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ABSTRACT

Methods of stress analysis for taper hub flanges are investi-
gated, with particular emphasis on flanges for large diameter pipelines.
Finite element analyses using (1) an axisymmetric solid idealization and
(2) a thin shell idealization are carried out, and compared with each
other and with experimental results. It is concluded that the thin shell
idealization is most suitable for practical analysis, especially when
the inability of the gasket to resist tension is taken into account.

A computer program for practical flange analysis using the

thin shell idealization is described.



1. INTRODUCTION

1.1 HISTORICAL REVIEW

Interest in the development of a rational procedure for the
design of flanges dates back more than fifty years. One of‘the earliest
papers to receive wide attention was that by Waters and Taylor in 1927
[1]. This paper presented an extensive series of formulas based on a
combination of flat plate and elastically supported beam theories. It
appears to be the first time that stresses in the three principal
directions (hoop, radial and axial) were considered, with the aim of
determining the location and magnitude of the maximum stress. The paper
also included formulas for computation of the deflection of the flange
ring. The computed deflections were compared with experimental results,
which were also reported. Because of the proportions of the flanges
used at that time, the hoop stress in the ring on the inner surface was
critical.

A subsequent important contribution was an analysis procedure
for flanges with both rings and tapered hubs, presented by Timoshenko.
Most of the formulas which he developed appear in his text book on
strength of materials [2].

In 1931, Holmberg and Axelson [3] presented a paper containing
a series of formulas for the computation of stresses in loose ring
flanges and in flanges made integral with the wall of a pressure vessel
or pipe, using flat plate theory. In 1937, Jaspe},Gregersen and
Zoellner [4] presented the results of an extensive series of tests on
plaster-of-paris models. Also in 1937, a series of formulas was

presented by Waters, Wesstrom, Rossheim and Williams [5]. The formulas



applied to taper hub flanges under bolt load and internal pressure. The
structure was subdivided into three components, namely the ring, hub and
shell., Each component was studied as an independent unit with undetermined
boundary conditions at the junction surfaces. The Poisson - Kirchoff
theory for plates was applied to the ring, the hub was treated as a beam
of varying section on an elastic foundation, and shell theory was applied
to the pipe extension. The boundary conditions were determined by
satisfying continuity conditions at the component boundaries. Probably
for the first time, the axial symmetry of the flange was taken into
account, which considerably simplified the analysis. Displacements,
bending moments and stresses in the hub and shell were computed for bolt
load and internal pressure, separately and in combination. The paper did
not deal rationally with the gasket, or with the contact pressures
required to maintain pressure tightness.

A paper dealing with the loading requirements for gaskets in
bolted joints was published in 1949 by Roberts [6]. He derived
equations to predict the gasket and bolt stresses resulting frpm
application of internal fluid pressure, and presented typical elastic
recovery curves for an asbestos gasket. The effect of gasket creep in
a bolted joint and the problem of distribution of bolt load were also
considered, and an approximate theory derived.

In 1943 recommendations were made by a joint API-ASME committee
[7], using an approach similar to that of Waters et al [5]. The results
of analyses indicated that in a flange with a stra}ght hub the following

stresses tend to be critical:
(a) radial stress at the inside surface of the ring;

(b) hoop stress at the inside surface of the ring;



(c) axial stress in the hub at the junction with the ring.

In 1951 a simplified design procedure using the ASME flange
stress formulas was presented by Jaep [8]. The paper contained graphs
to permit a rapid solution of stress equations. However the important
assumption was made that the bolt Toad and lever arm are predetermined.

A further step towards the development of a rational
procedure was made by Wesstrom and Bergh [9] 1in 1951. This appears to
be the first time that the importance of the bolt load variation and
gasket properties were recognized,and an attempt was made to take them
into account. It was shown that the bolt stress could either in;rease
or decrease with increasing pressure, depending on the elastic
characteristics of the joint. To permit comparison of calculated and
experimental results, a bolted flange joint was investigated. The
authors obtained fairly good agreement between the calculated and
experimental results. Although the authors were unable to propose a
rational means of choosing a suitable value for the elastic modulus for
the gasket, they recognized the fact that the stress-strain relationships
for gasket materials are nonlinear.

