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Abstract

Considerable progress has been made in understanding the contribution of E3 ubiquitin ligases to 

health and disease, including the pathogenesis of immunological disorders. Ubiquitin ligases exert 

exquisite spatial and temporal control over protein stability and function and are thus critical for 

regulation of both innate and adaptive immunity. Given that immune responses can be both 

detrimental (autoimmunity) and beneficial (antitumor immunity), it is crucial to understand how 

ubiquitin ligases maintain immunological homeostasis. Such knowledge could reveal novel 

mechanisms underlying immune regulation and identify new therapeutic approaches to enhance 

antitumor immunity and safeguard against autoimmunity.
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Emerging Challenges in Cancer immunotherapy

FDA approval of immune checkpoint blockers (ICBs) for melanoma and non-small cell lung 

cancer and recently for other malignancies, is a major breakthrough in cancer treatment [1, 

2]. ICBs are monoclonal antibodies or antibody-based molecules that block inhibitory 

receptors or their ligands, most notably cytotoxic T lymphocyte antigen 4 (CTLA-4), 
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programmed cell death 1 (PD-1), and its ligand, PD-ligand 1 (PD-L1). The physiological 

functions of these molecules are in part T cell development and maintenance of tolerance to 

self-antigens, processes dysregulated in the pathogenesis of autoimmune disorders [3, 4]. 

While blocking these proteins disinhibits T cells, stimulating their expansion and effector 

function in the tumor microenvironment (TME), activation of auto-reactive T cells, which 

could promote immune-related adverse events (IRAEs) is often seen with these therapies 

(Box 1) and remains a major complication [5]. The main challenge, however, remains on 

how to increase clinical efficacy across tumor (sub-)types in more patients. Currently, 

combined ICB treatments or regimens that engage neoadjuvant, low dose chemotherapies or 

radiation have been designed to address this limitation; yet, in most cases the risk of IRAEs 

remains a concern [2, 5–7]. Paradoxically, as IRAEs also serve as indicators for immune 

activation [5] but can often be treated without impairing immune checkpoint therapy (ICT) 

efficiency, a mechanistic link between IRAE and therapeutic efficacy remains elusive [2, 5, 

8]. The link between autoimmunity, cancer immunotherapy and IRAEs underscores the need 

to define how the immune system balances responses to self- and non-self-antigens to 

improve the efficacy and safety of immunotherapies.

By controlling protein abundance and activity, ubiquitination serves as a key regulatory 

mechanism in innate and adaptive immunity and E3 ubiquitin ligases (E3) have been found 

to perturb both autoimmune and antitumor immune responses [10–14]. E3s are a family of 

approximately 600 enzymes, many of which are expressed in immune cells, that serve as the 

specific recognition module of the ubiquitination machinery; E3s bind and ubiquitinate 

substrate proteins at their lysine (K) residues (Box 2). The topology of ubiquitin chains 

attached dictates the fate of ubiquitinated proteins, wherein for example K48-linked 

polyubiquitin chains are usually implicated in proteasome-dependent degradation, K63-

linkages function in signaling-complex assembly [9]. This review focuses on E3 function in 

the context of T cell tolerance, autoimmunity, and antitumor immunity and concludes with 

an outlook on how the ubiquitin system may be therapeutically harnessed to improve 

efficacy and safety of cancer immunotherapies.

E3 Ubiquitin ligases regulate central and peripheral T cell tolerance

During the random process of somatic recombination, T cell receptors (TCRs) that 

recognize self-antigens are commonly generated. Notably, meticulously precise filtering 

mechanisms, termed tolerance, are necessary to eliminate or inactivate these self-reactive T 

cells in order to prevent autoimmunity. Establishment of T cell tolerance starts during T cell 

development in the thymus (central tolerance) and is maintained in the periphery (peripheral 

tolerance).

During T cell development, T cells are first positively selected by their ability to bind to 

major histocompatibility complex (MHC)-peptides presented by cortical thymic epithelial 

cells (cTECs), T cells that cannot bind to peptide/MHC complexes undergo death by neglect, 

while those that can bind survive and progress towards the next developmental stage where 

tolerance is established by negative selection [15]. Medullary thymic epithelial cells 

(m)TECs and dendritic cells (DCs) (see Glossary) present an array of self-peptides 

associated with major MHC class I or II molecules and T cells that express TCRs with high 
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affinity binding to self-peptide/MHC complexes undergo apoptosis (clonal deletion), while 

those with intermediate TCR affinity differentiate into natural regulatory T cells (nTreg; 

clonal diversion), which together with CD4+ and CD8+ T cells with low affinity to the self-

peptide/MHC complexes exit the thymus and seed the periphery (Figure 1A).

The E3 ligase tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) functions 

in development and distribution of mTECs in the thymic stroma. TRAF6 inactivation in 

mice promotes multiorgan autoimmunity [16], while TEC-specific deletion of TRAF6 

results in a narrow spectrum of autoimmunity, only affecting the liver [17]. Although the 

TEC-specific deletion clearly illustrates a role for TRAF6 in negative selection, the more 

limited autoimmune manifestation as compared to systemic TRAF6 loss also highlights that 

additional tolerance mechanisms in the periphery limit autoimmunity when central tolerance 

fails.

Peripheral tolerance is mediated by one of three mechanism, namely activation induced cell 

death (AICD), promotion of anergy, and suppression by Treg (Figure 1A). As outlined below, 

E3s function in all of these activities, and many serve to prevent autoimmunity (Table 1).

Anergy Anergy is a state of hyporesponsiveness in which T cells do not fully differentiate or 

acquire full effector function. Anergy can be induced in the absence of a costimulatory (e.g. 

