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Abstract: 

Moiré superlattices provide a powerful tool to engineer novel quantum phenomena in two-

dimensional (2D) heterostructures, where the interactions between the atomically thin layers 

qualitatively change the electronic band structure of the superlattice. For example, mini-Dirac 

points, tunable Mott insulator states, and the Hofstadter butterfly can emerge in different types of 

graphene/boron nitride moiré superlattices, while correlated insulating states and 

superconductivity have been reported in twisted bilayer graphene moiré superlattices1-12. In 

addition to their dramatic effects on the single particle states, moiré superlattices were recently 

predicted to host novel excited states, such as moiré exciton bands13-15.  Here we report the first 

observation of moiré superlattice exciton states in nearly aligned WSe2/WS2 heterostructures. 

These moiré exciton states manifest as multiple emergent peaks around the original WSe2 A 

exciton resonance in the absorption spectra, and they exhibit gate dependences that are distinctly 

different from that of the A exciton in WSe2 monolayers and in large-twist-angle WSe2/WS2 

heterostructures. The observed phenomena can be described by a theoretical model where the 

periodic moiré potential is much stronger than the exciton kinetic energy and creates multiple flat 

exciton minibands. The moiré exciton bands provide an attractive platform to explore and control 

novel excited state of matter, such as topological excitons and a correlated exciton Hubbard 

model, in transition metal dichalcogenides.  

 

  



A moiré superlattice can form between two atomically thin materials with similar lattices, and its 

period varies continuously with the twist angle between the constituent layers. The periodic 

moiré pattern introduces a new length and energy scale, providing a powerful new way to control 

quantum phenomena in 2D heterostructures1-12. The most striking moiré superlattice phenomena 

emerge in the “strong-coupling” regime, where the periodic moiré potential dominates over the 

relevant kinetic energy and qualitatively changes the electronic band structure and the electron 

wavefunction in the heterostructure. Recently, it was reported that “strong-coupling” moiré 

superlattices can generate flat electronic bands, leading to exotic phases such as correlated 

insulating states and superconductivity in magic-twist-angle bilayer graphene and tunable Mott 

insulator states in trilayer graphene/boron nitride heterostructures1-6.  

Moiré superlattices also offer exciting opportunities to engineer the band structure of collective 

excitations, such as excitons in 2D semiconducting heterostructures. Monolayer transition metal 

dichalcogenides (TMDCs) are direct bandgap semiconductors that feature strong light-exciton 

interactions and dramatically enhanced electron-electron interactions. Exciton binding energies 

in monolayer TMDCs can be hundreds of meV – orders of magnitude larger than what is seen in 

typical semiconductors like silicon or GaAs16,17– which leads to well defined dispersive exciton 

bands in the Brillouin zone.  Recently it was predicted that moiré superlattices in the “strong 

coupling” regime could lead to moiré exciton minibands in TMDC heterostructures13-15, which 

are distinctly different from the separate electron and hole minibands due to the strong electron-

hole correlation.  

Here we report the first experimental observation of moiré excitons in nearly aligned WSe2/WS2 

heterostructures. The moiré superlattice splits the WSe2 A exciton resonance into multiple peaks 

that all exhibit comparable oscillator strengths in the absorption spectrum. Furthermore, the 



emergent exciton peaks show distinct doping dependences that are different from that of the A 

exciton in WSe2 monolayers and in large-twisting-angle WSe2/WS2 heterostructures. This 

unusual behavior can be understood using an empirical model for moiré excitons with a peak-to-

peak exciton moiré potential of 250 meV. The periodic potential energy is much larger than the 

exciton kinetic energy of 8 meV within the first mini-Brillouin zone, and it completely changes 

the exciton dispersion in the moiré superlattice, leading to flat low-energy exciton bands with 

highly localized exciton density of states. The near-aligned WSe2/WS2 moiré superlattice can 

therefore potentially host a variety of novel excitonic states, such as topological exciton bands 

and a strongly-correlated exciton Hubbard model13-15,18,19. 

