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Davis et al. demonstrate the creation of a
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SUMMARY

The maturation of inhibitory circuits in juvenile visual
cortex triggers a critical period in the development of
the visual system. Although several manipulations of
inhibition can alter the timing of the critical period,
none have demonstrated the creation of a new crit-
ical period in adulthood. We developed a transplan-
tation method to reactivate critical period plasticity
in the adult visual cortex. Transplanted embryonic
inhibitory neurons from the medial ganglionic
eminence reinstate ocular dominance plasticity
in adult recipients. Transplanted inhibitory cells
develop cell-type-appropriate molecular character-
istics and visually evoked responses. In adult mice
impaired by deprivation during the juvenile critical
period, transplantation also recovers both visual
cortical responses and performance on a behavioral
test of visual acuity. Plasticity and recovery are
induced when the critical period would have
occurred in the donor animal. These results reveal
that the focal reactivation of visual cortical plasticity
using inhibitory cell transplantation creates a new
critical period that restores visual perception after
childhood deprivation.

INTRODUCTION

During a juvenile critical period, binocular vision drives the refine-

ment of visual acuity. Deprivation of normal binocular vision dur-

ing this period results in a lifelong visual deficit. Creating a new

critical period in adulthoodmight give the visual system a second

chance to rewire and recover normal vision. The maturation of

inhibitory circuits in visual cortex is known to establish the timing

of the juvenile critical period (Fagiolini and Hensch, 2000;

Hensch, 2005; Hensch et al., 1998; Huang et al., 1999) and pre-

sents an attractive target for the reactivation of critical period

plasticity in adulthood (Southwell et al., 2014).

Several manipulations of inhibition have been shown to stimu-

late plasticity in mouse visual cortex up to postnatal day 70 (P70)

(Beurdeley et al., 2012; Fagiolini and Hensch, 2000; Kuhlman
et al., 2013; Southwell et al., 2010; Stephany et al., 2014; Su-

giyama et al., 2008). However, from P35 to P90, after the peak

of the critical period, a weaker, qualitatively distinct form of

young adult plasticity exists in mouse visual cortex (Lehmann

and Löwel, 2008; Sato and Stryker, 2008; Sawtell et al., 2003).

This form of young adult plasticity can be amplified with exten-

sive training and depends upon inhibition (Fu et al., 2015). There-

fore, it is possible that manipulations of inhibition boost young

adult plasticity but cannot reactivate critical period plasticity.

The transplantation of embryonic inhibitory neurons into

neonatal visual cortex induces new plasticity shortly after the

critical period (�P45) (Southwell et al., 2010; Tang et al., 2014).

Here we develop a method to transplant inhibitory neurons into

adult recipient mice up to P192, long after young adult plasticity

has subsided. We find that transplantation into adult visual

cortex creates new plasticity that exhibits key hallmarks of the

critical period.

The reactivation of critical period plasticity in adult visual cor-

tex has the potential to reverse impairments in visual perception.

Several manipulations have been used to recover visual function

in impaired rodents (Kaneko and Stryker, 2014; Maya Vetencourt

et al., 2008; Montey et al., 2013; Stephany et al., 2014; Tognini

et al., 2012), but none have been shown to restore visual percep-

tion using a focal manipulation of plasticity in visual cortex. Here

we use a behavioral test to demonstrate that inhibitory neuron

transplantation restores the visual perceptual thresholds of

impaired mice to normal levels.
RESULTS

Transplanted MGE Cells Disperse in Adult Cortex and
Develop Molecular and Cellular Properties of Inhibitory
Neurons
Neocortical inhibitory neurons are generated in the medial and

caudal ganglionic eminences (MGE and CGE, respectively) of

the ventral forebrain (Wonders and Anderson, 2006). First, we

transplanted embryonic day 13.5 (E13.5) inhibitory neuron pre-

cursors from the MGE into adult primary visual cortex (V1). Cell

placement was guided using intrinsic signal imaging to map

the cortical location of primary visual cortex (V1) (Figure 1A).

Transplanted MGE cells dispersed broadly through adult V1

and expressed a markerspecific to GABAergic neurons (VGAT:

Figure 1B).
Neuron 86, 1–12, May 20, 2015 ª2015 Elsevier Inc. 1
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Figure 1. Transplanted Cells Migrate in Adult Visual Cortex and Express Markers of Mature Cortical Interneurons

(A) Schematic of physiologically guided transplantation to binocular visual cortex. (Right) A retinotopic map overlaid on an image of the cortical surface. Location

of MGE cell injections and GCaMP6s-expressing virus injections indicated in red and green, respectively.

(B) Example coronal section from a MGE recipient 95 days after transplantation (DAT). Transplanted cells disperse across cortical layers and express the

GABAergic neuron marker VGAT (red).

(C) Example transplanted VGAT-positive cells (left column) from a recipient �100 DAT stained for Parvalbumin (PV, top row), Somatostatin (SOM, middle row),

and vasoactive intestinal peptide (VIP, bottom row). White chevrons show transplanted cells expressing PV or SOM.

(D) Quantification of transplanted marker expression for PV, SOM, and VIP (n = 480 cells, n = 2 mice).

(E) Example perineuronal nets (PNNs) on transplanted cells �100 DAT. White chevrons show transplanted cells that carry PNNs. Error is reported as SEM.
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We next determined whether MGE cells transplanted into

adult visual cortex developed the molecular and cellular char-

acteristics typical of cortical inhibitory neurons. The relative

proportion of Parvalbumin (PV) and Somatostatin (SOM) ex-

pressing transplanted neurons in adult recipients (39.5%

PV+, 21.5% SOM+; Figures 1C and 1D) was comparable to

that reported for MGE transplantation into both embryonic

and neonatal recipients (Southwell et al., 2010). The laminar

distribution of transplanted MGE cells also largely reproduced

the profile observed in a fate mapping study of MGE cells

(21.4% in L2/3 and 54.4% in L5/6; see Figure S1B online;

see Pla et al., 2006). In addition, �25% of transplanted

cells developed perineuronal nets as revealed by Wisteria

floribunda agglutinin staining (see Figure 1E). Together, our re-

sults suggest that transplanted MGE cells survive, disperse to

appropriate locations, and develop appropriate subtypes and

characteristics.
2 Neuron 86, 1–12, May 20, 2015 ª2015 Elsevier Inc.
Itwaspreviously shown thatMGEcells transplanted toneonatal

visual cortex receive excitatory synaptic inputs (Southwell et al.,

2010); however, it was unknown whether these cells developed

normal sensory-evoked responses. Next, we assessed the visual

response properties of fluorescently identified transplanted inhib-

itory cells using two-photon imaging of the genetically encoded

calcium indicator GCaMP6s (Figure 2A). We focused our study

on Parvalbumin-positive (PV+) neurons because of their estab-

lished importance in critical period plasticity (Fagiolini et al.,

2004; Hensch, 2005; Kuhlman et al., 2013) andbecause the visual

response properties of these cells have been well characterized

(Kerlin et al., 2010; Kuhlman et al., 2011; Li et al., 2012; Runyan

and Sur, 2013; Runyan et al., 2010). As expected, the visual re-

sponses of transplanted PV+ cells at 91–93 days after transplan-

tation (DAT) exhibited much broader orientation selectivity

(OSItPV+ = 0.39 ± 0.07, n = 11 cells) than that of neighboring, pre-

sumptive excitatory cells (OSItPV� = 0.72 ± 0.04, n = 17 cells). The
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Figure 2. Transplanted Inhibitory Neurons Develop Cell-Type-Appropriate Visual Responses

(A) A transplanted PV+ (red) cell coexpressing calcium indicator GCaMP6s (green).

