Title
Elimination of Response to Relative Humidity Changes in Chemical-Sensitive Field-Effect Transistors

Permalink
https://escholarship.org/uc/item/6j31q21d

Journal
ACS Sensors, 4(7)

ISSN
2379-3694

Authors
Gupta, Niharika
Fahad, Hossain M
Amani, Matin
et al.

Publication Date
2019-07-26

DOI
10.1021/acssensors.9b00637

Peer reviewed
Elimination of Response to Relative Humidity Changes in Chemical-Sensitive Field Effect Transistors

Niharika Gupta1,2,3, Hossain M. Fahad1,2,3, Matin Amani1,2,3, Xiaohui Song4,5, Mary Scott4,5, and Ali Javey1,2,3*

1Electrical Engineering & Computer Sciences, University of California, Berkeley, CA 94720, USA

2Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA

3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

4Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA

5The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

*Correspondence should be addressed to A.J. (ajavey@berkeley.edu)

Abstract: Detecting accurate concentrations of gas in environments with dynamically changing relative humidity conditions has been a challenge in gas sensing technology. We report a method to eliminate effects of humidity response in chemical sensitive field effect transistors using microheaters.
Using hydrogen gas sensor with Pt/FOTS active material as a test case, we demonstrate that a sensor response of 3844% to a relative humidity change of 50% to 90% at 25 °C can be reduced to a negligible response of 11.6% by utilizing microheaters. We also show the advantage of this technique in maintaining same sensitivity in changing ambient temperatures and its application to the nitrogen dioxide gas sensors.

Keywords: gas sensors, hydrogen, humidity, microheaters, temperature dependence.

Selectivity is one of the most important figures of merit for gas sensors which includes insensitivity to ambient relative humidity and temperature changes. The sensitivity to these ubiquitous variations is currently the major limiting factor of important gas sensing applications such as air-quality monitoring\(^1\text{-}^4\) and medical diagnosis\(^5\text{-}^7\). The fact that most of the active sensing materials interact with water makes achieving humidity insensitivity a challenge.\(^8\text{-}^{10}\) Chemical or gas sensor being responsive to even slightest of environmental changes leads to deviated sensor signal following inaccurate detection of gas and/or interpretation of gas concentration. Therefore, elimination of humidity and temperature is essential to having a robust and precise sensor signal.

Research in making gas sensors humidity and temperature insensitive can be divided into two strategies – computational and experimental methods. The computational method involves signal processing utilizing data from

2
humidity and temperature sensors along with sensor data at different concentrations in different humidity and temperature levels to calculate exact gas concentration. Multivariate calibration methods such as principal component regression (PCR)11, partial least square (PLS)12 and artificial neural networks (ANN)13 have been utilized to compensate for the sensor response to humidity changes. With requirements of huge data sets needed to train the ANN and linear data sets in other methods, the computation method is also disadvantageous because of the complexity of calibration required for different combinations of relative humidity and temperature. Additionally, both of humidity and temperature sensors would need to have selective signal responses with respect to each other, which being experimentally impractical to achieve, would need further post-processing adding to the calibration complexity. Research in experimental methods include functionalization with hydrophobic materials14 and modifications to the active sensing material either by annealing15, doping16, 17 or specialized growth conditions18, 19. These techniques decrease the sites available for water interaction, thereby reducing the response to humidity. However, the previous work studying these techniques have not been able to fully eliminate the response to humidity variations and focus on either response to gas in different humidity levels or the response to varying humidity and have not considered them as a combined problem. The dominant technology for gas sensing, metal oxide semiconductor (MOS) sensors is humidity insensitive due to high operating temperature $>200 \degree C$, boiling off any water
molecule on the active sensing part but is disadvantageous due to power consumption and safety issues at these high temperatures for applications in consumer electronics.

In this work, we demonstrate a simple technique to eliminate sensor response to variations to relative humidity in chemical-sensitive field effect transistors (CS-FETs) using microheaters. CS-FETs are nanoscale silicon transistors with the exception that the electrical gate replaced by a chemical sensing layer consisting of nanoparticles. The work-function and/or morphology of the sensing layer changes upon exposure to target chemical species, resulting in strong output drain current modulation enabling high detection sensitivity. The relevant details about the device and sensing characteristics have been explained in our previous work with fabrication details in Supplementary Information S1. In the past, we utilized the microheaters by pulsing them immediately after the detection of target gas, which resulted in dramatically improved recovery times. Compared to our previous work on bulk silicon CS-FETs, the distinguishing feature here is the integration of local on-chip microheaters around the sensors as shown in Fig. 1a (schematic of cross-section in Fig. 1b). As a “litmus” test to prove this technique, active sensing layer of platinum nanoparticles on trichloro(1H,1H,2H,2H-perfluorooctyl) silane (FOTS) was chosen. The top-down image of the Pt/FOTS layer on SiO$_2$ grids is shown in Fig. 1c. This layer can be used for the detection of hydrogen gas; reason being the strong interaction between Pt and hydrogen gas, and enhanced sensor
performance characteristics with FOTS underneath Pt (Supplementary Information S2). Even though this can enable detection of hydrogen in ppm levels, it’s highly sensitive to relative humidity change which made it the best candidate to prove this technique.

