14]. In QD-based devices, beyond the studies of the thermopower

of QDs [15–23], spin-dependent thermopower can be generated when QDs are coupled to
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FIG. 1. Schematic of a strongly correlated quantum dot attached to the left metal lead and the

right magnetic insulator with coupling Γk and Jq, respectively. Here, U is the Coulomb correlation,

and εσ denotes the dot level, which can be tuned by the top gate voltage. It is assumed that Jq

is much smaller than Γk so that we approximate the spin current to the lowest order in Jq and

neglect the self-energy due to interaction with magnons.

magnetic leads [20–22] or are magnetized [23]. Obviously, the Coulomb interaction can

control the rate of spin flipping in our device and is an effective way to optimize the spin-

Seebeck current in QD systems or junctions. Indeed, our calculations show that the spin-

Seebeck current can be significantly tuned by manipulating the energy levels of the QD,

particularly when these energy levels are slightly below the Fermi energy of the metal leads.

Since the energy levels in QD can be controlled by a top gate, the spin-Seebeck device

proposed here can also be used as a thermovoltaic transistor.

The remainder of this paper is organized as follows. In Sec II, we present details of the

model Hamiltonian and results of transport studies based on the non-crossing approximation

(NCA) method [24–26] in terms of slave bosons [27–29]. Results for two extreme cases,

U = 0 and U =∞, are discussed in Sec III to see how strong correlation affects the SSE. In

Section IV, we generalize the NCA to situations with finite-U and address the joint effect

of the correlation and bias on the spin transport properties. At the end, we present the

derivations of formulations in the Appendixes.
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II. MODEL AND METHOD

Without MI, the QD-metal system can be described by the Anderson impurity model.

Using the slave-boson representation c†dσ = f †σb+ εσσ′fσ′d† for electrons in QD, the Hamilto-

nian can be expressed as

Himp =
∑
k,σ

(εk − µσ)c†kσckσ +
∑
σ

εσf
†
σfσ + Ud†d

+
∑
k,σ

(Vkc
†
kσfσb

† + V ∗k f
†
σckσb) +

∑
k,σ 6=σ′

(Vkc
†
kσf

†
σ′d+ V ∗k fσ′ckσd

†). (1)

The lead electrons, the spinon, the holon (empty occupation) and the doublon (double

occupation) are denoted by ckσ, fσ, b, and d, respectively. The antisymmetric tensor εσσ′ is

defined as ε↑↓ = −ε↓↑ = 1 and ε↑↑ = ε↓↓ = 0. Double occupation is excluded for infinite U ,

thus in this case terms containing d or d† can be abandoned accordingly.

MIs can be modeled by the Heisenberg lattice HR = −J
∑

i,j(
1
2
S+
i S
−
j + 1

2
S−i S

+
j + Szi S

z
j ),

where S+
i(j)(S

−
i(j)) is the raising (lowering) operator for the lattice spin, and Szi(j) is the

operator corresponding to the z-component of the spin. Using the Holstein-Primakoff trans-

formation [30] and assuming large lattice spin limit, one can approximate S+
i(j) ≈

√
2S0ai(j)

and S−i(j) ≈
√

2S0a
†
i(j). Here, S0 is the length of the lattice spins, which are assumed to

satisfy a condition 2S0 � 〈a+i(j)ai(j)〉. It is clear from this formulation that the magnon

operator a†i(j) (ai(j)) adds (lessens) the z-component of the magnon by one unit. After a

Fourier transform into the momentum space, the Hamiltonian can be approximated by the

free Bose gas, HR ≈
∑

q ~ωqa†qaq. Here we drop a constant from the term
∑

i,j S
z
i S

z
j .

Following Refs. [11, 31–34], we describe the magnon-QD coupling by the s-d exchange

interaction

Hsd = −
∑
q

Jq

[
S−q c

†
d↑cd↓ + S+

q c
†
d↓cd↑

]
, (2)

where S+
q =

√
2S0aq, S

−
q =

√
2S0a

†
q are the lattice spin operators in the momentum space,

and Jq denotes the effective exchange interaction. Here, we do not express the electron

operators cd↑(↓) in QD in the slave-boson representation, since the original form makes the

derivation of spin current more concise (See Appendix A). From the perspective of electrons

in QD, the two terms represent emission and absorbtion of magnons respectively. The

coupling with the z-component −JqSzq (c†d↑cd↑ − c
†
d↓cd↓) is absorbed into the energy level in

QD, resulting in a difference in energy for the two spins.
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The spin current in MI is carried by magnons and it can be defined as IS ≡ d
dt
〈
∑

q a
†
qaq〉.