Figure 1a and b show an optical microscopy image and a side-view schematic of a representative 

WSe2/WS2 heterostructure device (D1). The results measured from device D1 are reproducible in 

all near-aligned heterostructures that we fabricated (see supplementary information). The 

WSe2/WS2 heterostructure is encapsulated in thin hexagonal boron nitride (hBN) layers. Few 

layer graphite (FLG) flakes are used for both the bottom gate and the electrical contacts to the 

heterostructure. The carrier concentration in the heterostructure can be tuned continuously with 

the back gate voltage Vg. All of the two-dimensional materials were first mechanically exfoliated 

from bulk crystals and then stacked together by a dry transfer method using a polyethylene 

terephthalate (PET) stamp (see Methods). The whole stack was then transferred onto a 90 nm 

SiO2/Si substrate. The relative twist angle between the WSe2 and WS2 layers was determined 

optically using polarization-dependent second harmonic generation (SHG) measurements. 

Characteristic six-fold SHG patterns are clearly observed for the WSe2 layer (green color) and 

the WS2 layer (yellow color) in Fig. 1c, from which we can determine the relative twist angle 

between the two layers to be <0.5 degree (see supplementary information).  



For a near-zero twist angle heterostructure, the lattice mismatch between the two layers is 

dominated by the intrinsic lattice constant difference of about 4% (Ref. 20) , which leads to a 

moiré periodicity 	ܮெ ൎ 8 nm (Fig. 1d). Similar moiré superlattices have been observed 

experimentally using scanning tunneling microscope (STM) in aligned WSe2/MoS2 

heterostructures21,22, which have lattice constants almost identical to the WSe2/WS2 

heterostructure. To confirm the formation of the moiré superlattice in our WSe2/WS2 

heterostructure, we prepared another device (D2) on a transmission electron microscopy (TEM) 

grid and collected high resolution TEM images of the device (see methods). Rich sets of 

diffraction patterns are observed in the Fourier transform of the TEM image in Fig. 1e, which 

shows the main diffraction peaks from the WSe2, WS2, and hBN layers as well as side peaks 

from the local reconstruction of the atomic structures due to layer-layer interactions. A zoomed-

in image (Fig. 1f) shows a well-defined hexagonal lattice in the center region that corresponds to 

a real space periodicity of ~ 8 nm. This indicates that a periodic lattice distortion with ~ 8 nm 

periodicity exists in the heterostructure in real space, which is consistent with strong layer-layer 

interaction and significant lattice reconstruction within the moiré superlattice observed in 

previous STM studies21,22. 

We probe the moiré excitons in WSe2 with optical spectroscopy at a temperature of 10 Kelvin. 

Figure 2a shows the photoluminescence (PL) spectrum of device D1 (blue curve) and a reference 

monolayer WSe2 sample (green curve) in both linear (main panel) and logarithmic (inset) scale. 

The heterostructure PL features a single peak at 1.409eV, corresponding to the emission from the 

interlayer exciton, and does not show any emission from WSe2 A exciton. This indicates an 

efficient interlayer charge transfer across the whole measured region that leads to strong 

quenching of the WSe2 PL23,24. The exciton absorption in the same heterostructure region is 



directly probed through reflection contrast measurements (top panel in Fig. 2b), where a slowly 

varying background has been subtracted to better resolve the resonances (see supplementary 

information). The absorption spectrum from D1, a nearly aligned heterostructure, is strikingly 

different from that of a large-twist-angle WSe2/WS2 heterostructure measured at the same 

condition (lower panel in Fig. 2b). We focus on the spectral range between 1.6 to 1.8 eV as it is 

well-separated from all WS2 resonances. While the large-twist-angle heterostructure shows only 

a WSe2 A exciton peak at 1.715 eV, three prominent peaks emerge in device D1 at 1.683, 1.739, 

and 1.776 eV, labeled as resonance I, II, and III, respectively. All three resonances show strong 

absorption, with peak II and peak III having oscillator strengths at 20% and 50% of the peak I 

value. To better understand these new exciton peaks, we measured the photoluminescence 

excitation (PLE) spectrum of the device D1 (black dots in Fig. 2c) by monitoring the interlayer 

exciton emission intensity as the excitation photon energy was swept from 1.6 to 2.1 eV. The 

excitation spectrum shows perfect correspondence to the results from reflection spectroscopy 