Some interesting conclusions on the behavior of compressed
asbestos fiber gaskets in bolted flanged joints were reached in 1957 by
Donald and Salomon [10], who carried out experiments on screwed-on and
welded-on flanges fitted to 2-1/2 inch bore pipes. Rubber-bonded
asbestos gaskets of various dimensions were testedf and photoelastic
studies were carried out to determine the distribution of axial stress
in the gasket. It was shown that for a soft joining material, such as
compressed asbestos fiber, the Young's modulus and compressibility

depend to a large extent on the stress in the gasket material, and to a



lesser extent on its thickness. The location of the gasket reaction
depended on the relative stiffness of the flange and the gasket material.
A change in the elastic properties of the gasket material, brought about
by an increase in the load on the gasket, was found to affect the lever
arm between the bolt load and gasket reaction.

Murray and Stuart in 1962 [11] made use of a computer to carry
out analyses of large taper hub flanges using a similar approach to that
of w5ters et al [5]. Two assumptions were that the three components of
the flange (cy1indertJf1ange ring and taper hub) have a common diameter
equal to the mean diameter of the vessel, and that the bolt holes do not
affect the stiffness of the flange ring. It was also assumed that the
hub was part of a tapered cylinder of mean radius equal to that of the
cylindrical part. Stresses, deflections and rotation of the flange were
computed. A rubber O-ring gasket was assumed. The authors also carried
out a test on a 15 ft diameter taper hub flange and vessel. The results
obtained from the test included (a) longitudinal and hoop stresses on
the outer surface of the vessel near the flange (b) the relationship
between bolt stress and internal pressure (c) the magnitude o% the
interface load, and (d) the relationship between flange rotation and
pressure. Comparisons indicated that the theoretical analysis was
fairly accurate.

Hamada, Ukaji and Havashi [12] also described a computer
program for the analysis of stress and deformation in bolted flanges.

As is common in other methods, the flange was idealized as three
components, namely shell, hub and ring. The shell could be ejther
cylindrical or spherical, and the hub was treated as a cylindrical shell

of variable thickness. The ring was considered using circular ring



theory, and beam theory was applied to the bolts. The analysis was made
on the assumption that the bolt loads were distributed uniformly in the
circumferential direction. The program considered loss of rigidity due
to the presence of bolt holes in the flange ring. Flange rotation, bolt
stresses and bending stresses were computed. The bolt tightening forces
and internal pressure loadings were considered. The gasket assumed in
the‘ana1ysis was of the self energizing type, such as an O-ring. The
computer analysis compared fairly well with experimental results obtained
by the authors, and with those given by Murray and Stuart [11].

Campen, Deen and Latzko [13] reported analytical and
experimental work on the deformation of large diameter pressure Qesse]
flanges. Attention was focussed on the question of whether the tapered
hub should be treated as a ring with undeformable cross-section or as a
thin cylindrical shell of variable thickness. It was concluded that
both methods are in sufficiently close agreement with the measurements
for design purposes. This paper also provided information on the plastic
behavior of the metal-to-metal contact faces and the resu]ting\shift in
the point of application of the reaction.

One of the most widely used methods of flange design is the
Taylor Forge method [14] pioneered by the Taylor Forge and Pipe Works,
Chicago. This method is incorporated in the A.S.M.E. Code. The method
contains suggested values for the initial seating load and the load
required to seal at pressure for a comprehensive range of gasket types.
No account is taken of change in the bolt load on %pp]ication of
pressure, and in fact no direct assessment of the load-deformation
characteristics of the joint is made. The formulas and charts used for

calculating stresses are based on the work of Waters et al [6]. As is



commonly done, the structure is idealized as three components, namely
shell, hub and ring. The method is generally found to give lower stresses
than the method proposed by Murray and Stuart [11].

