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Abstract

This doctoral dissertation explores and advances topology-based data analysis and visualization, a field that

concerns itself with creating tools for gaining insights from scientific data, thus supporting the process of

scientific knowledge discovery. In particular, the study proposes two novel analytical techniques, inspired

by domain-specific problems and presents a study of error of approximation for these techniques.

The first part of the dissertation focuses on a specific problem that arises in computational chemistry.

Analysis of transformation pathways is a well-known tool for the investigation of chemical systems and has

implications for the design of chemical reactions and materials. However, existing techniques for analyzing

transformation pathways either lack the required level of detail for such analyses, or they are limited to

low-dimensional data. These issues, complicated by the noise in data and by issues of handling periodic

boundaries, are addressed by a novel technique, which involves the extraction of a topological structure,

the “Morse complex,” and visualizing it as a graph, augmented with additional information, enabling the

desired end-user analysis. The technique is then successfully applied to the analyses of two different types

of chemical data, which demonstrates its utility.

The second part of the dissertation concentrates on the problem of enabling the comparison of data sets in

terms of their topologies. In particular, the focus is on enabling the comparison between different instances

of the same topological structure, namely a contour tree. One possible solution to this problem is to correlate

contour trees in terms of the geometric proximity of their critical points. In order to visualize this correlation,

a novel technique combines the extraction of the contour trees, dimensionality reduction, graph drawing, and

contours construction. The technique produces a visual metaphor called a “geometry-preserving topological

landscape.” The utility of the technique is demonstrated through a comparative analysis of data sets based

on their corresponding landscapes.

The remainder of the dissertation is dedicated to studying the problem of error quantification for the pro-

posed techniques, as well as for more general settings. In particular, the focus is on approximation methods

used to reconstruct a domain. For example, by studying the ability of these techniques to preserve topo-

logical information, one can derive method selection recommendations, which are potentially generalizable

to various topological data analysis techniques. To address this problem, a novel definition of a difference
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measure for topological abstraction, the merge tree, is presented and subsequently used to evaluate the previ-

ously mentioned approximation methods. The resulting recommendations are found to support the selection

of approximation methods for the two proposed techniques.
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Chapter 1

Introduction

The field of scientific data analysis remains a hotbed for research activity, in many instances as

the result of challenges imposed by the increasing size and dimensionality of scientific data. These

challenges impede the effective analysis, crucial for scientific knowledge discovery. Overcoming

these challenges, often within specific settings, continues to be of utmost importance, and it is

therefore, the focus of this dissertation.

In particular, this work focuses on a subarea of scientific data analysis, concerned with a

topology-based approach to data analysis and visualization, the background for which is reviewed

in greater details in Chapter 2. This approach utilizes the identification and abstraction of topolog-

ical information from data, e.g., underlying topological structures and features, and allows insight

into the systems and phenomena to which this data corresponds. Combined with intuitive visual-

ization, topological information serves as a powerful data analysis tool in many domain sciences,

such as chemistry, physics, etc., thus helping researchers in many instances to overcome the impo-

sitions of dimensionality and size.

Within the past decade, numerous methods for extraction and visualization of topological in-

formation have been proposed. As a result of the parallel advances in our ability to produce larger

and more complex data sets, an even greater number of problems have emerged accompanied by
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their unique challenges. Thus, to narrow the scope of this dissertation, the first portion of research

work is motivated by problems arising from the application studies in different domain sciences.

The rationale is straightforward. First, the approach guarantees that the research work is applica-

ble in the real world. Second, creating and improving the theory and methodology of scientific

data analysis should have a real impact on domain sciences, and, consequently, it must be guided

by these same sciences. Finally, the ability to demonstrate the correctness and usefulness of the

produced results serves as a good check for the sanity of such research.

In particular, two problems are considered. In Chapter 3, the problem of analyzing trans-

formation pathways in chemical systems is addressed through combination of topological infor-

mation extraction, dimension reduction, and visualization methods, resulting in a new technique

that enables the desired analysis. In Chapter 4, the problem of enabling comparative analysis is

addressed by preserving spatial correlations between interesting configurations (corresponding to

extrema in data sets) that are visualized according to a two-dimensional terrain metaphor named the

geometry-preserving topological landscape. While this technique is presented in a general context,

the motivation for it is demonstrated by the application example that focuses on the comparative

performance analysis of a ray casting algorithm.

The remainder of the dissertation is dedicated to quantifying the errors arising from the ap-

proximation of topological information. Although the two techniques previously presented solve

different problems, both techniques are provided with discrete sets of points as input, and subse-

quently require a combination of methods (e.g., for mesh construction, interpolation, etc.) for their

approximations of the underlying function and topology. One of the main problems that arise in

this setting is the study of the introduced approximation error, which is usually left unaddressed.

The proposed solution to this problem is two-fold. In Chapter 5, a more generic problem of mea-

suring topological difference/similarity of functions is addressed by introducing a novel definition

of the distance between merge trees, and the development of the algorithm for computing it. In

Chapter 6, the proposed distance is utilized as an error measure for the evaluation of commonly
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used approximation methods, which leads to specific recommendations on the selection of meth-

ods, including for the two proposed techniques.
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Chapter 2

Background

This chapter provides necessary background for the main body of research work, including a

brief overview of computational topology as well as sufficient theory and definitions to formulate

the basis for computing topological information. Next, it reviews the actual features and structures

that constitute topological information and discusses various algorithms for their computation. Fi-

nally, it offers an overview of techniques for the visualization of topological information, which

constitutes an important aspect of creating effective analysis tools, especially because such infor-

mation is abstract and is, therefore, often difficult to comprehend.

2.1 Computational Topology

Computational topology is a relatively new research area that studies the topology using a

computer. It is concerned with characterization of the space, mostly in terms of quantifiable or

identifiable topological invariants. For example, in computer graphics, the problem of connectivity

for surface reconstruction from point sets requires a correct identification of holes and tunnels.

In context of this dissertation work, computational topology enables the extraction of topological

information. The basic theory and definitions of computational topology, adopted below from the
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overview by Afra Zomorodian [2], allow an introduction of Morse theory. In turn, the Morse

theory, and its variations, such as discrete Morse theory and Morse theory adaptation for piecewise

linear functions, forms the basis for defining and computing topological features and structures

used in this work. Furthermore, an alternative interpretation of the underlying domain space is

given using cell complexes, used by the homology theory. A brief introduction into the persistent

homology is given to provide an alternative basis for working with sub-level sets.

2.1.1 Basic Definitions

The definition of topological space is adopted as follows. For a set of points X, topology is

a subset T ⊆ 2X such that: 1. If S1,S2 ∈ T , then S1 ∩ S2 ∈ T . 2. If SJ| j ∈ J ⊆ T , then ∪ j∈JS j ∈

T . 3. ø,X ∈ T . Here, S ∈ T is an open set and the pair X = (X ;T ) is a topological space.

It can be viewed as an abstraction of a metric space, where the notions of neighborhoods and

continuity are preserved, however an abstract metric is used to identify the relations. A manifold is

a topological space M which locally homeomorphic to the connectivity structures in metric space

with given dimensionality. For example, a circle is a 1-manifold S1, since every point on circle is

homeomorphic to an open interval in R1. Finally, a boundary of the d-manifold is considered to

be a (d−1)-manifold without boundary.

2.1.2 Morse Theory

The representation of a topological space, given above, allows to introduce the base for com-

puting topological information. In particular, consider a smooth manifold M and a smooth map as

h : M← R. Point p ∈M is a critical point (see Figure 2.1), if the derivative at this point is zero,

and if non-zero, the point is a regular point. A critical point is nondegenerate, if its Hessian is

nonsingular. The map h (sometimes called a height function) is called a Morse function, if all its

critical points are nondegenerate. According to the Morse lemma, it is always possible to change
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Figure 2.1: 2D critical points: minimum, saddle, maximum. (Image courtesy of Attila Gyulassy)

the map by a small value to create a Morse function. Throughout the dissertation, functions under

analysis are considered to be Morse.

2.1.3 Level Set Topology

Given a Morse function f , it is possible to track the evolution of the topology of its isosur-

faces. Isosurface is a surface, constructed by connecting all points with the same preset function

value called an isovalue. Contours are connected components of the isosurface. More formally,

isosurface is a level set, defined as Lc( f ) = {xi| f (xi) = c} for an isovalue c, and contours are el-

ements of that set. Level sets and their evolution is the main target of study of level set topology.

Various topological structures that encode the information about the level sets are presented more

elaborately in Section 2.2.

2.1.4 Cell Complexes

So far, the underlying domain space was interpreted as a smooth manifold, allowing the ap-

plication of the Morse theory. Alternatively, the space can be interpreted as a finite representation

called a cell complex. While in the majority of work in level set topology these interpretations

are used interchangeably through the work of Robin Forman [37] on the discrete Morse theory

and the Morse theory adaptation for piecewise linear functions [71], the exact relationship is case-

dependent and at times unclear. Nevertheless, the latter interpretation requires a slightly different
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introduction, which is provided further. Essentially, a cell complex is a union of polyhedra glued

together along the seams. More formally, a cell complex C should satisfy two conditions:

1. If c ∈C, then f ∈C, where f is a boundary face.

2. If c1,c2 ∈C, then c1∩ c2 = f ∈C.

There are many types of cell complexes defined in computational topology. The simplicial complex

is the most popular type of complex due to its structural simplicity. All its cells are d-dimensional

simplices, constructed as a convex hull of d + 1 affinely independent points in Rd . CW-complex

carries more relaxed cell conditions, so that simplicial complex satisfies CW-complex require-

ments, but not vice-versa. It should be noted that a simplicial complex carries a useful property of

continuity, which can be generalized for CW-complex as well [37], constituting the link between

interpretations given by the discrete Morse theory.

2.1.5 Structures for Point Sets

Cell complexes are naturally derived from the topological space under the assumption that con-

nectivity information is given. But in practice, point sets are obtained by sampling the underlying

topological space, and carry no connectivity information. So, in order to approximate the underly-

ing topology, a cell complex have to be somehow constructed. There are several types of abstract

and geometric complexes that are commonly used for such approximation, and the selection of a

particular type of complex often depends on a given point set. More formally, such complex can

defined as a nerve in a following manner:

Definition 2.1.1 (Nerve). Let X be a point set embedded in Rd . An open cover of X is U =

{Ui}i∈I,Ui ∈ Rd , where I is an index set and X ⊆ ∪iUi. The nerve N of U is:

1. ø∈ N, and
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Figure 2.2: Left: The cover is a union of ε-balls, the nerve is the Čech complex. Right: The cover
is Voronoi diagram, the nerve is Delaunay complex.

2. If ∪ j∈JU j 6= ø for J ⊆ I, then J ⊆ N.

Since cover defines the nerve, it is important to consider its properties. U is a good cover, if all

Ui are contractible and so are all of their nonempty finite intersections. For a good cover, its nerve is

a homotopy equivalent to the cover. Hence, several good covers are considered, whose nerves (i.e.,

complexes) are often used in practice. The Čech complex is a nerve of the union of ε-balls centered

around the input points (see Figure 2.2). It is a good complex for the uniformly distributed point

sets. The Vietoris-Rips complex relaxes the Čech complex by permitting a dimension expansion

to include simplices with higher dimensions. Another popular complex is a Delaunay complex,

which is a nerve of Vonoroi cells V (p) = {x ∈ Rd|d(x, p) ≤ d(x,y),∀p ∈ X} (see Figure 2.2).

While several other complexes are introduced and used throughout the dissertation (especially in

Chapter 6), presented complexes demonstrate the general approach to their interpretation as an

approximated underlying domain space.

2.1.6 Persistent Homology

The underlying domain space (i.e., topological space), reconstructed by cell complexes, helps

to introduce the concept of homology in algebraic topology. In particular, an approach to studying

the topology of the sub-level sets is considered. A sub-level set is defined as f−1(−∞,c], where the

value of c is fixed. See the textbook by Munkres [60] for the detailed introduction to homology.

Informally, homology describes the cycles in a topological space: the number of components,
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Figure 2.3: The Reeb graph of a torus. Left: Critical points correspond to changes in the topology
of contours. For example, the minimum corresponds to the birth of a component of a contour. The
lower saddle corresponds to the split of a contour component into two, etc. Right: The Reeb graph,
which in addition to critical points, encodes the information about the evolution of components of
each contour, thus serving as a topological skeleton of the surface. (Image courtesy of Gunther H.
Weber [82])

loops, voids, and so on. This dissertation only considers 0–dimensional cycles, i.e., the connected

components. Persistent homology tracks changes to the connected components in sub-level sets

f−1(−∞,c], as the value of c changes.

2.2 Topological Structures

This section reviews topological structures, commonly utilized for capturing the topology of

(sub)level sets of functions, including illustrations of structures and an overview of algorithms for

computing them.

2.2.1 Reeb Graph

The Reeb graph [70] is a structure that encodes topological changes of contours, as isovalue

is varied within the value range of the target function, see Figure 2.3. Accordingly, it preserves
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Figure 2.4: Contour tree records (a) birth, (b) merger, (f) split, and death of contour components
in a simply connected domain. (Image courtesy of Hamish Carr [21])

complete connectivity information about contour components. Cole-McLaughlin et al. [25] gave a

simple algorithm for computing the Reeb graph for triangulated 2-manifolds. Pascucci et al. [69]

gave a streaming algorithm that allows an on-line (incremental) computation of the Reeb graph

with a complexity of O(nm). Harvey et al. [48] provided a randomized algorithm for computing

the Reeb graph with expected running time complexity of O(mlogm), while Salman Parsa [66]

gave deterministic algorithm with the worst case complexity of O(mlogm).