Since each magnon carries a unit of up spin, this definition implies that the reference direction

of spin currents is defined as the up spin moving from metal to QD or the inverse for the

down spin. To the lowest order of Jq, the spin current is given by (see Appendix A)

IS =
2S0

π~

∫ +∞

0

dωqJ
2
q ρR(ωq)

∫ +∞

−∞
dω
[
(1 +NR(ωq))G

<
d↓(ω + ωq)G

>
d↑(ω)

− NR(ωq)G
>
d↓(ω + ωq)G

<
d↑(ω)

]
, (3)

where ρR(ωq) denotes the DOS of magnons and NR(ωq) = [e~ωq/kBTR − 1]−1 is the Bose-

Einstein distribution. G>
dσ (G<

dσ) is the bigger (lesser) Green’s function of electrons in QD.

If the metal lead couples with MI directly, this expression is equivalent to that in Ref. [11].

In the slave-boson representation, a term iλ(Q− 1) is added to the original Hamiltonian

so that quantities can be calculated in the unconstrained ensemble. The physical quantities

are obtained by integrating over λ or otherwise thorough a projection procedure [28], which

enforces the constrain

Q =
∑
σ

f †σfσ + d†d+ b†b = 1. (4)

The expectation value of an operator O is given by [25]

〈O〉Q=1 =
ZQ=0

ZQ=1

β

2π

∫ π/β

−π/β
eiβ〈O〉iλ

=
ZQ=0

ZQ=1

〈O〉(1)iλ , (5)

where 〈O〉iλ is the average taken over the unconstrained ensemble, and 〈O〉(1)iλ is the coefficient

of the term of order e−iβλ in 〈O〉iλ. ZQ=0/1 denotes the partition function in the subspace

with constrain Q = 0/1. The normalization can be obtain from the identity 〈O〉Q=1 = 1,

which states

ZQ=1

ZQ=0

= 〈b†b〉(1)iλ + 〈d†d〉(1)iλ +
∑
σ

〈f †σfσ〉
(1)
iλ ,

=
i

2π

∫ +∞

−∞
dω[B<(ω) +D<(ω)−

∑
σ

G<
fσ(ω)]. (6)

Here, B and D denote holon and doublon Green’s functions.

By substituting the electron Green’s functions in Eq. 3 with the spinon functions G≷
fσ

and multiplying the right-hand term with the normalization factor ZQ=0/ZQ=1, we obtain
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the spin current in the slave-boson representation as shown in Eq. A11. Technically, the

holon and doublon are eliminated in the (anti)commutative relations and the constrain in

Eq. 4, as shown in Appendix A. Their absence can be understood intuitively because they

do not carry spin.

The self-energy of electrons in the QD due to the interaction with magnons must involve

an even number of spin flipping processes to conserve the spin, so its lowest-order approx-

imation is of order O(J2
q ). We may neglect this self-energy since we consider the situation

that Jq is much smaller than Vk. As a result, the NCA calculation of the Green’s functions

is similar to that of the Anderson impurity. For the case with an infinite-U, the formulations

and iteration procedures are the same as those presented in Refs. [25] and [26], while for

cases with finite correlations they are more complicated due to the presence of doublons.

Between the two equivalent iteration procedures, we use the one in Ref. [26]. Since the

lesser functions are of order O(e−iβλ) and the retarded functions are O(1), the former can

be dropped from identities that relate the retarded functions with the bigger and lesser

functions [25]. Hence, the usual identities are reduced to

Σ>(ω) = 2iImΣR(ω), (7)

G>(ω) = 2iImGR(ω), (8)

where Σ and G denote general self-energies and Green’s functions. With the above relations,

the expressions of the bigger self-energies (see section IV) are the relations between the

imaginary component of the retarded self-energies and Green’s functions. Together with the

Kramers-Kronig relation and GR(ω) = (ω − ε− ΣR + iη)−1, those equations constitute the

iteration for the bigger Green’s functions. Given the retarded Green’s functions, the lesser

Green’s functions can be obtained with an iteration made of G<(ω) = Σ<(ω)|GR(ω)|2 and

the expressions of the lesser self-energies.