(B) GCaMP6s visual responses from a PV� cell (top, green) and transplanted PV+ cell (bottom, red) to drifting gratings presented at 12 different orientations (gray

bars denote stimulus presentation, gray traces reflect single trial responses, red or green trace represents averaged signal).

(C) Polar plots of averaged response to stimulus orientation are shown for each example trace.

(D) Orientation selectivity of transplanted PV+ neurons (�90 DAT; tPV+, solid red bar), endogenous PV+ neurons (�P140; ePV+, striped red bar), and neighboring

PV� neurons (tPV�, solid green bar; ePV�, striped green bar). Transplanted PV+ neurons have broader orientation tuning than their neighbors (OSI tPV+ = 0.39 ±

0.07, n = 11 versus tPV� = 0.72 ± 0.04, n = 17). This orientation tuning is equivalent to endogenous PV+ cells(OSI ePV+ = 0.46 ± 0.03, n = 19; p = 0.78).

(E) Average response at preferred orientation (DF/F0) is shown for transplanted and endogenous PV+ (tPV+, solid red bar; ePV+, striped red bar) and PV� neurons

(black bar). Responses from transplanted PV+ cells (DF/F0 = 0.42 ± 0.06) were comparable in strength to endogenous PV+ cells (DF/F0 = 0.38 ± 0.03). Error is

reported as SEM.
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average orientation selectivity of transplanted PV+ cells was

similar to that of endogenous PV+ cells measured in untreated

adult visual cortex (OSIePV+ = 0.45 ± 0.03; Figures 2B–2E).

Furthermore, the amplitude of the visually evoked calcium tran-

sients in the transplantedcellswasquantitatively similar to endog-

enous PV+ cells (DF/F0 tPV+ = 0.42 ± 0.06 versus ePV+ = 0.38 ±

0.03). The cell-type-appropriate responses from transplanted

PV+ cells suggest that these cells successfully integrated into

the adult cortical circuit.

MGE Transplantation Reactivates Ocular Dominance
Plasticity
In adult mice over P90, brief (<5 days) closure of one eye

(monocular deprivation, MD) produces little effect on visual

cortical responses (Lehmann and Löwel, 2008). In juvenile

mice, brief MD strongly shifts the balance of visual responses

away from the deprived eye and toward the nondeprived

eye, a shift that is most pronounced during the critical period
(P19–P32). To test for this ocular dominance plasticity, we

used intrinsic signal imaging tomeasure the strength of eye-spe-

cific visual responses before and after four days of MD (see Fig-

ure 3A). An ocular dominance index (ODI) was calculated to

quantify the relative strength of eye-specific visual responses.

An ODI of �1 indicates that cortex responds only to ipsilateral

eye stimulation, 1 indicates that cortex responds only to contra-

lateral eye stimulation, and 0 indicates equal responses to both

eyes. Four days of MD produced no discernible change in the vi-

sual responses of untreated adult mice aged P77–P113 (Fig-

ure 3B, gray; pre-MD ODI = 0.18 ± 0.02; post-MD ODI = 0.18 ±

0.02). In contrast, MD produced a robust shift in critical period

mice (�P27) (Figure 3B, yellow; pre-MD ODI = 0.17 ± 0.01;

post-MD ODI = 0.0 ± 0.03).

To probe for plasticity in MGE transplant recipients, we

first examined plasticity 33–35 days after transplantation

(33–35DAT), the time point at which the levels of critical period

plasticity would have reached a peak in the donor animal
Neuron 86, 1–12, May 20, 2015 ª2015 Elsevier Inc. 3



Figure 3. Transplantation Reactivates Crit-

ical Period Plasticity

(A) Timeline of the experimental protocol. Re-

sponses to contralateral versus ipsilateral eye

stimulation were used to calculate an ocular

dominance index (ODI). Recordings were made

only in the transplanted hemisphere.

(B) Ocular dominance index determined before

(white columns) and after (gray columns) 4 days

of monocular deprivation (4d MD). A significant

difference was seen between pre- and post-MD

ODI in the CP group (yellow, n = 6: W[5] = �21; p =

0.03) and in the 35DATMGEgroup (magenta, n = 9:

W[8] = �45; p = 0.004), but not in any other group.

(C) Average ocular dominance shift (ODS)

following 4d MD for each experimental group in

(B). ODS for MGE 35 DAT (magenta, n = 9) re-

cipients was equivalent to critical period shifts

(yellow, n = 6), but ODS in all other groups were

significantly smaller than critical period ODS

(versus untreated, gray, n = 7, p = 0.006; versus

MGE 70 DAT, cyan, n = 8, p = 0.01; versus dead

MGE, dashed magenta, n = 4, p = 0.04; versus

LGE, black solid, n = 5, p = 0.03; and versus CGE,

black crosshatched, n = 5, p = 0.02).

(D) (Upper graph) Four days of MD produced a

loss of deprived eye visual responses (n = 8;

black; t[7] = 4.83, p = 0.0019) but no significant

change in nondeprived eye visual responses (n =

8; green). n.s. denotes not significant. (Lower

graph) The same data shown in a plotted as

a percentage of baseline amplitude. Error is re-

ported as SEM.
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(33–35 days = time span from E13.5 to �P27). MD at 33-35 DAT

(MGE 35 DAT group) resulted in a robust shift of visual responses

toward the nondeprived eye (Figure 3B, magenta; pre-MD ODI =

0.21 ± 0.01; post-MD ODI = 0.07 ± 0.01). Figure 3C shows

average shifts in the ocular dominance index (ODS) for each

group compared to ODS for critical period animals subjected

to the same 4 day MD. To rule out that the reactivated plasticity

was a surgical artifact or caused by factors present in embryonic

MGE tissue, we also transplanted dead MGE cells. MD did not

produce a significant shift of visual responses in dead MGE

cell recipients (Figure 3B, magenta dashed; pre-MD ODI =

0.19 ± 0.02; post-MD ODI = 0.18 ± 0.02), indicating that living

MGE cells are needed for the reactivation of plasticity.