Contour tree is a special case of the Reeb graph. It tracks topological changes of contours in a

simply connected domain, by recording birth, merge/split, and death of components of contours,

see Figure 2.4. First contour tree calculation method that works for dimensions higher that three

was introduced by Carr et al. [21]. They constructed contour tree by first building join and split

trees, and then merging them. Recently, Chiang et al. introduced an alternative method for contour

tree calculation [23], based on precalculating all critical points and building the join and split trees

using them, reducing the number of points to be considered.
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Figure 2.5: Morse-Smale complex. Given a 2D manifold with maxima colored by red, minima
colored by blue, and saddles colored by green colors, the middle left image shows a stable seg-
mentation of the manifold with corresponding Morse complex, while the middle right image shows
an unstable segmentation of the manifold with corresponding Morse complex. The image on the
right is a Morse-Smale complex, obtained by combining stable and unstable Morse complexes.
(Image courtesy of Attila Gyulassy)

2.2.2 Morse-Smale Complex

Discrete Morse theory permits the computation of Morse-Smale complexes [37] as partitioning

of the space into the steepest flow segments, represented by crystals. These crystals are obtained

by first computing complexes of stable and unstable segmentations of a manifold, and then com-

bining them. The stable segmentation of a manifold is obtained by finding the steepest descending

gradient flow for each point of the manifold, and associating it with the end point, i.e., a minimum,

thus creating a segment for each minimum. Then, for each minimum, steepest gradient paths from

saddles to this minimum are computed, as a result constituting a graph called stable Morse com-

plex, see the middle left image in Figure 2.5. The unstable segmentation is computed in a similar

fashion by reversing the direction of flow. An example of the Morse-Smale complex computation

is given in Figure 2.5.

The method by Edelsbrunner et al. [31] calculates Morse-Smale complexes for a piecewise

linear 2-manifold. Their method was extended to handle to 3-manifolds [30]. Gyulassy et al. [44]

further improved the algorithm, and discussed scalability issues [45], which remain challenging.
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2.2.3 Simplification

The presented structures allow the extraction of useful topological information. However, often

they get too large, noisy, and cluttered, impeding the analysis. One solution to this problem is a

simplification process. While many importance metrics can be used for simplification, the most

widespread metric is a persistence. Informally, the persistence of a topological feature signifies

how prominent it is in the data. For example, in case of connected components of isosurfaces, the

lifetime of a component from its birth to death signifies its persistence. Since the birth and death

events correspond to the pair of critical points, either minimum–saddle or saddle–maximum, the

persistence itself can be quantified as the function value difference of the pair.

The concept of the persistence was formalized by Edelsbrunner et al. [32] and used for the noise

elimination within the context of growing complexes (i.e., filtrations). Carr et al. [20] proposed a

simplification of a contour tree by pruning its leafs, i.e., connected contour components, based

on their importance. Several importance metrics were considered, including a persistence and

local geometric measures (e.g., volume) of connected contour components. Gyulassy et al. [46]

described the persistence-based simplification of the Morse-Smale complex, which allowed the

authors to handle the noise and extract important topological features. The persistence was also

used to produce a hierarchical representation of topological structures, for example Pascucci et

al. [67] used a persistence for a multi-resolution hierarchical representation of a contour tree, which

helps to reduce the clutter.

2.2.4 Persistence Diagram

The simplest abstraction that records the changes to the connected components in sub-level sets

is a persistence diagram. A component is born in the sub-level set f−1(−∞,b], if its homology class

does not exist in any sub-level set f−1(−∞,b− ε]. This class dies in the sub-level set f−1(∞,d], if

its homology class merges with another class that exists in a sub-level set f−1(−∞,b′] with b′ < b.
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When a component is born at b and dies at d, a pair (b,d) is recorded in the (0–dimensional)

persistence diagram of the function f , denoted D( f ). Chapter 6 uses persistence diagrams to

define alternative error measure for the evaluation.

2.3 Topology-based Visualization

Topological structures are abstract in nature, so their visual representation usually depends on

needs of some end-user analysis. Considerations like the level of detail of presented informa-

tion, as well as visual accessibility and apprehensibility are paramount for enabling and enhancing

effective analysis. Some commonly employed methods of visualizing topological structures are

covered next.

2.3.1 Graph-based Representations

Since presented topological structures are essentially graphs, the straightforward approach to

their visualization is based on presenting them as graphs on the plane or in volume. A number of

existing techniques use this approach, employing various graph layout schemes. For example, Pas-

cucci et al. [67] presented an orrery-like hierarchical visualization of contour trees in the volume,

created using a radial tree layout [6], the layout that allows avoiding an issue of self-intersections.

Gyulassy et al. [44] visualized 2D/3D Morse-Smale complex directly in the original domain space,

by embedding vertices into corresponding geometric locations, and connecting them by straight

edges. As Morse-Smale complex with dimensions higher than three cannot be visualized in the

original domain space, Gerber et al. [43] presented the graph layout that utilizes dimension re-

duction method to embed vertices and edges (represented as curves) from high-dimensional space

onto the plane. In similar fashion, the technique presented in Chapter 3 uses graph-based visual-

ization of Morse complex [9], with vertices projected from original high-dimensional space onto
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the plane.

2.3.2 Visualization Metaphors

Graph-based representations are often insufficiently detailed or hard to read. One way of re-

solving these issues is to link additional visuals, e.g., linking a contour tree with a volumetric view,

thus showing isosurface(s) corresponding to selected level(s) in the contour tree [22]. Alternatively,

a number of visualization metaphors address these issues in various settings. For example, a visual-

ization metaphor called toporrery [68] is an augmented version of previously mentioned orrery-like

hierarchical representation of contour trees, designed to incorporate provided importance metric.

Another metaphor that also uses the radial layout to visualize contour trees, is called topological

cactus [84], which is able to incorporate additional quantities using cylindrical extrusion of tree

edges and spikes. The metaphor called topological landscape [83] went away from tree-like repre-

sentations, and tackled the reverse problem of constructing a 2D function (i.e., a landscape) which

has a given contour tree. Several versions of topological landscapes exists [47, 61, 62, 28], includ-

ing a geometry-preserving topological landscape [8] presented in Chapter 4 of this dissertation.

Finally, Correa et al. [27] proposed topological spines as a visualization of an extremum graph,

defined in their work as a simplified substructure of Morse-Smale complex. Their work follows

the Morse complex graph-like visualization discussed in Chapter 3.
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Chapter 3

Topology–based Analysis of Transformation

Pathways in Chemical Systems

This chapter presents a novel topology-based analysis technique that focuses on the analy-

sis of transformation pathways in complex chemical systems [9]. The technique presented here

demonstrates the power and utility of the topology-based approach, especially in aiding the scien-

tific knowledge discovery from large high-dimensional data sets. The selection of approximation

methods for this technique is supported by the study conducted in Chapter 6.

3.1 Introduction

In chemistry, for example, transformation processes that involve changes of relative positions of

atoms in chemical systems are of fundamental interest. Examples of such transformations include

internal rotation of fragments of a molecule (e.g., conformation change), translation of atoms or

molecules within a chemical system (e.g., diffusion), and shifting of atoms leading to breaking

and/or rearrangement of chemical bonds (e.g., chemical reactions). An important factor of any

transformation is its cost. Chemists usually focus on transformation between configurations of
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Figure 3.1: A 2D graph showing the topology of the 3D potential energy function of a complex of
formic and acetic acids, which depends on the positions of constituting atoms. Blue and red dots
represent minimum energy configurations and lowest barriers connecting neighboring minima,
respectively. Edges represent the energy cost of a particular transformation, with darker and wider
edges corresponding to transformations through lower barriers (more likely transformations). Two
vertical branches corresponding to different positions of protons are visible on the left and right
side of the graph. Energy barriers for transforming the right branch into left one are lower than for
the reverse transformation.

chemical systems corresponding to energy minima, representing stable states for the system. The

term “configuration” is generalized here and can take on two meanings: It can refer to a set of

strictly defined positions of all atoms of a studied system as it is done in the vast majority of

quantum chemical calculations relying on the Born-Oppenheimer approximation. On the other

hand, it can also refer to a representative or dominantly populated state within a class.

The cost of a transformation between stable states can be defined as the energy difference be-

tween the two minima involved in the transformation. In a typical case, a transformation involves

a transition through a higher energy configuration, a barrier that determines the probability of the

transformation (or time required for it to happen). The analysis of transformation pathways in

a chemical system usually follows the same general scheme. After identifying important energy

minima, connecting pathways and corresponding barriers are found. A chemical system has 3n

degrees of freedom, where n is the number of atoms. Analyzing transformations in such a system
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requires identifying minima and transition states in a 3n-dimensional space called energy land-

scape. Chemists can often reduce the dimensionality of this space by exploiting prior knowledge

about the system. For example, when considering a diffusion process, it is often sufficient to con-

sider only translation and rotation of a rigid molecule, and the analysis can be performed for a

six-dimensional energy function. When considering only conformational changes of a molecule,

it is sufficient to investigate 3n−6 internal degrees of freedom. The latter can be simplified further

by assuming that some coordinates are constant due to very high energy cost associated with their

change.

3.2 Contributions

Contributions of this chapter are: a technique that provides sufficient level of detail of trans-

formation pathways in higher dimensions; embedded handling of noise and periodicity; use of

dimension reduction and incorporation of additional information to improve visual analysis by

end-user.

3.3 Related Work in Chemistry

Flamm et al. [35] proposed the barrier tree concept for the analysis of degenerate energy land-

scapes, and Heine et al. [49] described a visualization technique for multiple barrier trees. How-

ever, a barrier tree is an alternative name of a merge tree, which omits some barriers that are of

interest for required analysis. Similarly, James et al. [52] introduced a disconnectivity graph to

visualize energy landscapes of water clusters in an uniform electric field. This graph is similar to

a barrier tree but uses different visual representation.

Recently, Okushima et al. [64] proposed a way to generalize the disconnectivity graph concept

as a saddle connectivity graph. To construct this graph, their technique locates minima and sad-
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dle points and combine them into a schematic line representation. While the saddle connectivity

graph shows all relevant barriers, the proposed technique is computationally more efficient and the

resulting layout scheme facilitates easier tracking of separate transition pathways.

Another method for the analysis of energy landscapes, proposed by Apaydin et al. [1], is

a stochastic roadmap simulation. However, this method focuses on obtaining a high-level overview,

e.g., finding the global minimum in a protein folding problem. Consequently, it can miss minima

and saddles that may be important. This method is able to analyze system with larger number

of degrees of freedom at the price of being stochastic, thus not exploring the entire domain of the

configuration space. One the contrary, proposed technique is oriented to provide information about

the entire energy landscape within the domain and let the user choose the desired level of detail.

3.4 Algorithm

The technique uses a combination of the Morse complex that captures the relationship between

energy minima, a dimension reduction technique called multi-dimensional scaling [79] for pro-

jecting minima positions to the two-dimensional plane, and, finally, a graph layout incorporating

all necessary chemical information. The technique employs simplification schemes both for noise

reduction and for focusing attention on the most relevant features of the chemical systems. The

technique also introduces a strategy for handling a complexity, added by a possible periodicity

in the input data. The graph, produced by this technique, shows relevant transitions between en-

ergy minima and provides a succinct summary view of relevant transformations of the considered

chemical systems.
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Figure 3.2: Left: Chemical system configuration of a dimer of formic and acetic acid. Middle left:
Energy of the system in Hartrees (y-axis) as a function of the methyl group rotation angle between
0 to 360 degrees (x-axis). Blue and red dots mark energy minima and barriers, respectively. Middle
right: Naive graph representation of transformation pathways. Right: Proposed graph representa-
tion, where the top row of a energy minima label displays its coordinate and the bottom row its
energy value.
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3.4.1 Morse Complex

To obtain structural transition information, the technique approximates the Morse complex

for the energy function fe by producing a segmentation of the input data into stable descending

manifolds. Here, the segmentation scheme is similar to Gerber et al. [43], and is done by finding a

neighbor with the steepest descending gradient for each point, and subsequently applying a union-

find algorithm to determine its corresponding minimum.

Segmented descending regions in the resulting representation correspond to classes of config-

urations, each associated with a minimum, i.e., stable state. Each descending region can adjoin

several other regions. The saddle between two regions, i.e., the lowest function value along their

boundaries, corresponds to the barrier between the states. Since minima and saddles in the Morse

complex correspond to energy minima and barriers, chemical transformation pathways are given

by the edges connecting two minima through a saddle. Assigning minima and saddles to nodes

and connecting pathways as edges create the Morse complex graph (MCG).

The major steps of this algorithm can be summarized as follows: First, perform a sweep over

all input points to identify and store the steepest descending neighbor for each point. Then, use a

union-find data structure to segment all input points into regions whose gradient flow ends at the

same minimum, thus approximating stable manifolds. For each segment, consider its neighboring

segments and identify the lowest value along the boundary. Then, construct the MCG by adding or

updating three nodes — two minima and saddle, and two connecting edges. Finally, check whether

any of the minimum–saddle edges crosses a periodic domain boundary, and if so, determine the

direction. The resulting MCG is passed on to the graph layout stage.

3.4.2 Simplification

Noise in scientific data often complicates the analysis, as it might lead to convoluted resulting

graphs. To ensure that a generated graph does not clutter the end users, effective means of sim-
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plifying the MCG should be applied before laying it out. Simplification of the MCG is done by

removing low-persistence minima from the graph. The persistence for each minimum–saddle pair

is defined as the absolute difference of energy function values. Since one minimum might belong

to several minimum-saddle pairs, and thus have multiple associated values, the lowest among them

is selected to decide, whether a minimum is to be removed. This approach gives a good measure to

identify the noise, which mostly corresponds to minima that appear due to numerical error. Further

results also show that minima with a low persistence correspond to a latent chemical configura-

tions, hence their elimination does not affect the analysis. Finally, to have additional flexibility in

this approach, a persistence threshold, under which minima are simplified, can be changed by a

user.