A review of methods in current use has been presented by
Rose [15], one of which is the European Din 2505 method [16]. This
method has been in use in the German chemical industry for several years.
It has been tested on flanges up to 2m diameter, and satisfactory service
witﬁ large diameters is claimed. In addition to values for the initial
seating force and the sealing force at pressure when the contained
fluid is a liquid or a gas, the code gjves maximum permissible loads
under assembly conditions and at elevated temperatures for a range of
gasket materials. This information is used to check whether or not the
gasket is crushed in a vessel which remains hot after pressure is released.
This code also gives values for the modulus of elasticity of non-metallic
gaskets at 20°C and 300°C.

The flange is designed on the basis of the plastic collapse
moment for the flange and shell assembly. Formulas are developed for
calculating the collapse moment for a plate type flange. It ié
assumed that the ring and hub are both fully plastic, the former under
hoop stresses and the latter under longitudinal bending stresses. The
plastic collapse moment is determined as the sum of the resistances of
these two components. Din 2505 uses a method of flange analysis which
appears to be relatively simple compared with that of the Taylor Forge
method, but which employs a sophisticated approach to the question of
leak-tightness. However, this method is too different from accepted

U.S. practice to be considered in this report.



1.2 METHODS USED IN PRESENT STUDY

Two methods of analysis have been used in the present study,
both of which assume elastic behavior and axisymmetric geometry.

In the first method (thin shell analysis) the common assumption
is made that the system can be idealized as a combination of (1) a ring
of rigid cross section, representing the flange, (2) a thin conical
shell of varying thickness, representing the hub, and (3) a thin
cyTindrica] shell of constant thickness, representing a length of pipe
welded to the hub. Although this same idealization has been used by
several previous workers, the study reported here differs in

the following ways from earlier work.

(a) The conical and cylindrical shells are analyzed by the finite

element method, rather than by classical closed form procedures.

(b) The nonlinear characteristics of the gasket material are
considered. In particular, the inability of the
gasket to develop tension stresses is taken into

account.

(c) Changes in bolt force during loading are determined, and
predictions can be made of the pressure at which leakage past

the gasket will occur.

The method determines hoop and longitudinal stresses on the
inner and outer surfaces of the hub and pipe extension, hoop stresses
in the flange ring, bolt forces, gasket stresses, and flange rotations.
Loadings due to bolt tensioning, internal pressure and axial load can

be considered, but bending moment in the pipe is not included.
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In the second method (axisymmetric solid analysis) the system
is idealized as an axisymmetric solid, so that the cross section of the
flange ring need not be assumed to be rigid. The finite element method
is used to analyze the solid. Loadings due to bending moment in the
pipe, as well as bolt tensioning, internal pressure and axial force, can
be considered. However, the analysis is entirely linear, and the in-
ability of the gasket springs to resist tension is not taken into
actount. The procedure is also more complex than that of the thin shell
analysis, and hence is not recommended for use in practical design. The
axisymmetric solid analysis has been used in this study to provide a
check on the thin shell analysis, and to investigate the effects of
bending moment on the flange beﬁavior. ‘

In Chapter 2 these two methods are applied in a series of
studies to compare theoretical and experimental results, with particular
emphasis on 48 inch taper hub flanges. It is concluded in Chapter 3
that the thin shell idealization is suitable for practical analysis of
flanges. The features and use of a computer program based on this

3
idealization are described in Appendix A.



2. THEORETICAL AND EXPERIMENTAL COMPARISONS

2.1 INTRODUCTION

Several analyses have been carried out in the current study to
compare theoretical results obtained with the two alternative methods
of idealization, and to compare these theoretical results with experi-
mental values obtained from tests on flange joints. The investigations
have been as follows:

(1) A comparison of an axisymmetric solid analysis with
experimental results reported by Hamada et al [12]. This comparison
serves to verify the accuracy of the axisymmetric solid idea]izétion.