(blue line in Fig. 2c). In particular, the new exciton peaks between 1.6 to 1.8 eV all give rise to 

strong enhancement of the interlayer exciton emission at 1.409 eV, indicating that they arise 

from the strongly coupled WSe2/WS2 heterostructure. 

To further investigate the nature of the emergent exciton resonances, we measure their doping 

dependence (Fig. 3a). The horizontal and vertical axes represent the photon energy and gate 

voltage Vg, respectively, and the color corresponds to reflection contrast. The charge neutral 

point is approximately at Vg=0, and positive and negative Vg values correspond to electron- and 

hole-doping, respectively. The three main peaks in the WSe2 A exciton range show rich behavior, 

with dramatic spectral changes upon both electron and hole doping. The strong gate-dependence 

upon electron doping is particularly remarkable: Due to the type-II band alignment in WSe2/WS2 



heterostructures, doped electrons reside mostly in the WS2 layers and tend to have relatively 

weak effects on the intra-layer A exciton resonance in WSe2 (Ref. 25,26). Indeed, previous 

studies of large-twist-angle WSe2/WS2 heterostructures shows that the WSe2 A exciton 

resonance only experiences a slight redshift upon electron doping of the heterostructure26. In 

contrast, the exciton peaks in D1, a nearly aligned heterostructure with a large moiré superlattice, 

show unusual dependences on electron doping that varies for different peaks (Fig. 3b). Both peak 

I and peak III are strongly modified at increasing electron concentration: Peak I shows a strong 

blueshift and transfers its oscillator strength to another emergent peak at lower energy (I’), and 

peak III also shows a strong blueshift with diminished oscillator strength. On the other hand, 

peak II remains largely unchanged except for a small energy shift. 

The strong effect of electrons in WS2 on certain exciton transitions in WSe2 indicates 

dramatically enhanced interlayer electron-exciton interactions through the moiré superlattice. In 

addition, the strikingly different gating behavior of the exciton peaks cannot be explained by any 

established electron-exciton interactions in monolayers, such as dielectric screening effects or 

trion formation, which affect all exciton peaks in a similar fashion27-29. Instead, it indicates that 

the exciton peaks I, II, and III correspond to very different exciton states within the moiré 

superlattice.  

Both the emergence of multiple exciton peaks around the WSe2 A exciton resonance and their 

peculiar electron doping dependence can be understood within an empirical theory in which a 

periodic moiré exciton potential in the “strong coupling” regime is introduced.  We follow the 

theoretical model in Ref. 13 and describe the center-of-mass motion of WSe2 A excitons using 

the Hamiltonian  



ܪ ൌ ܪ  ܸexp	ሺ݅࢈ ∙ ሻ࢘



ୀଵ

,							ሺ1ሻ 

where ܪ is the low energy effective Hamiltonian for the A exciton 1s state in monolayer WSe2. 

ܸ describes the effective potential on the exciton created by the moiré pattern; its momentum is 

given by the reciprocal lattice vectors of the moiré superlattice,  ࢈ (see supplementary 

information). Owing to the three-fold rotational symmetry and Hermitian requirement, only one 

component in ܸ is independent and can be defined as ଵܸ ൌ ܸexpሺ݅߰ሻ. 

