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Enhancing wound
healing through deep
reinforcement learning for
optimal therapeutics
Fan Lu, Ksenia Zlobina, Nicholas A. Rondoni, Sam

Teymoori and Marcella Gomez
Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA,
USA

 FL, 0000-0001-6490-6416; MG, 0000-0001-9709-5015

Finding the optimal treatment strategy to accelerate
wound healing is of utmost importance, but it presents
a formidable challenge owing to the intrinsic nonlinear
nature of the process. We propose an adaptive closed-loop
control framework that incorporates deep learning, optimal
control and reinforcement learning to accelerate wound
healing. By adaptively learning a linear representation of
nonlinear wound healing dynamics using deep learning
and interactively training a deep reinforcement learning
agent for tracking the optimal signal derived from this
representation without the need for intricate mathematical
modelling, our approach has not only successfully reduced
the wound healing time by 45.56% compared to the one
without any treatment, but also demonstrates the advantages
of offering a safer and more economical treatment strategy.
The proposed methodology showcases a significant potential
for expediting wound healing by effectively integrating
perception, predictive modelling and optimal adaptive
control, eliminating the need for intricate mathematical
models.

1. Introduction
Personalized precision treatments have become an emerging
research topic in modern medicine owing to the recent advan-
ces in artificial intelligence [1–3]. The necessity of precision
treatment arises from the fact that different patients exhibit
different responses to a given medication. These variations stem
from the molecular disparities among different patients and
within the same patient at different times [4]. Personalized
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treatment aims to determine personalized dosages of drugs, drug types and the optimal timing of drug
delivery for each patient according to current and predicted patient responses based on experimental
data and statistical analysis [5]. In this article, we focus on developing an online adaptive controller
using deep learning and reinforcement learning (RL) based on the patient’s real-time response to
the administered treatments. This controller has been designed to expedite wound healing, but its
applicability extends to other nonlinear dynamics.

Wound healing is a dynamic and continuous process that can unfold through a series of over-
lapping stages: haemostasis, inflammation, proliferation and maturation [6]. The process involves
nonlinear transformations of different cells (platelets, neutrophils, macrophages, myofibroblasts,
fibroblasts, keratinocytes and others) and biomolecules (blood coagulation factors, pro- and anti-
inflammatory cytokines, polymers and enzymes of extracellular matrix) [7].

Determining the optimal timing and precise dosage for administering each drug presents a
challenge, particularly when considering the different nonlinear dynamics of drug digestion and
biological transformations targeted by the drug. The mechanism involved in drug distribution can
be elucidated using mathematical models [8,9]. However, the complexity of biological systems and
disparities within organisms reduces the reliability of model-based controllers.

Even if the model is accurate, the inherent nonlinearity further complicates the task of establishing
the optimality and safety of the prescribed control policy for drug administration. This emphasizes
the need to formulate controller design strategies that furnish optimal and adaptable control solutions
while considering the individualized requirements of patients with specific health conditions, all under
the guidance of analytically optimal and safe solutions.

Several closed-loop control strategies, such as model predictive control, optimal control and
adaptive disturbance rejection control, have been suggested to control drug administration [8,10–12].
The control strategies currently in use for regulating patient drug dosing have focused on optimal
drug infusion with respect to given performance measures or adaptive drug infusion that addresses
patient parameter uncertainty. The main advantage of adaptive controllers is that they can derive
patient-specific infusion profiles even without an accurate patient model. However, such controllers
may not account for certain desired performance constraints. On the other hand, optimal controllers
are predicated on nominal patient models, leading to suboptimal performance or even instability of the
closed-loop system in the face of drug titration for actual patients.

The challenge here is to design an optimal treatment that accounts for gender, age, weight,
pharmacokinetic and pharmacodynamic intrapatient and interpatient variability, and health condi-
tions of the patient under treatment. In contrast to standard controller design methods, RL-based
approaches allow the development of control algorithms that can be used in real time to affect optimal
and adaptive drug dosing in the presence of pharmacokinetic and pharmacodynamic patient variabil-
ity. The method presented in this article can be used to derive patient-specific treatment profiles,
such as generating a desired patient drug response without requiring an accurate patient model.
Specifically, we use a learning-based controller design strategy that can facilitate patient-specific and
optimal drug titration.

Learning-based control strategies have found applications in various medical settings, enhancing
the precision of drug dosing and optimizing treatment regimens. These applications include devis-
ing dynamic treatment plans for lung cancer patients [13], optimizing erythropoietin dosing during
haemodialysis [14], facilitating cytotoxin delivery during chemotherapy [15], aiding insulin regulation
for diabetic individuals [16] and administering anaesthetic drugs to maintain desired sedation levels
[17]. Recent studies, such as those discussed in Moore et al. and Padmanabhan et al. [17,18], have
delved into clinical and computational trials employing RL to enhance the precision of anaesthetic
drug infusion.

However, it is worth noting that these approaches do not account for safety exploration in RL.
Owing to the inherent non-convexity of objective functions and the complexity of deep neural
networks, achieving a globally optimal control policy is not always assured. In the study by Padma-
nabhan et al. [19], the utilization of RL to inform drug dosing is suggested. Nevertheless, this approach
still relies on prior knowledge of reference signals.