A sequential elimination of minima is performed in order of their persistence (see Figure 3.8).

First, the minimum with the lowest persistence is identified. Then, a minimum that is connected

through the lowest saddle to the minimum that needs to be reduced is found. These two minima

are then merged into a new minimum, which inherits all the neighbors of merged minima. Finally,

all the saddles (barriers) are recalculated along the border of newly create minimum, which also

inherits necessary information, associated with merge minima (e.g., periodicity information).

Two approaches for finding a suitable persistence threshold can be used. The conventional ap-

proach for finding such threshold is based on a persistence diagram, which is obtained by gradually

increasing the simplification threshold value within the possible value range and determining the

current number of minima for each value. Large drops in the number of minima indicate a large

numb of related minima and thus are candidates to be simplification threshold. For example, the

persistence of the minima, introduced by numerical errors, normally can be easily identified by

such big drop. While this approach can be useful due to its generality, it is combined with special-

ized approach, based on use of chemical domain knowledge pertaining to the considered system.

These two approaches complement each other and provide a user with sufficient flexibility to select

an appropriate persistence threshold for simplification.
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3.4.3 Periodicity

Proper handling of periodicity for different chemical structures and presenting them in a simple

way for analysis is key to providing readable graphs. Chemistry datasets can also have some of

their dimensions being periodic, and handling and presenting such data sets leads to additional

visualization challenges. Periodicity handling in such data sets is elegantly done by marking edges

of the MCG that cross the domain boundary of a periodic dimension and presenting them in a

graph using dashed edges. Furthermore, directions are explicitly indicated, which could be crucial

in the analysis of porous materials.

The interpretation of periodicity in the data is straightforward: The maximumboundary and the

minimum boundary along an axis corresponding to a periodic dimension will be virtual neighbors

when wrapping around the data set. Thus, a maximum and minimum cell along that axis share a

face, and the triangulation must subdivide that face consistently. The use of Freudenthal’s subdi-

vision scheme [38] ensures such consistency and avoids possible cracks and hanging nodes in a

triangulation that might occur on the domain’s boundary faces. While Freudenthal subdivision can

be generalized to arbitrary dimensions, the number of edges in a mesh grows exponentially, mak-

ing this approach infeasible for dimensions larger than three. Thus, to create neighborhood graphs

for high-dimensional data sets, the k-nearest-neighbor algorithm [76] is used, and to guarantee the

correct triangulation, edges that are not bi-directional are removed from the neighborhood graph.

Both methods produce relatively low approximation errors, see Section 6.5 for details.

3.4.4 Graph Layout

The first step of graph layout algorithm is projection of the location of minima to two dimen-

sions using classical metric multidimensional scaling (MDS). While it seems intuitive to apply

MDS both to minimum and saddle positions, this approach often leads to a cluttered graph layout.

Projecting only minima and placing saddles along lines between minima results in a much cleaner
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graph layout and supports encoding of additional information based on the location of barriers.

While the projection at this point is simple to navigate, overlaps of edges and nodes might

conceal important information. This issue is addressed by an iterative optimization algorithm that

minimizes node/edge overlap in the final layout. If to denote the node’s center Ncenter and the

node’s projection to the edge’s mid-axis as PNcenter , the distance between them tells if the node

and the edge overlap or not. Let’s define the overlap function as Doverlap = (Nradius +Ewidth/2)−

distance(Ncenter,PNcenter), where Nradius is the radius of the node, and Ewidth is the width of the edge.

If the Doverlap is positive, there is an overlap, otherwise not. Thus, the goal is to iteratively move

the node away from the edge along the projection line, until Doverlap becomes zero or negative. To

ensure the preservation of the overall structure, the center of the node does not move further than

the predefined ε radius. Although the convergence rate of the algorithm is found satisfactory, a

user can manually set parameters for either faster or clearer view of the final graph layout.

After the final positions for all nodes of the graph are calculated, the chemical information from

the model system is added to the graph. Since the most important information is the energy differ-

ence between a minimum and a barrier, the graph edges are colored according to the energy dif-

ference value. The Boltzmann distribution states that the probability of accessing a state decreases

exponentially with its energy. The lower the energy difference is, the higher is the probability of a

transformation. Accordingly, the paths with smaller energy differences should be displayed more

prominently (wider edges with darker colors), see Figure 3.1, as they are of higher importance. On

the other hand, a higher energy difference makes the transformation unlikely, hence corresponding

edges are very narrow and lightly colored edges, making them almost invisible, signifying that

these edges carry little to none importance in analysis. In addition, a user is provided an option

to discard such edges, if they are beyond the highest possible and/or interesting energy difference

level, which also helps to further clarify the potential visual clutter. Periodic edges, identified as

edges that cross the periodic boundaries, are dashed and the common saddle of the two connected

minima is broken into two nodes (see Figure 3.2). This helps chemist to identify periodic edges
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right-away. Finally, all minima are labeled with coordinates (first line) and energy value (second

line). This information helps chemists to relate the graph to the state of the model system and it

guides analysis.

3.5 Results
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Figure 3.3: Energy functions of DFA along its four dimensions (top), and respective graphs for the
third dimension (bottom left), showing the periodic nature of the dimension, and (bottom right) the
fourth dimension, where it correctly handles the special case of periodicity. Labels for latter two
use the convention from Figure 3.2.

In order to demonstrate the visualization of transformation pathways, two distinct chemical
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data sets were studied. The first study concentrates on a dimer of formic acid and acetic acid (DFA),

which serves as an example of a small molecular cluster, for which energetics of conformational

changes and proton transfer reactions are studied. The second study investigates energies related

with diffusion of a small molecule in a crystalline porous material, namely CH4 molecule in a LTA

zeolite.

3.5.1 Dimer of Formic Acid and Acetic Acid

Small model systems are often selected by chemists to study intermolecular interactions such as

hydrogen bonds. The small size of such complexes does not only facilitate gas-phase experiments

(small systems usually have high vapor pressure) but also enables performing accurate ab initio

calculations to investigate properties and simulate transformations in these complexes. In this

context, a dimer of carboxylic acids can serve not only as model of hydrogen-bonded system but

also can be used to study proton transfer reactions [4]. A dimer of formic acid and acetic acid is

selected as a model system to demonstrate generation of graph representations of transformation

pathways in this chemical system.

The initial geometry of DFA presented in Figure 3.2 was optimized at the semi-empirical PM3

level of theory [74, 75] to find a minimum energy configuration. In particular, up to four de-

grees of freedom of the system are considered. Therefore, the geometry is optimized to generate

a four-dimensional grid with energies of DFA in the considered configurations. The geometries

of each configuration were generated in the following manner. All atomic positions (in internal

coordinates), except those involved in the considered degree of freedoms, were fixed at their op-

timal positions. The remaining coordinates of DFA were systematically modified along the four

considered directions. Specifically, dimensions of the energy grid are defined as follows:

• First dimension: length of H7–O3 bond. This degree of freedom describes stretching of

H7–O3 bond. Its range is scanned between 0.85Å and 1.85Å with a step size of 0.05Å. The
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distance unit throughout this example is Ångström (1Å=10−10m).

• Second dimension: length of H8–O1 bond. Its range is scanned from 0.85Å to 1.85Å with a

step size of 0.05Å.

• Third dimension: H7–O3–C5–O4 dihedral angle, which is scanned with a step size of 15

degrees (24 samples, periodic). This transformation rotates the H7–O3 group around the C5–

O3 axis and has been selected to investigate the energetic effect, associated with disrupting

the O3–H7. . .O2 hydrogen bond.

• Fourth dimension: rotation of C6 methyl group along the C6–C5 axis. It is defined by the

H9–C6–C5–O3 dihedral angle, sampled at a step size of 15 degrees. During the rotation of

the methyl group, all internal coordinates of atoms of the methyl group are fixed.

For each of the generated geometries, the corresponding energy was calculated at the semi-

empirical PM3 level. All calculations were performed with the Gaussian03 package [39]. The

resulting 4D energy grid was analyzed and used to generate corresponding graph representations.

The energy unit used for this example is Hartree (1Ha≈27.211eV).

To simplify the referencing, an energy function of the system is denoted as FX , where X =

{1,2,3,4,12,13,14,23,24,34,123,124,134,234,1234} is a set of dimension combinations. For

example F124 corresponds to the energy function, defined in space of the first, second and fourth

dimensions. Absent dimensions in this case are assumed to have a default (optimal) fixed coordi-

nate. Each graph representation is referred correspondingly MX . Note that coordinates are scaled

between zero and one in all calculations and figures presenting FX .

Figure 3.3 shows the energy function for each dimension of the system. F1 and F2 have only

one minimum each, thus no transformations between minima exist in the system. However, F3 has

three minima, thus three transformations are possible. M3 describes all possible transformations

and barriers, and handles the periodic nature of the dimension by showing the barrier at 0 (and

26



359) as the same node on the left and right sides. Therefore, there are two ways of getting from

one minimum to any other, which naturally corresponds to left and right rotations of the methyl

group of acetic acid. Now, one would expect that since F4 is also periodic, M4 would have two

different paths to get from one minimum to the other. However, as only the lowest barrier between

two minima is of significance, M4 shows only the lower of two barriers. Indeed, if the user has to

choose the rotation direction, (s)he would choose the one that goes through the lowest barrier.

Figure 3.4 shows the energy function landscapes and corresponding graph representations for

each of two selected dimension pairs. One-dimensional analysis is simple, but the analysis of two-

dimensional functions introduces more complexity. F12 in Figure 3.4 is still relatively simple, with

two minima and the lowest point connecting them. However, F13,F14,F23,F24,F34 are not so intu-

itive due to one or two periodic dimensions. It is obvious from the energy function landscape that

there might be several transformation paths between each two minima. For example in Figure 3.4

multiple paths are possible between the minimum at (60,180) and the minimum at (300,180).

Figure 3.5 shows two examples of the energy functions for three dimensions. Since the energy

functions becomes complicated in three dimensions, the analysis have to rely on graph representa-

tions to observe next important characteristics. Thorough analysis of M124 in Figure 3.4 shows that

in a given system, a much better transformation between the minimum at (0.95,0.95,180) and the

minimum at (1.75,1.75,0) can be found by visiting the third minimum at (0.95,0.95,0), although

direct transformation is also available.

The final example is the graph representation of the 4D energy function of DFA depicted in

Figure 3.6, for which plotting the original energy functions in all four dimensions was not feasible.

The resulting graph is fairly easy to analyze. It clearly shows energy separation of the graph into

two subgraphs: one corresponding to rotamers of DFA (with minima denoted A1-A9) and another

with double proton transfer (minima denoted B1-B6). Transitions between minima within each

subgraph are at low cost as shown by heavy edges.
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Figure 3.4: Two-dimensional energy function landscapes of DFA and corresponding graph: (a)
F12−M12 (b) F13−M13 (c) F14−M14 (d) −M34. The graph representation uses the same labeling
as the one used in the previous figures.
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Figure 3.5: Three-dimensional energy function volume renderings of DFA and corresponding
graphs: (a) F123−M123 (b) F124−M124.
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Figure 3.6: Graph of the 4D energy function of DFA. Nodes are labeled A1 to A9 and B1 to B6
to highlight two subgraphs. A1-A9 correspond to minima with coordinates of 0.95Å along the
first and second dimension. The remaining third and fourth coordinates are (45,345), (180,345),
(60,180), (285,345), (180,180), (60,0), (300,180), (180,0), and (300,0) for A1 to A9, respectively.
Similarly, the first and second coordinate for B1-B6 are 1.75Å. The remaining coordinates are
(60,345), (180,345), (300,345), (60,0), (180,0), (300,0) for B1 to B6, respectively.

3.5.2 Free Energy of a Guest Molecule in a Porous Material

The second example of application of the technique involves analysis of free energy of a guest

molecule inside a porous material. Porous materials contain complex networks of void channels

and cages that are exploited in many different industrial applications. Zeolites, probably the most

recognized class of crystalline porous materials, have found wide use in industry since the late

1950s. They are commonly used as chemical catalysts, in particular as cracking catalysts in oil

refinement, membranes and adsorbents for separations and water softeners [3, 73, 72, 55]. For

example, porous materials can be used as membranes to separate carbon dioxide (CO2) from CH4

in cleaning up of natural gas.
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Figure 3.7: Picture of (A) methane, (B) LTA zeolite structure. The orange isosurface highlights
the closest distance to which the center of the guest molecule center can approach. The large cage
is located in the center of the unit cell. The small cage is shared among eight cells and is visible in
the corners of the unit cell.

One of the key processes that determines performance of membranes is diffusion of guest

species. Diffusion of gases inside a porous material is controlled by free energy barriers. Anal-

ysis of possible diffusion pathways and the associated barriers is therefore critical to understand

and design optimal separation devices. Proposed representation is ideally suited to facilitate such

understanding.

In the following, the graph representation of free energy of the CH4 molecule inside LTA

zeolite is demonstrated. The corresponding 3D free energy grids were prepared by the following

procedure. The 3D space describing a periodic box of LTA zeolite was divided into 239x239x239

volumetric bins. A Monte Carlo simulation was performed to predict an average free energy of a

guest molecule inside each bin. The details of this procedure were given by Kefer et al. [54], with

the particular force-field approach, developed by Garcı́a-Pérez et al. [41]. The energies used in this

example are expressed in kBT .