B7, ICOSL, OX40L, CD40) secondary signal that is in addition to TCR stimulation required 

for T cell activation [18], or by the presence of a co-inhibitory (PD-L1, HVEM, or 

Galectin-9) signal. These signals are presented by APCs and bind respective stimulating 

(among them CD28, ICOS, OX40, CD40L) or inhibitory (PD-1, BTLA, or TIM3) receptors 

on T cells (reviewed in [19]). For example TCR/MHC-peptide engagement paired with 

CD28/B7 costimulation initiates calcineurin, Ras, and PKC-θ signaling that activates NFAT, 

AP1, and NF-κB transcription factors required to induce IL-2 production, T cell 

proliferation and differentiation (Figure 1B). In contrast, T cells with TCR/MHC-peptide 

engagement in the absence of CD28/B7 costimulatory signals do not upregulate IL-2 and 

enter anergy [12] (Figure 1B). Several E3s are transcriptionally upregulated under anergic 

conditions, among them Cbl-b, Itch, and Grail (also known as RNF128) [20–22], which 

function to limit TCR signaling output. This is achieved through proteolysis-dependent 

mechanisms, such as ubiquitin-dependent TCR/CD3 receptor downmodulation by Cbl-b 

[23] and Grail [24] or downregulation of downstream TCR signaling components including 

PLC-γ and PKC-θ by Itch and Cbl-b [20, 25]. Itch further regulates AP1 by proteasomal 

degradation of junB, a mechanism involved in CTLA-4-mediated T cell inhibition [26, 27]. 

Cbl-b and Grail also exhibit proteolysis-independent functions that promote anergy: Cbl-b 

inhibits recruitment of the phosphoinositide 3-kinase subunit p85 to CD28 and TCRζ [28], 

preventing TCR clustering [29], and Grail ubiquitination of Rho GDP-dissociation inhibitor 

stabilizes it, preventing IL-2 expression [30]. Thus, by modulating the abundance/activity of 

critical TCR signaling molecules, E3s serve as T cell intrinsic checkpoints to limit T cell 

activation. These molecular mechanisms partially explain spontaneous autoimmunity or 

enhanced experimentally-induced autoimmunity observed in mice deficient for Cbl-b, Itch, 

or Grail [24, 31–34] (Table 1) and may serve to develop targeted therapeutics for patients 

suffering multisystem autoimmune disease, mediated e.g. by polymorphisms in the human 

homolog of Itch [35].
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Activation induced cell death Interestingly, overstimulated of T cells by the effector cytokine 

IL-2 results in co-expression of the apoptosis-related factors Fas (CD95) and Fas ligand 

(FasL). Engagement of Fas by FasL induces T cell apoptosis, thereby providing an 

additional safety mechanism to prevent T cell overactivation and mice with defects in Fas, 

FasL or IL-2R develop autoimmunity due to failure of T cells to undergo AICD [15, 36]. 

Among E3s that either stimulate or inhibit AICD are WWP2 [37], c-Cbl [38], and A20 [38]. 

WWP2 limits AICD in vitro in T cells by ubiquitinating and destabilizing the transcription 

factor EGR2, thereby limiting EGR2-mediated FasL upregulation to promotes T cell 

survival [37]. As A20 has been implicated in the control of RIPK and NF-κB signaling, the 

role of A20 in AICD [38] and its contribution to the phenotypes observed in A20 knockout 

mice, which exhibit multi-organ inflammation [39] and in men with A20 polymorphisms 

that are associated with systemic lupus erythematous, Crohn’s disease or psoriasis [40] 

remain to be determined.

Suppression by Treg In addition to nTregs that are selected in thymus [15], 

immunosuppressive Treg can also emerge from naïve CD4+ T cells following TCR activation 

in the presence of the suppressor cytokine TGF-β [41–43] secreted by tolerogenic DCs [44]; 

this Treg subset is called induced (i)Treg. The immunosuppressive function of Treg is crucial 

for tolerance induction, and decreased Treg number or function is associated with a variety of 

autoimmune pathologies [45]. Interestingly, E3s are implicated in both Treg development 

and function. For example, Stub1 and Cbl-b activity destabilizes Foxp3, which is required 

for Treg identity, by ubiquitin-dependent degradation [46, 47]. The E3s von Hippel-Lindau 
(VHL) and Itch support maintenance of functional Treg [48, 49]. Treg-specific loss of VHL 

results in HIF1α-dependent conversion of Treg into TH1-like, IFNγ-producing effector T 

cells, which culminates in multi-organ lymphocyte infiltration and early mouse mortality 

[48]. Additionally, in an adoptive transfer murine colitis model, VHL-deficient Tregs were 

unable to prevents colitis, further exemplifying their role in autoimmunity [48]. Similar, 

Treg-specific Itch deficiency in mice results in severe airway inflammation, mediated by 

increased TH2 cytokine production by Itch-deficient Tregs [49]. Furthermore, Grail is critical 

for Treg function, as Grail−/− Treg are less immunosuppressive, and express TH17 cell-related 

genes [24]. Given the crucial role of E3s in maintaining Treg homeostasis, along with their 

ability to induce anergy in self-reactive T cells, they serve as critical T cell checkpoints to 

maintain T cell tolerance, thereby preventing autoimmunity. We note that B cells play an 

equally important role in autoimmunity (recently reviewed [50]) and point to the fact that 

E3s are crucial regulators of B cell reponses (Table 1; Box 3).

E3 ubiquitin ligase function in innate immune cells affects T cell responses

In addition to T-cell intrinsic effects, E3 ligases are also important regulators of APCs, 

which affect T cell homeostasis and autoimmunity on several levels, e.g. by altering antigen 

presentation or the cytokine milieu.

Major histocompatibility complex in autoimmunity MHC loci were the first genetic 

associations identified to correlate with autoimmune diseases, exemplifying the importance 

of antigen presentation in the etiology of autoimmune diseases [51]. Ubiquitination regulates 

expression of cell surface MHC proteins and costimulatory receptors by multiple 
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mechanisms. The E3 ligase membrane-associated RING-CH-1 (MARCH1), for example, 

ubiquitinates MHC class II [52] and the costimulatory molecule CD86 [53, 54] in DCs, 

promoting their endocytosis and lysosomal degradation. Second, mono-ubiquitination of the 

transcriptional coactivator CIITA increases its association with transcription factors and the 

MHC class II promoter, leading to increased MHCII mRNA levels [55]. Additionally, 

ubiquitination and degradation of the MHCII transcriptional repressor B lymphocyte-

induced maturation protein 1 (BLIMP1) by the E3 Hrd1 promotes MHCII transcription [56]. 

Hrd1 deletion in DCs decreases MHCII expression, which impairs DC-mediated priming of 

CD4+ T cells and protects mice from experimental encephalomyelitis, a T cell-dependent 

autoimmune disease [56].