Compared to the studies by Zhao et al., Martín-Guerrero et al., Padmanabhan et al., Daskalaki et
al. and Moore et al. [13–17,19], the proposed approach in this article presents a distinct advantage
by formulating a leader–follower paradigm solved by deep reinforcement learning (DRL) which has
demonstrated success in Zhou et al. [20]. We begin by learning a mapping from nonlinear wound
dynamics to its linear representation. From this linear model, the optimal control law is derived,
allowing the calculation of the subsequent optimal linear state. This linear state is then used by the
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decoder in the DeepMapper, as illustrated in figure 1, to predict the next optimal nonlinear state.
This prediction serves as a reference signal for the RL agent, guiding the formulation of a treatment
strategy, such as real-time drug dosages, aimed at closely matching the actual next nonlinear state to
this reference state. Thanks to DRL, the regime eliminates the need for modelling the nonlinear wound
dynamics or the treatment effects within it.

Learning linear representations of nonlinear systems is crucial owing to the fact that nonlinear
systems are prevalent in nature, with most systems of practical interest exhibiting nonlinear behaviour,
and the control of such systems is challenging with no general and scalable solution [21–23]. On the
other hand, the study of linear systems is well developed with scalable design, analysis, control and
optimization of linear systems thoroughly detailed within the literature [24,25].

Finding the mapping between nonlinear systems and linear models is challenging. The Koopman
operator theory, as explored in seminal works in Koopman, Mezić & Banaszuk and Mezić [26–28],
offers a promising avenue by enabling the representation of a nonlinear system as an infinite-dimen-
sional linear system. However, the optimization of this approach primarily operates within the realm
of functional space, rendering it often intractable in practical applications. Moreover, it does not
account for the effect of control inputs in nonlinear systems.

In recent years, many advances have been made to generalize the Koopman operator theory for
the control of nonlinear systems [21,29–31]. These extensions find linear representations of nonlinear
systems with finite-dimensional function approximations, which can subsequently be used for the
tractable control of the system. This motivated us to design a deep neural network-based algorithm
called DeepMapper to learn a mapping from an unknown nonlinear system to its linear representation,
similar to the goal of the Koopman Operator. The work is primarily motivated by Kaiser et al. and
Ahmed et al. [30,31]. The major difference is that neither addresses the issue of overfitting during
learning, which is mitigated through DRL in this article.

The main contributions of this article include the following. (i) We propose an adaptive closed-
loop control framework using deep learning, optimal control and RL to enhance wound healing, as
schematized in figure 1. This framework eliminates the need for mathematical modelling of nonlin-
ear dynamics or the treatment effects within it. (ii) We propose an autoencoder-like mechanism
called DeepMapper to learn a linear representation of the nonlinear wound healing dynamics, which
provides an optimal reference signal for the DRL agent to track. It is shown that this regime not
only improves the precision of the linear representation in modelling the wound dynamics under
optimal treatments but also ensures the efficiency of the DRL agent. (iii) The experimental results
show that our approach has successfully reduced the wound healing time by 45.56% compared with
the one without any treatment, as well as outperforming the one with DRL directly optimized over a
nonlinear system without DeepMapper. The proposed framework showcases the significant potential
for expediting wound healing by effectively integrating optimal control and data-driven methods. By
leveraging advanced algorithms that adapt in real time to changing conditions, this system offers a
more accurate and reliable means of promoting faster recovery without relying on the limitations of
conventional models.

The remainder of this article is organized as follows: §2 presents an overview of the closed-loop
control framework, followed by the detailed design of the deep learning-based algorithm for finding
the linear representation for nonlinear wound healing dynamics, as well as a DRL-based algorithm
for accelerating wound healing. Implementation details, simulation results and a detailed discussion
of these results are given in §§3 and 4. Finally, in §5, we present conclusions and future research
directions.

2. Approach
Nonlinear dynamics characterize the vast majority of systems of practical interest. One example of this
is the wound healing dynamics depicted in this article. The control and optimization of such systems,
particularly in scenarios like devising the most effective wound treatment strategy, is challenging
owing to their inherently nonlinear behaviour.

Conventional methods, such as linearizing around a fixed point, frequently fall short when applied
to complex systems with nonlinear behaviours. These methods assume that the system’s behaviour
near the fixed point can be approximated by a linear model, which is not always effective for systems
exhibiting significant nonlinearity, multiple equilibria or chaotic dynamics. Consequently, they require
alternative approaches that can accurately model and predict the behaviour of such systems across a
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broader range of conditions, bypassing the limitations inherent to linearization techniques. Alternative
methods, such as machine learning and deep learning, can capture the intricate nature of these systems
more efficiently through data.

For this reason, we propose a deep learning framework called DeepMapper to learn a mapping
from a nonlinear wound healing dynamics to its linear representation. We show that the learned linear
model can be used to provide a near-optimal reference signal to a RL controller, which will, in turn,
refine the DeepMapper. This controller learns the best treatment strategy for wound care without
heavily relying on mathematical interpretation of the treatment into any dynamic model. The learning
framework is schematized in figure 1.