The free energy function of CH4 in LTA zeolite is substantially different from the energy func-

31



Figure 3.8: Persistence diagram of the energy function of a CH4 guest molecule in porous material.
The large drop in number of minima (y-axis) hints the optimal threshold value for simplification,
in this particular case around 0.005.

tions of DFA. The noise of the dataset is high, thus it required application of the described simplifi-

cation scheme to reduce the final graph, based on the persistence diagram in Figure 3.8. Figure 3.9

shows free energy and the corresponding graph representation for the CH4 molecule inside LTA

zeolite. This graph represents only the large cage of LTA zeolite, which is the only fragment of

void space in LTA accessible to CH4. The graph representation of the free energy reveals important

information about the material. There are 14 important energy minima per periodic unit cell of LTA

corresponding to favorable locations of the adsorbing CH4 molecule (adsorption sites). Six of them

correspond to lower energy (ca. 3.7 kBT ), and are localized near windows connecting two periodic

cells (near faces of the unit cell). The remaining eight minima are localized further away from the

windows, on the surface of the large cage of LTA. The further analysis of connections between

nodes/minima in these representations reveals that all 14 minima localized within the big care are

separated by low barriers, and therefore hops of CH4 between the adsorption sites are feasible.

However, connections between large cages in the extended material lead through high barriers.

These high barriers along diffusion paths in every direction are reflected in slower diffusion rates.

Discussion of diffusion of guest molecules inside zeolites extends beyond the scope of this
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Figure 3.9: Top: Volume rendering of the energy function of a CH4 molecule in an LTA zeolite
and lowest energy paths connecting neighboring minima. Bottom: Corresponding graph showing
lowest energy paths (an edge going through a face of the periodic box marked with arrows).
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chapter. However, it should be pointed out that proposed graph representations of free energy of

different guest molecules inside a material allow for fast analysis and comparison of a material’s

properties with respect to these guest molecules: these representations reveal differences in num-

bers and significance of adsorption sites as well as highlight the differences in barrier heights along

diffusion paths.
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Chapter 4

Comparative Geometry–preserving

Topological Landscapes

This chapter presents a novel topology-based technique for the comparative analysis of sci-

entific data. In particular, this technique embeds the geometric proximity information of critical

points into a visualization metaphor called topological landscape, which, in turn is based on a

topological structure called the contour tree. Again, the selection of approximation methods is

supported by the study conducted in Chapter 6.

4.1 Introduction

In light of major advances in simulation capability and growth of computational power, visual

exploration of scientific data is becoming an increasingly important task. An integral part of visual

exploration is the presentation of helpful two- and three-dimensional abstractions that provide an

insight into the structure of the scientific data.

One approach to creating such abstractions is based on the use of topological information.

Important insights are known to be obtained using topological analysis in a number of fields [85,
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15]. In particular, the contour tree was extensively used in scalar data analysis and visualization [5,

80, 21, 59]. However, interpreting the contour tree usually requires at least an intermediate level

understanding of Morse theory and related concepts. As a result, topological landscapes [83] have

been developed to convey the same information in a more intuitive manner, namely as a two-

dimensional terrain with a same level-set topology as the original data set.

A major feature that is missing in the original technique by Weber et al. [83] and its modifica-

tions [47, 61, 62] is a correlation between the geometrical placement of the topological features in

the landscape and the original domain space. This property simplifies the process of understanding

the landscapes by domain scientists by correlating the proximity of the topological features. It also

adds a new capability of comparing functions. However, given the potential complexity and higher

dimensionality of the data, it is not simple to develop it.

A new technique for building geometry-preserving topological landscape from a contour tree

addresses the problem of correlating the function and its topological landscape. The proposed

technique also makes it possible to compare several complex scalar functions via their topological

landscapes, something previous versions of the topological landscapes lack.

The technique consists of three major stages: first, it computes a contour tree of the input func-

tion; second, it uses the dimension reduction to project the vertices of the contour tree onto the

plane and graph drawing algorithm to connect them by non-intersecting edges; finally, it uses a

contour construction algorithm, which creates contours of different height and produces the de-

piction of the terrain similar to the contour map. Finally, obtained terrain is triangulated and its

surface is rendered, resulting in the geometry-preserving topological landscape. The technique is

demonstrated for case of performance data analysis.
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4.2 Contributions

The contributions of this chapter are a three-stage technique for creation of geometry-preserving

topological landscapes and the capability to conduct comparative analysis of several functions us-

ing their topological landscapes.

4.3 Related Work

4.3.1 Contour Tree Visualization

A number of visual models for the contour tree exists. For example, planar and volume graph

representations of the contour tree are widely used [40, 50]. In fact, this technique produces the

planar graph representation of the contour tree as an intermediary result (detailed discussion is in

Section 4.3.3).

While a graph representation is a good starting point, it is often hard to visually derive the

required information from it, especially in case of large contour trees. To address this issue, more

intuitive visualizations were proposed. The contour nest [59, 58] focuses on the nesting proper-

ties of isosurfaces and represents the contour tree as a set of nested rectangles, where rectangle

size corresponds to feature size. Another metaphor that provides the requested insight is called

topological landscape, proposed by Weber et al. [83]. It proved to be useful in several application

fields [47, 61, 62, 63], and it is selected as a basis for proposed technique.

In the original work [83], a topological landscape was constructed from the persistence-based

branch decomposition [67] of the contour tree [21], such that each branch corresponds to some

box element of the landscape. Box elements were arranged using a spiral layout. Later, several

modified versions of the original topological landscapes were proposed [61, 62], including the one

that uses a tree map layout scheme for box elements [47]. However, both layout schemes (spiral

and tree map) ignore feature proximity in the domain. Therefore, the technique proposes a new
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layout scheme that consists of three steps: projecting vertices of the contour tree onto the plane;

projecting edges of the contour tree onto the plane; drawing contours around the projected contour

tree. These steps produce the terrain representation similar to the topographic map, which after

additional triangulation step results in the desired landscape.

4.3.2 Dimension Reduction

In the first stage of the proposed layout method, vertices of the contour tree are projected onto

the plane. This projection can be achieved by number of dimension reduction techniques (refer to

the work by Fodor [36] for an overview). In particular, classical multidimensional scaling [79] is

chosen. It is a well-accepted method [42, 34] that preserves relative distances between points, as

they are projected from the original domain onto the plane.

4.3.3 Graph Drawing

Once the vertices of the contour tree are fixed, the edges are drawn on the plane. A number of

algorithms for drawing a tree on the plane exist, see the book by Tamassia [77] for an overview.

Level-based layouts arrange the tree in a hierarchical fashion, starting from the root vertex. Radial

layouts draw the vertices of the tree on concentric circles with different radii. However, these

methods assume that vertex locations are flexible, which is not true in the given case. Pach and

Wenger [65] address the problem of drawing a tree with fixed vertex locations. However, the

authors mainly discuss theoretical issues and limitations, such as an upper bound on number of

bends per edge. While they describe a high-level scheme for drawing an actual tree, it appears to

be theoretical and mostly for illustration purposes. In particular, they allow the spacing between

the edges to be infinitely small, leading to potentially cluttered layouts.

Alternatively, it is possible to draw the edges iteratively, using edge routing algorithms. In-

spired by the fields of robotics and electronic circuit design, these methods are based on notion
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of finding the route between two fixed locations with given obstacles. Usually, these obstacles

are the vertex locations and previously drawn edges, given that layout should not contain self-

intersections. Drawing an edge as a single straight line is not always possible due to potential

obstacles. Instead, an edge can be drawn via polyline, curve, etc. The majority of the edge routing

algorithms tries to optimize certain predefined requirements for the route [29], such as minimiz-

ing a number of bends or maximizing the smallest bending angle. However, the graph layout is

also used as an input for constructing contours. This imposes a requirement that edges should be

spread out. Currently, there is no method satisfying this requirement. Therefore, the technique uses

a novel edge routing algorithm, which for each edge uses the Voronoi diagram of already drawn

parts of the contour tree, hence satisfying the stated requirement.

Once the layout of the contour tree on the plane is computed, it is passed on to the contour

construction algorithm, described in Section 4.4.3, followed by constrained Delaunay triangulation

and rendering of the surface, to produce the resulting landscape.

4.4 Algorithm

This section presents an algorithm for building the geometry-preserving landscape. The general

outline of the algorithm is as follows: First, the contour tree is computed from the data. Then, its

vertices are projected onto the plane using multidimensional scaling, and its edges are drawn on

the plane using edge routing algorithm. Once the contour tree layout is finalized, the contours

extracted from the contour tree are constructed on top of the layout. The resulting contour map is

then triangulated and rendered to produce the required landscape.
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4.4.1 Contour Tree Computation

Consider a scalar function f : Rd → R. The contour tree of the function f is computed using

the algorithm by Carr et al. [21], which is then branch decomposed based on persistence [67].

Additionally, the spatial locations of contour tree vertices are recorded in the original domain

space.

4.4.2 Contour Tree Layout

Let a point set Pd = {p1, p2, ..., pN} represent the spatial locations of the contour tree vertices

V = {v1,v2, ..,vN} in d-dimensional space. This point set is then projected to two dimensions using

classical multidimensional scaling method Pd
MDS−−−→ P2.
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Figure 4.1: The contour tree layout process. First the vertices are projected as a point set. Then,
the edges are drawn iteratively by connecting the corresponding points. The initial three edges
( f ,d),(c,d), and (d,b), are drawn as a straight line. Then, the edge (e,b) is routed via Voronoi
diagram. Finally, the edge (b,a) is drawn through intersections of Voronoi diagram and bounding
box, since no path through Voronoi diagram itself is available.

Once the locations of the vertices are calculated, the edges of the contour tree are drawn it-

eratively by the following algorithm: For a given edge e = (vi,v j), the algorithm constructs a

polyline that connects corresponding points pi, p j on the plane. For this purpose, the algorithm

computes the Voronoi diagram for all existing elements (already drawn vertices and edges), finds

an intersection-free path along the edges of the diagram from pi to p j, and adds it as a polyline

to the layout. If more than one path exists, Dijkstra’s algorithm can be optionally used to find the

shortest (in terms of line segments or the distance travelled along those line segments) path. To
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guarantee the existence of at least one path between any two points, the edge routing is allowed

to be done along the bounding box of drawn parts of the contour tree, slightly extended in all

directions.

The ordering of the edges by their increasing L2-norm length on the plane (i.e., direct Euclidean

distance between the end points of an edge) was found to lead to fewer and shorter polylines in the

final layout. Also, often a few swaps in the ordering can lead to the significant improvements in

the layout, thus it is recommended to try several slightly different orderings as well. One example

of the swap criterion can be swapping edges with close L2-norm lengths.

4.4.3 Landscape Construction

At this point, an intersection-free contour tree layout on the plane is computed, given as the set

of points P and polylines on the plane. Now, this section describes the algorithm of constructing a

landscape from the contour tree layout.

The main idea is to take a branch decomposition of the contour tree, and for each branch (which

is an extremum–saddle pair) construct a contour that goes through its saddle and encloses its ex-

tremum. If the branch has no children, i.e., it is a leaf branch, and a triangle contour is constructed,

see Figure 4.3. Otherwise, i.e., if it is a parent branch, its children are sorted in an ascending or

descending order, depending on the type of extremum of the parent branch. Then, for each child

branch two operations are performed. First, inner contours are constructed as needed (recursively,

if it is also a parent branch). Second, an offset contour is constructed for the processed part of the

parent, see Figure 4.4. One exception is the first child, for which the previously processed part of

the parent is an edge (e.g., processed part ( f ,d) of the parent branch ( f ,a) in Figure 4.2), hence

the triangle contour is used.

The sequence of processing the branches is based on the hierarchical traversal of the given

branch decomposition. The processing starts with a root branch. If it is a simple branch, the
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Algorithm 4.1 Pseudocode of the function DRAWCONTOURS.
bcur(ecur,scur)
bcur← root branch
function DRAWCONTOURS(bcur)

S← all child saddles
if S = /0 then

TRICONTOUR(bcur)
return

if val(ecur)> val(scur) then
sortDecreasing(S)

else
sortIncreasing(S)

for s ∈ S do
if s is first then

TRICONTOUR((ecur,s))
else

OFFSETCONTOUR((ecur,s))
DRAWCONTOURS(bs)

triangle contour is constructed and returned. Otherwise, the parent branch handling (described

above) is used. This procedure is used recursively for all child branches.
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Figure 4.2: Contour map construction process. The process starts from a root branch ( f ,a). It
has children, so they are sorted in descending manner, and the process continues with the child
branch (c,d), as it corresponds to the highest saddle d. The upper (processed) section of this
branch is an edge ( f ,d), so the triangle contour is used. Then, its child branch (c,d) is a leaf, so
the triangle contour is used again. However, the upper section for the next saddle b is complex,
so the offset contour is used. Next, the corresponding child branch (e,b) is a leaf, so the triangle
contour is used. Finally, the offset contour is applied to the branch ( f ,a), and that concludes the
contour map construction process.

The geometric details of contours and the process of their construction are following: First,

each contour is represented as a simply-connected polygon, and each saddle maintains the list of
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Figure 4.3: Triangle contour. Constructing a triangle contour (black) for the branch (c,d) creates
a valley with inner contours (red) corresponding to the given branch.

all polygons, associated with it.

The function TRICONTOUR draws a simple triangle around the given edge, see Figure 4.3. If

the edge is polyline, a single triangle is still computed for an edge of the same length as the given

polyline edge. Then, the triangle coordinates are recomputed at the bends of the polyline edge (see

Figure 4.2, contour of the edge (e,b)).