III. EXTREME CASES WITH U = 0 AND U =∞

To evaluate the effect of electronic correlations in QDs, we take two limiting cases into

account, i.e., U = 0 and U = ∞. When the Coulomb correlation is absent, the Green’s

functions can be calculated exactly. Assuming the coupling between the QD and metal lead
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in Lorentzian is spin independent, the bigger and lesser self-energies are given by

Σ>
σ (ω) = −iΓ(ω)(1− fσ(ω)), (9)

Σ<
σ (ω) = iΓ(ω)fσ(ω), (10)

with

Γ(ω) = 2π
∑
k

|Vk|2δ(ω − εk) ≡ Γ0
W 2
L

(ω − εL)2 +W 2
L

. (11)

Here, f(ω) is the Fermi-Dirac distribution. We take Γ0 = 1.0 eV, εL = 0, and WL = 10 eV

throughout this work. Furthermore, we set the Fermi level EF = 2.0 eV for both spins in the

metal lead, and neglect the difference in the chemical potential caused by the cumulation of

spins [35, 36]. As a result, the retarded self-energy takes the form

ΣR
σ =

Γ(ω)

2WL

(ω − εL − iWL), (12)

and finally G≷(ω) = Σ≷(ω)|GR(ω)|2 gives the lesser and bigger Green’s functions.

For the insulating magnetic lead, we follow the Refs. [11, 32, 37, 38] and adopt an Ohmic

spectrum, J2
q ρR(ωq) = αωq

ωc
e−ωq/ωc , with α = 10 and ωc = 50 meV. Since here only J2

q ρR(ωq)

is fixed, there is a freedom to satisfy the weak coupling assumption by adopting a small

Jq. The length of the lattice spins is set as S0 = 16. The difference in the QD level

resulting from
∑

q−JqSzq (c†d↑cd↑ − c†d↓cd↓) is taken to be ε↓ − ε↑ = 0.1 eV, which is much

smaller than Γ0. When the correlation is strong, the difference has little impact on the

main results. We confirm this point by setting ε↓ = ε↑ at different values and find that

only small quantitative changes are brought about. For infinite-U Coulomb correlation, the

formulations and iteration procedure can be referred to Refs. [25, 26].

To see how the shift of the QD level affects the spin-Seebeck current, we calculated their

relations versus ε↑ for some values of TL and a fixed temperature gradient ∆T (= TR − TL)

= 50 K, and the results are illustrated in Fig. 2. Results for QD with U = 0 are also

included in the inset for comparison. At the first glance, we find that the magnitude of the

spin current in the infinite-U QD is larger, by two orders in magnitude, than that in the

non-correlated QD. Although the hight of the current peak increases TL for both U = 0 and

U = ∞, their positions show different variation trends. For the infinite-U QD, the peaks

locate well below the Fermi level (EF = 2.0 eV) in the metal lead, and moves lower with the

increase of TL. As for the non-correlated QD, the maxima all occur at ε↑ = 1.9 eV regardless
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FIG. 2. Dependence of the spin-Seebeck current IS in the infinite-U QD with the constant tem-

perature difference ∆T = 50 K on the QD level energy for various TL. In the inset, the results for

the non-correlated QD are plotted for comparison.

of the temperature variation, meaning that the related QD level for spin-down electrons ε↓

just locates at the Fermi level of the metal lead.

To give a physical picture for the understanding of the large difference in the magnitudes

of IS for these two extreme cases, we first explore the physical mechanism to generate the

relatively small spin current in the case with U = 0. The detailed process to drive a spin-up

current from MI to the metal lead is illustrated in Fig. 3. First, due to the coupling with the

MI having upward polarization, the level of the spin-down state is a little higher, indicating

that the spin-up state is more likely to be occupied regardless of the absolute positions of the

two levels. When a spin-down electron tunnels into QD, and after absorbing a magnon from

MI, the electron flips its spin direction and then tunnels back to the metal lead. Of course,

the inverse process occurs at the same time. Nevertheless, constricted by the polarization

direction of MI and the temperature biased with TR > TL, the inverse process is largely

suppressed. As a result, a unit of net up spin is added to the metal and a spin current is

produced. Obviously, the spin flipping in QD is a key step to generate the spin current.