2.1. DeepMapper: linearization of nonlinear wound healing dynamics
Consider a nonlinear wound healing dynamical system with treatment inputs defined by:

(2.1)dx
dt = f x + Bu,

where x ∈ ℝdx, B ∈ ℝdx × du , u ∈ ℝdu and f:ℝdx ℝdx.
As discussed in Zlobina et al. [9], the function f can be an unmanageable nonlinear function that

defines different cell transitions during wound healing. The nonlinear state x associated with wound
healing surveyed in the literature may include variables such as pH, temperature [32–37] or visual
representations captured through images of the wound [38]. We assume that x can be measured by
some sensor, but f is unknown to the control algorithm.

Solving for the optimal control input u⋆ is often difficult, particularly when the dynamics evolve
nonlinearly. As extensive research and literature have been dedicated to the study of linear systems,
encompassing scalable design, analysis, control and optimization [24,39], we propose the utilization
of a deep learning approach to model a linear system that best approximates the behaviour of the
underlying nonlinear system.

Note that equation (2.1) defines a control-affine system. As discussed in Kaiser et al. [30], the
decoupling of the states and inputs allows us to find a transformation of the states alone:

(2.2)z = ℎ x ,

where x ∈ ℝdx is the state that evolves subject to nonlinear dynamics, z ∈ ℝdz evolves linearly andℎ:ℝdx ℝdz is a function that maps the nonlinear state x to linear state z.
From the chain rule, the relationship between the new state z and the original state x can be defined:

(2.3)dz
dt = dz

dx dx
dt = Jℎ x dx

dt ,
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Figure 1. DRL-based closed-loop control to accelerate wound healing pipeline. The pipeline consists of five major blocks for
performing the real-world wound state estimation in nonlinear dynamics, finding a linear representation of wound dynamics,
calculating optimal reference signal in the learned linear model, supervision of the real-world wound target state and constraint
exploration and exploitation of DRL agents.
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where Jℎ(x) ∈ ℝdz × dx is the Jacobian matrix of ℎ.
We first seek to find a linear representation of equation (2.1) without control u satisfying the

condition that the dynamics of the new state z are linear in z:

(2.4)dz
dt = Az,

where A ∈ ℝdz × dz
By expanding equation (2.3) through substitution of equation (2.1) with u = 0 for the time derivative

term and accounting for equation (2.4) that we want to satisfy, we have

dz
dt = Jℎ x f x

= Az .

Then by plugging the control input u into equation (2.1) and following the same procedure, we get a
linear representation with control:

(2.5)

dz
dt = Jℎ x f x + Bu

= Az + Jℎ x Bu,

which defines an underdetermined system of dz equations with dz unknown transformations and dz2
unknown coefficients in matrix A. However, for some special cases, a closed-form solution can be
found directly, such as when dx = dz = 1. In general, however, equation (2.5) cannot be solved directly.

Alternatively, we propose to solve it by reformulating equation (2.5) into an optimization problem
that can be solved using data measured from the system. Specifically, an objective function can be
defined as the squared Euclidean norm of the difference between equations (2.3) and (2.5):

L x,u;ℎ; A = ‖Jℎ x dx
dt − Az + Jℎ x Bu ‖2

2,

where L ∈ ℝ and ‖ ⋅ ‖2:ℝdz → ℝ .

The unconstrained optimization problem can be defined as finding ℎ⋆ and A⋆ such that

(2.6)ℎ⋆, A⋆ ∈ arg  minℎ ∈ F, A ∈ ℝdz × dzL x,u;ℎ; A .

However, optimization over function spaces as in equation (2.6) is often difficult and intractable.
Therefore, an alternative strategy involves parametrizing the space of functions or establishing a set
of basis functions from which the broader function space can be derived, as discussed in Sasane [40].
In this article, we adopt this alternative approach. Specifically, we employ a deep neural network to
parametrize the function ℎ in equation (2.2):

(2.7)z = ℎθ x ,

where θ ∈ ℝdn is the weight of neural networks. With A also parameterized by neural networks

denoted as Aω through ω ∈ ℝdz × dz, the optimization problem defined in equation (2.6) can be reformu-
lated into a manageable form, solely involving the optimization of parameters:

(2.8)θ⋆,ω⋆ ∈ arg minθ ∈ ℝdn,ω ∈ ℝdz × dzL(x,u; θ,ω)

with

(2.9)L x,u; θ;ω : =  ‖Jθ x dx
dt − Aωℎθ x − Jθ x Bu ‖2

2,

where Jθ is the Jacobian matrix of the deep neural network with regard to the parameter θ.
Note that equation (2.8) is trivially minimized by the solution θ = 0 and ω = 0. To avoid such issues,

a regularization term was added to the objective function. In essence, the additional term defines
a ‘decoder’ network [41] to perform the inverse transformation from the new state z, back to a
reconstruction of x, which we denote as x with
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(2.10)x = ℎθ z ,

where ℎ  is the neural network with weight θ ∈ ℝdz × dn. Combining equations (2.7) and (2.10), the
decoder’s objective is then defined to minimize

(2.11)L x; θ = ‖x − x‖2
2 = ‖x − ℎθ ℎθ x ‖2

2 .