The function OFFSETCONTOUR uses as input an upper/lower (already processed) section of

some saddle s. It consists of contours that belongs to the previous saddle sprev and an edge to

it from the current saddle, see Figure 4.4. The aim is to enclose these into a single contour.

Since each contour of saddle sprev has a corresponding polygon, all these polygons are combined

into a single, non-convex, strictly-simple polygon Psprev , where strictly-simple means that the area,

bounded by the polygon, is simply-connected. Then, a 2D polygon offsetting method, provided

by Computational Geometry Algorithms Library (CGAL) [18], is applied to polygon Psprev . This

offsetting produces new, non-convex, strictly-simple polygon Po f f set
sprev . Next, the triangle contour is
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Figure 4.4: Offset contour. Constructing an offset contour (black) around the upper section of the
saddle b creates a continuation of the peak f with the valley c on it.

constructed for the edge (s,sprev), as this edge is simple. Finally, a 2D polygon join operation (also

provided by CGAL) is applied to the computed offset polygon and the triangle together, which

produces the output polygon Ps = Po f f set
sprev ∪T(s,sprev). This polygon is saved to the list of contours

for the current saddle s.

Once all the contours are drawn, the constrained Delaunay algorithm (provided in CGAL) is

applied to create a triangulated surface, resulting in a landscape with the given contour tree.

4.4.4 Comparable Landscapes

To produce comparable landscapes for several contour trees T1, ...,Tk, their vertices are com-

bined into one set V = {V1, . . . ,Vk} and the corresponding complete point set is then projected

onto the plane Pd
MDS−−−→ P2. After the projection, the algorithm continues with vertices of each

contour tree separately. The resulting landscapes are then comparable in terms of the locations of

corresponding elements.
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4.5 Results

The technique was applied to the problem of tuning a ray casting algorithm on a multicore

shared-memory system, based on the study by Bethel and Howison [11] that explores wide range

of potential tuning parameters for this algorithm. For the purposes of demonstrating the technique,

the following parameters were selected from the study: the work block width {1,. . . ,512} and

height {1,. . . ,512}, and levels of concurrency {1,2,4,8}. One additional parameter was considered,

namely the ray sampling method option, which can be either nearest-neighbor or trilinear. This

parameter produces two data sets (one for each option) that are used to demonstrate the comparative

capability of the geometry-preserving landscapes.

Figure 4.5: Trilinear ray sampling option data set. Volume rendering (top) and the correspond-
ing geometry-preserving topological landscape (bottom).

Each data set is obtained by running a ray casting algorithm based on a selected ray sampling

strategy and all combinations of other input parameters, and recording the resulting normalized

running time, given in milliseconds. High running time corresponds to poor performance, de-

picted in the landscapes as peaks. Figure 4.5 shows the volume rendering of the performance data

set (produced by selecting trilinear ray sampling option), together with corresponding geometry-

preserving topological landscape.
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It is visually easier to see the correlation between features in the landscape than a direct vi-

sualization. For example, from the landscape one can derive the closeness of the peaks, the fact

that needs some effort to check otherwise (e.g., by sweeping different isovalues and constructing

corresponding isosurfaces, see Figure 4.6). This is an important observation, which suggests to the

domain scientist that there exists a subspace enclosing poor configurations to be avoided.

Further, comparable landscapes are produced by combining the projection step for two data

sets with trilinear and nearest-neighbors ray sampling options (as discussed in Section 4.4.2). A

correlation between two data sets (see Figure 4.6) can be observed, where very high peaks, i.e.,

particularly poor performing configurations, appear to be close in both data sets.

An interesting observation can be made about moderate peaks (see Figure 4.6). In the case of

the trilinear ray sampling option, they are distributed close to high peaks (circle A in Figure 4.6(a)).

However, in the case of the nearest-neighbors ray sampling option, they are distant from the main

cluster (distinct circles A and B in Figure 4.6(b)). This observation provides an important insight

into the underlying behavior of the algorithm and the ray sampling option selection. It can be

suggested that, should the parameter ranges be limited, the trilinear ray sampling option is prefer-

able, since unlike nearest-neighbors, in the lower parameter ranges it has no moderate peaks, i.e.,

moderately poor configurations. This fact can be missed easily in the direct visual exploration or

other versions of topological landscapes.
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Figure 4.6: Geometry-preserving landscapes. Top: Trilinear ray sampling option data set, for
which poor performing configurations are closely located (circle A). Bottom: Nearest-neighbor ray
sampling option data set, for which poor performing configurations are spread around (circles A,
B). From landscapes, one can easily see how close/far the poor performing configurations are from
each other. To derive the same observation from the direct view, one has to search for specific,
often different, isosurfaces that would encompass such configurations. Furthermore, this search
might be impossible when the dimensionality of the function exceeds three.
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Chapter 5

Measuring Distance between Merge Trees

The problem of quantifying the error for proposed techniques is addressed in this and the

following chapters. This chapter tackles a more general problem of quantifying the difference in

topology for any two functions, resulting in a novel distance definition for topological structures

called merge trees. In place of two arbitrary functions, the next chapter considers the real and

approximated functions, thus allowing the distance to serve as an error measure. This error measure

is then used to evaluate various approximation methods, resulting in recommendations, including

those that pertain to previously proposed techniques.

5.1 Introduction

This chapter addresses the generic problem of comparing the topology of two scalar functions.

Figure 5.1 demonstrates this problem. It presents slightly shifted versions of the same function,

colored red and blue. Commonly used analytical distances (e.g., norms of the difference) between

these functions would result in a non-zero value, failing to highlight the fact that they have the

same sub-level set topology.

One well-established distance that expresses the topological similarity in the above example is
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Figure 5.1: Consider two scalar functions (left), one of which is a slightly shifted version of the
other. Comparing them directly, e.g., via L∞ norm, results in a large difference. On the other hand,
their persistence diagrams are the same (right), thus capturing the topological similarity of these
functions.

the bottleneck distance between persistence diagrams, introduced by Cohen-Steiner, Edelsbrunner,

and Harer [24]. Indeed, computing the bottleneck distance for the example in Figure 5.1 gives zero.

Originally motivated by the shape matching problem, where the goal is to find how similar shapes

are based on similarity of their topology, the bottleneck distance also has an important property —

robustness to noise, see Figure 5.2.

Figure 5.2: Consider two ”close” scalar functions, shown on the left, where one contains addi-
tional noise. If to construct their persistence diagrams and find the bottleneck distance (which
corresponds to the longest black line segment between paired points on the right), the result is
small, correctly reflecting the closeness of the functions. In fact, the difference is the same as the
level of the noise, which in this example is small.
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However, the bottleneck distance does not incorporate sub-level set nesting information, often

necessary for analysis. Figure 5.3 shows two functions that differ by the nesting of the maximum

m. The bottleneck distance between corresponding persistence diagrams again returns zero. On

the other hand, the corresponding merge trees cannot be matched exactly, hinting at a positive

difference.

m m m m

Figure 5.3: Consider two scalar functions on the left. The bottleneck distance between persistence
diagrams on the right equals zero, as points of two diagrams overlap. However, comparing corre-
sponding merge trees in the middle reveals a difference, since they cannot be matched exactly. This
difference highlights an existence of additional nesting information in merge trees. Quantifying it
is the main goal of this chapter.

To resolve this problem, a novel definition of the distance between merge trees is proposed.

This distance resembles the bottleneck distance between the persistence diagrams of sub-level sets

of the function, but it also respects the nesting relationship between sub-level sets. Furthermore, the

proposed distance implicitly distinguishes the noise in the data, similar to the bottleneck distance,

resulting in robust measurements resilient to perturbations of the input. This property is crucial

when working with scientific data, where noise is a serious obstacle to any analysis.

It is worth noting that the definition of the distance between Reeb graphs was recently intro-

duced in the abstract by Bauer et al. [7], however the discussion on its relationship to the proposed

distance is omitted, as the abstract appeared after the completion of this dissertation.
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5.2 Contributions

The main contributions of this chapter are: a definition and an algorithm for computing the

distance between merge trees; computation of the number of branch decompositions of the merge

tree; an experimental comparison between the proposed distance, the bottleneck distance, as well

as the L∞ norm, as applied to analytical and real-world data sets.

5.3 Related Work

5.3.1 Persistence Diagrams

Persistence diagrams reflect the importance of topological features of the function: the larger

the difference d − b of any point, the more change to the function is required to eliminate the

underlying feature. Thus, persistence diagrams distinguishes between real features in the data and

the noise.

Cohen-Steiner et al. [24] proved the stability of persistence diagrams with respect to the bot-

tleneck distance, dB(D( f ),D(g)). This distance is defined as the infimum over all bijections,

γ : D( f )→ D(g), of the largest distance between the corresponding points,

dB(D( f ),D(g)) = inf
γ

sup
u∈D( f )

||u− γ(u)||∞.

Their result guarantees that the bottleneck distance is bounded by the infinity norm between func-

tions:

dB(D( f ),D(g))≤ ‖ f −g‖∞.

The bottleneck distance between persistence diagrams is to be used as a comparison baseline

for the distance between merge trees.
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5.3.2 Distance between Graphs

Graph theory offers a large body of work dedicated to comparing graphs and defining a notion

of a distance between them. A common approach to measuring a distance between graphs is based

on an edit distance. It is computed as a number of edit operations (add, delete, and swap, if a graph

is labeled) required to match two graphs [16], or, in a special case, trees [14]. The edit distance

focuses on finding an isomorphism between graphs/subgraphs, while for merge trees one can have

two isomorphic trees with a positive distance (see the example in Figure 5.3).

Alternatively, in a specific case of rooted trees, one can consider generalized tree alignment

distance [53], which in addition to the edit distance considers minimization of the sum of distances

between labeled end-points of any edge in trees. However, it is not clear how to adapt this distance

definition for purposes of this evaluation.

5.3.3 Using Topology of Real Functions for Shape Matching

The field of shape matching offers several methods related to this work. Generally, these meth-

ods focus on developing topological descriptors by treating a shape as a manifold, defining some

real function on that manifold, and computing topological properties of the function. The selection

of the particular function usually depends on which specific topological and shape properties that

are sought after (refer to an overview by Biasotti et al. [12]).

While majority of mentioned descriptors are not directly related to this work, two topological

descriptors use similar approaches in defining similarity measure. First one is called a multiresul-

tion Reeb graph, proposed by Hilaga et al. [51], which encodes a nesting information into nodes of

a Reeb graph for different hierarchy resolutions. Here, hierarchy is defined by the simplification of

Reeb graph. Second descriptor is based on an extended Reeb graph (ERG), proposed by Biasotti

et al. [13]. It starts by computing the ERG of the underlying shape, which is basically a Reeb

graph with encoded quotient spaces in its vertices. It couples various geometric attributes with

52



the ERG, resulting in an informative topological descriptor. In both cases, similarity of shapes is

measured by applying a specialized graph matching (based on embedded/coupled information) to

descriptors. However, the focus of this chapter is only on the sub-level set topology information,

so the straightforward matching algorithm is designed, tailored specifically for this case.

In the work by Thomas and Natarajan [78], the authors focus on discovery of symmetry in a

scalar function based on its contour tree. The authors develop a similarity measure between sub-

trees of the contour tree, which in many regards is similar to the proposed measure. However, their

method considers a single pre-processed stable branch decomposition, and focus on discovering

symmetry in a sole function.

5.4 Distance between Merge Trees

This section provides a formal definition of the distance between merge trees and give an algo-

rithm (with optimizations) for computing it. In short, to compute the distance between two merge

trees, all branch decompositions of both trees are considered, to try to find a pair that minimizes

the matching cost between them. Additionally, the details of computing the number of branch

decompositions of a merge tree, used in complexity analysis of the algorithm, are given.

5.4.1 Definition

Let K be a simplicial complex; let f : K → R be a continuous piecewise-linear function, de-

fined on the vertices and interpolated in the interiors of the simplices. Furthermore, assume all

the vertices have unique function values; in practice, this can be simulated by breaking ties lexico-

graphically.

Let Tf be a merge tree of the function f ; every vertex of K is mapped to a vertex in the merge

tree. Accordingly, every vertex of the merge tree has a degree of either one, two, or more, cor-
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responding to a minimum, a regular point, or a merge saddle. Note that given definition works

for higher dimensional saddles (degenerate critical points) as well, and they need explicit consid-

eration only in the complexity analysis of the algorithm (Section 5.7). A merge tree obtained by

removing all regular vertices is called reduced.

A branch decomposition B of a reduced merge tree T is a pairing of all minima and saddles such

that for each pair there exists at least one descending path from the saddle to the minimum [67].

Consider a rooted tree representation R of the branch decomposition B, such that the rooted tree

representation R is obtained by translating each branch b = (m,s) ∈ B into a vertex v ∈ R, where m

and s are minimum and saddle that form the branch b. The edges of the rooted tree representation

describe parent–child relationships between branches, see Figure 5.4.

Given two merge trees, Tf and Tg, consider all their possible branch decompositions, BTf =

{R f
1 , ...,R

f
k} and BTg = {R

g
1, ...,R

g
k}, respectively; see Figure 5.4.Two auxiliary definitions are de-

scribed below, to be used for the main definition of the matching of rooted branch decompositions.
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Figure 5.4: Merge trees Tf (top) and Tg (bottom), all their possible branch decompositions, and
corresponding rooted tree representations. Root branches are colored in red, demonstrating the
mapping of branches to vertices.
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Definition 1 (Matching cost). The cost of matching two vertices u=(mu,su)∈R f
i and v=(mv,sv)∈

Rg
j is the maximum of absolute function value difference of their corresponding elements,

mc(u,v) = max(|mu−mv|, |su− sv|).