E3 Ubiquitin ligases in immune sensing Autoimmune diseases can develop by altered 

activity of innate immune cells that culminate in aberrant B or T cell regulation. T cell 

responses are strongly influenced by the cytokine milieu, which is considered a third signal 

for T cell activation. For example, Type I interferons (IFN I) modulate clonal T cell 

expansion and CD8+ T cell effector function [57], and prolonged overactivation of IFN 

production is associated with systemic autoinflammation and autoimmunity [58]. 

Interestingly, mice expressing a mutant form of IFN receptor (IFNAR1S526A) resistant to 

SCF-ß-Trcp-dependent ubiquitination and degradation, display exacerbated experimental 

autoimmune hepatitis relative to control mice [59], exemplifying the role of E3 ligases in 

mediating IFN-related immune pathologies. Among mechanism that lead to abberrant IFN I 

production is cytosolic accumulation of endogenous DNA, which is also linked to the 

production of antinuclear antibodies, a hallmark of several autoimmune diseases [57, 60].

Sensing of cytosolic nucleic acids via pattern recognition receptors (PRR, such as Rig-I-

like helicases, cGAS, and DDX41) activates the adaptor protein STING, which recruits and 

activates the downstream kinase TBK1. TBK1 then activates the transcriptional regulator 

IRF3, driving IFN I production. STING activity is controlled by several ubiquitin ligases, 

among them TRIM56 and TRIM32. Both induce K63-linked STING polyubiquitination, 

which facilitates STING dimerization and association with TBK1, enhancing cGAS/STING 

signaling [61, 62]. K27-linked STING polyubiquitination by the E3 ligase AMFR and the 

adaptor protein INSIG1 also promotes TBK1 recruitment [63]. Conversely, TRIM29 

regulates antiviral immune responses by targeting STING for degradation [64]. 

Ubiquitination also regulates other DNA sensors: for example, TRIM21 promotes K48-

linked ubiquitination and degradation of DDX41 and negatively regulates the innate immune 

response to intracellular dsDNA [65]. Thus, cytosolic sensors which control cytokine 

stimulation and innate immune cell activation are controlled by E3s to assure temporal 

control of type I IFN signaling to prevent autoimmunity.

Autoimmune phenotypes seen in some E3-deficient mice may also depend on immune cell-

extrinsic mechanisms. RNF5-deficient mice for example display enhanced dextran sodium 

sulfate (DSS)-induced colitis compared with wild-type mice [66]. Naïve RNF5−/− mice also 

display higher basal levels of mature DC infiltrates and inflammation in the intestine, 

outcomes attributable to increased secretion of the RNF5 substrate S100A8 from intestinal 

epithelial cells. S100A8 is part of the calprotectin complex, a damage-associated molecular 

pattern, which binds to PRR on innate immune cells to elicit inflammatory responses. DSS 
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treatment of RNF5−/− mice not only enhances these phenotypes but increases activation of 

mucosal CD4+ T cells, leading to a TH1-type proinflammatory response [66]. In all, E3 

ligase function in non-immune, innate immune and adaptive immune cells emerges as a 

central regulatory node to maintain immune homeostasis and protect from the development 

of immunopathologies, including inflammatory and autoimmune diseases.

E3 Ubiquitin Ligases in tumor immunosurveillance and escape

By analogy to autoimmunity, the contribution of E3s to tumor immunosurveillance extends 

beyond their role in immune cells and includes important regulatory roles in the tumor 

stroma and the tumor itself. These mechanisms collectively impact T cell dysfunction within 

or exclusion from the TME – the two major mechanisms of tumor immune escape [67] 

(Figure 2).

E3 Ubiquitin ligases as T cell intrinsic regulators of T cell dysfunction in cancer The 

identification of genes that, similarly to PD-1 or CTLA4, negatively regulate T cell 

proliferation and function are of therapeutic interest as they have the potential to boost 

antitumor immune responses. To identify these novel target genes, large-scale in vivo 
shRNA [68] and CRISPR knockout [69] screens have been performed in murine or primary 

human T cells. Interestingly, these studies identified a number of E3 ligases, most notably 

Cbl-b, whose loss boosts T cell activation, in accordance with its role in T cell anergy. The 

importance of Cbl-b and Grail in tumor immunosurveillance has previously been 

recognized, as both Cbl-b−/− and Grail−/− mice reject lymphomas or TC-1 tumors when 

xenotransplanted into mice, and in Cbl-b−/− mice, spontaneous UVB-induced tumor 

formation is inhibited [70–72]. Moreover, adoptive transfer of either Cbl-b- or Grail-

deficient CD8+ T cells into tumor-bearing mice is sufficient to promote tumor rejection [70–

73], indicating that CD8+ T cell-intrinsic effects mediate tumor rejection. Mice harboring a 

mutation that specifically disrupts Cbl-b ligase function phenocopy Cbl-b−/− mice in terms 

of T cell hyperactivation, spontaneous autoimmunity and tumor rejection, demonstrating that 

the catalytic activity of Cbl-b is required to mediate these effects [74]. Mechanistically, Cbl-

b−/− and Grail−/− CD8+ T cells were better effectors than wildtype CD8+ T cells as they 

could be fully activated without need of costimulation in vitro and were also less susceptible 

to Treg-mediated inhibition [70–72]. Cbl-b also functions downstream of TGF-ß receptor 

signaling, which mediates both T cell tolerance [43] and immunosuppression in the TME 

[75–77]. Naïve T cells from Cbl-b-deficient mice cannot undergo TGF-β-induced 

upregulation of Foxp3 or Treg differentiation [78]. These studies suggest that Cbl-b and Grail 

may represent therapeutic targets to render T cells less susceptible to immunosuppression 

mediated by the TME.

Furthermore, Cbl-b functions downstream of the T cell co-inhibitory receptor PD-1, since 

Cbl-b deficiency renders T and natural killer (NK) cells refractory to PD-1-mediated 

regulation [79, 80]. This raises the possibility that E3 ligase activity could serve as a 

biomarker for a favorable response to PD-1/PD-L1-targeted therapies. Conversely, 

downregulation of the E3 SCF-FBXO38 may be an indicator of responsiveness to PD-1/PD-

L1-targeted therapies, as this E3 was recently found to regulate PD-1 protein levels by 

ubiquitin-dependent degradation [81]. FBXO38 is downregulated in the TME and correlates 
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with increased PD-1 expression in CD8+ T cells of colorectal and hepatocellular carcinoma 

patients [81]. In all, E3s serve as T cell intrinsic checkpoints that limit antitumor immunity, 

which may in part be mediated by the modulation of the PD-1 signaling pathway, a topic 

that deserves further study.