The overall objective function consists of a weighted sum of equations (2.9) and (2.11), which gives rise
to the optimization problem:

(2.12)minθ, θ̂ ,ω L x,u; θ;ω + αL x; θ̂ ,

where α defines a scalar weighting factor applied to the decoder term.
The optimization problem can now be solved, provided that data measured from the system are

available. In the case of equation (2.12), additional data in the form of the input measurements, u,
through time are necessary. This gives the final optimization solved numerically over the data:

(2.13)

θ⋆, θ̂⋆,ω⋆ ∈ arg  minθ, θ̂ ,ω
1T ∑t = 1

T Ls st; θ,ω, θ̂
Ls st; θ;ω, θ̂ : = L st; θ,ω + αL xt; θ̂ ,

where st: = (xt,ut) and T is the number of samples in the data and superscript defines the tth sample.
The learned linear dynamics of equation (2.5) can be represented as:

(2.14)dz
dt = Aω⋆z + Jθ⋆ x Bu .

The optimal control problem can be solved to control nonlinear dynamic systems of the form of
equation (2.1), using the learned linear representation of the form of equation (2.14), by solving the

Riccati equation for the optimal gain matrix, K ∈ ℝdu × dz, giving the optimal control law:

(2.15)u⋆ = −Kz,

referred to as the linear quadratic regulator [39].
Note that equation (2.14) is linear in z, but not necessarily jointly linear in the inputs and states

owing to the Jacobian term, Jθ*(x), which may be dependent on the nonlinear state x. As discussed
in Kaiser et al. [30], though the nonlinear state-dependent term does not pose any major issues with
regard to control of the nonlinear system or the linear system, in practice, the Jacobian matrix can
be ill-conditioned during the initial phase of learning, making equation (2.15) unavailable. In this
article, we propose a DRL agent to track the reference signal incurred by equation (2.15) whenever it is
available and penalize the DRL agent whenever it is not. We show that the control law learned by this
DRL agent is better than the one directly optimize it over a nonlinear system without a mapping.

2.2. Reinforcement learning algorithm design
In this section, we introduce the use of a DRL algorithm to explore possible policies that will cover as
many scenarios of the nonlinear dynamics with inputs as possible in the case when the optimal control
input from the learned linear representation is not available. Meanwhile, such exploration should
adhere to constraints that account for the physical and biological limitations inherent to the wound
healing system, while ensuring ethical considerations are not compromised.

When the optimal control input is accessible, the DRL algorithm should be able to exploit its
acquired knowledge to generate a policy that closely approximates the resulting nonlinear state to
the one achieved through control based on the optimal control. The exploration and exploitation of
the DRL algorithm do not require knowledge of either nonlinear or linear dynamics, and thus it
not only alleviates the burden of mathematical interpretation in real-world treatment scenarios but
also significantly expedites the healing process. To realize this, we first formulate the wound healing
dynamics as the Markov decision process (MDP) problem and subsequently solve it using the famous
Deep Q-learning [42].
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We consider a MDP defined by (X ,U , P, r, γ), where X  represents the state space, U represents the
input/action space, P represents the transition probability matrix, r represents the reward function
and γ represents the discount factor. In MDP, an autonomous agent makes sequential discrete-time
decisions as time passes. Generally speaking, the MDP problem conforms to the decision-making
process of physicians in wound care. Based on the state xt ∈ X , the agent selects action ut ∈ U at
time t, then it observes the next state xt + 1 and receives the reward r(xt,ut) ∈ ℝ. To collect more state
information in wound management, the agent can perform state observation more frequently, such as
a state observation every hour and action selection every 20 min [9,38]. The state st transits to the next
state xt + 1 following the transition probability matrix P(xt + 1 xt,ut), which represents the dynamics of
the operating environment. The transition probability matrix satisfies the Markovian (or memoryless)
property since a transition to the next state xt + 1 depends only on the current state xt and action ut
rather than a historical series of states and actions. The agent learns the optimal policy ϕ⋆:X U,
which maps x ∈ X  to optimal actions u ∈ U over trial and error interaction with the environment.
Nevertheless, the transition probability matrix and the probability distribution of the reward function
are generally unknown in reality.

Deep Q-learning The goal of an RL agent is to interact with the environment by selecting actions
to maximize cumulative future rewards. We make the standard assumption that future rewards are
discounted by a factor of γ per time step and define the optimal action-value Q-function as the
maximum total discounted expected reward over all possible action sequences U : = ut: t ≥ 1 :

Q⋆ x,u = maxU ∑t = 0

∞ γtE r xt,ut |x0 = s,u0 = u
= maxU ∑t = 0

∞
∑x′ ∈ X P s′ |st,ut r xt,ut + γmaxu′

Q⋆ x′,u′ ,

with x ∈ X  and u ∈ U.
Let Pu denote the state transition matrix when action u ∈ U is taken. It is known that the Q-function

is the unique solution to the Bellman equation [43]:

Q⋆ x,u = r x,u + γ ∑x′ ∈ X Pu x,x′ Q
_

⋆ x′ ,

where Q(x): = maxu ∈ UQ(x,u) for any function Q:X × U ℝ.