(2) A comparison of analyses with axisymmetric solid and thin
shell idealizations for a 48 inch diameter pipe flange, assuming linear
behavior for the gasket material. This comparison serves to check that
the two methods of idealization give similar results, and hence to
Jjustify the use of the thin shell idealization. Comparisons with ex-
perimental results obtained from full scale flange tests carried out at
the University of California, Berkeley are also made. Howevef,
the gasket properties assumed for these analyses did not take into
account separation of the gasket in tension, and hence the
theoretical and experimental results can be expected to disagree
significantly.

(3) A comparison of the Berkeley test results with analyses
using a thin shell idealization and assuming a gaéket material with non-
linear properties. This comparison serves to justify the use of the
thin shell idealization for practical analysis of flanges.

(4) A comparison of strains computed for moment loading with

strains computed for an "equivalent" axial force. The analysis was
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carried out using the axisymmetric solid idealization and assuming a
linear gasket material. The comparison serves to demonstrate that it
js reasonable to make use of an equivaient axial force to approximate
the effects of bending moment on a flange joint.

(5) A study of the behavior of a 48 inch flange joint for
increasing values of internal pressure up to the stage where leakage
past the gasket is predicted. This study was made using the thin shell
idealization and nonlinear gasket properties. The study serves to
i{1lustrate how gasket stresses and bolt forces vary nonlinearly as the
pressure load is increased, and demonstrates the capabilities of the

computer program developed for the thin shell idealization,

2.2 CHECK OF AXISYMMETRIC SOLID IDEALIZATION

For linear elastic behavior of both the flange and the gasket,
the axisymmetric solid idealization should provide the most accurate
method of analysis. Tests of a flange with a "rigid" gasket have been
reported by Hamada et al [12]. This flange was idealized using a fine
finite element mesh of axisymmetric solid elements and analyzed with the
computer program SAP [19]. Comparisons of the computed and measured
strains on the inner and outer surfaces of the hub and pipe are shown in
Fig. 1. The agreement is seen to be sufficiently close to confirm the

accuracy of the axisymmetric solid idealization.

2.3 COMPARISON OF AXISYMMETRIC SOLID AND THIN SHELL IDEALIZATIONS

A 48 inch diameter joint of the type tested at Berkeley was
modelled using both axisymmetric solid and thin shell idealizations.
The finite element subdivisions in both cases were sufficiently fine
to ensure that discretization errors were small. The axisymmetric

solid model was analyzed using the program SAP, and the thin shell model
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using the program AXIFLAN (see Appendix A). The geometry assumed for
the flange can be determined from the AXIFLAN input data listed in
Appendix B.

For the actual flange, the stiffness of the asbestos gasket
was estimated to be 1650 ksi/inch in compression. However, for this
study it was necessary to assume that the gasket can resist both tension
and compression, whereas a real gasket can obviously not resist tension.
From preliminary analyses, it was found that a reasonable comparison bet-
ween computed and measured strains could be obtained by assuming a linear
elastic gasket (i.e. one able to resist tension as well as compression)
with a reduced stiffness of 825 ksi/inch. Hence, such a gasket was |
assumed for the study. It should be noted that the AXIFLAN program as
described in Appendix A can not accept gaskets which resist tension.

It was necessary, therefore, to make a minor modification to the program
to permit this study to be carried out.

For a bolt pretension of 139 k per bolt, with no other loading,
the computed strains are compared in Figs. 2 and 3 for the inner and
outer surfaces of the hub and pipe. Measured strains obtained in the
Berkeley tests are also shown. In these tests, strain gages were placed
at several locations around the flange circumference, so that several
strain readings were obtained at each tongitudinal section. The plotted
points show the maximum ranges in experimental results obtained consider-
ing the gages at all circumferential locations.