The exciton dispersion in the mini-Brillouine Zone (mBZ) can be directly calculated from this 

model (see Fig. 4, a-c). Without the moiré potential, the exciton shows two continuous bands at 

low energy (Fig. 4a). These two bands are degenerate at ߛ point, and have parabolic and linear 

dispersion, respectively, as a consequence of the intervalley exchange interaction13,30. Because 

photons have negligible momentum, only the lowest energy exciton can interact with light, 

giving a single strong peak at ܧ ൌ   in the absorption spectrum (Fig. 4d). The moiré potentialܧ

can mix exciton states with momenta that differ by ࢈, leading to additional absorption peaks 

from the ߛ point states of higher-energy minibands.  

When the moiré potential is weak (ܸ ൌ 5 meV, Fig. 4b), the exciton dispersion remains largely 

unchanged. Therefore, the emergent side peak in absorption always appears at ~30 meV above 

the main peak, regardless of the exact form of the moiré potential (Fig. 4e). Furthermore, the 

amplitude of the side peak is orders of magnitude smaller than the main peak due to the weak 

mixing between states. These features pose sharp contrast to the experimental absorption 

spectrum and cannot explain our observations. On the other hand, a larger moiré potential that 

corresponds to the “strong coupling” regime dramatically modifies the exciton dispersion, (see 



Fig. 4c). As a result, the energy of the moiré exciton states in different minibands (labeled I to III 

in Fig. 4c), as well as of the corresponding absorption peaks (peak I to III in Fig. 4f), become 

sensitively dependent on the moiré potential. In addition, the strong mixing between different 

exciton states make their oscillator strengths comparable to each other. By taking ܸ ൌ 25 meV 

and ߰ ൌ 15°, the simulated absorption spectrum can reproduce our experimental observation 

(Fig. 4f, see also supplementary information). This moiré potential has a peak-to-peak amplitude 

of ~ 250 meV, which is much larger than the exciton kinetic energy of ~ 8 meV within the first 

mini-Brillouin zone (see supplementary information). 

The dramatic change in the exciton dispersion in momentum space implies that the exciton 

center-of-mass wavefunction is also strongly modified in real space. Figures 4g-i show the 

distribution of the exciton probability density for states I to III in the moiré superlattice. The 

originally homogeneous wavefunction distribution is dramatically changed by the moiré 

potential. For example, the lowest energy state (state I) is trapped around the moiré potential 

minimum (labeled as point ) in a length scale much smaller than the moiré superlattice (Fig. 4g). 

As a result, excitons in different moiré periods are well separated, forming an effective exciton 

lattice with significantly reduced hopping between neighboring lattice sites, which is consistent 

with the significantly reduced bandwidth in their momentum dispersion. 

The peculiar wavefunction distribution of moiré excitons in the “strong coupling” regime 

introduces a new degree of freedom that is determined by the exciton location in the moiré 

superlattice. Interestingly, both peak I and III are centering around the same point , while peak 

II has its largest amplitude at a different point Fig. 4, h-i). The difference in real space 

position between moiré exciton states can account for their distinctive doping-dependence: The 

doped electrons will also have localized density of states in real space21,22. If the gate-induced 



electrons in WS2 are also localized at point  in the moiré superlattice, they will predominantly 

change the exciton peaks I and III and leave exciton peak II little affected, as observed in the 

experiment. 

We note that a complete description of the moiré exciton optical spectra will require a much 

more sophisticated model that fully accounts for the lattice relaxation and corrugation, as well as 

the interlayer electronic states hybridization in the heterostructure moiré superlattice, which is 

beyond the scope of this study. Nevertheless, our simple moiré exciton model captures most of 

the salient features observed experimentally, and it shows that WS2/WSe2 heterostructures 

exhibit sufficiently strong interlayer interaction to enter the “strong coupling” regime for 

excitons, where the moiré excitons become spatially concentrated at well-separated points and 

form a quantum array in an extended moiré superlattice13-15.  The significantly reduced exciton 

bandwidth also makes this artificial exciton lattice a promising platform for realizing exotic 

phases such as a topological exciton insulator and a strongly-correlated exciton Hubbard model.   