Consider a parametrized family of approximations Qϑ:ϑ ∈ ℝd , wherein Qϑ:X × U ℝ and ϑ may
represent the weights from deep neural networks. The associated family of policies is defined as

(2.16)ϕϑ x ∈ arg  maxu ∈ U Qϑ x,u ,     x ∈ X .

The goal of the Deep Q-network (DQN) algorithm is to find ϑ⋆ such that the mean square Bellman
error is minimized:

(2.17)ϑ⋆ ∈ arg  minϑ ∈ ℝd E ‖Dt + 1 ϑ ‖2
2 ,

where D t + 1(ϑ): = r(xt,ut) + γQϑ(xt + 1) − Qϑ(xt,ut), and the expectation is in a steady state.
To balance the trade-off between exploration and exploitation, we adopt the ε-greedy policy

approach, where ε follows the following updating rule:

(2.18)εt + 1 = max εmin, νεt ,

with εmin the minimum value that ε can achieve and 0 < ν < 1 the decay rate.
Initially, ε0 is set to a value close to 1, such as 0.99. This initial value encourages a higher probability

of random selection of action ut ∈ U(xt) with U(x) ⊆ U constrained by the current state. This choice

aligns with the early stages of training when both the transformation ℎθ and the DRL agent are still in
the learning process and are not yet well-versed. As they are continuously updated through trajectories
collected from real-world experiments or simulated wound dynamics, they gain more confidence in
the learned linear representation and nonlinear dynamics. Thus, we should gradually decrease ε and
guide the policy towards more deterministic actions.
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The optimization problems of equations (2.12) and (2.17) are then solved iteratively using data
collected by interacting with some wound dynamics as per Algorithm 1.

The steps for obtaining optimal solutions are summarized as follows:
Step 1: Hyperparameter setting The weighting faction α, applied to the decoder term in equation

(2.12), is initialized with value α°. The exploration rate ε is set to value ε°.

Step 2: Deep neural network initialization The initial weights of the deep Q networks ϑ°, trans-
former θ°, decoder θ° and Aω matrix ω° are randomly selected by the Kaiming uniform method [44,45].

Step 3: Learning through data A while loop is initiated until the termination criteria are satisfied.
That is, either the optimal parameters between iterations are similar, where similarity is measured with
a Euclidean distance metric, or the maximum number of iterations is exceeded. Within this while loop,
we have another while loop that keeps interacting with the nonlinear wound dynamics using control
inputs either obtained from equation (2.15) or the randomly selected one based on some constrained
input space U(x). This interaction will stop until the wound has healed. All the data during the
interaction will be stored for optimizing the parameters. The optimization problems considered in this
article were solved using the Adam optimizer [46].

Step 4: Return The optimal of parameters, ϑ⋆, θ⋆, θ⋆, and ω⋆ will be obtained by using the Pol-
yak–Ruppert averaging method defined in equation (3.4).

Algorithm 1: Closed-loop control of wound healing

ε0 ¬ ε°;

α ¬ α°;

n ¬ 0;

while termination criteria not met do

while t ≤ T do

Estimate nonlinear wound state xt;

if (2.15) is available then

ut ¬ −Khθn (xt);

else

Sample ξ uniformly from [0, 1];

if ξ ≥ ε then

ut ~ fϑn (xt)

else

Randomly choose ut from U(xt);

end

end

Calculate reward r(xt, ut) through (3.5);

Estimate the next state xt+1 with input ut;

end

θn+1, θn+1, ωn+1 ¬ arg min
θ,θn,ω

1

T

T

t=1
S Ls(st; θ, ω, θ);

1

T

T

t=1
S [||Dt+1(ϑ)||22];ϑn+1 ¬ arg min

ϑÎ d

εn+1 = max(εmin, νεn);

n ¬ n + 1;

end

Compute ϑ*, θ*, θ*, and ω* via (3.4);

θ0, θ0, ω0, ϑ0 ¬ θ°, θ°, ω°, ϑ°;ˆ ˆ

ˆˆ

ˆ

ˆ

3. Experiment results and discussion
We evaluate the proposed algorithm by applying it to a nonlinear model, as introduced in Zlobina et
al. [9]. This nonlinear model addresses wound healing by encompassing five key variables: the quantity
of debris a, M1 macrophage m1, M2 macrophage m2, temporal tissue c and new tissue n. We assume
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in equations (3.1a)–(3.1e) that the control factor u only impacts the rate of transitions from m1 to m2.
Consider a circular wound with radius R and denote x: = [a,m1,m2, c,n]⊺. Each element in x evolves
nonlinearly in both the spatial dimension 0 ≤ r ≤ R and temporal dimension 0 ≤ t:

(3.1a)ȧ = − am1,

(3.1b)m1
. = βa − ȧ − ρ m1

qkq + m1
q − γ1m1 + D̃F m1 − um1,

(3.1c)m2
. = ρ m1

qkq + m1
q − γ2m2 + D̃F m2 + um1,

(3.1d)ċ = m2 − μc,
(3.1e)ṅ = c α̃n 1 − n + D̃nF n ,

where F(x): = 1r ∂x∂r + ∂2x
∂r2  for any variable x, the wound radius r is directed from the wound centre to the

wound edge and u ϕ with ϕ:ℝ+ × ℝ+ ℝ+ a function of space and time that modifies the polarization
of m1 to m2 and affects the rate of the generation of new tissues. Note that equations (3.1a)–(3.1e) can be
written in the form of equation (2.1) with the matrix B defined as

B: =

0 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

,

u: = [0,u,u, 0, 0]⊺and f capturing the first and second derivatives of variables. We assume that f is
unknown to the algorithms and x is measurable through some sensor attached to the wound.

We define the wound size at time t as the smallest radius where the new tissue reaches a value of σ:s t = minr̃ n t, r̃ ≥ σ .

The wound healing time is defined as the time from injury (t = 0) to the moment when the wound
radius is zero:

(3.2)τ = mint ≥ 0
s t = 0.

The goal is to find an actuation function ϕ such that τ is minimized. Nevertheless, solving for
the optimal ϕ⋆ directly from equations (3.1a)–(3.1e) is often difficult, particularly when involving
second-order derivatives. In the previous work [9], a brute-force search (BFS) method was used.
While effective, this approach was not only time-intensive but also heavily reliant on prior knowledge
of the structures of the actuation function, which may not cover the true optimal solution. Conse-
quently, there is still untapped potential for expediting wound healing by employing more advanced
approaches.

In this section, we first use the method proposed in §2 to learn a linear representation of the
system (3.1a)–(3.1e) without any actuation (u = 0). Our primary motivation for this is twofold: firstly,
to demonstrate the capability of our proposed method in acquiring a meaningful linear representation
of the nonlinear system; and secondly, to unveil biologically interpretable insights into the variables
embedded within the linear model. We then consider this learned linear representation as prior
knowledge to find a linear representation for the nonlinear model with control inputs guided by a
DRL agent. The experimental results show that the learned policy ϕ⋆ is capable of reducing the healing
time by 45.56% compared to that without any actuation and 37% compared to that with the method
employed in Zlobina et al. [9].

We summarize all parameter setups during each experiment in table 1.

9
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 240228



3.1. Learning the linear representation for a nonlinear model without control input
We assume that there are four variables in the linear representation, and each corresponds to the
probability of each stage of wound healing: haemostasis Pℎ, inflammation Pi, proliferation Pp and
maturation Pm. As time goes on, the probability of each stage changes: the wound is initially in the
hemostasis stage with probability one and experiences a continuous transition from stage to stage.

During the experiment, we found that the learned linear representation is not unique. This is owing
to the fact that we are mapping a nonlinear dynamic to a lower-dimensional linear model. To drive the
uniqueness of the output of such mapping, we introduce a four-state ODE model:

(3.3a)dz
dt = Az + Wu,     z = Pℎ, Pi, Pp, Pm ⊺ ∈ ℝ4,

(3.3b)

A =

−kℎnat 0 0 0kℎnat −kinat 0 0

0 kinat −kpnat 0

0 0 kpnat 0

,

where kℎnat, kinat and kpnat are the constants that control the velocities of transitions without any treatment

for the wound, and the matrix W ∈ ℝdz × du needs to be learned to capture the input effect in the linear
model from the nonlinear dynamics.

Data preparation In order to find the linear representation for the nonlinear model without
any control inputs, we first solve equations (3.1a)–(3.1e) numerically by constructing 500 ordinary
differential equations on a uniform mesh consisting of 100 spatial cells similar to Zlobina et al. [9]. The
temporal domain spans from t ∈ [0, 20] with a sampling interval of 0.5. This yields a dataset composed
of 121 data points, each characterized by 500 features.

To enlarge the dataset and promote robustness in our results, we introduce additional variability
by adding i.i.d. noise. This noise is sampled from a uniform distribution in the range of [ − 0.1, 0.1]500

and is incorporated into the original dataset. This data augmentation increases the size of the dataset
to 12 100 data points, which serves as the training data for solving the optimization problem (equation
(2.12)).

The neural network that approximates the function ℎθ has three fully connected layers with the

Softmax function as the output layer. The network approximating function ℎθ  has a similar structure
but with the output layer replaced by a Sigmoid activation function. The reason for this replacement
is that the five variables in the nonlinear dynamics are not necessarily the probabilities, but the four
variables in the linear model are. We constrained the parameters for the Aω matrix to have the same
structure as that in equation (3.3b).