According to the exclusion principle, however, the spin flipping in the present device may

8



FIG. 3. Schematic of how the magnetic insulator drive a spin current in the metal lead. Three

processes take place in turn: 1) A spin-down electron tunnels into the QD; 2) the spin is flipped

by absorbing a magnon; 3) the spin-up electron tunnels back to the metal.

occur only when the spin-down state is occupied while the spin-up state is empty (we call

this case singlet occupation below). As for the current QD-based device with U = 0, when

both levels in QD are higher (lower) than the Fermi level in the metal lead, the empty

(double) occupation in the QD levels will occur, which suppresses the spin flipping in QD

and decreases the spin current. For ε↑ = 1.9 eV, the spin-down state in QD just locates at

the Fermi level in the metal lead, and the singlet occupation in QD reaches its maximum

probability. As a result, the spin flipping is largely enhanced and the maxima in spin current

are achieved.

From the above discussion, we well know that when both levels in QD are below the Fermi

level in the metal lead, double occupation occurs and spin flipping is suppressed. However,

as a Coulomb interaction with U > EF − ε↑ is introduced, the situation is much different.

For the case where a spin-up electron already exists in the QD, the level of the spin-down

state shifts upwards by the Coulomb interaction, resulting in the appearance of a single

occupation of the spin-up state in QD. Nevertheless, restricted by the upward polarization

in MI, it is very difficult for the spin-up electron in QD to absorb a magnon from MI and to

flip its spin direction. However, for another case when a spin-down electron already locates

in the QD, the energy level of the spin-up state is lifted by the Coulomb interaction to ε↑+U

and it is unlikely to be occupied. As a sequence, the single occupation of the spin-down state

occurs in QD and the spin current is generated again. It should be noted that for ε↑(↓) > EF ,

there is only empty occupation occurring in QD for any value of U and the spin current is

suppressed. As U is large enough, the single occupation in QD can be achieved by setting
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the levels in QD well below the Fermi level, which is confirmed by our numerical result that

all the current peaks in the case with U =∞ locate below the Fermi level as shown in Fig. 3.

Besides, although ε↓ > ε↑ implies that the level of the spin-up state tends to be occupied,

the single occupation of the spin-down state, which contributes to the generation of spin

current, remains as highly probable since the difference ε↓ − ε↑ is small.

Keeping in mind that the singlet occupation of the spin-down state is a prerequisite for

the formation of spin current, the significant enhancement in spin current by the Coulomb

interaction can be easily understood as follows. In the case with U = 0, due to ε↓ > ε↑

and the fact that the Fermi-Dirac distribution declines sharply around the Fermi level with

the increase of energy, the singlet-occupation probability of the spin-down state is lower

than that of the spin-up state. In the case with U = ∞, as discussed above, due to the

Coulomb interaction, the empty and double occupations in QD are largely excluded, and the

singlet-occupation probability of the spin-down state can be compared with that of the spin-

down state. As a result, the spin current in the case with U = ∞ is remarkably enhanced

compared to that in the case with U = 0.

Beside the view point of the dynamical process described above, the transport properties

are also reflected in the DOS of QD electrons. Intuitively, only the electronic states close to

the Fermi level conduct the spin current, since spin flipping requires that the energy level

of QD is occupied by one electron. To make this clear, we set TL = 0 K and then Eq. 3 is

reduced to

IS = −8πS0

~

∫ +∞

0

dωqJ
2
q ρR(ωq)NR(ωq)

∫ µ

µ−ωq

dωρd↓(ω + ωq)ρd↑(ω), (13)

where ρd↑(↓) is the DOS of the electrons in QD. From the above expression, we can find

that the spin current is contributed by the interfacial exchange interaction strength Jq, the

number of magnons NR in MI, and the DOS in QD. Since the Ohmic spectrum function

decays rapidly for ωq > ωc, and the same parameter values are applied in the non-correlated

and correlated cases, the amplification of spin current is mostly ascribed to the ingredient of

the electronic states in the range of (EF − ωc, EF + ωc). It is noted that this simplification

is based on the fact that the Fermi-Dirac distribution reduces to the unit step function at

zero temperature. Owing to the sharp descending feature of the Fermi-Dirac function, this

observation should hold for reasonable non-zero temperatures.