Except for the following areas of disagreement, the computed
strains agree well with each other and with the measured strains.

(1) The measured strains clearly show a longitudinal strain
concentration effect at the intersection of the hub with the flange

ring. The axisymmetric solid idealization accounts for this strain



12

concentration, but the effect can not be considered in the thin shell

idealization. This is a weakness of the thin shell idealization which
must be recognized if this strain concentration effect is believed to

be important.

(2) The computed hoop strains on the inner surface are sub-
stantially larger than the measured strains. This disagreement was found
to be present for most other analyses and loading conditions, and the
reason for it is not clear. Because the test specimen was filled with
water which was frequently under high pressure, the possibility of
unreliable gage readings should not be discounted. The discrepancies
are such that the computed strains are consistently larger than the
measured strains, so that the computed stress values should generally
be conservative.

For a bolt pretension of 139 k plus an internal pressure of
1200 psi, similar comparisons of computed and measured strains are
shown in Figs. 4 and 5. The results from the two analyses are again in
close agreement, except that the strain concentration effect at the
intersection of the hub and flange is still present. Again, %he com-
puted hoop strains on the inner surface substantially exceed the measured
strains, and in addition the computed longitudinal strains on the inner
surface are well below the measured values. However, the results of
the next study show that the second discrepancy results from the assump-
tion that the gasket can resist tension. The ranges between the maximum
and minimum measured strains at each 1ongitud%naf section are seen to be
large for both the longitudinal and hoop strains on the inner surface,
although the ranges are still small on the outer surface. This diff-
erence in range between inner and outer surface gages persists for

essentially all load cases, and serves to throw doubt on the reliability
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of the readings of the inner surface gages.

For Figs. 4 and 5 the test specimen was unrestrained longi-
tudinally, so that the test specimen was subjected to a large longitu-
dinal tension force due to fluid pressure. Figs. 6 and 7 show results
for the case with a bolt pretension of 139 k, an internal pressure of
1200 psi and a longitudinal compression load of 2060 k. This loading
simulates a pipeline which is fully restrained longitudinally. The
axial strains are seen to be considerably reduced, and the agreement
among the different results is generally close.

These comparisons serve to demonstrate that with the exception
of strain concentration effects of the hub-flange intersection the thin
shell idealization produces results in close agreement with the axi-
symmetric solid idealization, and hence that the thin shell idealization
should be suitable for practical analyses. Any disagreement between the
computed and measured strains is not of great importance for this part

of the study, because the gasket was not accurately modelled.

2.4 THIN SHELL IDEALIZATION WITH NONLINEAR GASKET

The thin shell computer program AXIFLAN permits a nonlinear
idealization of the gasket, as described in detail in the program user's
guide in Appendix A. Essentially, the gasket is assumed to deform elas-
tically in compression but to be incapable of taking tension. In addition,
fluid can be assumed to seep past the gasket if its tensile deformation
exceeds a specified "precompression”, so that the axial force tending to
separate the flanges may progressively increase. The compressive stiff-
ness of the asbestos gasket used in the tests was estimated to be 1650
ksi/inch, with a precompression of 0.015 inches.

Comparisons of the computed and measured strains are shown
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for a bolt pretension of 139 k in Figs. 8 and 9, for bolt pretension
plus 1200 psi internal pressure in Figs. 10 and 11, and for bolt pre-
tension plus pressure plus an axial force of 2060 k in Figs. 12 and 13.
The areas of disagreement are as follows:

(1) The strain concentration effect at the hub-flange inter-
section is not considered in the analysis.

(2) The computed hoop strains generally exceed the measured
strains, particularly on the inner surface.

The agreement between the computed and measured longitudinal
strains can be seen to be closer in Fig. 10 than was the case in Fig. 4,
indicating that the nonlinear gasket assumption is superior to the
linear assumption. However, as noted previously there is a large scatter
in the measured strains.