  



Methods: 

Heterostructure preparation for optical measurements: WSe2/WS2 heterostructures were 

fabricated using a dry transfer method with a polyethylene terephthalate (PET) stamp31. 

Monolayer WSe2, monolayer WS2, few-layer graphene, and thin hBN flakes were exfoliated 

onto silicon substrates with a 90 nm SiO2 layer. Polarization-dependent SHG was used to 

determine the relative angle between the WS2 and WSe2 flakes (see text and supplementary 

information for details). A PET stamp was used to pick up the top hBN flake, the WS2 

monolayer, the WSe2 monolayer, several few-layer graphene flakes for electrodes, the bottom 

hBN flake, and the few-layer graphene back gate in sequence. The angle of the PET stamp was 

adjusted between picking up the WS2 and the WSe2 to assure a near-zero twist angle between the 

flakes. The PET stamp with the above heterostructure was then stamped onto a clean Si substrate 

with 90 nm SiO2, and the PET was dissolved in dichloromethane for 12 hours at room 

temperature. The PET and samples were heated to 60 °C during the pick-up steps and to 130 °C 

for the final stamp process. Contacts (~75 nm gold with ~5 nm chromium adhesion layer) to the 

few-layer graphene flakes were made using electron-beam lithography and electron-beam 

evaporation.  

Heterostructure preparation for TEM: WS2/WSe2 heterostructures were prepared for TEM 

characterization using a modified dry transfer technique with a PET stamp. WS2 monolayers, 

WSe2 monolayers, and thin hBN flakes were exfoliated and SHG measurements were used to 

determine flake orientation, as described above. A PET stamp was used to pick up the top hBN 

flake, the WS2 monolayer, the WSe2 monolayer, and the bottom hBN flake in sequence. A Ted 

Pella Quantifoil TEM grid with 2 µm holes (657-200-AU) was placed on a silicon chip that was 

attached to the transfer stage. The PET stamp was lowered until it was in contact with the TEM 



grid, and then the temperature was raised to 80 °C until the stamp and the grid were well 

contacted, as seen through an optical microscope. The PET stamp and TEM grid were then 

placed in dichloromethane for 12 hours at room temperature to dissolve the PET. 

High-resolution TEM imaging and FFT analysis: High-resolution TEM images of the hBN-

encapsulated WS2/WSe2 heterostructure were taken under 200 keV accelerating voltage for the 

electron beam. A fast Fourier transform with high-pass filter was performed on each high-

resolution TEM image to show the superlattice periodicity in the WS2/WSe2 heterostructure in 

reciprocal space.  

 

Data availability. 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request. 
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Figures: 

 

Figure 1│Moiré superlattice in near-zero twist angle WSe2/WS2 heterostructure. a, b, 

Optical microscope image (a) and side-view illustration (b) of a representative near-zero twist 

angle heterostructure (device D1). c, The polarization-dependent SHG signal measured on the 

monolayer WSe2 (green circles) and WS2 (yellow circles) regions in device D1 and the 

corresponding fittings (green and yellow curves). The SHG results confirm that the WSe2 and 

WS2 twist angle is smaller than our experimental uncertainty of 0.5 degree. d, Illustration of the 

moiré superlattice in real space. The superlattice vectors, a1 and a2, have a length of ~ 8 nm. e, f, 

Fourier transform of the TEM image of another near-zero twist angle WSe2/WS2 heterostructure 

(device D2) (e) and the zoom-in plot at the center region (f). Representative first order diffraction 

points are labelled by circles in e for top and bottom hBN (light blue) and the WSe2/WS2 

heterostructure (red), respectively. Two well-defined hexagonal lattices are observed in the 

center region, and the inner one (arrow in f) corresponds to a periodic lattice distortion with ~ 8 

nm periodicity, consistent with the formation of a moiré superlattice. Scale bar: 2 nm-1. 