Definition 2 (Removal cost). The cost of removing a vertex u = (mu,su) ∈ R f
i ,R

g
j is

rc(u) = |mu− su|/2.

A partition (M f ,E f ) of the vertices of a rooted branch decomposition R f is deemed valid, if

the subgraph induced by the vertices M f is a tree. Here, the vertices M f are mapped vertices, while

the vertices E f are reduced vertices. An isomorphism of two rooted trees is said to preserve order,

if it maps children of a vertex in one tree to the children of its image in the other tree.

Definition 3 (ε-Similarity). Two rooted branch decompositions R f ,Rg are ε-similar, if one can

find two valid decompositions (M f ,E f ) and (Mg,Eg) of their vertices, together with an order-

preserving isomorphism γ between the trees induced by the vertices M f and Mg, such that the

distance between each matched pair of vertices and the maximum cost for reduced vertices does

not exceed ε , i.e.,

max
u∈M f

mc(u,γ(u)) ≤ ε (5.1)

max
u∈E f∪Eg

rc(u) ≤ ε (5.2)

A minimum epsilon, for which the above two inequalities hold, is denoted as εmin(R
f
i ,R

g
j).

Definition 4 (Distance between merge trees). The distance between two merge trees Tf ,Tg is

dM(Tf ,Tg) = minR f
i ∈BTf ,R

g
j∈BTg

(εmin(R
f
i ,R

g
j)).
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5.5 Naı̈ve Algorithm

The distance dM is computed by an algorithm that follows Definition 4. In particular, the

algorithm constructs all possible pairs of branch decompositions, computes εmin for each pair, and

selects the minimum among them.

The algorithm uses a recursive construction of the branch decompositions of a merge tree.

The main operation is to pair a given saddle, one by one, with each minimum in its subtree. The

algorithm start by pairing the highest saddle sr with all minima in a tree. Each pair acts as a root

branch (sr,mi) in the recursive operation. Then, for each child saddle s j on the root branch, the

pairing is recursively repeated until all the saddle–minimum pairs are fixed, producing a unique

branch decomposition bi.

The computation of εmin(R
f
i ,R

g
j) first uses a function ISEPSSIMILAR(ε,R f

i ,R
g
j), which for a

predefined ε , determines whether two branch decompositions match. It starts by setting ε to a

high value — for example, the maximum of the amplitudes of the two functions — and performs

a binary search to determine εmin.

The function ISEPSSIMILAR is the core of the algorithm. It works by matching the vertices

and the edges at each level of the tree. Recall that each vertex u = (mu,su) ∈ ri,v = (mv,sv) ∈

r j is a minimum-saddle pair. There are only two vertices at the root levels of R f
i and Rg

j , so

they are compared directly by checking whether their endpoints can be matched, i.e., whether

max(|mu−mv|, |su−sv|)≤ ε . If they cannot, the function ISEPSSIMILAR returns false. Otherwise,

all the child vertices are considered (see Figure 5.4). Since now there are several potential matches,

a bipartite graph between the child vertices is constructed, such that the edge between a pair of

children u∈R f
i ,v∈Rg

j exists if and only if they can be matched within given ε , and ISEPSSIMILAR

returns true for their subtrees. Also, a ghost vertex is added for each vertex in the rooted branch

decomposition, if it can be reduced within ε . Then, if there is a perfect matching in the bipartite

graph, the function returns true; otherwise, it returns false. Note that if one or both of the current
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Figure 5.5: As long as sr is paired with a minimum that is outside of the subtree Tsi , the set of
branch decompositions of that subtree remains the same.

pair of children has children of their own, the function ISEPSSIMILAR is called recursively. (The

matching is perfect when there exists an edge cover such that its edges are incident to all the

non-ghost vertices and do not share any of them.)

5.6 Optimized Algorithm with Memoization

The naive algorithm above has exponential complexity. Indeed, constructing all branch de-

compositions of a tree takes O(2N−1), where N is a number of extrema (details are given in Sec-

tion 5.7). Therefore, comparing all branch decompositions of two trees would require O(2N+M−2)

operations, where N,M are the number of extrema in each tree. This cost is unacceptable even for

small trees.

Therefore, an optimized algorithm is devised, which combines both construction of all branch

decompositions and the recursive comparison of vertices of rooted tree representations of the

branch decompositions.

Note that for a given saddle si, the set of branch decompositions of its subtree Tsi does not

change as long as no minimum from this subtree is paired with a higher-valued saddle (see Fig-
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ure 5.5). Thus, if to record the results of comparison for pairs of saddles on each level of branch

decomposition, it is possible to reuse them throughout the computation. Since the number of

saddles in a tree equals the number of minima minus one, at most N×M previous comparisons

are recorded and used as necessary. More precisely, for any saddle pair si ∈ Tf and s j ∈ Tg the

following is recorded:

match[si][s j] =


0, if not compared before,

1, if compared as false before, or

2, if compared as true before.

Then, the function ISEPSSIMILAR takes as input the highest saddles s f ,sg and the current ε . It

loops over all minima reachable from the current saddle and sets the minimum–saddle pair as the

current root branch. It collects all child saddles and constructs a bipartite graph such that there is

an edge between a pair of saddles, when they can be matched within a given ε . The latter condition

is determined recursively by calling ISEPSSIMILAR function on the new pair of saddles. Once the

recursion reaches the leaf branches, it compares them directly. As the algorithm progresses, more

recorded comparison results become available, decreasing the number of required recursive calls.

Finally, the algorithm uses the function ISEPSSIMILAR to find the εmin, which is the target

distance dM. This is done by using the binary search algorithm for a range between zero and

selected high value, e.g., the absolute difference between the global maximum and minimum.

Note that between iterations of the binary search, parts of the array match stay unchanged.

Specifically, if two subtrees are compared and recorded as unmatchable for the current ε , and in

the next iteration the value of ε decreases, the two subtrees remain unmatchable. Similarly, if two

subtrees match for some ε , they remain matched, if ε increases in the next iteration.

Proposed optimization reduces the run time complexity from exponential to polynomial. In-

deed, the function ISEPSSIMILAR performs N ·M outer operations, multiplied by the sum of pro-
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Algorithm 5.1 Optimized algorithm uses the function ISEPSSIMILAR, described below, for a bi-
nary search of the smallest ε .

s f ,sg← highest saddles of Tf ,Tg

function ISEPSSIMILAR(s f ,sg,ε)
if match[s f ][sg] ∈ {1,2} then

return match[s f ][sg]

for all minima m f ∈ Tf do
for all minima mg ∈ Tg do

if max(|m f −mg|, |s f − sg|)> ε then
match[s f ][sg]← 1
return false

for all c f ∈ {child saddles o f s f } do
for all cg ∈ {child saddles o f sg} do

if ISEPSSIMILAR(c f ,cg,ε) then
bipartite[c f ][cg]← true

else
bipartite[c f ][cg]← f alse

f ound← FINDMATCH(bipartite)
if f ound then

match[s f ][sg]← 2
return true

match[s f ][sg]← 1
return false

cessing saddles nc f ·ncg and the complexity of a maximal matching algorithm (nc f +ncg) ·nc f ·ncg .

Note that the latter complexity dominates the former term. Hence, assuming that lookup of pre-

vious results is done in a constant time via memoization, the resulting run time complexity of the

function ISEPSSIMILAR is O(N2M2(N +M)). This complexity gets multiplied by the number of

iterations of the binary search algorithm, which can be considered logarithmic, given a reason-

able selection of the search range and the precision. The worst-case memory complexity of the

optimized algorithm is O(N ∗M), less prohibitive than its run time complexity.
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5.7 Number of Branch Decompositions of a Merge Tree

This section provides the details of computing the number of branch decompositions of the

merge tree, used for the naive algorithm complexity analysis in the beginning of Section 5.6. The

number of branch decompositions P(N) for a merge tree with N minima is computed in two steps.

First, the number P(N) is computed for the case when the merge tree is binary, in which case

the tree has maximum possible number of saddles. Second, it is shown that for fewer saddles the

number P(N) only decreases, leading to the worst case P(N) = 2N−1 branch decompositions for

any merge tree.

Theorem 1. The number of branch decompositions of the binary merge tree with N minima equals

P(N) = 2N−1.

Proof. For any saddle s, the number of branch decompositions in its subtree is Ps = 2 ∗Pc1 ∗Pc2 ,

where c1 and c2 are the children of the saddle s. Indeed, if the saddle s is paired with a minimum

in a subtree of child c1, then for each such pairing, the all the possible branch decompositions of

a subtree of child c2 gives Pc1 ∗Pc2 possibilities. Symmetrically, for the child c2, there are Pc2 ∗Pc1

possibilities.

Now, using this fact, the following proof can be constructed by induction:

• For the base case of N = 1, the number of branch decompositions is one. On the other hand,

P(1) = 21−1 = 1. Hence, the formula holds.

• Assume that for all N = 1, . . . ,k the formula P(N) = 2N−1 remains true.

• Now consider the case with N = k+1, for which it should be proven that P(k+1) = 2k. For

the root saddle r of the tree with k+1 minima, remember that Pr = 2∗Pc1 ∗Pc2 . If to denote

the number of minima in the subtree of the child c1 as i ∈ [1,k], with k− i+ 1 denoting

the number of minima in the subtree of the child c2, the term P(k+ 1) can be expanded as
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P(k+1) = 2∗P(i)∗P(k− i+1). Since both i and k− i+1 are not greater than k, P(i) and

P(k− i+1) can be substituted in accordance with assumptions for N = 1, . . . ,k:

P(k+1) = 2∗P(i)∗P(k− i+1)

= 2∗2i−1 ∗2k−i+1−1

= 2∗2i−1+k−i+1−1 = 2k.

s

m1 m2 m3 m1 m2 m3

s1

s2

Figure 5.6: Splitting the higher degree (> 2) saddle always creates more branch decompositions.
For example, the saddle s induces three branch decompositions, however after being split into two
saddles s1 and s2, now there are four branch decompositions.

Now, consider the case with a number of saddles less than N − 1, i.e., the merge tree has

saddles with degree higher than two. The number of minima N remains the same, while some of

the saddles have more than two children. Then any saddle of degree d > 2, can be split into d−1

saddles of degree two, such that the structure of the tree changes only around the selected saddle,

see Figure 5.6. Such split leads to 2d−1 possible branch decompositions instead of the d for the

selected saddle. Since d > 2, the inequality 2d−1 > d holds true, which means having degree two

saddles always leads to more branch decompositions. At the extreme, if all saddles become degree

two, the merge tree becomes a binary merge tree, for which the number of branch decompositions

was already computed as 2N−1.
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Chapter 6

Measuring Error in Approximating

Sublevel Set Topology

This chapter presents a new approach to evaluating the error for approximated functions. The

approach adapts two distances (the distance between merge trees from the previous chapter, and

the bottleneck distance between persistence diagrams) as error measures to evaluate approximation

methods. In particular, the focus is on methods, used to approximate a function, and the perfor-

mance of these methods in keeping the distance between the approximated function and the ground

truth function small, i.e., keeping the error measures low.

6.1 Introduction

In practice, scalar functions are often approximated from discrete samples, acquired from sim-

ulations or experiments. Sampling introduces an approximation error, which causes a loss of topo-

logical information, often important for the end analysis.

The following scenario illustrates the problem. Consider a potential energy function of a

molecule, previously presented in Chapter 3. In particular, choose the function, obtained by the
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Figure 6.1: (Left) Molecule of dimer of formic and acetic acid. (Right) Rotation of its methyl
group produces the potential energy function.

rotation of the methyl group in the dimer of formic and acetic acid (DFA), see Figure 6.1.

The minima of this function correspond to the stable states of the DFA molecule. Hence, they

can be used to better understand the structure of the molecule and its evolution during chemical

reactions. However, one is only able to measure or to simulate a discrete set of samples of this

function. Figure 6.2 shows two sets of samples and their approximated functions; the algorithm

tries to extract information about the original minima.

If one is interested only in the correct number of minima (i.e., stable states), one can quantify

the error as the ratio of the missing to the correct minima. The real function has three minima.

Thus for the first approximated function the error would be measured as 0/3 = 0. However, the

second approximated function misses two minima, leading to the error of 2/3 = 0.67. The latter

non-zero error reflects the fact that it missed some of the topological information of interest, in

this particular case, the number of minima. The error is only considered in terms of the number of
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Figure 6.2: Although the first approximated function (green) deviates from the real function (blue),
it still preserves the correct number of minima — three — thus bearing no error on the count of
minima. However, the second approximated function (red) contains only one minimum, leading to
an error of 2/3.

minima, not positions or function values.

The sources of error in this example, i.e., the density and the distribution of samples, have

separate effects on the error. Indeed, even for a large number of samples, a bad distribution can

cause a large error. On the other hand, a small number of points would not sample the domain well

enough, regardless of their distribution. To limit the scope, only uniformly random distributions of

samples are considered, thus shifting the focus mainly on the sampling density error.

Another factor that causes the error is the approach to connecting the samples and approximat-

ing the function in between. The previous one-dimensional example intuitively connected samples

along the only axis and used linear interpolation in between the samples. However, with functions

on multi-dimensional domains, the strategy of how to connect samples becomes less clear. Con-

sider a two-dimensional function in Figure 6.3. Given a set of samples, they can be connected into

different meshes, each of which might lead to a different error. For the purpose of the evaluation,

the interpolation scheme is fixed to be linear (1D interpolation along the edges of the mesh for any

dimensionality), and the focus is on the mesh error.
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Figure 6.3: (Left) Given a set of nine samples of a two-dimensional function, one can construct
various meshes with potentially different approximation error. For example, following meshes are
generated by (middle left) Gabriel graph, (middle right) Delaunay triangulation, (right) K-Nearest-
Neighbors, with K = 2, the lowest value for which the mesh becomes connected.