To shed light on the temperature independence of the peak positions in the spin current
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FIG. 4. Two peaks of the DOS of the spin-up states: a broad peak around the QD level and a

narrow one at the Fermi level. The temperature of the metal lead is set at TL = 200 K.

for the non-corrected QD, we refer to a simplified Eq. (3). Since the narrow range contributes

for the most part to the integral in the calculation of spin current, and the spectral function

is smooth in the non-correlated QD, the temperature independent part of the integrand

in Eq. (3) can be approximated by a function of ε↑ that stays constant versus ω, i.e.,

CL(ε↑) ≈ ρ(ω+ωq)d↓ρ(ω)d↑. Putting CL out of the integral expression and using the equality∫
dωfL(ω + ωq) [1− fL(ω)] = NL(ωq), we can cast the temperature dependent part into a

function

F (TL, TR) =

∫ +∞

0

dωqJ
2
q ρR(ωq)ωq [NL(ωq)−NR(ωq)] , (14)

which does not depend on ε↑. With these reasonable simplifications, we find that the posi-

tions of the maxima in the spin current are determined by CL(ε↑) and are thus independent

of temperature.

As a correlated impurity coupled with metal leads, the DOS in QD is composed of

three peaks: a broadening peak around the level in QD, i.e, ω = ε, a narrow peak at the

Fermi level of the lead, which can be referred to as the Kondo peak, and the peak around

11



ω = ε+U [25]. For a QD with U =∞, the third peak lies far away from the effective energy

region and can thus be neglected. Since the DOSs for up- and down-spin are similar, we

calculate the spin-up DOS (ρ↑) and the results are shown in Fig. 4. According to Eq. (13),

the electronic states near the Fermi level provide the major channels to conduct the spin

current. Here, the developed Kondo peak brings an alternative perspective on why the spin

current is significantly amplified further by the Coulomb interaction, besides an intuitive

understanding based on the driving process plotted in Fig. 3.

The magnitude of the spin current is determined by both DOS and the occupation of

electronic states in QD near the Fermi level of the metal lead, where the Fermi-Dirac distri-

bution varies dramatically. As a result, the magnitude depends on the details of the DOS

for both spins, and no simple correspondence between the current magnitude and the height

of the Kondo peak can be drawn. Still, the variation of DOS with the level of QD provides

a clue as to how a magnitude maximum is reached. When the level in QD is deeply below

the Fermi level of the metal lead, the two peaks are separated. As the level in QD shifts

toward the Fermi level, the two peaks move closer and result in a higher DOS around the

Fermi level. Thus, a maximum of the spin current is achieved. Note that the DOS for a non-

degenerated QD in the slave-boson representation is not quantitatively reliable because the

vertex correlation is neglected [25]. Nevertheless, the calculation of spin current is not much

affected by this neglect, since there is no interaction between spinons and bosons according

to Eqs. (A10) and (A11).

IV. FINITE CORRELATIONS IN THE QD

In order to study the influence of finite correlations and mutually corroborate the results

for the above two extreme cases, we now generalize the NCA to the finite-U case. As is

known, the NCA is defined by the first-order self-energies, which are represented diagram-

matically in Fig. 5. As presented in Appendix B, their bigger and lesser components can be
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FIG. 5. Diagrammatic representation of the NCA self-energies. Σfσ is the spinon self-energy. The

solid line, wavy line, and dotted line represent propagators of the lead electrons, holon and doublon

respectively. Π and Λ are the holon and the doublon self-energies, where the dashed line denotes

the spinon propagator.

derived through the equation of motion [39], namely,

Σ≶
fσ(ω) =

∑
k

i|Vk|2

2π

[∫ +∞

−∞
dω′g≶kσ(ω − ω′)B≶(ω′)−

∫ +∞

−∞
dω′g≷kσ′(ω

′ − ω)D≶(ω′)

]
, (15)

Π≶(ω) = − i

2π

∑
k,σ

|Vk|2
∫ +∞

−∞
dω′g≷kσ(ω′ − ω)G≶

fσ(ω′), (16)

Λ≶(ω) =
i

2π

∑
k,σ 6=σ′

|Vk|2
∫ +∞

−∞
dω′g≶kσ(ω − ω′)G≶

fσ′(ω
′). (17)

When the second term in Eq. (15) is dropped, Eqs. (15) and (16) are the same as the

formulations given in Ref. [25]. Following the iteration procedure discussed in Section II,

the lesser and bigger Green’s functions can be obtained. The accuracy is checked by unity

of the spectral functions, which is satisfied to better than 0.1%.