E3 activity in innate immune or tumor cells contributes to cancer immune escape. Cbl-b 

expressed in non-T cells also regulates tumor progression, as illustrated by the finding that 

double knockout Cblb−/−Rag2−/− T cell-deficient mice show delayed rejection of 

xenotransplanted tumors as compared with Cblb+/+ Rag2−/− mice [82]. Cbl-b activity also 

limits NK cell function by mediating ligand-induced downregulation of TAM (TYRO, AXL, 

MER) receptor tyrosine kinases, which function in various innate immune cells [82]. 

Furthermore, adoptive transfer of Cbl-b-deficient NK cells or pharmacological inhibition of 

TAM receptors enhances rejection of metastatic melanoma or breast cancer tumors in wild-

type mice [82]. Thus, Cbl-b activity in both innate and adaptive immune cells contributes to 

antitumor immunity (Figure 2).

Dysregulation of E3s is a common event in cancer cells [9] and contributes to tumor immune 

escape. For example, CRL4-WDR4 ubiquitinates and targets the tumor suppressor 

promyelocytic leukemia protein (PML) for proteasomal degradation in lung cancer cells [83] 

(Figure 2). Downregulation of PML promotes metastatic progression by increasing invasion 

and migration and by inducing an immunosuppressive microenvironment via upregulation of 

CD73, an ecto-5′-nucleotidase that converts AMP into adenosine. CD73 upregulation in 

tumor cells increases the abundance of intratumoral Treg and M2-like macrophages while 

decreasing that of CD8+ T cells, all of which lead to defective tumor control [83].

Several stress signals that are commonly associated with the TME, such as hypoxia, nutrient 

deprivation, inflammatory cytokines, and activation of the unfolded protein response can 

also contribute to immune escape. These stresses can induce downregulation of the IFN 

receptor IFNAR1 in stromal cells, mediated by ubiquitin-dependent degradation of the 

IFNAR1 receptor by the E3 SCF-ß-Trcp, which binds to IFNAR1 phosphorylated at Ser526/

Ser535 [84, 85] (Figure 2). This mechanism has recently been demonstrated to diminish 

viability of cytotoxic T lymphocytes (CTLs) in the TME of murine colorectal cancer 

models, allowing tumors to flourish [86]. The resulting decrease in type I IFN production 

can limit T cell survival [86, 87] and T cell effector function. The latter is in accordance with 

the important role of DC-derived type I IFN for T cell priming [88] and the fact that IFN I 

serves as a “third” signal for T cell activation [57].

Collectively, these studies indicate that E3s contribute to antitumor immunity by serving as 

T cell-intrinsic checkpoints; controlling APC maturation; modulating CD4+ T cell 

differentiation, Treg generation, and CTL effector function; and reprogramming the TME. 

Thus, E3s constitutes novel targets that may improve the efficacy of cancer immunotherapy 

and serve as biomarkers to predict responses to approved ICBs (e.g. high Cbl-b or low 

FBXO38 [79–81].
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E3 Ubiquitin ligases in balancing autoimmunity and antitumor immunity – 

therapeutic implications

Many factors that restrain autoimmunity (such as PD-1/PD-L1, CTLA-4, TGF-β) are 

equally relevant to cancer therapy, as they may be targeted to promote tumor eradication. As 

several E3s function as negative regulators of immune responses (Table 1), and some have 

been demonstrated to also regulate immunosurveillance in the TME (Figure 2), targeting E3s 

may represent a promising approach to boost antitumor immune responses. As multiple 

inhibitory pathways present in the TME (e.g. PD-L1 [79, 80], TGF-β [78], Treg [70, 71]) use 

the same E3 ligase (e.g. Cbl-b) as downstream signaling effector to inhibit T cell effector 

function, one may speculate that targeting T cell intrinsic checkpoints (e.g. Cbl-b) may be 

more efficient in activating antitumor immune responses than targeting individual cell 

surface inhibitory receptors.

Although targeting E3s remains a more challenging task, technological advances (e.g. 

CRISPR gene editing, or harnessing synthethic gene circuits [89]), a better biological 

understanding of their mode of action (e.g. systematic mapping of degrons, the specific 

motifs in substrates that are recognized by the E3 [90, 91]) along with advancements in 

compound screening now allow to envision an efficient way to target E3 ligases in the near 

future: such approaches may include genetic engineering of T cells for adoptive cell transfer 

[92] or chimeric antigen receptor (CAR) T cell therapy and efforts to identify small 

molecule inhibitors, e.g. for Cbl-b are ongoing [93, 94]. E3 themselves or their substrates 

could also be targeted by a protein targeting complex approach (PROTAC), which directs a 

susbtrate to a E3 ligase by chemical linkers [95]. In addition to Cbl-b and Grail, other 

ubiquitin ligases that function in autoimmunity (such as Itch, Peli1, Roquin, and RNF5) may 

regulate stroma-mediated antitumor immunity and may thus serve as putative therapeutic 

targets to promote antitumor immunity. With that noted, we recognize that a better 

understanding of E3 function in distinct tissues will be necessary and further improvements 

in the therapeutic targeting of protein-protein interactions will be required to move E3-

targeting therapies into the clinic.

Given the link between E3s, autoimmunity and antitumor immunity, it is reasonable to 

assume that, similar other ICBs, IRAEs may limit the clinical use of E3-targeting therapies – 

further stressing the need to better understand the underlying mechanisms of these unwanted 

effects. Despite clinical experience, biomarkers that predict IRAEs associated with 

CTLA-4-, PD-1-, and PD-L1-targeted therapies deserve further studies (Box 1). Notably, 

IRAEs occur in only a subset of ICB-treated patients. The selectivity may be attributed to 

inter-individual variation in germline-encoded genetic factors, although analysis of HLA-

A*0201 genotypes among advanced melanoma patients treated with CTLA4-blocking 

antibody did not identify a significant association with IRAE occurrence [96]. The gut 

microbiome may help in predicting IRAE emergence after ICB treatment: select commensal 

Bacteroidetes strains were shown to elicit protective effects against CTLA-4-blockade-

induced colitis [97], and transfer of bifidobacteria to anti-CTLA-4-treated mice mitigates 

colitis independently of antitumor immunity [98]. Given that changes in E3 activities impact 
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autoimmune responses and sometimes promote IRAE-like phenotypes, understanding their 

function in this context may suggest therapeutic options to mitigate IRAE after ICB.