During the juvenile critical period, MD produces a rapid loss of

deprived eye visual responses followed by a slower gain in non-

deprived eye responses. In contrast, in the weeks following the

critical period, MD produces a slow gain in nondeprived eye vi-
4 Neuron 86, 1–12, May 20, 2015 ª2015 Elsevier Inc.
sual responses alone (Sato and Stryker,

2008; Sawtell et al., 2003). In transplanta-

tion-induced plasticity, we observed a

rapid reduction in deprived eye re-

sponses (Figure 3D; post 4 day MD

deprived eye versus pre: 23% reduction),

with no discernible change in nonde-

prived eye responses. Therefore, trans-

plantation-induced plasticity mimics crit-

ical period plasticity.
Most recipient mice were �P65 at transplantation and were

studied for plasticity at �P100, �2 months after the normal

critical period. Two MGE recipients, however, received cells

at P159 and were studied for plasticity at P192, nearly

5 months after the endogenous critical period. MD produced

robust effects in these older adult recipients (Figures S3C

and S3D), indicating that inhibitory neuron transplantation

can reactivate plasticity up to at least 5 months after the crit-

ical period.

We observed reactivated plasticity 35 DAT, when the critical

periodwould have been open in the donor animal (see Figure 3A).

To determine whether transplantation creates a time-limited

period of plasticity like the endogenous critical period, we per-

formed MD 58–81 DAT (70 DAT group), when the critical period

would have been closed in the donor animal. MD produced no

significant effect at this time point (Figure 3B, cyan), in contrast

to the robust shift observed in the 35 DAT group (Figure 3C,
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Figure 4. The Number of Transplanted PV+

Cells Does Not Predict the Extent of

Plasticity

(A) An example coronal section from a MGE

recipient. Transplanted PV+ cells (red) are

observed in all layers of binocular visual

cortex (CTX I-VI) but do not cross the corpus

callosum (CC).

(B) An example coronal section from a LGE

recipient; few transplanted PV+ cells were found in

LGE recipients.

(C) Quantification of transplanted PV+ cells found

in a subset ofMGE35DAT (magenta),MGE70DAT

(cyan), and LGE (black) recipients plotted against

ocular dominance shifts for each animal. Square

points correspond to individuals presented in (A)

and (B). No relationship between ocular domi-

nance shift and cell count was observed for MGE

recipients (R2 = 0.042; p = 0.46, n.s.).

(D) Transplanted PV+ cell spread aligned to the

peak PV+ cell count position (0 on the x axis) and

averaged for each group to illustrate distribution

of transplanted cells. Error is reported as SEM.
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magenta 35 DAT ODS = 0.15 ± 0.02 versus cyan 70 DAT ODS =

0.02 ± 0.02).

Parvalbumin-expressing (PV+) inhibitory neurons are thought

to play a prominent role in the regulation of critical period plas-

ticity (Fagiolini et al., 2004; Hensch, 2005; Kuhlman et al.,

2013). It was possible that plasticity was absent in the 70 DAT

group because transplanted PV+ cells died during the extended

period between transplantation and assessment. We therefore

compared counts of transplanted PV+ cells in a subset of recip-

ients from the 35 DAT and the 70 DAT group (Figure 4A). There

was no significant difference in the number of PV+ cells between

35 and 70 DATMGE recipient groups. We also did not observe a

relationship between the number of PV+ cells and the extent of

ocular dominance plasticity (Figure 4C).

CGE and LGE Transplantation Does Not Reactivate
Plasticity
To determine whether another source of cortical interneurons

could produce ocular dominance plasticity, we transplanted

cells from the caudal ganglionic eminence (CGE). CGE cells

also expressed markers specific to GABAergic neurons, but

dispersed in the adult neocortex less extensively than MGE cells

(VGAT, Figure S1A). CGE transplantation did not induce any

detectable plasticity at 35 DAT (Figure 3B, black dashed; pre-

MD ODI = 0.18 ± 0.01; post-MD ODI = 0.17 ± 0.03). In contrast

to MGE cells, CGE cells transplanted into adult visual cortex

adopted a laminar distribution that differed substantially from

the normal fate of these cells by skewing to the deeper layers

(71.6% in L5/6; Figure S1B; 20%–30% in L5/6 [Miyoshi et al.,

2010; Pla et al., 2006]).

Whereas the medial and caudal ganglionic eminence produce

cortical interneurons, the lateral ganglionic eminence (LGE) pro-

duces interneurons destined for the olfactory bulb and striatum.

MD produced no effect in adult LGE recipients (Figure 3B, black

solid; pre-MD ODI = 0.14 ± 0.02; post-MD ODI = 0.13 ± 0.03). As

expected, transplanted LGE tissue largely failed to disperse in
the adult visual cortex (Southwell et al., 2010; Wichterle et al.,

1999) A small number of PV+ cells were occasionally found in

LGE recipients, however, likely due to a small amount of contam-

ination from MGE originating cells (Figure 4B, lower panel).

Nonetheless, these cells did not induce plasticity (Figures 3B

and 3C).

Taken together, these results demonstrate that the transplan-

tation of live, MGE-derived inhibitory neurons creates a new crit-

ical period of plasticity in adult visual cortex.

Recovery of Visual Cortical Function
In our next set of experiments, we sought to recover cortical

function in visually impaired animals using transplantation-

induced plasticity. MD that spans the critical period produces

a permanent disruption of visual cortical responses to the

deprived eye. We transplanted inhibitory neurons to and as-

sessed effects in the cortex contralateral to the previously

deprived eye. As a control, visual responses in the opposite

hemisphere were recorded in response to stimulation of the non-

deprived eye (Figure 5A).

We used intrinsic signal optical imaging to assess the impair-

ment of cortical responses prior to the reactivation of plasticity,

0–24 DAT (15 DAT). To probe for recovery, we then reassessed

the same animals after reactivation of plasticity, at 47–62 DAT

(55 DAT) (Figure 5). Figure 5B shows example intrinsic imaging

responses to drifting noise stimulus. The deprived eye retino-

topic map reveals a particularly severe deficit (Figure 5B, black,

0 DAT). By 48 DAT, however, the deprived eye retinotopic map

has recovered (magenta).

We then assessed responses in primary visual cortex to stimuli

across a range of spatial frequencies in order to provide a neuro-

physiological measure of visual acuity (Beurdeley et al., 2012;

Heimel et al., 2007; Sugiyama et al., 2008). Response values

were normalized as a percentage of themaximum response pro-

duced by stimulation of the nondeprived eye. Figure 5C shows

cortical responses for the severely impaired mouse in Figure 5B
Neuron 86, 1–12, May 20, 2015 ª2015 Elsevier Inc. 5
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Figure 6. Transplantation Reverses Perceptual Deficits in Visually

Impaired Animals

(A) Schematic of the visual water task.