So far, a topological feature of interest was minimum. Minima, or, more generally, extrema,

were the focus in an evaluation study by Correa and Lindstrom [26], where the authors developed

an error measure called F-measure. This investigation goes beyond the extrema and focuses on

topological features related to sub-level sets of the function, trying to quantify the error in their

approximation. The investigation considers more comprehensive error measures, and uses them

for the evaluation of approximation methods, which is the main goal of the investigation.

Given a compact subset X of the Euclidean space Rd and a threshold c, the sub-level set of

a function f : X → R is the set of all points in the domain of the function whose value does not

exceed c; formally, it is the set f−1(−∞,c] = {(x1, ...,xd) ∈ X | f (x1, ...,xd) ≤ c}. Consider two

topological approaches to describing the evolution of sub-level sets. The first is based on a merge

tree, which tracks the evolution of components of sub-level sets by recording their birth and merge

events as the threshold value c increases. The second is a persistence diagram, which records

the lifespan of components of sub-level sets. In particular, it records all pairs (b,d) such that a

component born in f−1(−∞,b] dies in f−1(−∞,d] by merging with an older component.

To quantify the error for these topological structures, one need a notion of distance between a

measure computed from the real function and the one from the approximation. In case of persis-

tence diagrams, a natural choice is the bottleneck distance, introduced by Cohen-Steiner, Edels-
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brunner, and Harer [24]. This distance is used as a basis for the first error measure. In the case of

merge trees, the distance between merge trees [10], presented in Chapter 5, is used as the second

error measure. Further, these distances are denoted as dB,dM, and corresponding normalized error

measures are denoted as εB,εM.

The proposed error measures require the real function to be known, thus they cannot be used if

only a set of samples are available. However, they provide a powerful evaluation capability, given

both the real function and its sampling, to compare common approximation methods. Presented

work evaluates the approximation quality of different types of meshes, as several parameters vary,

e.g., the density of the sampling. Such evaluation reveals common types of problems and leads to

recommendations of preferred types of meshes under various conditions.

The key advantage of this approach, when compared to F-measure of Correa and Lindstrom [26],

is that error measures implicitly distinguish the noise in the data, resulting in robust measurements

resilient to perturbations of the input. This property is crucial when working with scientific data,

where noise is a serious obstacle to any analysis.

6.2 Contributions

The contributions of this chapter are:

• Evaluation of common mesh construction methods using error measures εB and εM that have

implicit ability to distinguish the noise.

• Targeted evaluation of scalar functions, defined on curved domains (manifolds), embedded

in higher dimensional space.

• Recommendations for each type of mesh based on the evaluation results.

• Application of obtained recommendations to proposed techniques from Chapters 3, 4.
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6.3 Related Work

6.3.1 Sampling and Mesh Types

Well-known sampling strategies, regular and random, are often used to generate real-world

data sets. Most of the random sampling methods were developed in statistics (see [57, 17]) as a

response to the need for rigorous representative selection of the subsets from the full set. In case of

scalar functions, this translates into the selection of discrete points in the domain of the function.

Regular sampling is a selection of points in the domain of the function with a fixed step in each

dimension. Random sampling is a probabilistic selection of points within the domain, usually with

requirements like the uniform density of the sample or variability. This approach uses randomly

sampled scalar data.

Since the sampled scalar data can lie in higher dimensions, approximation schemes that try

to interpolate (using polynomials or splines) inside the whole domain by decomposing it into

cells are costly, so a simple approximation scheme that connects the samples via a mesh and

linearly interpolates the function along the edges of the mesh is considered. In some cases, cell

decomposition methods are used for the mesh generation purposes.

There are a number of methods that work with non-regular sampling. One example is the De-

launay triangulation. It connects all the sample points into simplices of the same dimensionality

as the underlying domain and, for each, guarantees that there are no sample points inside its cir-

cumsphere. It is frequently used because it produces average sized simplices. The evaluation of a

mesh, generated by this method, is presented among others.

Computing triangulated meshes can be expensive. So it is common to use sparser meshes. One

example are meshes generated by empty region graphs [19]. As the name suggests, these meshes

are constructed by connecting any two sample points whenever their “region” is empty, i.e., free

of other sample points. Depending on the definition of “region,” they assume different names; for
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Figure 6.4: The edge between any two points p and q exists, if their “region” is empty, i.e., free of
other points. Left: For a Gabriel graph, the “region” is a circle with an edge (p,q) as a diameter.
Right: For a relative neighborhood graph, the “region” is an intersection of two half-circles, with
centers at p and q, and a radius (p,q).

example, Gabriel graph or relative neighborhood graph meshes, see Figure 6.4. The former was

used in the work by Oesterling et al. [62]. The latter was suggested as a primary choice for data

with prohibitive dimensionality or size by Correa and Lindstrom [26]. These two types of meshes

are included into the evaluation.

Finally, the evaluation considers meshes that are generated by parameterized neighborhood

graphs. First one is a k–nearest neighbors graph that constructs the mesh by connecting each

point with its k nearest points. This type of mesh is used in number of studies in scalar field

topology [76, 47]. Since there is no fixed way of selecting the value of k, so by default the mesh

generated by the minimum value of k such that the mesh is connected is used. Second one is a mesh

generated by Vietoris–Rips complex [81], as a comparison alternative for k–nearest neighbors

mesh. This complex is constructed by placing a simplex for every set of points within pairwise

distance r from each other. When the underlying data lies on some sub-manifold of the ambient

space, a Vietoris–Rips complex serves as an approximation of this manifold. Similar to k–nearest

neighbors mesh, as a default the minimum value of r that makes its mesh connected is used.

6.3.2 Evaluation of Mesh Types

Although different combinations of sampling strategies and meshes are often used, the question

of how far the approximated topology diverges from the original is rarely addressed. Usually,
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it is just assumed that the selected combination of sampling and mesh construction sufficiently

approximates the original function.

An explicit attempt to address this question appears in the work of Correa and Lindstrom [26],

who evaluated different mesh types in terms of the correct extrema discovery. They quantified

the number of false positive and true negative cases of extrema classification and computed nor-

malized harmonic mean, which they called the F-measure. They also proposed improved relaxed

mesh types, given the results of evaluation based on the F-measure and additional observations.

Such mesh types are obtained by relaxing the containment requirement for different empty region

graphs [26]. So the evaluation also considers relaxed versions of the relative neighborhood graph

and the Gabriel graph.

Small perturbations of the data can generate an arbitrarily large number of false extrema. On

the other hand, it is easy to recognize most of them as noise precisely because they result from

a small perturbation, and, therefore, their persistence is low. Moreover, they can be explicitly

eliminated with a small change of the function [33]. By focusing only on the number of extrema, F-

measures overlook this crucial distinction: not all false extrema are created equal. In contrast, this

chapter considers the persistence of the extrema, and automatically de-emphasizes the noise in the

evaluation, thus effectively measuring how well an approximation preserves important topological

features of the function.

6.4 General Evaluation

This section provides an evaluation of mesh types using the approximation error measures εB

and εM. In particular, first it describes a class of functions serving as a ground truth in evalua-

tion. Second, it provides details of normalizing the distances dB,dM (defined in Section 6.3) for

each concrete function, which makes the error measures scale-independent and thus comparable.

Finally, it evaluates each mesh type and summarizes recommendations.
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6.4.1 Ground Truth Function

A class of functions that serve as the ground truth is designed based on the following consid-

erations: First, it must be possible to compute a merge tree and a persistence diagram of a ground

truth function, as a part of the error measures calculation. Also, to normalize the error measures,

function values of the global maximum and global minimum must be known. Finally, it is cru-

cial to be able to change the number of maxima and the dimensionality of the function for more

comprehensive evaluation. A definition of one simple class of functions that satisfies the listed

considerations is provided below.

Definition A parametric function is given as an upper-envelope of cones, with a fixed slope

coefficient k, and apexes at a set of maxima M with values val(m ∈M):

fgt(p) = sup
m∈M

(val(m)− k ∗d(m, p)),

where d(m, p) is the Euclidean distance between two points, see Figure 6.5.

The computation of the merge tree (the first consideration) of such function can be done in the

following manner: First, the set M of all the maxima with locations and function values is chosen

(possibly randomly). Since each maximum mi ∈ M induces an uniformly decreasing region Ri

around it, for any pair of regions Ri,R j their merge saddle can be determined (if one exists). This

is done by finding the highest point of the shared boundary. Since all slopes are fixed, this point

lies on the line that connects two maxima mi,m j. To compute the coordinates of that point, i.e., the

merge saddle, it is enough to use simple geometry, knowing that the distances from each maximum

to the merge saddle, are proportional to function values of two maxima with the fixed slope. The

function value of the merge saddle can be computed in a similar way. Once all maxima and the

merge saddles are determined, a graph G = {M,E} is constructed, such that each maximum is

connected to the neighboring maxima through the corresponding merge saddles. Computing the
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Figure 6.5: The ground truth function is indicated by the bold black line, a supremum of maxima
generators. Red nodes are maxima and blue nodes are possible saddles. Note that saddle s3,4
belongs to the given function, while s2,4 do not. A function value and coordinates of any saddle
can be explicitly computed from the information about the maxima (dotted lines).

merge tree of the graph G produces the required result.

For the second consideration, note that all maxima are defined, hence the global maximum

can be determined by direct comparison. The global minimum is computed by considering the

boundaries between regions. Indeed, the lowest point of any boundary segment is at the boundary

ends. Then, by comparing all the boundary intersection points (ends), including those with the

domain boundaries, one can find the global minimum. Note that the number of maxima and the

dimensionality are parameters of the parametric function, thus they can be directly controlled.

A concrete set of functions that would serve as the ground truth is selected in the following

manner. First, the number of maxima generators are set to {3, 20, 50}, and the required number

of maxima are created within the domain. Resulting functions constitute core set of ground truth

functions. Whenever necessary, the number of dimensions is varied. For consistency purposes,

two additional random sets of maxima per each number of maxima are generated. Unless explicitly

stated, the default number of maxima is 20, the default number of dimensions being two.

6.4.2 Measure Normalization

By default, the distances dB and dM are computed in function value units and, thus, can vary

greatly for different functions. To eliminate this dependency, the distances are normalized based

on their value range.
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For the distance between merge trees, the smallest possible value is zero. To find the largest

possible value, consider the difference between global extremum m and root saddle r of a merge

tree T . Then, considered difference equals dTg = |mg− rg| for the merge tree Tg of the ground truth

function g, and dTa = |ma−ra| for the merge tree Ta of the approximated function a. The inequality

dTg ≥ dTa always holds, since the function a is only a sampling of the function g. On the other hand,

the distance between merge trees is computed based only on function value differences between

vertices of merge trees, thus it cannot exceed dTg . Hence this difference is used to normalize

proposed error measures.

6.4.3 Evaluation and Analysis

The evaluation is conducted for each ground truth function, defined earlier, by generating a set

of samples, and selecting its subsets of increasing size. Each subset is approximated as a function

using the selected type of mesh, and the error measure. The main premise of the evaluation is that

a better mesh produces lower error.

As discussed in the Section 6.3, the evaluation considers five types of meshes in the eval-

uation: Delaunay mesh (DEL); relative neighborhood graph mesh (RNG); Gabriel graph mesh

(GAB); k-nearest-neighbors mesh (KNN); and Vietoris-Rips mesh (VR). These acronyms to be

used throughout the dissertation.

Evaluation starts off by computing the error measures for DEL, RNG, and GAB meshes as the

number of samples increase, see Figure 6.6. For all meshes, as the number of samples increases,

error measures decrease. Once the number of samples gets really high, the error measures start to

flatten. This behavior is expected, as at the beginning samples start to discover maxima regions,

thus keeping the error high and spiky. Afterwards, samples get dense enough to approximate

each maximum region, thus error start to decrease smoothly. However, since the probability that

samples would hit all the critical points exactly is very low, the error flattens.
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Figure 6.6: The increase of the number of samples leads to the decrease of error values of εB,εM.

Delaunay Mesh. Overall, small error fluctuations are expected due to the random nature of

the sampling. However, note an irregular increase of the error for the DEL mesh in the Figure 6.7,

between 2100 and 6900 samples, while the error for the GAB and RNG meshes stay consistently
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Figure 6.7: The error measure εB for functions with varying number of maxima. As expected,
more maxima slow the error decrease rate, as it takes more samples to discover all maxima. In-
deed, for max3 function (left), the error drops below 0.1 around 400 samples, for max20 function
(middle) around 1000 samples, for max50 function (right) around 3000 samples. Note an irregular
increase of the error for the DEL mesh, between 2100 and 6900 samples.

low. Furthermore, the DEL mesh performs comparably worse in higher dimensions as well, see

Figure 6.8. Detailed investigation of the meshes, shown in Figure 6.9, reveals long edges along

the boundary of the domain for the DEL mesh, a potential source of the irregular error increase.
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Figure 6.8: Increase in dimensionality does not affect the expected decreasing error trend. Again,
the performance of the DEL mesh is relatively bad.

Indeed, these edges over-connect maxima, thus decreasing the persistence of some of them, leading

to an error increase. One case of the error drop, shown in Figure 6.9, reveals that the problematic
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Figure 6.9: Detailed investigation of an irregular increase of the error in Figure 6.4.3. The DEL
mesh before (left) and after (middle) the error drop around 6900 samples. The DEL mesh before
the error drop has many, potentially over-connecting, long edges along the boundaries of the do-
main. The error drop happens, as some of them are reduced due to the newly inserted samples. For
comparison, the RNG mesh before the error drop is provided (right), showing that it is not affected
by the problem of over-connecting boundary edges.

edges disappear with insertion of more samples, thus leading to error decrease. The GAB and RNG

meshes are less affected by this problem, due to shorter edges on average, e.g., see Figure 6.9.