  



 

 

Figure 2│Moiré exciton states in WSe2/WS2 moiré superlattice. a, PL spectrum of device D1 

(blue) and a reference monolayer WSe2 sample (green curve) in both linear (main panel) and 

logarithmic (inset) scale. The complete disappearance of monolayer PL in the heterostructure 

indicates efficient interlayer coupling across the whole measured region. b, Reflection contrast 

spectrum of device D1 (blue color, upper panel) compared to a large-twist-angle WSe2/WS2 

heterostructure device (navy color, lower panel). The latter only shows a single resonance in the 

energy range between 1.6 to 1.8 eV from the WSe2 A exciton state. In contrast, the moiré 

superlattice formed in device D1 gives rise to three prominent peaks with comparable oscillator 

strength in this range (labelled as I to III), corresponding to different moiré exciton states. c, 

Comparison between the interlayer exciton photoluminescence excitation spectrum (black dots) 

and the reflection spectrum (blue curve). Strong enhancement of interlayer exciton 

photoluminescence is observed when excited at all moiré exciton states, indicating that all states 

are from the strongly-coupled WSe2/WS2 heterostructure. 

  



 

Figure 3│Doping dependence of the moiré exciton resonances. a, Gate-dependent reflection 

contrast spectrum of device D1 with both electron- (positive Vg) and hole- (negative Vg) doping.  

White dashed box encloses the photon energy range near the WSe2 A exciton, where the three 

prominent moiré exciton states (labeled as I, II, and III) appear. b, Detailed reflection contrast 

spectra in the WSe2 A exciton range on the electron-doping side, which reveal unusual gate-

dependence of the moiré exciton states: Peak I shows a strong blueshift and transfers its 

oscillator strength to another emerging peak at lower energy (I’), and peak III shows a strong 

blueshift with diminished oscillator strength. On the other hand, peak II remains largely 

unchanged except for a small energy shift. These observations cannot be explained by any 

established electron-exciton interactions in TMD monolayers. 

  



 

Figure 4│ Moiré excitons in the “strong-coupling” regime. a-c, WSe2 A exciton dispersion in 

the mini-Brillouin zone with a moiré potential parameter V=0 meV (zero coupling, a), 5meV 

(weak couping, b), and 25 meV (strong coupling, c), and the corresponding absorption spectrum 

(d-f). A broadening of 2 meV is used in calculating the absorption spectrum. Inset in (a) 

illustrates the mini-Brillouin zone in momentum space and the high-symmetry points. The 

absorption spectrum features a single resonance at energy E0 at zero moiré potential (d), and 

shows a small side peak fixed at ~ 30 meV under a weak moiré potential (e). These features 

cannot explain our experimental observation. On the other hand, the exciton dispersion is 

strongly modified in the “strong-coupling” regime due to the strong mixing between different 

exciton states (c), which gives rise to multiple moiré exciton peaks with comparable oscillator 



strength in the absorption spectrum (peak I to III in f) from different moiré mini-bands (state I to 

III in c). The experimentally observed reflection contrast can be reproduced by taking ܸ ൌ 25 

meV and ߰ ൌ 15°. g-i, Real space distribution of exciton center-of-mass wavefunction in the 

“strong-coupling” regime. The strong moiré potential traps the lowest-energy exciton state I 

around its minimum point  (g). Interestingly, state III is also centered at point  but state II is 

centered at a different point (h, i), which can account for the remarkably different gate 

dependence between the moiré exciton states. 
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1. Results from additional near-aligned heterostructures 

The moiré excitons observed in device D1 and described in the text are reproducible in all near-
aligned heterostructures that we fabricated, with crystals from several commercial and academic 
sources. For example, Fig. S1 shows the reflection contrast and PLE measurement results from 
another near-aligned heterostructure device D3 when it is slightly n-doped. Four resonances (I’, I, 
II, III) are clearly observed between 1.6 and 1.9 eV in both reflection contrast and PLE spectra, 
whose energy and amplitude match well with the corresponding resonances observed for device 
D1. 
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Fig. S1. Reflection contrast (blue) and PLE (black) spectra of another near-
aligned heterostructure D3 at slight n-doping. 