It can be concluded from this study that the AXIFLAN program
provides a reasonably accurate means of determining stresses and strains
in flanges of this type. It should be noted that most other methods of
flange stress analysis are also based on thin shell idealizations. Ana-
lyses obtained using AXIFLAN can be expected to be at least as accurate

as those obtained using these other methods.

2.5 EQUIVALENT AXIAL FORCE

Flanged joints are frequently subjected to bending moment as
well as internal pressure and axial force. Because of the difficulty
of analyzing the behavior of a flanged joint subjected to bending, it
is attractive from a design point of view to replace the bending moment
by an equivalent axial force. For a thin walled pipe with a mean radius
R and any wall thickness, it is easy to show that an axial force, F, will

produce the same longitudinal stress as a bending moment, M, if
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_ 2M
F= =

(2.1)

The value of R might be taken as the bolt circle radius or, more conser-
vatively, as the pipe radius. For the 48 inch diameter flange the
difference between these two radii is approximately 20 percent.

Using an axisymmetric solid idealization and the SAP program
it is possible to analyze the flange under a pure bending moment loading.
The loading in this case is not axisymmetric, but is the first harmonic
of the Fourier series expansion of an arbitrary loading. A modification
was made to the axisymmetric solid element to permit a first harmonic
loading to be considered, and an analysis was carried out for a’moment
of 10550 k.in. The finite element mesh and gasket idealization were the
same as those used previously for the axisymmetric solid idealization.

In addition, a SAP analysis for an axial force of (2)(10550)/(24) = 879 k
was carried out, using the same mesh. The two analyses are compared

in Figs. 14 and 15 with each other and with strains measured in the
Berkeley tests for a moment loading of 10550 k.in. The strains shown

for the bending moment analysis were computed for the fibers most remote
from the bending axis, and the measured strains shown are those for

gages on or very close to the most remote fibers.

The agreement between the two sets of computed strains is seen
to be surprisingly close, indicating that the replacement of a bending
moment by an equivalent axial force is permissib{e. The computed and
measured strains also agree closely, except for some tongitudinal strains
on the inner surface. As was shown previously, this disagreement probably
results from the assumed linear gasket idealization. This comparison

indicates that R in Eq. 2.1 should be the pipe radius.
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2.6 ILLUSTRATIVE EXAMPLE

The AXIFLAN input data for an illustrative example is listed
in Appendix B. This example is a 48 inch flange of the type studied in
the Berkeley tests. The Toading consists of a bolt pretension of 139 k
per bolt, followed by pressurization, in steps, until leakage past the
gasket is predicted and the computer run automatically terminates. The
line was unrestrained longitudinally.

The program predicted leakage past the gasket at a pressure
betwegn 1800 and 2000 psi. No experimental data on leakage is available
for comparison. The computed bolt tensions and gasket stresses for
progressively increasing pressures are shown in Figs. 16 and 17: As is
well known, the bolt tension initially decreases, as the flange ring
rotates, but later increases, as fluid seeps past the gasket and increases
the axial force. The von Mises effective stresses computed by the pro-
gram are shown for pressures of 0,800 and 1200 psi in Fig. 18. These
stresses approach or exceed yield for pressures larger than 1200 psi.
Hence, the computed behavior beyond this pressure may be in error because

elastic material behavior is assumed in the analysis.
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3. CONCLUSIONS

The comparisons presented in Chapter 2 indicate that the strains

computed using the AXIFLAN program are in satisfactory agreement with
experimental strains, with the major exception that strain concentration
effects at the hub-flange intersection can not be predicted. The struc-
tural idealization on which AXIFLAN is based is similar to that commonly
used in flange design, but is more sophisticated than other analyses
which have been reported. In particular, nonlinear behavior of the
gasket can be considered directly with AXIFLAN. The program can be used
for loads due to bolt tightening, internal pressure, and axial %orce.
The output from the program includes von Mises effective stresses in the
hub and pipe. The program includes data generation procedures which
make data preparation very simple. It is believed that the program can
have application in the practical design of taper hub flanges.