Concluding Remarks & Future Perspectives

Ubiquitin ligases serve at critical regulatory nodes of signaling pathways and elicit selective 

functions as they may be i) mutant/dysfunctional in a tumor [9], ii) expressed in select 

tissues, and iii) target specific substrates in a spatial and temporal manner. Thus, they may 

allow to distinguish regulatory modules in immune, tumor or stroma compartments, thus 

become favorable targets for select manipulation of a given pathway in a tissue / cell type 

dependent manner. The review focused on a relative small fraction of ubiquitin ligases that 

are expected to play a role in antitumor immunity and autoimmunity. Some were only 

partially studied, for example Roquin, which has been implicated in autoimmunity, yet, the 

catalytic activity of its E3 ligase domain has not been studied in this context; and others are 

yet to be identified and characterized. Yet, the emerging theme reflect on the important role 

E3s play in immune homeostasis and the topic will become more translationally relevant 

when better mechanistic and clinical data become available (see outstanding questions).

Better appreciation of the greater landscape of ubiquitin ligases in immune system’s 

regulation and function in health and disease will allow to establish a better resolution map, 

and correspondingly, identify the most prevalent targets to exploit therapeutically for their 

use in monotherapies or combination therapies.
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Glossary

Autocrine motility factor receptor (AMFR)
an ER membrane-anchored RING-type E3 that functions in ER-associated degradation 

(ERAD).

Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b)
A RING-type E3 that belongs together with c-Cbl and Cbl-3 to the Cbl-E3-ligase family that 

are expressed in a variety of immune cells.

cGMP-AMP (cGAMP) synthase (cGAS)
cGAS is a cytosolic, sequence-independent DNA sensor protein which binds double-

stranded DNA and catalyzes the synthesis of 20,30-cyclic GMP-AMP (cGAMP). In turn, 

cGAMP engages STING.

Cullin-RING ligase 4 (CRL4)
The Cullin4 E3 ligase complex uses one of several WD40-containing proteins such as WD 

repeat domain 4 (WDR4) as substrate recognition modules.
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Dendritic cells (DCs)
bone marrow-derived cells with the ability to present antigens to T cells and orchestrate 

adaptive immunity. DCs also trigger inhibitory circuits that ensure immunological tolerance.

Gene related to anergy in lymphocytes (GRAIL)
Also known as RNF128, this transmembrane RING-type E3 is localized at endosomes and 

catalyzes K-48 or K-63-linked ubiqutination.

Inducible T cell costimulator (ICOS)
an immune checkpoint protein expressed on activated T cells and which is triggered by 

ICOS ligand, ICOS-L, a B7-related transmembrane glycoprotein.

Itchy homolog (ITCH)
Member of the NEDD4-family of HECT-type E3 ligases. Itch-deficiency in humans is 

associated with multisystem autoimmune disease and developmental abnormalities.

Membrane-associated RING-CH-1 (MARCH1)
a membrane-bound E3 ligase that downregulates MHC class II molecules and other 

glycoproteins by directing them to the late endosomal/lysosomal compartment.

NK cells (NK)
natural killer cells are antigen-independent cytotoxic lymphocytes of the innate immune 

system, responding to viral infection and tumors.

Pathogen recognition receptor (PRR)
host-derived surface and intracellular sensors that detect pathogen- or danger-associated 

molecular patterns initiating an innate immune response.

Skp1-cullin1-F-box protein (SCF)
multisubunit E3 complex whose specificity is mediated by one of ~68 F-box proteins such 

as β-transducin repeat-containing protein (ß-Trcp) or FBXO38, which function as substrate 

recognition subunits. SCF-complexes regulate the degradation of proteins involved in cell 

signaling and cell cycle control.

stimulator of interferon genes (STING)
an endoplasmic reticulum-membrane adaptor protein involved in innate immune signalling. 

Upon activation, STING recruits and activates several signaling proteins culminating in 

activation of IFNs.

(Tyro-3, Axl, and Mertk) TAM
TAM receptors are homologous type I receptor tyrosine kinases that have important roles in 

cellular homeostasis and inflammation.

T cell receptors (TCRs)
a heterodimeric transmembrane protein which recognizes antigen presented on MHC 

molecules. Variable TCRs are generated by somatic recombination allowing recognition of a 

wide range of pathogens by the T cell population. CD4 or CD8 are coreceptors defining the 

T cell subtype.
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Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6)
a signaling adaptor and RING-type E3 ligase that mainly forms K63-linked polyubiquitin 

chains to regulate NF-κB and MAPK pathways downstream of multiple immune receptors.

von Hippel-Lindau (VHL)
substrate-recognition protein required for the Cullin2-RING E3 ligase complex to regulate 

HIF1α stability. pVHL recognizes and binds to HIF1α under normoxia due to hydroxylation 

of 2 proline residues within the HIF1α protein.
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Highlights

• E3 ubiquitin ligases recognize their substrates in a spatial and temporal 

manner, requiring cell type specific post translational modifications that are 

often affected by the microenvironment (oxygen, nutrients, stress).

• E3 ubiquitin ligases are important negative regulators of T cell responses that 

restrain autoimmunity but also antitumor immunity.

• Targeting E3 ubiquitin ligases may be of therapeutic benefit in cancer 

immunotherapy, highlighting the need to comprehensively characterize E3 

ligase expression and function in immune cells.
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Outstanding questions

Can the expression of selective E3s and/or their substrates be used to stratify patients to 

predict immunotherapy responses and immune-related adverse events associated with 

these therapies?

Would targeting E3 or their substrates allow the fine-tuning of a given immune response? 

Would such fine tuning allow clinicians to selectively harness antitumor immune 

response while preventing autoimmunity?

Can modulation of E3 activity improve tumor recognition, presentation, and activation of 

the innate immune response?

Can tumor intrinsic or immune cell specific expression of E3 (and their substrates) guide 

the development of novel cancer immunotherapies?