 

2. Determination of the relative twist angle between WSe2 and WS2 layers  

The crystal orientation of WSe2 and WS2 flakes can be obtained from the second harmonic 
generation (SHG) polarization dependence. However, since the SHG patterns of both materials 
have six-fold rotational symmetry, the case of AA stacking (~ 0 twist angle) and AB stacking (~ 
60 twist angle) cannot be differentiated by separately measuring the SHG of each material. On 
the other hand, the two cases can be distinguished by directly measuring the SHG of the 
heterostructure: in AA (AB) stacking case, the second harmonic field of the two layers will 
constructively (destructively) interfere, giving SHG signal stronger (weaker) than monolayers. 
Figure S2 shows the SHG intensity from WSe2 alone, WS2 alone, and heterostructure regions in 
device D1 measured with a 900 nm incident beam and the same experimental configuration. The 
WSe2 and WS2 regions show similar SHG intensity, while the heterostructure region show SHG 



intensity approximately four times larger than the monolayer. This result indicates that the twist 
angle between WSe2 and WS2 layers is near zero, i.e. AA-stacking.  
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Fig. S2. SHG signal of device D1 measured on the WSe2 alone (red), WS2 
alone (blue), and heterostructure (black) regions with the same experimental 
configuration. 

 

 

 

 

 

 

 

 

 

 

 

 



3. Subtraction of background in reflection contrast spectra 
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Fig. S3. Original reflection contrast (black) and the slow-varying 
background (red) obtained from polynomial fitting. 

 

The WSe2/WS2 heterostructure is encapsulated in two pieces of hBN and placed on 90 nm 
SiO2/Si substrate. This multi-film structure introduces interference between reflections at 
different interfaces, leading to a background signal from the real part of the dielectric function of 
the heterostructure32, see Fig. S3. Because the phase difference between the multi-reflections in 
the interference depend on the light wavelength, this background signal will vary with photon 
energy. To better resolve the exciton absorption resonances (i.e. the imaginary part of dielectric 
function), we obtain a slowly-varying background signal through polynomial fitting of the 
spectra using regions away from resonances (red curve in Fig. S3). The same background is used 
universally to obtain background-subtracted spectra at charge neutral (Fig. 2 in text) and at 
different doping levels (Fig. 3 in text). The validity of the background subtraction is also 
confirmed by the comparison to PLE spectrum (Fig. 2c in text) because the latter only depends 
on the imaginary part of dielectric function and is background free.  

 

 

 

 

 



4. Dependence of moiré exciton absorption spectra on the moiré potential 

The low-energy effective Hamiltonian of the A-exciton in monolayer WSe2 is described by 

ܪ ൌ ቆܧ 
ଶࡽଶ

ܯ2
ቇ ߬  ߬|ࡽ|ܬ  ൯߬௫ࡽ߶cos൫2ൣ|ࡽ|ܬ  sin൫2߶ࡽ൯߬௬൧, 

where ࡽ is exciton total momentum, ߶ࡽ is the polar angle of ࡽ in the momentum space, 

ܯ ൎ ݉ is the total mass of the electron and the hole, ܬ ൌ 0.04eV ∙ nm describes the intra- and 
inter-valley exchange interaction, and ߬ 	ሺ݆ ൌ 0, ,ݔ ,ݕ  ሻ  is the Pauli matrices for valleyݖ

pseudospin13. Without the moiré potential, only the ࡽ ൌ 0 exciton is bright due to the negligible 
momentum of photons, which has energy ܧ ൌ  .ܧ

With the moiré potential, the total Hamiltonian of the exciton becomes: 

ܪ ൌ ܪ  ܸ ൌ ܪ  ܸexp	ሺ݅࢈ ∙ ሻ࢘



ୀଵ

. 