The problem of badly shaped boundary triangles in Delaunay triangulation is well-known; it

is reported in context of scattered data interpolation by Lasser and Stüttgen [56]. In the same
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Figure 6.10: Evaluation of the relaxed versions of the GAB and RNG meshes shows no significant
improvement in terms of the error.

publication, the authors offer several solutions based on inserting additional samples. However,

further discussion is out of scope of this evaluation. Just note that this problem does not appear, if

the domain boundary is evenly sampled, e.g., in the case of regular sampling.

The use of a Delaunay mesh is usually limited to lower dimensions, due to both computational

and memory complexity. These limitations, in conjunction with an unstable performance, suggest

the use of the RNG and GAB meshes instead of DEL mesh, except the case when it is known that

the domain boundary is evenly sampled.

Gabriel graph, relative neighborhood graph meshes. The GAB and RNG meshes show

consistently good performance for all functions, thus their use is suggested for the setup and func-

tions similar to ones used in this evaluation. Note that similar recommendation was made in the

evaluation study using the F-measure, conducted by Correa and Lindstrom [26].

However, the relaxed versions of both RNG and GAB meshes, suggested as an improvement

in the same study, didn’t show any significant performance improvement, see Figure 6.10, in the

evaluation. In fact, the high number of false extrema was handled as noise by proposed error

measures, the key difference between these error measures and the F-measure.

Furthermore, note that in the majority of provided experiments, for lower number of samples,
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Figure 6.11: The minimally connected KNN and VR meshes compared to the RNG mesh. The
minimally connected VR mesh performs better, as it approximates the function better.

the RNG mesh performs slightly better than the GAB mesh.

K-Nearest-Neighbors, Vietoris-Rips meshes. Here the performance of the KNN mesh is

evaluated. Since no optimal strategy is known for selecting the parameter k, a minimally connected

version of the KNN mesh is evaluated. This version is based on computing the lowest value of the

parameter k, for which the mesh is connected. The value of k differs for every set of samples.

Comparison of the minimally connected KNN mesh to the RNG mesh is provided in Figure 6.11.

The performance of the minimally connected KNN mesh is highly unstable, mainly due to the

small number of considered neighbors for each sample.

In comparison, the average number of neighbors for the minimally connected VR mesh is

significantly higher. Hence, as expected, a similar evaluation of the minimally connected VR mesh

shows more stable behavior and lower error, see Figure 6.11. Indeed, fixing the value of k for

the KNN mesh to the average number of neighbors of the minimally connected VR mesh, the

performance improves significantly, see Figure 6.12.
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Figure 6.12: The average number of neighbors for the minimally connected VR mesh in Fig-
ure 6.11 equals 11. If to set the number of neighbors for the KNN mesh to 11, and compare it to
the minimally connected KNN and VR meshes, the performance is significantly more stable.

To evaluate the KNN mesh further, an additional sweep of the parameter k is performed. The

resulting error function is given in Figure 6.13 as a surface, where the valley corresponds to the

higher value(s) of the parameter k, for which the KNN mesh performs better. While these results do

not provide definitive means to calculate the optimal value of the parameter k, choosing moderately

high values of the parameter k reduces the error. The latter observation agrees with the similar

results of the evaluation using F-measure, mentioned earlier.

6.4.4 Nonlinear Manifolds

So far, the domain of the ground truth function was assumed to be a linear manifold, embedded

into Euclidean space of the same dimensionality — a square in 2D space, a cube in 3D space, etc.

But this is not always the case. For example, for shape matching [12], it is common to consider the

shape as the underlying manifold, to define a scalar function on it (e.g., the geodesic distance to a
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Figure 6.13: The sweep of the parameter k versus the number of samples. The deep blue area on
the right side corresponds to the values of k, for which mesh is disconnected, thus no results are
available. Almost in all cases, the error decreases and then increases, with growing k value.

point), and then to use topological properties of that function to match shapes. Another context is

computing approximated topological structures. Takahashi et al. [76] devised a method that, given

data samples in high-dimensional space, find a low-dimensional manifold such that the projections

of sample points to the manifold reflect their proximity in the original space. By reducing the

dimensionality, their method improves the runtime efficiency at the cost of decreasing precision.

Although neither context is in the scope of this work, they raise the question of how different types

of meshes behave when ground truth functions are defined on embedded manifolds.

To answer this question, first consider linear manifolds, embedded in Euclidean space with

higher dimension. Since the distances between samples do not change in this case, the evaluation

results also stay the same. A more interesting case arises when manifolds are nonlinear, i.e., curved.

To investigate this case, additional experiments are proposed, where all the previous parameters are
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used, except the underlying manifold, which is curved and embedded into Euclidean space of one

dimension higher, see Figure 6.14.

Figure 6.14: The evaluation with the underlying manifold changed from a square (x,y,z = 0) in 2D
Euclidean space (top left) to the paraboloid (x,y,z =−x2− y2) embedded in 3D space (top right);

and to the torus (x,y,z =±
√

r2− (R−
√

x2 + y2)2) embedded in 3D space (bottom). In all cases,
the following parameter values {x = y = [0,150],z = [0,75],r = 25,R = 50} are used. The ground
truth function, shown in colors (red indicating high function values, blue indicating low function
values), stays the same in all cases.

The experimental results suggest that in the case of tested curved manifolds, all mesh types

perform similar to the case of linear manifolds, see Figures 6.15, 6.16, with the exception of the

worse performance in the case of the DEL mesh. Such behavior is expected since the Delaunay

triangulation has higher dimensionality than sampled manifolds, connecting its distant points; in

contrast, the other meshes approximate the embedded manifolds well. In addition, obtained results
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Figure 6.15: Performance of the DEL, GAB, and RNG meshes on curved square manifolds, namely
on the paraboloid (top two), and on the torus (bottom two) manifolds. The ground truth function
is the same as the one used in Figure 6.6.

are slightly better for the paraboloid than for the torus, which, again, is expected due to the better

approximation of the embedded manifold.

In conclusion, note that the considered curved manifolds are relatively simple, and a separate

study with more comprehensive analysis is required.

6.4.5 Evaluation Summary

To summarize the results of the evaluation: (1) the GAB and RNG meshes show stable good

performance, with the RNG mesh being slightly better in cases with lower number of samples; (2)
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Figure 6.16: Performance of the DEL, GAB, and RNG meshes on curved (paraboloid) cube
manifold.

the relaxed RNG and GAB meshes perform similar to the original versions; (3) the performance

of minimally connected KNN mesh is highly unstable, while the minimally connected VR mesh

performs significantly better; (4) in case of small number of samples, the minimally connected

KNN and VR meshes perform similar to the GAB and RNG meshes, thus their use can be justified

for such cases; (5) curved domains do not change the previous recommendations much, except for

the DEL mesh, performance of which gets significantly worse.

Note that these results are applicable for functions, similar to ones in the set of ground truth

functions, i.e., a function must have relatively slow changing slopes (no spikes) and no complex

topology (e.g., loops). Also, the sampling strategy should be random.

6.5 Evaluation of Proposed Topology-based Techniques

Conducted evaluation and its recommendations are only partially applicable to techniques from

Chapters 3, 4, since their input functions (data sets) differ from those considered in the previous

section. So the evaluation was extended to include data sets that were used to demonstrate pro-

posed techniques. Produced specialized recommendations support the selection of approximation
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methods for proposed techniques.

The first technique deals with potential and free energy data sets, both of which are uniformly

densely sampled. Given that there are no sudden large value changes in the ground truth function,

a function, approximated from any of these dense set of samples, is close to the ground truth, i.e.,

has little error. Subsequently, such approximated functions were considered as new ground truth

functions.

To decide which type of mesh to use for the new ground truth, the performance of different

types of meshes on the same dense set of samples was tested (for all available sets of samples),

including the mesh, constructed using Freudenthal subdivision (used for the first technique). The

results showed that all types of mesh performed within normalized 0.0003 or 0.03% error range

between each other, suggesting that any one of these types of meshes can be selected to define the

new ground truth. For comparison, the lowest obtained error in the general evaluation for similar

analytical 3D function was around 0.03 or 3%, see Figure 6.8. Further on, the new ground truth is

by default assumed to be computed using the Freudenthal mesh.

Finally, for data sets with dimensions higher than three, the KNN mesh was tested against the

new ground truth. The results again show that with increase of dimensionality, as long as sampling

density is high, the KNN mesh error stays within normalized 0.0005 or 0.05% of the new ground

truth . This suggests that the use of the KNN mesh, chosen due to its faster computation in higher

dimensions and less number of edges, is acceptable.

A similar discussion applies to the performance data set, used by the second technique. The

error range for different types of mesh on a dense set of samples in this case is 0.2%, and the KNN

mesh performs within 0.5% of the new ground truth.

These recommendations, produced by the extended evaluation, support the selection of the

Freudenthal mesh for lower dimensions and the KNN for higher dimensions for both techniques.
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Chapter 7

Conclusions

This doctoral dissertation presented several research contributions to the advancement of the

field of topology-based data analysis and visualization, including two novel analysis techniques

with specific goals and capabilities and a new approach to error measurement that provides some

confidence in the precision of approximation techniques.

First, an application-inspired problem of analyzing transformation pathways led to the devel-

opment of a novel analysis technique. This technique combines the Morse complex, dimension

reduction, noise and periodicity handling, and graph representation methods to provide a new

transformation pathway analysis tool; this tool is an improvement over existing techniques that are

either less informative or low-dimensional. Given various limitations of Morse complex computa-

tion, noise handling, and graph projection, this technique is best suited to extracting transformation

pathways for data sets of moderate dimensionality (up to 13). The visual representation developed

in this technique constitutes an addition to the computational chemist’s visualization toolbox and

provides new capabilities for visualizing complex multidimensional energy functions. The tech-

nique emphasizes the most relevant information for chemists: the number and location of energy

minima and the heights of connecting barriers. The resulting map allows the investigation of all

possible transformation (e.g., reaction) pathways, the identification of the lowest energy paths, etc.
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Although the matter has not been discussed in this study, given representations are readily extended

to include special transformation paths that utilize tunneling mechanisms rather than ordinary tran-

sitions through barriers.

This technique can be further improved by the inclusion of additional information into the

plots, as well as by combination with other types of chemical analysis. Specifically, one improve-

ment is achieved through the addition of information on path directions. The current version of

the representation does not indicate the relative positions of minima except by directly labeling

them with the corresponding coordinates of the minima. One might consider coloring pathways

corresponding to transformations along a particular coordinate axis. In the case of periodic sys-

tems such as the zeolite example presented here, A variation of this approach could indicate lowest

energy pathways along each of principal directions by marking them with distinct colors. Another

improvement regards the handling of visual complexity. For more complex cases that involve large

high-dimensional energy grids, the resulting graphs are very complex, making visual analysis dif-

ficult. Two possible approaches to simplification are: (i) displaying only a selected fragment of

a graph. This capability will require additional implementation for redrawing graphs that contain

only selected subsets of the entire graph; (ii) simplification of graphs, for example by partial clus-

tering of nodes. This approach may be based on implementation of some chemical information

into the graph. For example, when considering energy landscapes inside a porous material, one of-

ten finds many close minima that correspond to a location inside a given cage in a porous material.

Such minima could be clustered into a single minimum point corresponding to a particular cage,

and the resulting graph would present only cages. An additional improvement might be the devel-

opment of an interactive interface. Since the Morse complex is hierarchical relative to persistence

and upper thresholds, its graph representation can be interactively visualized with little overhead.

Other features, such as the selection and redrawing of a subgraph might also be useful.

Second, the problem of enabling comparative analysis has been investigated, leading to the de-

velopment of a novel comparative technique based on geometry-preserving topological landscapes.
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In particular, three stages of building such landscapes are described: the contour tree computation,

the contour tree layout, and landscape construction. The necessary details of the implementation

are provided, and an example application of the technique to real-world data is given.

This technique is limited to moderate size data sets, mainly as a consequence of the potential

explosion of the number of points/edges during the iterative edge routing process. This issue can be

addressed by improving the edge routing algorithm based on segment Voronoi diagram. Another

issue that might be addressed is the calculation of the gap distance during the offsetting. Currently,

the algorithm roughly calculates this value as the shortest distance between any two points, divided

by number of saddles (i.e., the number of potential contours). A more precise approximation can

be achieved, since routing via a Voronoi diagram maintains the half-distance to other elements.

Third was the exploration of the problem of quantifying the error in approximated topology,

a common problem in scientific data analysis. In particular, a definition of a distance between

merge trees is given, which is then employed to quantify the approximation error. This error mea-

sure is used to evaluate common approximation methods, resulting in recommendations, including

those that support the selection of methods in the two techniques previously presented. The rec-

ommendations, so produced, are applicable to functions similar to the set of functions used in the

evaluation study; and they are also valid for chemistry and the performance data sets specifically

added into the evaluation. The notable conclusions drawn from the evaluated set of functions are

that analytical functions are slow changing and have no complex topology (e.g., holes in mani-

folds); and chemical and performance data sets are well-sampled. The evaluation of meshes for

various other functions is left for future research.

Potential follow-up work on measuring distances between merge trees includes a theoretical

investigation of the proposed distance. For example, its relation to the bottleneck distance between

persistence diagrams, as well as proving that it is a stable metric under possible small perturbations

in merge trees. Another direction to explore is measuring the distance between other topological

structures, such as the Reeb graph and Morse-Smale complex.
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