A comparison of stresses prodﬁced by a bending moment, M, and
an equivalent axial force, F = 2M/R, where R = pipe radius, indicates
that the moment can be replaced by the equivalent axial force for design

purposes.
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APPENDIX A: PROGRAM USER'S GUIDE
UNIVERSITY OF CALIFORNIA Division of Structural Engineering

Berkeley and Structural Mechanics

Computer Programming Series

IDENTIFICATION

AXTFLAN: Finite Element Thin Shell Analysis of Pipe Flanges

Programmed: G. H. Powell, V. S. Prakash, R, Litton, University
of California, Berkeley.

PURPOSE

The program analyzes the behavior of taper hub flanges, with cross
sections as shown in Fig. A.1, under the action of bolt tension, internal
pressure and axial force. Bolt force, gasket stresses, and stresses on
the inner and outer surfaces of the hub and pipe are determined. Leakage
past the gasket is taken into account.

IDEALIZATION

The system is idealized as an axisymmetric structure, as indicated
in Fig. A.2. The flange ring is treated as a compact ring beam, the hub
and pipe are represented by axisymmetric thin shell finite elements, and
the gasket and bolt by discrete ring springs. The effect of the bolt
holes is considered by reducing the ring beam modulus, within the
projected width of the holes, in proportion to the volume of material
removed by the holes.

The number of elements into which the hub and pipe are divided is
chosen by the user. Experience and experimentation will be needed to
select the appropriate numbers. The same is true for the number of
discrete springs used to idealize the gasket.

The pipe extension should be sufficiently long that the assumed
boundary condition (corresponding to a length of pipe remote from any
end disturbances) is reasonable. A length no less than 5/Rt, where
R = pipe radius and t = pipe wall thickness, is recommended.

The gasket springs are assigned the force-deflection relationship
shown in Fig. A.3. This approximates the behavior of a gasket material
which has been subjected to loading and unloading cycles. Additional
pressure loading as shown in Fig. A.4 is applied as the gasket separates.

Loadings are specified in terms of an initial bolt tension,
followed by any number of pressure and axial force loadings.
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Units must be consistent throughout (e.g. kips, inches).
TITLE CARD (12A6) - One card

A.

B.

C.

D.

Columns

1-72:

Problem title, to be printed with output.

FLANGE DIMENSIONS (5E10.0) - One card

Columns

1

11
21
31
41

10:

20:
30:
40Q:
50:

Qutside diameter of flange (DOFL, see
Fig. A.1)

Bolt circle diameter (BCDIA)
Outside diameter of projection (DOPR)
Flange thickness (TFL)

Projection thickness (TPR)

HUB AND PIPE DIMENSIONS (5E10.0, 215) - One card.

Columns

1
11
21
31
41
51

56

Limitation:

10:
20:
30:
40:
50:
55

60:

Outside diameter of pipe (DOPIP)
Pipe wall thickness (TPIPE)

Hub thickness at flange ring (THUB)
Hub length (HUBL)

Length of pipe extension (PIPEL)

Number of finite elements into which hub is
to be divided (NEHUB)

Number of finite elements into which pipe
extension is to be divided (NEPIP).

The sum of NEHUB and NEPIP must not exceed 40.

BOLT DIMENSIONS (3E10.0, I5) - One card.

Columns

1
11

21
31

10:
20:

30:
35:

Diameter of bolt (DBOLT). See Note below.

Effective half length of bolt (BOLTL). See
Note below. .

Diameter of bolt hole (DHOLE)

Total number of bolts in bolt circle (NBOLT)



Note:
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The bolts are idealized as a spring at the bolt circle, as
indicated in Fig. A.2. The spring stiffness and the resulting
bolt forces are calculated assuming each bolt to have a
stiffness given by (EBOLT) (w) (DBOLT)Z/(4) (BOLTL). The

bolt diameter and length should therefore be effective values,
accounting for the effect of threading and for the fact that
the bolt extension does not terminate suddenly at the face

of the nut, These effects can also be taken into account

by specifying an effective elastic modulus for the bolt
material in Section E.