In Fig. 6, we show how the spin-Seebeck current is tuned by changing the energy level

and the Coulomb interaction in QD. For weak Coulomb interactions, the spin current is

suppressed and shows a nice linear relationship with ε↑. As the Coulomb correlation in-

creases, the amplifying effect in the spin-Seebeck current starts to take place. When the

correlation increases further, the situation becomes similar to that of infinite-U QD. For a

fixed correlation, the spin current increases till the energy level ε↑ in QD reaches a critical

value and then decreases when the level is further lowered. For a fixed level in QD and

varying Coulomb correlation, the spin-Seebeck current also follows a similar pattern that

13



FIG. 6. Variation of the spin-Seebeck current IS vs the QD level ε↑ and correlation U . Temperature

of the metal lead TL and the temperature gradient ∆T are fixed at 200 and 50 K, respectively.

first goes up and then down. As a result, the magnitude of the spin current develops a peak

at U ≈ 3.8 eV and ε↑ ≈ 0.4 eV. Thus in the U − ε↑ plane, there exist optimized structure

parameters to achieve the maximum spin-Seebeck current in the current QD-based junction.

The emergence of a maximum in the spin-Seebeck current can be understood from the

influence of the Coulomb interaction on the DOS near the Fermi level of the metal lead. In

the present QD-based junction with a finite Coulomb correlation, the DOS is also calculated

and plotted in Fig. 7, in which three different types of DOS peaks clearly appear. For a

weak Coulomb interaction, the DOS is approximately the ordinary level broadening around

ε↑ = 0. When U increases, besides that the narrow peak at the Fermi level (EF = 2.0eV)

is steepened, the rise of the peak around ε↑ + U results in a high intensity of the DOS at

the Fermi level. With a further increase of U , intensification around ε↑+U dilutes the DOS

to other regions. As a result, the maximum height of the DOS peak is achieved when the

correlation is at a critical value. Comparing with Figs. 6 and 7, we find that although there

is no precise correspondence between the magnitude of the spin current and the height of

the DOS peak at the Fermi level, they indeed corresponds with each other in the variation

trend.
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FIG. 7. DOS of spin-up electrons for some correlations ranging from U = 0 ∼ 5 eV. The QD level

is fixed at ε↑ = 0 eV and temperature of the metal lead is TL = 200 K.

FIG. 8. Variation of the position of the spin current peak vs temperature of the metal lead.

Results for temperatures TL = 150, 60 K are presented with temperature gradient ∆T = 50 K.

The corresponding QD level is at ε↑ ≈ 0.4, 0.8 eV, respectively. In both cases the peak is located

at U ≈ 3.8 eV, the same as it is in Fig. 6.
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Finally, to see how the positions of the maximum values of the spin-Seebeck current

vary with the change of temperature in the metal lead, we present the calculated results

about the variation of spin current versus the Coulomb interaction U and the energy level

ε↑ in QD. To examine the trend at low temperatures, we purposefully study the case with

TL close to the Kondo temperature, which can be estimated from a degenerate QD, i.e.,

Tk ≈ WL[Γ0/2π(µ − ε0)]
1/2exp[−π(µ − ε0)/Γ0] with ε0 the dot level [25]. In our device

parameter settings, the Kondo temperature is about 61 K at ε0 = 0 and increases when the

level in the QD shifts up. According to Fig. 6 and 8, we find that the lower temperature

corresponds to a higher level in the QD (i.e., bigger ε↑), which is consistent with the variation

trends shown in Fig. 2, while the location of U is insensitive to the temperature variation

and is located at U = 3.8 eV in all cases. It is believed that there is an optimized value of

U that can maximize the tunability of the spin-Seebeck current.