(B) (Top) Representative performance on a visual task for (top) a mouse using

the nondeprived eye (green), acuity threshold = 0.46 cpd (gradings on x axis

schematically represent the spatial frequency of the visual stimulus); (middle)

an untreated mouse using the deprived eye, acuity threshold = 0.30 cpd. Inset

graph compares the maximum performance by untreated animals through

deprived (black) and nondeprived (green) eyes versus normally sighted ani-

mals (gray). (Bottom) A MGE recipient mouse using the deprived eye for the

visual task, acuity threshold = 0.51 cpd.

(C) Quantification of perceptual acuity across groups (F(3, 37) = 7.52, p =

0.0005). MGE recipients tested using the deprived eye (n = 5, magenta) had

acuity equivalent to that of deprived animals using the control (nondeprived)

eye (n = 18, green) and to that of naive animals (n = 9, gray). Untreated,

impaired animals tested using the deprived eye (n = 9, black) had significantly

depressed acuity thresholds compared to MGE recipients (p = 0.007),

nondeprived eyes (p = 0.0008), and naive animals (p = 0.003). Error is reported

as SEM.
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at 0 DAT (black) and 48 DAT (magenta). At 0 DAT, no response

was observed at any spatial frequency. Strikingly, by 48 DAT, re-

sponses to deprived eye stimulation were restored to levels

equivalent to responses to nondeprived eye stimulation (green

dashed line). For all live MGE recipients, we observed marked

deficits prior to reactivation of plasticity (15 DAT; Figure 5D;

black). After the reactivation of plasticity (55 DAT), however, vi-

sual responses improved significantly (p = 0.01; Figure 5D; black

versus magenta) to levels indistinguishable from the nonde-

prived eye (dashed green line).

We also examined the effects of transplanting deadMGE cells

to the cortex of visually impairedmice. In the previousMD exper-
iments, no plasticity was observed at 35 DAT in deadMGE recip-

ients (Figures 3B and 3C). As expected, at 55 DAT, visual re-

sponses to the deprived eye remained unchanged compared

to 15 DAT (Figure 5E). We also assessed untreated visually

impaired animals to test for spontaneous recovery. These un-

treated animals were assessed up to �5 months after initial

deprivation and showed no sign of recovery (acuity, 0.20 ±

0.07 cpd; Figure 5F, gray).

To assess thresholds of acuity in cortical responses, we deter-

mined the spatial frequency of the visual stimulus at which re-

sponses fell to background levels. Figure 5F shows that at 15

DAT, average acuity for the deprived eye responses in both

live and dead MGE recipients is significantly lower than for non-

deprived eye responses (0.20 ± 0.16 cycles per degree [cpd] for

MGE recipients, n = 7; 0.23 ± 0.13cpd in dead MGE recipients,

n = 3; versus 0.52 ± 0.11cpd in nondeprived eyes, n = 18; p =

0.0015 and p = <0.05, respectively). By 55 DAT in live MGE

cell recipients, average acuity for the deprived eye reached

threshold levels indistinguishable from the nondeprived eye

(0.52 ± 0.11cpd versus 0.59 ± 0.07 cpd). In contrast, at 55 DAT

in dead MGE cell recipients (n = 3), results were unchanged

compared to 15 DAT and matched untreated impaired mice

(n = 4) (0.17 ± 0.06 cpd versus 0.23 ± 0.13 cpd, versus 0.20 ±

0 cpd.14; Figure 5F).

It was possible that the migration of transplanted cells through

the host cortical tissue initiated recovery. If this were the case,

we would expect to see improvements in cortical responses by

14 DAT, when the cells complete their migration in the host brain.

Figure S5 shows that even by 19–24 DAT, the acuity of cortical

responses has not yet improved. These data suggest that the

observed recovery of cortical function produced by inhibitory

neuron transplantation comes after cell migration is completed.

Taken together, these results show that inhibitory neuron

transplantation reverses the impairment in deprived eye cortical

responses (Figure 5). However, it remained possible that visual

perception through the deprived eye remained impaired despite

the restored acuity of visual cortical responses (Stephany et al.,

2014).

Restoration of Visual Perception
Next, we tested the ability of transplant recipients to see through

the deprived eye and nondeprived eye using a visual water task

(Prusky et al., 2000). Mice learned to associate a hidden escape

platform with a visual grating (Figure 6A). Mice were then chal-

lenged to find the platform with visual gratings of increasing

spatial frequency to determine the perceptual limit of their vision.

Acuity through the deprived and nondeprived eyes was as-

sessed independently by covering one eye during testing. We

tested three groups: visually impaired mice that received live

MGE cells, untreated impaired mice, and normally sighted

mice. Recipient mice were trained on the task starting at 31

DAT, along with age-matched controls. Perceptual thresholds

for vision through the nondeprived eye of each mouse were

also assessed. The average threshold for vision through the non-

deprived eye was 0.45 ± 0.01cpd, equivalent to that of normally

sighted controls (0.46 ± 0.02 cpd) and consistent with published

data (Prusky and Douglas, 2003) (for representative cases, see

Figure 6B). Thresholds for untreated impaired mice using the
Neuron 86, 1–12, May 20, 2015 ª2015 Elsevier Inc. 7
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deprived eye were significantly lower (0.33 ± 0.04 cpd; p =

0.0008 versus nondeprived eye; p = 0.003 versus normally

sighted controls; Figure 6C). The same mice, however, per-

formed the task using their nondeprived eyes as well as normally

sighted animals. Therefore, the visual deficit in the impairedmice

was specific to the deprived eye. In contrast to untreated

impaired mice, MGE recipients fully recovered vision through

the deprived eye (0.47 ± 0.03 cpd; Figures 6B and 6C). These re-

sults make clear that inhibitory neuron transplantation reverses

the visual deficit imposed by MD during the endogenous critical

period.

DISCUSSION

In light of our findings, we conclude that the transplantation of

inhibitory neurons into the adult visual cortex creates a new crit-

ical period. Four lines of evidence support this conclusion: (1)

Transplantation induces ocular dominance plasticity at 35 DAT

when the critical period would be open in the donor animal,

but not at 70 DAT when the donor critical period would be

closed. (2) The level of ocular dominance plasticity induced by

transplantation is quantitatively similar to normal critical period

plasticity. In addition, transplantation induced plasticity is equiv-

alent to that induced by diazepam treatment before the critical

period (�P18–P22; data not shown). (3) The transplant-induced

recovery of visual acuity in visually impaired adult mice begins af-

ter 25 DAT and is complete by 45 DAT, when the donor critical

period would be closed. (4) Brief MD during the transplant-

induced critical period produces a loss of deprived eye input, a

hallmark of critical period and not adult plasticity.

It is striking that transplanted MGE cells migrate to the appro-

priate cortical layers in adult tissue. In contrast, the cortical layer

distribution of transplanted CGE cells raises questions about

migration cues (Figure S1). Unlike for transplanted CGE cells,

distributions of transplanted MGE cells in our experiments

were similar to those previously reported in MGE fate-mapping

studies (�54% in layers 5/6 and �21% in layers 2/3). Perhaps

the migration of MGE cells is guided by intrinsic migration

cues, while CGE-derived cells require external developmental

cues from the neonatal brain.