We conduct 100 independent runs of learning those approximations, with parameters in the neural
networks randomly initialized by the Kaiming uniform method [44,45], and obtain the learning curves
of kℎnat, kinat and kpnat shown in figure 2, where all the three parameters converge after around 6 × 103

epochs. To get a better estimation of these values, we conduct Polyak–Ruppert averaging [47]:

(3.4)ωN⋆ : = 1N − N0
∑n = N0

N ωt,
where N denotes the total number of updates in the parameters, and the interval [0,N0] with N0 < N

is known as the burn-in period; estimates from this period are abandoned to reduce the impact of
transients in early stages of the training. In this article, we choose N0 = 80%N and obtain

Table 1. The values of parameters used in experiments.

paramete
r

R L T β ρ κ q γ1 γ2 μ D Dnα γ εmin σ ν
value 3 mm 0.03 mm 1/3 day 1 0.1 0.05 5 0.1 0.1 0.2 0.32 3

× 10−4
1.8 0.995 0.01 0.95 0.99
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AωT⋆ =

−0.495 0 0 0
0.495 −0.247 0 0

0 0.247 −0.068 0
0 0 0.068 0

.

Figure 3 shows the optimization result for the original trajectory given by equations (3.1a)–(3.1e). The

solid red curves represent the exact time derivative calculated from the chain rule, i.e. dz
dt = Jθ⋆ x dx

dt .

In contrast, the blue dashed curves are the results of the linear approximation, i.e. dz
dt = Aω⋆z. These

plots show that a linear model has been successfully identified with all the ODEs converging to zero.

In figure 4, it is demonstrated that the decoder ℎθ⋆ has effectively mapped the linear variables into
the variables of the nonlinear model, underscoring the accuracy and reliability of this mapping process.

Plugging matrix AωT⋆ into equation (3.3a), and solving it numerically over a time span fromt ∈ [0, 20], with a sampling interval of 0.5 and u = 0, we derive a trajectory of the four variables shown
in figure 5. Compared to figure 4, it can be seen that the trajectories of haemostasis, inflammation and
proliferation evolve similarly to those of debris, M1 macrophage and M2 macrophage.

3.2. Learning the linear representation for a nonlinear model with deep reinforcement learning
control inputs

Subsequently, we proceed to conduct experiments towards acquiring a linear representation of the
nonlinear model (equations (3.1a)–(3.1e)) when it involves control inputs (u ≠ 0) through the DeepMap-
per. Meanwhile, we would like to simultaneously train a DRL agent to learn an optimal treatment
strategy denoted as ϕ⋆ that minimizes the healing time defined in equation (3.2), which will, in turn,
refine the DeepMapper.

In the RL algorithm introduced in §2.2, the Q-network is constructed to have four fully connected
layers, and a rectified linear unit (ReLU) activation function follows each layer. The output layer is a
Softmax activation function to output the probabilities of each input u ∈ U.

Note that we divide the wound into 100 regions with wound radius evenly spaced along the
direction of r, and u ∈ ℝ100 is a vector with each element indicating the amount of actuation at
different radiuses of the wound ranging from [0,R] mm. Each element of u takes values from
0.1n:0 ≤ n ≤ 10,n ∈ z . This will result in an input space U ∈ ℝ10 × 100.

We took the learned models in §3.1 as a prior for the models with control and updated the Q-net-

work as well as ℎθ and ℎθ  in an online learning way. For each state xt at time t, the input ut to the
nonlinear model (equations (3.1a)–(3.1e)) is obtained by either equation (2.15) when the solution to the
Riccati equation is available or uniformly sampling it from U(xt). Note that U(xt) denotes an input
space constrained by xt, so the sampled input will be restricted to the bounds of the wound’s biological
and physical dynamics.

The reward at time t is defined as

(3.5)
r xt,ut = e−‖x̂t⋆ − xt‖ − 1, if (2.15) is available

−2, otherwise,
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where xt is the state from the nonlinear dynamics (3.1a)–(3.1e) with control input ut, xt⋆ is the target

state decoded by ℎθ  from the linear state zt⋆ with control input ut obtained by equation (2.15). If
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Figure 3. Results of the optimization showing a comparison between the exact time derivative calculated through the chain rule (red

curve), i.e. dz
dt = Jθ⋆ x dx

dt , and their linear approximation (blue dashed curve), i.e. dz
dt = Aω⋆z + Jθ⋆ x Bu, with u = 0 in
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such target state xt⋆ is unavailable, a much smaller reward, i.e. −2, is assigned, which will drive the
DRL agent to learn a policy to stabilize the linear representation and track the optimal trajectory with
optimal input for this linear system.

One may consider the use of the target state for the DRL agent to track is unnecessary. Instead, a
more intuitive definition of reward function could be

(3.6)r∘ xt,ut = − 1 nt ≤ 0.95 .

We then have two datasets for training the DRL agent:

M = xt,ut, r xt,ut ,xt + 1: t ≥ 0 and

M̃ = xt,ut, r∘ xt,ut ,xt + 1: t ≥ 0 .

We denote the resulting treatment policies as ϕϑ⋆ and ϕϑ⋆ respectively.
Using M̃  will directly minimize the wound’s healing time based solely on the feedback from the

nonlinear dynamics without tracking any target state as discussed in Lewis et al. [48]. However, we

show in the experiment that ϕϑ⋆ is not a safe and economical treatment policy compared with ϕϑ⋆.
The progressions of wound healing in terms of wound size are shown in figure 6, where we also

compared the performances of the treatment strategy given by Zlobina et al. [9]. It can be seen from
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figure 6 that the treatment strategy ϕϑ⋆ reduces the healing time the most, around 45.56% time of
reduction compared to the one without any treatment and 33.54% time of reduction compared to the
one with treatment by BFS [9].