V. SUMMARY

Through structuring a spin caloritronic device based on a correlated QD coupled to a

metal lead and a MI, we have studied the spin-Seebeck current through the QD junction

in different situations, including non-correlated QD, infinite Coulomb-correlation QD, and

finite Coulomb-correlation QD. The results show that the spin-Seebeck current in the infinite

Coulomb interacted QD is remarkably larger than in the non-correlated case. Moreover, as

the energy level of the QD locates in a range below the Fermi level of the metal lead, the

spin-Seebeck current can be tuned in a wide range, and this process can be realized easily by

adjusting the gate voltage in experiments. Thus the proposed spin-Seebeck device can work

as a thermovoltaic transistor. Besides, we find that there are optimal correlation strengths

and energy levels of the QD which can maximize the spin-Seebeck current. These results

put forward a direction for the design of a tunable spin caloritronic device without changing

the temperature gradient.
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Appendix A: Derivation of the spin-Seebeck current

In the following derivations, we set ~ = 1 and make it explicit in the last when it

is necessary. For notational simplicity, the notation of contour-time-order is not denoted

explicitly. The averages should be understood as contour-time-ordered.

The spin current is defined as

IS =
d

dt
〈
∑
q

a†qaq〉

= i〈[H,
∑
q

a†qaq]〉

= i
∑
q

√
2S0Jq

(
〈a†qc

†
d↑cd↓〉 − 〈aqc

†
d↓cd↑〉

)
. (A1)

Since the two terms are the complex conjugate of each other, only one is needed and we

evaluate the second term. The average of an operator O(t) can be taken on either the forward

〈O(t+)〉 or the backward 〈O(t−)〉 time branch, or half-and-half (〈O(t+)〉 + 〈O(t−)〉)/2. We

adopt the last one, so to the first order in Jq,

〈aq(t)c†d↓(t)cd↑(t)〉

=i
√

2S0Jq

∫
kc

dt′
1

2
(CT (t, t′) + C T̃ (t, t′) + C>(t, t′) + C<(t, t′))

=i
√

2S0Jq

∫
kc

dt′(C>(t, t′) + C<(t, t′))

=i
√

2S0Jq

∫ +∞

−∞
dt′(C>(t, t′)− C<(t, t′)). (A2)

where

C(t, t′) = 〈aq(t)c†d↓(t)cd↑(t)a
†
q(t
′)c†d↑(t

′)cd↓(t
′)〉, (A3)

and kc denotes the Keldysh contour. The minus in the last step arises due to reversing of

the integral range, since the default range of t′ is (+∞,−∞) when it is on the backward

branch. In steady states, the Wick theorem gives

〈aq(t)c†d↓(t)cd↑(t)〉 = −
√

2S0Jq

∫ +∞

−∞
dt′
[
A>q (t, t′)G<

d↓(t
′, t)G>

d↑(t, t
′)

−A<q (t, t′)G>
d↓(t

′, t)G<
d↑(t, t

′)
]
. (A4)
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Here, Aq is the magnon Green’s function, whose bigger and lesser components are given by

A>q (t, t′) = −i(1 +NR(ωq))e
−iωq(t−t′), (A5)

A<q (t, t′) = −iNR(ωq)e
−iωq(t−t′), (A6)

where NR(ωq) denotes the Bose-Einstein distribution for the magnon. Fourier transforms of

the electron Green’s functions lead to

〈aq(t)c†d↓(t)cd↑(t)〉

=
i
√

2S0Jq
(2π)2

∫ +∞

−∞
dt′dωdω′(1 +NR(ωq))e

−iωq(t−t′)G<
d↓(ω)e−iω(t

′−t)G>
d↑(ω

′)e−iω
′(t−t′)

− i
√

2S0Jq
(2π)2

∫ +∞

−∞
dt′dωdω′NR(ωq)e

−iωq(t−t′)G>
d↓(ω)e−iω(t

′−t)G<
d↑(ω

′)e−iω
′(t−t′), (A7)

In the steady state, using the Markov condition limt→+∞ e
iωt = 1, we get

〈aqc†d↓cd↑〉 =
i
√

2S0Jq
2π

δ(ωq − ω + ω′)

∫∫
dωdω′

[
(1 +NR(ωq))G

<
d↓(ω)G>

d↑(ω
′)

−NR(ωq)G
>
d↓(ω)G<

d↑(ω
′)
]
. (A8)