It is also intriguing that transplanted cells acquire normal visual

response properties (Figure 2). There is some recent evidence

that the orientation selectivity of PV+ neurons in the visual cortex

may be heterogeneous, with some sharply tuned and other

broadly selective cells (Runyan and Sur, 2013). Future studies

may address any functional heterogeneity of transplanted cells

in particular once new genetic markers become available for

parceling out subpopulations of PV+ cell types.

It is remarkable that the transplantation of embryonic inhibitory

neurons is sufficient to restore visual function in primary visual

cortex without any explicit sensory training. Various manipula-

tions of sensory environment or experience coupled with phys-

ical activity have been shown to recover visual function (Kaneko

and Stryker, 2014; Montey et al., 2013; Tognini et al., 2012).

These manipulations, however, are likely to have widespread

effects in the brain. In contrast, transplantation of inhibitory neu-

rons provides a focal manipulation because the transplanted

cells do not spread beyond visual cortex.
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Further investigation of different properties of transplanted

MGE and CGE cells may yield insight into the mechanisms of

transplant-induced plasticity. For example, in fate-mapping

studies, cells from CGE predominately migrate into cortical

layers 2 and 3 (Miyoshi et al., 2010). In contrast, most cells

from our CGE transplants were found in layers 5 and 6, with a

very small fraction found in layer 2. The lack of transplanted

CGE cells in the superficial layers of cortex may have prevented

the induction of plasticity.

In addition, a detailed study of the cell types contributed by

MGE versus CGE transplantation may shed light on the mecha-

nisms of the critical period. A dominant hypothesis is that PV

cells are critical to the induction of plasticity (Hensch, 2005). In

our study, however, we found that the number of transplanted

PV+ cells from the MGE did not predict the extent of induced

plasticity in adult recipients. This finding agrees with earlier

transplantation studies in neonatal mice that find no obvious

relationship between the reactivation of plasticity and the

number of PV+ cells (Southwell et al., 2010; Tang et al., 2014).

Moreover, a recent publication shows that the depletion of

both PV+ and SOM+ transplanted cell populations prevented

plasticity induction, but that the ablation of either population

independently did not prevent plasticity (Tang et al., 2014).

Interestingly, while the addition of new interneurons to the cor-

tex induced a new critical period in adults, diazepam does not

induce plasticity in adults (data not shown; Fagiolini and Hensch,

2000). Therefore it is unlikely that increased inhibition results in

plasticity following MGE cell transplantation. How then do trans-

planted cells induce such extensive plasticity in the adult?

Perhaps the addition of young interneurons weakens endoge-

nous inhibition, allowing developmental plasticity to occur for a

second time. Another possibility is that the transplanted cells

have little effect on endogenous inhibition and enact their own

intrinsic program for critical period plasticity. Future experiments

are needed to assess the physiological changes to endogenous

and transplanted cells during the induced critical period.

Inhibitory neuron transplantation provides a novel means to

investigate the developmental mechanisms that create the crit-

ical period. There is evidence that factors expressed at the onset

of the critical period trigger the maturation of inhibitory circuits

and set the timing of the critical period (Beurdeley et al., 2012;

Sugiyama et al., 2008). If the adult brain were no longer express-

ing these factors, transplantation should not produce plasticity.

However, if these factors remained present in the adult, trans-

plantation should have produced plasticity earlier than we

observed. Instead, Our findings suggest that the mechanism

responsible for producing the timing of the critical period is con-

tained within inhibitory neurons. This observation suggests that

extrinsic developmental factors are permissive, not instructive,

for the induction of critical period plasticity.

To our knowledge, this is the first demonstration that a focal

reactivation of plasticity in the cortex fully restores visual percep-

tion in impaired mice. Further, these results reveal that factors

intrinsic to inhibitory neurons from the MGE are responsible for

creating the critical period. Inhibitory neuron transplantation

offers a promising avenue for reorganizing the brain after injury

or disease. It also provides a broadly applicable new tool for

exploring the logic of postnatal development.



Please cite this article in press as: Davis et al., Inhibitory Neuron Transplantation into Adult Visual Cortex Creates a New Critical Period that Rescues
Impaired Vision, Neuron (2015), http://dx.doi.org/10.1016/j.neuron.2015.03.062
EXPERIMENTAL PROCEDURES

Animals

All protocols and procedures followed the guidelines of the Animal Care and

Use Committee at the University of California, Irvine. Embryonic donor tissue

was produced by crossing CD-1 wild-type mice with homozygous mice ex-

pressing red fluorescent protein tdTomato in either Parvalbumin (PV+) cells

(PV-tdT, PV-Cre) (Hippenmeyer et al., 2005) X (LSL-tdTomato) (Madisen

et al., 2010) or VGAT+ cells (Vong et al., 2011) (VGAT-tdT, VGAT-Cre;LSL-

tdTomato). Wild-type C57/BL6 host mice and CD-1 breeder mice were

obtained from Charles River Laboratories. All mice were housed individually

from experiment onset.

Tissue Dissection

The medial or lateral ganglionic eminence (MGE or LGE) was dissected from

embryonic day 13.5 (E13.5) PV-tdT (adult MD experiments) or VGAT-tdT (vi-

sual deficit rescue experiments) embryos as previously described (Southwell

et al., 2010). Caudal ganglionic eminence (CGE) was dissected at E13.5

from VGAT-tdT embryos by taking approximately the caudal third of the

ganglionic eminence. Detection of a sperm plug was used to define E0.5. Ex-

plants were maintained in chilled L-15 medium with 15 mM HEPES buffer until

transplantation. For dead MGE, cells in L-15 underwent three cycles of freeze-

thaw (33 �20�C to 100�C) and were stored at �20�C until transplantation.

Retinotopic Map-Guided Cell Transplantation

A map of binocular visual cortex was obtained using intrinsic signal imaging

(described below; also see Figure 1A). This map guided the placement of skull

slits medial and lateral to binocular visual cortex using a dental drill (Midwest

78044) and FG1/4 carbide burr (see Figure 1A, red dashed rectangles). Cells

were loaded into a beveled glass micropipette (�75 mm tip diameter; Wiretrol

5 ml, DrummondScientific Company) using a custom-designed hydraulic injec-

tion apparatus. The micropipette was positioned at a 45� angle to the cortical

surface and advanced axially�700 mm into the cortex. Injections of cells�15–

20 nL (�2,000 cells/nL) were made at three locations along each slit; totaling

63 �15–20 nL and �12,000 cells per host animal (see Figure 1A). The scalp

was then sutured, anesthesia was terminated, and the animal was placed on

a warm surface until mobile.