Can a comprehensive map of tissue-specific E3 ubiquitin ligase expression and function 

be generated to reveal targets for anticancer immunotherapies and increase safety of 

existing therapies?
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Clinician’s Corner

As regulators of innate and adaptive immune responses, E3 ubiquitin ligases have been 

identified as crucial factors relevant to T cell function. Accordingly, E3s contribute to the 

pathogenesis of autoimmune disorders and have emerged as important regulators of 

antitumor immunity. Mutation and epigenetic changes in E3 ligases or their substrates are 

commonly found in cancer.

Immune-related adverse events (IRAEs) limit widespread use of (combination) 

immunotherapies, and biomarkers to identify patients at increased risk for IRAEs are 

lacking.

Understanding E3 function in innate and adaptive immunity may allow us to identify i) 

biomarkers and ii) therapeutic targets for both classical and immunotherapy-induced 

autoimmune diseases.

Level of E3 ligases can be monitored by assessing the expression of their surrogate 

substrates, and related signaling components in either immune cells, tumor, stroma or 

bodily fluids.

Targeting E3 (or their regulated substrates) using novel technologies (i.e. PROTAC based) 

offers innovative means for dampening autoimmunity while enhancing antitumor 

immunity.
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Box 1:

Autoimmune phenotypes associated with CTLA-4 and PD-1 blockade

Despite remarkable success of immune checkpoint blockers (ICBs), autoimmune adverse 

events have been reported in clinical trials of anti-CTLA-4 and anti-PD-L1/PD-1 

antibodies as anti-cancer therapies [5]. Severity varies with the ICB, but the most 

commonly affected organs are skin, gastrointestinal tract, liver, and endocrine organs, 

with thyroid events being more common in patients treated with anti-PD-1 [6]. Side 

effects affecting the central nervous, cardiovascular, pulmonary, musculoskeletal, and 

hematological systems are less frequently reported [5, 6]. Interestingly, in patients, anti-

CTLA-4 treatment generally induces autoimmune effects more frequently than do 

PD-1/PD-L1-targeting therapies [5, 6], and similar observations are reported in mouse 

models [99, 100]. In contrast, older PD-1−/− mice develop a mild lupus-like proliferative 

glomerulonephritis, arthritis [101], or cardiomyopathy [102], whereas PD-L1−/− mice 

show no evidence of spontaneous autoimmunity [103]. It is important to note that organs 

affected in animal models and in humans treated with ICBs are different, highlighting the 

need to develop more appropriate models to investigate ICB-induced IRAEs.

It remains unknown how ICB elicit IRAEs, but elucidating these mechanisms is crucial to 

prevent life-threatening events and to guide development of ICBs [5]. Aberrant T and B 

cell activation seen following ICB treatment can elicit IRAEs, since both antitumor and 

self-reactive cells are reinvigorated (reviewed in [5]). Accordingly, non-specific 

expansion of T cell clonotypes following anti-CTLA-4 [104] and combined 

CTLA-4/PD1 therapy [105] and altered effector function of circulating T cells following 

PD-1 blockade [105] are correlated with IRAE. T cells recognizing tumor cells may also 

cross-react with self-antigens following ICB or other immunotherapies [106, 107]. 

Similarly, alterations in B cells following combination ICB may predict IRAE risk in 

melanoma patients [108] and baseline antibody levels (suggestive of a preexisting 

autoimmune condition) may predict IRAEs in melanoma [109] or non-small cell lung 

cancer [110] patients. CTLA-4 and to a lesser extent PD-1 inhibition affects homeoastsis 

of regulatory T cells (Treg) (reviewed in [111]). Resulting decrease in Treg number or 

suppressor function can shift the balance between anti-inflammatory responses of Treg 

and pro-inflammatory responses of T helper subsets, which could contribute to IRAE in 

tissues where Tregs are abundant, including the gastrointestinal tract, skin, and lungs 

[111–113]. In support of this, anti-CTLA-4-treated patients exhibit high serum IL-17 

levels correlating with IRAE onset [114]. Interestingly, a panel of 11 proinflammatory 

cytokines has recently been demonstrated to predict risk of IRAE in melanoma patients 

treated with PD-1 targeted therapy [115].
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Box 2:

E3 ubiquitin ligases regulate protein stability and function by ubiquitination

Ubiquitination is a posttranslational modification through which a covalent bond is 

formed between an ubiquitin protein and either a lysine (K) or a methionine (M) residue 

in the substrate protein. The process is mediated by the concerted action of three classes 

of proteins: ubiquitin-activating enzymes (E1; 2 members), ubiquitin-conjugating 

enzymes (E2; ~35 members), and the ubiquitin ligases (E3; ~600 members). E3 ligases 

have defined substrate specificities depending on their subcellular localization and 

posttranslational modifications. The E3s are subcategorized into three major classes 

based on the domains required for substrate recognition and the mode of Ub transfer: (i) 

RING (really interesting new gene) domain-containing and U-box-containing E3s, which 

function as scaffolds for E2 enzymes; (ii) HECT (homologous to the E6-associated 

protein C-terminus) domain-containing E3s, which form a thiol ester bond with ubiquitin 

prior to conjugation to the substrate; and (iii) RBR (RING1-between-RING2) E3s, which 

function as hybrids of RING and HECT E3s [116]. Substrate proteins can be modified by 

transfer of a single Ub molecule to K (monoubiquitination) or by attachment of multiple 

ubiquitin moieties to K or M residues to generate homotypic or heterotypic, branched or 

linear ubiquitin chains (polyubiquitination). This complex Ub code can be read and 

translated by Ub-binding domains to mediate the distinct outcomes of ubiquitination. For 

example, monoubiquitination commonly serves as a signal to alter protein function, 

whereas polyubiquitination regulates proteasomal/lysosomal degradation, protein 

trafficking, protein complex formation, and protein activity [9].