The strategy coming from equation (3.5) also provides a safety advantage over the one from
equation (3.6) as can be seen from figure 7. As is discovered in Zlobina et al. [9], it would be dangerous
to apply any treatment at the early stage of the wound, which corresponds to zero actuation indicated

by ϕϑ⋆ and BFS policy shown in figure 7. However, such avoidance in the danger zone is not captured

by ϕϑ⋆, as is shown in the third column plot of figure 7. Compared with the plots of ϕϑ⋆ and ϕϑ⋆, we

can also observe that ϕϑ⋆ will stop actuation when the wound has healed, while ϕϑ⋆ keeps actuating.
This indicates that the proposed closed-loop control framework is also superior in giving treatment at
lower doses.

4. Discussion
New biotechnologies have introduced a multitude of sensors for various biological systems, addressing
a growing need in medicine to integrate these sensors into closed-loop control systems. However, the
complexity of biological processes presents a challenge in formulating accurate mathematical models;
thus, there is a demand for control algorithms that do not rely on precise models. While sensors
provide valuable insight, their measurements only partially capture the dynamics of real biological
systems.

Wound healing serves as an example of a nonlinear process with diverse roles played by different
cell types across various stages. In our study, we operate under the assumption that a sensor reflecting
wound stages is available [38], and it provides information that can be easily approximated by a linear
system of ODEs.

However, owing to discrepancies between measurements and the actual biological components
involved in wound healing, linear systems fail to align perfectly with the underlying nonlinear
processes.

Nevertheless, we demonstrate the feasibility of monitoring and controlling nonlinear systems
through observations derived from linear approximations. We assert that this approach holds promise
for a broad spectrum of nonlinear biological processes for which sensors have been developed, but
accurate mathematical modelling remains difficult.

Finally, it is worth noting that there remain many other more advanced DRL algorithms that can
further improve the control strategy and sample efficiency of the proposed algorithm. For exmaple,
when it comes to large state and action spaces, DQN will take much longer time to learn an optimal
control strategy and can often fall into local minima. In appendix A, we replaced it with Advantage
Actor-Critic (A2C) [49] and showed that it only took around 200 episodes for the proposed algorithm
to find a similar treatment strategy and outperformed the one from directly optimizing A2C over the
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nonlinear system. As our main goal is to propose an adaptive learning structure on how to combine
deep learning, optimal control and DRL for accelerating wound healing, we would like to design a
better DRL algorithm for future studies.

5. Conclusion
In this article, we propose an adaptive closed-loop control framework for a nonlinear dynamical
system. The controller integrates deep learning, optimal control and RL, aiming to accelerate nonlinear
biological processes such as wound healing without the need for mathematical modelling. We have
demonstrated that the proposed method not only significantly improves wound healing time but also
addresses safety concerns and reduces drug usage.

Further development of the controller with more advanced DLR algorithms, as well as its imple-
mentation in in vivo experiments, will ultimately lead to significant improvements in wound care and
broader medical domains leveraging intelligent control algorithms.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. Data and relevant code for this research work are stored in GitHub [50] and have been archived
within the Zenodo repository [51].
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
Authors’ contributions. F.L.: conceptualization, data curation, formal analysis, investigation, methodology, resources,
software, validation, visualization, writing—original draft, writing—review and editing; K.Z.: conceptualization,
formal analysis, methodology, visualization, writing—original draft, writing—review and editing; N.A.R.: data
curation, software, writing—review and editing; S.T.: resources; M.G.: conceptualization, formal analysis, funding
acquisition, methodology, project administration, supervision, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This study was supported by the SciAI Center and funded by the Office of Naval Research (ONR)
under Grant Number N00014-23-1-2729 and the DARPA Biotechnologies Office (DARPA/BTO) under Cooperative
Agreement Number DC20AC00003.
Disclaimer. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Office of Naval Research and
the DARPA Biotechnologies Office (DARPA/BTO) or the US Government. The US Government is authorized to
reproduce and distribute reprints for Government purposes not withstanding any copyright notation herein.

Appendix. A
We further explored replacing the DQN algorithm in the proposed algorithm with the Advantage
Actor-Critic algorithm (A2C) [49] and comparing it with directly finding control policies with A2C
through interactions with nonlinear dynamics. As a result, we have two types of control policy ϕθ*

obtained from optimizing A2C agent using M  and ϕθ* obtained from optimizing A2C agent using M̃ .
Definitions of M  and M  can be found in §3.2.
Note that when making the comparison, we keep the neural network structures, optimizers and
hyperparameters, such as learning rate, discount factor, etc., all the same.
As can be seen from figure 8, while A2C is still learning the strategy when it is directly optimized over
the nonlinear system, our proposed algorithm has converged to the treatment strategy that results in
much shorter healing days. This further reveals our algorithm’s advantages in sample efficiency.
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