Without referring to the Markov condition, one can obtain the same result by Fourier trans-

forming 〈aqc†d↓cd↑〉(t) and performing the integral of 〈aqc†d↓cd↑〉(ω) over the frequencies. Rep-

resenting the sum
∑

q as an integral
∫ +∞
0

ρR(ωq)dωq, we arrive at the expression

IS =
2S0

π~

∫ +∞

0

dωqJ
2
q ρR(ωq)

∫ +∞

−∞
dω
[
(1 +NR(ωq))G

<
d↓(ω + ωq)G

>
d↑(ω)

− NR(ωq)G
>
d↓(ω + ωq)G

<
d↑(ω)

]
. (A9)

In the slave boson representation, substituting c†dσ = f †σb + εσσ′fσ′d† into Eq. (A3), we

have

C(t, t′) =〈aq(t)a†q(t′)[f
†
↓(t)f↑(t)b(t)b

†(t)− f↑(t)f †↓(t)d
†(t)d(t)]

[f †↑(t
′)f↓(t

′)b(t′)b†(t′)− f↓(t′)f †↑(t
′)d†(t′)d(t′)]〉

=〈aq(t)a†q(t′)f
†
↓(t)f↑(t)[1 + b†(t)b(t) + d†(t)d(t)]

f †↑(t
′)f↓(t

′)[1 + b†(t′)b(t′) + d†(t′)d(t′)]〉

=〈aq(t)a†q(t′)f
†
↓(t)f↑(t)[2− f

†
↑(t)f↑(t)− f

†
↓(t)f↓(t)]

f †↑(t
′)f↓(t

′)[2− f †↑(t
′)f↑(t

′)− f †↓(t
′)f↓(t

′)]〉

=〈aq(t)a†q(t′)f
†
↓(t)f↑(t)f

†
↑(t
′)f↓(t

′)〉. (A10)
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Accordingly, the spin current is given by

IS =
ZQ=0

ZQ=1

2S0

π~

∫ +∞

0

dωqJ
2
q ρR(ωq)

∫ +∞

−∞
dω
[
(1 +NR(ωq))G

<
f↓(ω + ωq)G

>
f↑(ω)

− NR(ωq)G
>
f↓(ω + ωq)G

<
f↑(ω)

]
. (A11)

Appendix B: Derivation of self-energies

From the equation of motion of the Green’s functions, one can read off the self-energies.

For the spinon Green’s function Gfσ(t, t′) = −i〈fσ(t)f †σ(t′)〉,

i
d

dt
Gfσ(t, t′) = θ(t, t′)+εσGfσ(t, t′)−

∑
k

iV ∗k

[
〈ckσ(t)b(t)f †σ(t′)〉 − 〈c†kσ′(t)d(t)f †σ(t′)〉

]
. (B1)

To the order |Vk|2,

− iV ∗k 〈ckσ(t)b(t)f †σ(t′)〉

=− |Vk|2
∫
kc

dt′′〈c†kσ(t′′)fσ(t′′)b†(t′′)ckσ(t)b(t)f †σ(t′)〉

=i|Vk|2
∫
kc

dt′′gkσ(t, t′′)B(t, t′′)Gfσ(t′′, t′). (B2)

Here, gkσ is the Green’s function of the lead electrons and B the holon Green’s function.

Similarly,

iVk〈c†kσ′(t)d(t)f †σ(t′)〉 = −i|Vk|2
∫
kc

dt′′gkσ′(t′′, t)D(t, t′′)Gfσ(t′′, t′), (B3)

where D is the doublon Green’s function. Now we can read off the lesser and bigger self-

energies for the spinon

Σ≶
fσ(t, t′′) =

∑
k

i|Vk|2
[
g≶kσ(t, t′′)B≶(t, t′′) + g≷kσ′(t

′′, t)D≶(t, t′′)
]
. (B4)

Their Fourier transforms read

Σ≶
fσ(ω) =

∑
k

i|Vk|2

2π

[∫ +∞

−∞
dω′g≶kσ(ω − ω′)B≶(ω′)−

∫ +∞

−∞
dω′g≷kσ′(ω

′ − ω)D≶(ω′)

]
. (B5)

In the same manner, we can obtain the doublon and the holon self-energies.
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