Control of protein ubiquitination occurs at multiple levels. The activity of E3s is 

regulated at the transcriptional and posttranslational level, and similarly, posttranslational 

modification (e.g., phosphorylation, acetylation) of the substrate can modify recognition 

by E3s. These modifications are often affected by the microenvironment (oxygen, 

nutrients, stress), enabling E3 ubiquitin ligases to recognize their substrates in a spatial 

and temporal manner. Conversely, ubiquitin can be removed from proteins by a family of 

~100 deubiquitinating enzymes (DUBs). Thus, the complementary activities of E1, E2, 

and E3 proteins and DUBs regulate protein stability, activity, and localization by 

controlling the ubiquitin code [117]).
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Box 3:

E3 ubiquitin ligases in B cell tolerance

While this review focuses on E3 functions in T cell-mediated immunity, B cells also play 

a pivotal role in autoimmunity (recently reviewed in [50]), and E3s regulate B cell 

responses (Table 1). For example, B cell-specific ablation of Cbl and Cbl-b induces 

lupus-like disease in mice [118]. Cbl acts as a B cell-intrinsic tolerance checkpoint, 

possibly by modulating BCR-proximal signaling pathways to induce anergy [119, 120]. 

In addition, E3s have emerged as crucial regulators of the noncanonical NF-κB pathway, 

which is activated downstream of CD40 and BAFFR (B cell activating factor receptor) in 

B cells [121, 122]. Overexpression of the cytokine BAFF is associated with 

autoimmunity in SLE or multiple sclerosis patients [123], and targeting BAFF with the 

monoclonal antibody belimumab has been exploited therapeutically to treat SLE patients 

[50], highlighting the importance of this signaling pathway in autoimmunity. Activation 

of noncanonical NF-κB signaling requires degradation of TRAF3, which binds NIK and 

recruits the E3 ligases cellular inhibitor of apoptosis 1 and 2 (cIAP) into a cytosolic 

complex to facilitate proteasomal degradation of NIK. Engagement of CD40 or BAFFR 

induces recruitment of TRAF2, TRAF3 and cIAP to the receptor, where cIAP mediates 

K48-linked ubiquitination and degradation of TRAF3, stabilizing NIK [121, 122]. Active 

NIK phosphorylates and activates IKKα, which then phosphorylates the NF-κB subunit 

p100, a precursor of p52. Phosphorylation-induced ubiquitination of p100 leads to 

proteasomal processing and release of the mature p52 subunit, which associates with Rel-

B to initiate transcription. In addition to cIAP, the E3 ligase Peli1 also affects NIK 

degradation in B cells, and Peli1 levels are inversely correlated with disease severity in 

SLE patients [124].

Thus, E3-dependent signaling via CD40 and BAFFR promotes expression of genes 

required for B cell survival, maturation, and activation. Dysregulation of these pathways 

is implicated in autoimmunity [125].
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Figure 1: Mechanism of T cell tolerance and activation
A) Mechanism of central and peripheral tolerance. Binding strength of the TCR to the 

MHC-self-peptide complex determines T cell fate during negative selection. T cells that bind 

with high affinity to self-antigens presented by mTECs or DCs are eliminated by a process 

termed clonal deletion. T cells that bind with lower affinity differentiate/mature and are 

released into the periphery. Peripheral tolerance is maintained by concerted activity of Tregs, 

APCs and T cell intrinsic regulatory cues that regulate T cell effector function, survival 

(Activation induced cell death, AICD) and responsiveness (anergy).

B) T cell activation and anergy. TCR engagement in the context of CD28 costimulation 

(Signals 1 and 2) leads to reorganization of cell surface molecules into the “immune 

synapse”, which is critical for recruitment of proximal signaling proteins. A cascade of 

signaling events is initiated to cooperatively regulate T cell adhesion/migration, growth and 

proliferation, survival, differentiation and effector function. Production of the effector 

cytokine IL-2, for example, requires concerted activity of calcineurin, Ras, and PKC-θ, 

which, in turn, activate the transcription factors NFAT, AP-1, and NF-κB. In contrast, under 

anergy-inducing conditions, a distinct, largely NFAT-dependent transcriptional program is 
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initiated that fails to upregulate IL-2 production but increases expression of several anergy-

regulating genes, including the E3 Ubiquitin ligases Cbl-b, Itch, and Grail (read). These in 

turn limit expression/activity of major signaling proteins to reprogram T cells into a long-

lasting, hyporesponsive state termed anergy. The cytokine milieu (Signal 3) also affects 

signaling proteins downstream of the TCR to modulate T cell activation and differentiation.

APC: antigen presenting cell; MHC: major histocompatibility complex; mTEC: medullary 

thymic epithelial cell; Treg: regulatory T cell; AICD: activation-induced cell death; TCR: T 

cell receptor; Ag: Antigen; sAg: self-Ag;
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Figure 2: E3 ubiquitin ligases regulate T cell dysfunction in cancer
E3 Ubiquitin ligases (red) can serve as T cell intrinsic checkpoints to inhibit T cell function. 

A) T cell activity is modulated by immunosuppressive cytokines that are present in the 

tumor microenvironment and E3s are crucial regulators of cytokine production. B) E3s also 

function in Tregs where they increase immunosuppressive cytokine production and limit Treg 

suppressor function. C) In innate immune cells E3s can inhibit immune-stimulatory function 

and/or upregulate co-inhibitory surface receptors (e.g. PD-1, CTLA-4). D) Dyregulation of 

ubiquitination also affects the production immunostimulatory cytokines such as type I 

Interferons (IFN), an effect that is influenced by stresses commonly present in the tumor 

microenvironment. E) Finally, E3 ubiquitin ligase function in cancer cells contributes to 

generate an iummunosuppressive microenvironment.

CAF: cancer associated fibroblasts; MDSC: myeloid-derived suppressor cell; APC: antigen-

presenting cell; PML: promyelocytic leukemia protein; TsA: tumor-specific antigen;

Fujita et al. Page 26

Trends Mol Med. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fujita et al. Page 27

Table 1

(Key Table): Mouse models with altered E3 ligase activity and autoimmune phenotypes

E3 ligase Mouse model
(genetic background)

Autoimmune phenotypes Immune cell phenotype Ref

T cells

GRAIL Rnf128−/−

(C57BL/6 × 129 or
C57BL/6)

- Spontaneous autoimmunity in
aged mice; splenomegaly,
increased mesenteric lymph
nodes, lymphocyte infiltration
in multiple organs; autoantibody
production;
- Enhanced experimental
autoimmunity upon transfer
of Rnf128−/−CD4+ T cells in
Rag1−/− mice

- T cell activation
(independent of
costimulation)
- Treg show impaired
suppressor
function

[24]

Cbl-b CBLB−/−

(C57BL/6)
Spontaneous autoimmunity in
aged mice (6 months);
autoantibody production,
infiltration of activated T and B
lymphocytes into multiple
organs; parenchymal damage