Monocular Deprivation

During critical period or adult MD, if an eye opened prematurely or was found

to be damaged, the animal was excluded from the study. For ocular domi-

nance plasticity experiments, the eyelid contralateral to the site of transplanta-

tion was closed for 4 days using two mattress sutures (7-0 silk, Ethicon) and

checked daily. To produce visual deficits, One eyelid was closed using one

silk mattress suture. This closure wasmaintained for the duration of the normal

critical period (�P18–P32) and was checked daily (Prusky and Douglas, 2003).

If signs of suture fraying were observed, a small drop of tissue adhesive (60%

2-octyl and 40% N-butyl cyanoacrylate; GLUture) was applied to the

suture knot.

Surgical Preparation

All mice were anesthetized with isoflurane in O2 (2%–3% for induction;

1.5% for surgical procedures; 0.6%–0.9% for imaging). During imaging

sessions, anesthesia was supplemented by a single intraperitoneal injec-

tion of chlorprothixene (1 mg/kg). Atropine (0.3 mg/kg SQ) and carprofen

(5 mg/kg) were administered subcutaneously to reduce secretions and to

provide analgesia, respectively. For experiments lasting 3 or more hours,

0.15 mL saline was administered every 1–1.5 hr. Body temperature was

maintained at 37.5�C using a feedback controlled homeothermic heating

pad. For all imaging experiments, eyelashes were trimmed and a thin

coat of silicone oil (30,000 cSt; Dow Corning) was placed over the eyes

for protection.

Two-Photon Calcium Imaging

Twoweeks prior to imaging, transplant recipients were injected with AAV-Syn-

GCaMP6s (UPenn Vector Core AV-1-PV2824; supplied by the GENIE Project,

Janelia Farm Research Campus, HHMI) into binocular visual cortex (23 150–
250 nL, 10 nL/min) using a custom-designed hydraulic injection system. One to

two days before imaging, custom made titanium headplates were affixed to

the skull using Vet bond and dental acrylic. The skull over visual cortex was

thinned to �50 mm using a dental drill with a carbide burr and a bendable mi-

croblade (Nordland Blades #6900).

Intrinsic Imaging

Surgical preparation was performed as previously described (Kaneko et al.,

2008). The skull over visual cortex was exposed and covered with agarose

(1.5% w/v in 13 PBS) and a coverslip. Agarose was sealed using sterile

ophthalmic ointment (Rugby) to prevent drying. For adult MD experiments,

monocular deprivation was initiated at the conclusion of pre-MD imaging.

Four days later, the sutured eyelid was opened and the skull was exposed

at the same location for the second recording session.

Visual Stimuli

Visual stimuli were generated by custom-written Matlab code using the Psy-

chophysics Toolbox (Brainard, 1997). All visual stimuli were confined to �5�

to +15� visual field azimuth (binocular visual field). The monitor was positioned

25 cm from the animal and covered with a color correction gel filter sheet (day

blue gel D2-70; Lowel) to better exploit the spectral sensitivity of mouse vision

(Jacobs et al., 2004).

Calcium Imaging of Orientation Selectivity

Drifting square wave gratings (0.05 cpd; 1 Hz) were presented at 12 orienta-

tions using an Acer V193 monitor (30 3 37 cm, 60 Hz refresh rate, 20 cd/m2

mean luminance). Each trial consisted of 6 s of drifting gratings followed by

6 s of gray screen. Four repeats at each orientation were presented in a pseu-

dorandomized order.

Mapping Binocular Visual Cortex and Assessing Ocular Dominance

Responses to stimulation of the contralateral (previously deprived) versus the

ipsilateral eye were recorded from the visual cortex that received transplanta-

tion. A visual noise stimulus was presented periodically sweeping either up or

down from –18� to 36� visual field elevation. The stimulus was created by

multiplying a band limited (<0.05 cyc/degree; >2 Hz) spatiotemporal noise

movie with a one dimensional Gaussian spatial mask (20�) that was phase

modulated at 0.1 Hz. For adult MD experiments, stimuli were presented on

an Acer V193 monitor (30 3 37 cm, 60 Hz refresh rate, 20 cd/m2 mean lumi-

nance). The stimulus was presented for 5 min to each eye in an alternating

pattern. One set of recordings was made each at 0� and 180� for four to six

sets resulting in a total of 40–60 min (four to six presentations of stimulus

movie per eye).

Assessing Acuity of Cortical Responses

For these experiments only responses to stimulation of the contralateral eye

were recorded from both the recipient and control hemisphere. Horizontal

sinusoidal gratings were presented. These gratings reversed in contrast

with a 0.1 Hz sinusoidal modulation. The spatial frequencies of gratings

shown were 0.05, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, and 0.7 cpd. A

grating stimulus at 2 cpd, well in excess of the mouse’s visual acuity (Prusky

and Douglas, 2003; Prusky et al., 2000), was also presented in order to

define background noise. Stimuli were presented on an Asus VG248 monitor

(303 53 cm, 144 Hz refresh rate, 35 cd/m2 mean luminance). Recording ses-

sions were performed separately in the recipient hemisphere for deprived

eye stimulation and control hemisphere for nondeprived eye stimulation.

One to two recordings were made at each spatial frequency for 5 min,

totaling 2–4 hr of recording.

Imaging Procedures

Transcranial, Repeated Intrinsic Signal Optical Imaging

Mapping of the primary visual cortex using Fourier intrinsic signal optical imag-

ing was performed through the intact skull as described previously (Kalatsky

and Stryker, 2003; Kaneko et al., 2008; Southwell et al., 2010). For adult MD

experiments, a custom-designed macroscope (Nikon 135 3 50 mm lenses)

equipped with a Dalsa 1M30 CCD camera was used to collect 5123 512 pixel

images sampled at 7.5 Hz (2.23 2.2 mm image area). For visual deficit rescue

experiments, a SciMedia THTmacroscope (Leica PlanApo 1.0X; 3.43 3.4 mm

image area) equipped with an Andor Zyla sCMOS camera was used. The sur-

face vasculature was visualized using a 530 nm LED light and intrinsic signal
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was visualized using a 617 nm LED light (Quadica for MD experiments; Thor-

labs LED4D210 for visual deficit rescue experiments). For intrinsic signal

recording in both adult MD and visual deficit rescue experiments, the camera

was focused�600 mmbeneath the pial surface. Custom written Matlab (Math-

works) code was used to acquire images and stream to disk. Visual stimuli

(described above) were presented and response data were collected in

5 min sessions.

Two-Photon Imaging of Calcium Signals

A Sutter MOM system was used to perform two-photon imaging of GCaMP6s

and tdTomato fluorescence using 920 nm excitation light (Mai Tai eHP

DeepSee). Image sequences typically covering a field of 140 3 140 mm

(1283 128 pixels) were acquired (6.1 Hz) using ScanImage software (v3.8) (Po-

logruto et al., 2003) at a depth of 150–300 mm below the pia. Red (Chroma

HQ605/75) and green (Chroma 565 dcxr) fluorescence emission channels

were gathered using a 403 0.8 NA IR objective (Olympus).