When ܸ is small (i.e. the “weak coupling” regime), the effect of the moiré potential can be 
intuitively understood from perturbation theory. The first order correction to the wavefunction 
dictates that states at ࡽ ൌ ࡽ  will be mixed with the࢈ ൌ 0 state in the following way: 

Φ൫࢈൯
ଵ
െ Φ൫࢈൯


ൌ
ർΦ൫࢈൯


ቚ ܸቚΦሺ0ሻ

൯࢈൫ܧ െ ܧ
Φሺ0ሻ~ ܸ

ܧ4
	Φሺ0ሻ, 

where Φሺࡽሻ is the exciton center-of-mass wavefunction at momentum ࡽ and ܧ ൌ ଶ ܾ
ଶ/ሺ8ܯሻ 

is the exciton kinetic energy within the first mini-Brillouin zone. ܧ	~	8	meV in a WSe2/WS2 
moiré superlattice with periodicity of ~ 8 nm. Because the wavefunction of excitons at ࡽ ൌ  ࢈
now contains part of the bright exciton wavefunction, their transition from the ground state is no 

longer completely forbidden and has oscillator strength ~ห ܸ/ሺ4ܧሻห
ଶ
ൌ ሾܸ/ሺ4ܧሻሿଶ, giving an 

additional absorption peak at 4ܧ ൌ 30	meV above the main peak. The magnitude of the moiré 
potential can therefore be obtained by examining the amplitude of this side peak in the 
absorption spectrum. 

Figure S4a shows the simulated exciton absorption spectra with phase ߰ ൌ 15° and different 
magnitudes of the moiré potential. The side peak amplitude shows a monotonic increase with 
larger ܸ. The quantitative dependence deviates from the square scaling law at large ܸ, which is 
expected since the perturbation treatment fails in the “strong-coupling” regime. By comparing 
the experimental results to the simulation, we can extract the magnitude of the moiré potential to 
be ܸ~25	meV. 
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Fig. S4. a, Simulated exciton absorption spectra with different moiré 
potential magnitude ܸ . ߰ ൌ 15°. b, Simulated exciton absorption spectra 
with different moiré potential phase ߰ and ܸ ൌ 25	meV. Different curves 
are vertically shifted for visual clarity. 

 

The phase ߰ of the moiré potential plays a more subtle role: It has negligible effect on the 
absorption spectra in the “weak coupling” regime but will affect the spectra in the “strong 
coupling” regime, where higher order mixing between exciton states become important and 
different mixing paths start to interfere, as shown in Fig. S4b. The complicated dependence of 
the spectra on ߰ makes it difficult to have an accurate determination through comparison to the 
experiment. However, different ߰ will not qualitative change the properties of the system, e.g. 
between “weak coupling” regime and “strong coupling” regime. 

 

5. Spatially localized exciton center-of-mass wavefunction  

Figure S5 shows the real-space distribution of the moiré potential using the parameters ܸ ൌ
25	meV and ߰ ൌ 15°. After summing up the six components, the peak-to-peak amplitude of the 
moiré potential reaches ~ 250 meV, which is much larger than ܧ.  As a result, the lowest 

energy excitons are trapped around the potential minimum point (labelled as ), as discussed in 
the text. 

We note that the exciton wavefunction discussed here refers to the center-of-mass envelop 
function for 1s exciton state, which is spatially homogeneous without the moiré superlattice. This 
should not be confused with the relative motion between the electron and the hole within an 
exciton that defines atom-like levels, e.g. 1s and 2p states. 
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Fig. S5. Real space distribution of the moiré potential with ܸ ൌ 25	meV and 

߰ ൌ 15°. The potential minimum is labelled as . 
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