- B cells show enhanced
proliferation upon
stimulation;
- T cell activation
(independent of
costimulation)

[32]

CBLB−/−

(C57BL/6 – 129)
- No spontaneous
autoimmunity (8 month);
- High susceptibility to EAE

- T cell activation
independent of
costimulation

[31]

CBLBC373A

(KI of E3 ligase
defective mutant)
(C57BL/6)

Spontaneous autoimmunity;
autoantibody production;
infiltration of mononuclear cells
into multiple organs

- T cell activation
independent of
costimulation

[74]

ITCH Itchy mice (aH18

agouti mice)
(C57BL/6J or
JU/Ct-C,A)

Itchy JU/Ct-C,A (age 3–4 months):
- intestinal infiltration of
inflammatory and
mononuclear cells; rare
scarring of skin due to
scratching
Itchy C57BL/6J (lethality between
4–6 months):
- no intestinal lesions but
airway inflammation;
enlarged lymph nodes, spleen
and thymus; inflamed
ulcerated skin; increased
serum IgE and IgG1

C57BL/6J background:
- enhanced TH2
differentiation;
- TH2 resistance to
tolerance
- diminished
generation of
inducible Treg

[26, 33, 126–128]

Itchf/lFoxp3Cre - Spontaneous autoimmunity
and lymphoproliferative
disease (6 weeks):
enlargement and higher
cellularity of peripheral
lymphoid organs; massive
infiltration of multiple organs;
- exacerbated airway inflammation
upon experimental
challenge

- Treg acquire TH2
properties
- enhanced TH2
differentiation from
naive T cells

[49]

Cbl-b
+
ITCH

CBLB−/−ITCH−/− DKO
(C57BL/6)

Spontaneous autoimmunity (6–
12 weeks):
Enlarged spleen, lymph nodes;
massive lymphocyte infiltration
in multiple organs; high
concentration of autoantibodies

- CD4+ T cells
(independent of
costimulation)

[129]

WWP2
+
ITCH

Wwp2−/−

:Itchf/f:Cd4-cre
(C57BL/6)

Spontaneous autoimmunity:
autoantibody production,
inflammatory phenotypes,
myeloid infiltration of lungs;
elevated serum IL6

- enhanced TH2
differentiation;
- elevated IL4
production

[130]
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E3 ligase Mouse model
(genetic background)

Autoimmune phenotypes Immune cell phenotype Ref

Roquin1 sanroque mice
(Rc3h1M199R)
(C57BL/6 and CBA)

Spontaneous autoimmunity:
SLE-like glomerulonephritis and
deposition of immune
complexes; necrotizing
hematitis; anemia; enlarged
spleen and lymph nodes;
spontaneous GC formation in
spleen; plasma cell infiltration in
multiple organs; autoantibodies

- CD4+ T cells prone
to differentiate into
TFH cells

[131]

Roquin1
+
Roquin2

Rc3h1f/f:
Rc3h2f/f:Lck-cre
(RING-domain deleted
cDKO; T cell)

elevated TFH formation,
and increase in GC B cells
upon immunization from
8 to 12 weeks

[132]

Roquin1
+
Roquin2

Rc3h1f/f:Rc3h2f/f:
Cd4-cre (T cell cKO)

- lymphadenopathy;
splenomegaly;
- no spontaneous GC formation;
no autoantibodies;
- perturbed splenic architecture

- Activation of CD4
and CD8 T cells
- Increase in Treg

numbers
- increase in TFH cells
- increase in GC B
cells

[133]

TRAF6 TRAF6f/f:Cd4-cre
mixed background
(C57BL/6 – 129)

spontaneous autoimmunity:
multi-organ infiltration with B
and CD4 T cells, increased
autoantibodies

- CD4 T cells resistant
to suppression by
Treg
- proliferation
independent of
CD28 costimulation

[134]

Peli1 Peli1−/− (C57BL/6) - Spontaneous autoimmunity (6
months): T and B cell
infiltration of kidney, liver, lung;
autoantibodies; immune
complexes in kidney glomeruli;
- Increased EAE upon T cell
transfer in Rag1−/− mice

- T cell activation
independent of
costimulation
- resistant to Tregmediated
suppression

[135]

B cells

Peli1 Peli1−/−

(C57BL/6)
increased severity of lupus-like
disease in experimental lupus
(BM12) model

- B cell proliferation
in response to CD40,
BAFF
- T cell-dependent
antibody response

[124]

TRAF3 Traf3f/f:Cd19-cre
(C57BL/6 – 129)

spontaneous autoimmunity (12
months):
autoantibodies (from 10wks on);
lymphocyte infiltration of kidney,
liver; glomerular immune
complex deposits

- B cell survival
- T cell-dependent
antibody response

[136]

A20 Tnfaip3f/f:Cd19-
cre

Spontaneous autoimmunity:
- SLE-like: increase in GC B cell
numbers, autoantibodies,
glomerular immune complex
deposits
OR
- inflammatory autoimmune
syndrome, splenomegaly,
plasma cell hyperplasia, IgG
autoantibodies

B cell proliferation and
survival

Reviewed
in [137]

Innate immune cells

A20 Tnfaip3f/f:Cd11ccre
(C57BL/6)

Spontaneous autoimmunity:
- SLE-like autoimmunity
- IBD-like autoimmunity:
lymphocyte-dependent colitis,
seronegative ankylosing
arthritis, enthesitis

increased survival and
DC hyper-responsiveness

Reviewed
in [137]
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E3 ligase Mouse model
(genetic background)

Autoimmune phenotypes Immune cell phenotype Ref

Tnfaip3f/f:LysMcre
(C57BL/6)

Spontaneous destructive arthritis increased cytokine
production by
macrophages

Reviewed
in [137]

Peli1 Peli1−/−

(C57BL/6 – 129/Sv)
Reduced severity of EAE Microglia activation [138]

EAE: experimental autoimmune encephalomyelitis; KO: knockout; DKO: double KO; cKO: conditional KO; TFH: T follicular helper cell; GC: 

germinal center; Teff: effector T cells; Treg: regulatory T cells; cDKO: conditional DKO; NA: not applicable; IBD: inflammatory bowel disease; 

SLE: systemic lupus erythematosus
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