Visual Water Task

Visual acuity was assessed in a visual water maze, a forced choice, two-

alternative discrimination task (Prusky and Douglas, 2003). Acuity was deter-

mined through each eye independently. A post was surgically implanted onto

the skull of each mouse using dental acrylic to act as an attachment point for

removable custom-made eye occluders. One week later, mice were trained

and tested by an experimenter who was blind to experimental condition.

Mice learned to swim toward a hidden platform cued by vertical sine wave

gratings displayed at a spatial frequency of 0.063 cpd as viewed from the

choice plane (Figure 6A). Mice were trained until they reached performance

levels of 90%–100%. Mice then completed testing one eye at a time. During

testing, the stimulus was increased by 0.032 cpd when a mouse achieved

at least 70% correct over ten trials. Mice were required to successfully com-

plete three trials at frequencies below 0.28 cpd in order to advance. At

frequencies above 0.28 cpd they were required to complete five trials suc-

cessfully in order to advance. If an error was made, they were required to

complete a block of 10. When performance fell below 70%, the stimulus

was decreased by at least 0.096 cpd. Testing took around 200–250 trials

to complete.

Histological Preparation and Cell Counting

Animals were transcardially perfused with saline and 4% paraformaldehyde.

Brains were removed, post fixed, and cryoprotected with 30% sucrose. Cor-

onal brain sections (30 or 50 mm)were cut using a frozen slidingmicrotome (Mi-

crom HM450). Tissue was stained in free floating sections. Sections were

blocked for 1 hr at room temperature with 0.5% Triton-X (Sigma T8787) and

10% BSA (Fisher BP1600-100) in 13 PBS, then incubated overnight at 4�C
with the following primary antibodies: rabbit anti-tdTomato, 1:1,000 (Abcam

ab62341); mouse anti-PV, 1:1,000 (Sigma P3088); rat anti-SOM, 1:500 (Milli-

pore MAB354), and rabbit anti-VIP, 1:200 (ImmunoStar). Sections were then

washed three times in 13 PBS and incubated for 2 hr at room temperature

with fluorescein-labeled wisteria fluorubunda agglutinin at 1:500 (Vector

Labs FL-1351) and/or secondary antibodies from Invitrogen at 1:1,000 (goat

anti-rat IgG, goat anti-mouse IgG1, goat anti-rabbit IgG). Stained sections

were mounted on glass slides with Fluoroshield containing DAPI (Sigma

F6057), coverslipped, and imaged using an epifluorescence microscope

(Zeiss Axio Imager 2) with a 203 objective (0.8 NA). For cell counting, sections

of recipient visual cortex were sampled at 200 or 300 mm intervals. In order to

assess the number of transplanted cells in recipient brains, all cells that were

tdTomato positive and judged to possess a neuronal morphology were tallied.

Data Analysis

Orientation Selectivity of Cellular Responses

Custom-written Python routines were used to remove motion artifact, identify

cell ROIs, extract calcium fluorescence traces, and perform analyses.

Transplanted PV+ cells were identified by the expression of tdTomato.

The fluorescence signal of a cell body at time t was determined as Fcell (t) =

Fsoma(t) – (R x Fneuropil(t)) (Chen et al., 2013; Kerlin et al., 2010). Rwas empirically

determined to be 0.7. The neuropil signal Fneuropil(t) of each cell was measured

by averaging the signal of all pixels outside of the cell and within a 20 mm region

from the cell center. In order to quantify orientation responses, each fluores-
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cence trace recorded during the 6 s stimulus presentation was normalized

to the average baseline signal for the preceding 3 s (DF/F0). For each

orientation condition, a response was computed by taking the average of

the normalized fluorescence traces during the stimulus presentation. From

these orientation-specific responses, an orientation selectivity index (OSI)

was quantified as (Rpref � Rorth)/(Rpref + Rorth), where Rpref is the largest

response and Rorth is the response observed at the orthogonal angle to the

preferred response (Niell and Stryker, 2008). Cells that responded to the

preferred orientationwith an averageDF/F0 below 6%were determined nonre-

sponsive and excluded from analysis (4/125).

Intrinsic Signal Imaging

Maps of amplitude and phase of cortical responses were extracted from opti-

cal imaging movies via Fourier analysis of each pixel column at the frequency

of stimulus repetition (0.1 Hz) (Kalatsky and Stryker, 2003; Southwell et al.,

2010) using custom written Matlab code. Overall map amplitude was com-

puted by taking the maximum of the Fourier amplitude map smoothed with

a 5 3 5 Gaussian kernel. Maps of retinotopic phase are shown in terms of

visual field angle.

Quantification of Ocular Dominance

Ocular dominance index (ODI) was computed as ODI = (C � I)/(C + I) where

C and I are the averaged map amplitudes calculated for contralateral and ipsi-

lateral visual stimulation, respectively. Ocular dominance shift (ODS) was

calculated for each animal in the adult MD experiments as ODS = (post-MD

ODI – pre-MD ODI).

Quantification of Acuity of Visual Cortical Responses

Responses at the following spatial frequencies were recorded for each animal:

0.05, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, and 2 cpd. For each recording

session, the amplitudeof the visual responsemap to2cpdwas subtracted from

the response amplitudes of maps for all other spatial frequencies. For each an-

imal, the highest response to stimulation of the nondeprived eye was taken as

100%, and all other responses were normalized with respect to this value.

Quantification of Cortical Visual Acuity Thresholds

Background noise was taken as the average amplitude of the visual response

map to 2 cpd, a stimulus well beyond the limit of mouse spatial acuity. It

was determined that the average background noise amplitude (1.52 ± 0.08

DF/F 3 104) was �20% of the average peak amplitude of the response

(7.3 ± 0.64 DF/F 3 104). Based on this we determined the threshold of acuity

to be the stimulus spatial frequency at which responses fell below 20% (back-

ground level) of an animal’s nondeprived eye maximum response.

Determination of Perceptual Acuity from Performance on Visual

Water Task

Performance on the water task with stimuli of varying spatial frequency was re-

corded over 200–250 trials as percent correct at a given frequency. The

threshold of acuity was determined by the spatial frequency corresponding

to the 70% value of the sigmoidal fit to performance data (see Figure 6B)

(Prusky et al., 2000).

Statistical Analyses

A one-way ANOVA using Tukey’s correction for multiple comparisons was

used to compare the mean rank of all groups and determine the differences

in the orientation selectivity of transplanted and endogenous PV+ and neigh-

boring PV� neurons (F(3, 117) = 17.56, p < 0.0001; tPV� versus tPV+, p =

0.0002; tPV� versus ePV+, p = 0.001; tPV+ versus ePV�, p < 0.0001; ePV� versus

ePV+, p < 0.0001) (Figure 2D).