E. MATERIAL PROPERTIES (5E10.0) - One card

Columns 1

10: Young's modulus for flange ring and hub
material (EFLANG).

11 - 20: Poisson's ratio for flange ring and hub
material (PRFL)

21 - 30: Young's modulus for pipe material (EPIPE)
31 - 40: Poisson's ratio for pipe material (PRPIP)

41 - 50: Young's modulus (or effective modulus) for
bolt material (EBOLT)

F. GASKET PROPERTIES (4E10.0, I5) - One card

Columns 1 - 10: Inside diameter of gasket (DIGASK)

11 - 20: Outside diameter of gasket (DOGASK). This
must not be identically equal to DIGASK. For
O0-ring type gaskets, assume a reasonable
gasket width.

21 - 30: Gasket effective stiffness, in terms of stress
per unit compression for a gasket of the
type and thickness being used, after pre-
compression and assuming elastic behavior.
See discussion in preamble to this Guide and
Note below.

31 - 40: Gasket precompression, as defined in the
preamble to this guide, which is the amount
of tensile deformation in the gasket before
fluid seepage begins at the gasket face.
See Note below.

41 - 45: Number of discrete springs to be used to
represent gasket (minimum 2, maximum 15).
A recommended number is 10.



Note: The stiffness and precompression are for the full gasket
thickness. In the analysis, only one half of the thickness
is used, because of symmetry. To account for this, the
specified stiffness and precompression are multiplied by
2.0 and 0.5, respectively, within the computer program.

G. LOAD CARDS - One set of cards, as follows, for each load
sequence, for as many load sequences as desired.

First Card (E10.0, 215, 8A6) - One card.
Columns 1 - 10: Tightening force in each bolt.

11 - 15: Number of different pressure and axial force
loadings for which analyses are required for
this bolt tightening force (NUMLDS).

16 - 20: Leakage termination code. If blank, the
loadings in the following sequence will be
considered only until complete separation of
the gasket, and hence fluid leakage, is
predicted. The remaining lToadings will be
ignored, and the program will proceed to the
next load sequence. If not blank, all
Toadings will be considered, regardless of
whether leakage is predicted.

21 - 68: Load sequence title, to be printed with out-
put. The load sequence will automatically
be identified by number in the output.

Leave title field blank if no additional
identification is needed.

Remaining cards of set (2F10.0, 8A6) - NUMLDS cards.
Columns 1 - 10: Internal pressure.
11 - 20: Axial load on pipe, tension positive.

21 - 68: Loading title, to be printed with output.
The loading will automatically be identified
by number in the output. Leave title field
blank 1if no additional identification is
needed.

Note 1: The axial force due to internal pressure, assuming the
end of the pipe is closed, is automatically included
by the program. The axial load specified in
Columns 11 - 20 is the force applied in addition to
this pressure force.



-

22

Note 2: The program will execute most efficiently if these
cards are arranged in increasing values of pressure
and/or axial force.

NEXT PROBLEM

After all Tload sequences, insert a blank card. A new
problem may then be defined, starting with Card A. To
terminate the run, insert two additional blank cards.
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APPENDIX B: SAMPLE INPUT DATA

TXAMPLE FLANGE ALYESKA DIMENSIONS, UNRESTRAINED LONMGITUDIMALLYe
636314 5B3e~Ha CheH2H S (063 e 25 -
48 2 562 275 763 18, 12z 14

265 650 2625 32 .
2000C, e 3 OO0 o3 30777 e
. 46876 54.626 1657 s 15 10 :
139 . 8 2 129K A0LT LOAD. FPRESSURE TO LLEAKAGE .
e 8 : »
12
1.6
1.8
2.0

22
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