A Wilcoxin matched pairs signed rank test was used to compare ODI before

versus after 4 days MD in each group in the adult MD experiments. Critical

period animals, yellow n = 6: W(5) = �21, p = 0.03; MGE 35 DAT, magenta

solid n = 9: W(8) = �45; p = 0.0039; untreated, gray n = 7: W(6) = 2.0, p =

0.88; MGE 70 DAT, cyan n = 8: W(7) = �18, p = 0.16; dead MGE, magenta

dashed n = 4 W(3) = �3.0, p = 0.75; LGE, black solid n = 5: W(4) = �5.0,

p = 0.56; CGE, black dashed, n = 3, W(2) = 0, p > 0.99. Data for two animals

in each of the MGE 70 DAT group CGE group, and critical period group had

recordings for only the pre-MD time point that are included in the plot, but not

the statistical analysis as they lack the matched post MD paired data

(Figure 3B).

A Kruskal-Wallis ANOVA was used to determine significance of differences

in ocular dominance shifts across groups in the adult MD experiments



Please cite this article in press as: Davis et al., Inhibitory Neuron Transplantation into Adult Visual Cortex Creates a New Critical Period that Rescues
Impaired Vision, Neuron (2015), http://dx.doi.org/10.1016/j.neuron.2015.03.062
H = 27.12, p = 0.0001. Mean ranks for control groups were compared to mean

rank for critical period animals. Significance values were corrected for multiple

comparisons using Dunn’s test: critical period animals, yellow, n = 5 versus

MGE 35 DAT, magenta solid, n = 9: p > 0.99; versus untreated, gray n = 7:

p < 0.003; versus MGE 70 DAT, cyan n = 8: p = 0.008; versus dead MGE,

magenta stripes n = 4: p = 0.03; versus LGE, black n = 5: p = 0.02; versus

CGE, black crosshatched, n = 5: p = 0.02 (Figure 3C).

A paired t test was used to determine differences between shifts (before and

after 4 days MD) in contralateral (deprived) and ipsilateral (nondeprived)

response amplitudes following monocular deprivation in adult MD experi-

ments. A D’Agostino-Pearson omnibus test for normality and a ROUT test

for outliers with Q set to 1% were used to confirm that data satisfied the as-

sumptions of the t test; contra (n = 8) shift: paired t test; t(7) = 4.83, p =

0.0019; ipsi (n = 8) shift: t(7) = 0.045, p = 0.97 (Figure 3D).

An unpaired t test was used to assess differences in PV+ cell counts for 35

DAT and 70 DAT MGE recipient groups. No difference between groups was

observed (MGE 35 DAT, 262 ± 90 cells versus MGE 70 DAT, 430 ± 112,

t(9) = 1.02, p = 0.34). Insignificant numbers of PV+ cells were observed in

LGE recipients, 42 ± 34 cells.

A linear regression and correlation analysis were used to determine whether

there was a linear relationship between number of transplanted PV+ neurons

and degree of plasticity induced in MGE cell recipients: R2 = 0.042, F(1,13) =

0.57, p = 0.46 (Figure 4).

An analysis of covariance (ANCOVA) was used to determine significance of

differences between slopes and intercepts (intercepts were not assessed

when slopes were too different for accurate assessment) of all linear regres-

sion lines in visual deficit rescue experiments; live MGE deprived eye 15

DAT (n = 6) versus 55 DAT (n = 5): slope, F(1,151) = 6.52, p = 0.01. Dead

MGE deprived eye 15 DAT(n = 3) versus 55 DAT(n = 3): slope, F(1,66) = 3.37,

p = 0.07; intercept, F(1,67) = 0.027, p = 0.87, n.s. (Figures 5D and 5E);

MGE deprived 55 DAT (n = 5) versus nondeprived 15 DAT (n = 6): slope,

F(1,151) = 0.055, p = 0.82; intercept, F(1,152) = 1.34, p < 0.25. MGE deprived

(n = 6) versus nondeprived (n = 4) eye 55 DAT: slope, F(1,136) = 0.278, p =

0.6; intercept, F(1,137) = 6.44, p = 0.99; MGE deprived 15 DAT versus untreated

impaired animals at P170: slope, F(1,116) = 1.30, p = 0.26; intercept, F(1,117) =

0.34, p = 0.56; dead MGE deprived versus live MGE deprived 55 DAT: slope,

F(1,116) = 10.52, p = 0.002; deprived eye 0 DAT versus 19-24 DAT: slope,

F(1,101) = 0.56, p = 0.46; intercept, F(1,102) = 2.86, p = 0.09 (Figure S5).

Kruskal-Wallis ANOVA was used to determine significance of differences in

cortical visual acuity for the following: nondeprived eye (15 and 55DAT assess-

ments averaged) versus deprived eye 15 DAT (live and dead MGE values aver-

aged), live MGE deprived eye 55 DAT, dead MGE deprived eye 55 DAT, and

deprived eye in untreated impaired animals (�P170). H = 28.35, p < 0.0001.

Mean rank for each group was compared to mean rank for the nondeprived

eye. Significance valueswere corrected formultiple comparisons usingDunn’s

test: nondeprived eye (n = 18, green) versus recovery of deprived eye in live

MGE recipients 55 DAT (magenta solid, n = 5) p > 0.99; versus deprived

eye MGE recipients 15 DAT (black, n = 7) p = 0.002; versus deprived eye in

deadMGE recipients 55 DAT (magenta stripes, n = 3) p = 0.04; versus deprived

eye in untreated impaired animals �P170 (gray, n = 4), p = 0.03 (Figure 5F).

An ordinary one-way ANOVA was used to determine significance of differ-

ences perceptual visual acuity for the deprived and nondeprived eyes from

both recipients and nonrecipients as well as from naive animals that were

never deprived and received no treatment (MGE recipients deprived eye,

n = 5; nonrecipients deprived eye, n = 9; nondeprived eyes, n = 18; naive

animals, n = 9), F(3, 37) = 7.52, p = 0.0005. Mean rank for each group was

compared to mean rank for each other group. Significance values were cor-

rected for multiple comparisons using Tukey’s test; MGE recipient deprived

eye versus nondeprived eye, p = 0.97;MGE recipient deprived eye versus non-

recipient deprived eye, p = 0.007; MGE recipient deprived eye versus naive

animal, p = 0.99; nonrecipient deprived eye versus nondeprived eye, p =

0.0008; nonrecipient deprived eye versus naive animals, p = 0.003; nonde-

prived eye versus naive animals, p = 1.0 (Figure 6C).

A paired Mann-Whitney test was used to determine significance of differ-

ences in maximum performance on the behavioral task for the nondeprived

eye in impaired animals versus naive controls. Normal performance using

the nondeprived eye confirmed that each animal was capable of performing
the task and that the acuity deficit observed was specific to the deprived

eye (U(11) = 12.50, p = 0.21; Figure 6B, middle, inset graph).

All error was reported or plotted as SEM. All statistical analyses were per-

formed using Prism 6.03 (Graphpad).
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