Results and discussion

The method to achieve negligible cross-sensitivity to relative humidity change with the CS-FET platform is to operate the microheaters in a constant voltage mode such that the chip is at a slightly elevated temperature level above room temperature. Infrared imaging of the chip under different microheater powers between zero and 560 mW suggested that the chip temperature increased linearly with power, shown in Supplementary Information S3 (infrared images in Supplementary Information S4). For a relative humidity change from 50% to 90% with a drain bias of 0.8 V, the CS-FET manifested a response of 3844%, as depicted in Fig. 2a. Sensor response were calculated as percentage change from the baseline current values \((I_{peak} - I_{baseline})/I_{baseline} \times 100\). The ambient temperature of the sensor was regulated at 25 °C and since relative humidity level was not increased beyond 95%, the chip was operated above the dew point for condensation to occur. However, the plot of sensor response vs humidity (Supplementary Information S5) extracted from Fig. 2a, revealed hysteresis in the adsorption and desorption curves at room temperature, a signature of capillary condensation.\(^{23}\) A schematic of the occurrence of the phenomenon on the nanoparticles is shown in Fig. 1d. From our previous work\(^{21}\), the examination
of cross-section using transmission electron microscopy (TEM) revealed that the thickness of the nanoparticles should be between 3-4 nm for Au$_{1\text{nm}}$-Pd$_{0.3\text{nm}}$. Since this material system was deposited using the same technique as Pt$_{1\text{nm}}$ with the same conditions, similar range of height for Pt nanoparticles is expected. However, to find the approximate relative humidity level at which capillary condensation will occur at room temperature, it was assumed that the size of the nanoparticles is much larger than the cavity size (this might underestimate the actual level for onset according to literature where it has been shown that as the radius of curvature of the nanoparticles increases, the water meniscus height calculated using Monte Carlo simulations also increases for the same relative humidity level24). The cavity size between most of the nanoparticles was found out to be 2 nm from Fig. 1c. Even though the validity of the Kelvin equation for sub-10 nm has been debatable, it was assumed valid for a rough approximation of the relative humidity level that creates onset of capillary condensation. The following approximate form of the Kelvin equation25 was applied:

$$\frac{p_{\text{sat}}}{p_v} = \exp \left(\frac{2 \gamma V_m \cos \Theta}{dRT} \right)$$

(1)

where p_{sat} is the saturated vapor pressure, p_v is the vapor pressure, γ is the water surface tension, V_m is the molar volume of water, Θ is the contact angle of water with the nanoparticle surface, d is the diameter of the capillary, R is the universal gas constant, and T is the temperature.26,27 Given
that pure water completely wets contaminants-free platinum28, it was assumed that the platinum nanoparticles were pure in quality and exhibited zero contact angle with water. Utilizing the standard values of water surface tension as 72 dynes/cm and molar volume of 18 cm3 at room temperature, the value of relative pressure, \(p_v/p_{\text{sat}} \) which is equivalent to relative humidity, was calculated to be 59\%, indicating condensation between the cavities formed in the nanoparticle assembly below the dew point pressure.

However, with increasing microheater power, the sensor response to this relative humidity change decreased exponentially (Fig. 2b), with negligible sensor response of 11.6\% at a power of 372 mW and corresponding chip temperature of 37 ± 3 °C. The rationale behind this is the increase in evaporation rate of any condensed water as the surface temperature is increased. Additionally, physisorption rate of water molecules on the sensing material decreases with increasing chip temperature (which can be explained by Le Chatelier’s principle29), given adsorption is an exothermic reaction. For the same reason, the overall hydrogen response also decreased with increasing chip temperature (Supplementary Information S6), but this came at the benefit of eliminated humidity response. The reason for the relatively low chip temperatures (below <100 °C) requirement to eliminate response to humidity is the fact that water can be evaporated instead of being boiled-off, also the high surface-to-volume ratio of nanoparticles allow for high evaporation rate unlike the active ‘thick’ films in MOS sensors and other gas sensors based on field effect transistors. As a side note, the high
surface-to-volume ratio of the nanoparticles is also one of the reasons for high sensitivity to humidity providing the large number of active sites for water adsorption, but if the size of nanoparticles is decreased to circumvent the problem, the sensitivity to hydrogen will also be lowered.

Additionally, we observed minor reductions in sensitivity to hydrogen in relative humidity levels of 50% and 90% with sensor response being 490% (250 ppm) and 1488% (1000 ppm), and 464% (250 ppm) and 1539% (1000 ppm), respectively, as shown in Fig 2c. This measurement was carried out with a different CS-FET sensor with 0.65 V of drain bias (to match the baseline current with the CS-FET with 0.8 V drain bias) for which chip temperature to eliminate humidity response was 64 ± 8 °C. The concentrations of 250 ppm and 1000 ppm of hydrogen were chosen for these tests because of the linear sensor characteristics observed between 100 ppm and 1000 ppm (Fig. 3a and 3b), enabling us to hypothesize that the sensitivity (sensor response per ppm) is constant between those concentration levels. Measurements in Fig. 3a were performed with chip temperature of 37 ± 3 °C to eliminate the response to humidity change. The trends of response \(t_{90} \) and recovery \(t_{10} \) times with varying hydrogen concentration are depicted in Fig. 3c and 3d respectively. \(t_{90} \) is the time taken for the sensor to reach 90% of its peak response value from the baseline current and \(t_{10} \) is the time taken for the sensor to recover to 10% of its baseline current from the peak value. Fig. 3e shows that the sensor proved to be highly selective against other gases such as methane, carbon
dioxide, ammonia, nitrogen dioxide and sulfur dioxide, though not against hydrogen sulfide. Even though the molecular structure of water and H$_2$S is the same, the CS-FET at elevated temperature is sensitive to the gas while not being to water because of the stronger interaction between the active material and the gas, also making H$_2$S notorious for its poisoning action to catalysts including platinum$^{30-34}$. The CS-FET shown in Fig. 3f with microheater switched-on for ten days and chip temperature of 51 ± 6 °C exhibited negligible drift, implying that the active material and the silane layer remained intact and unaffected by continuous microheater operation. This is attributed to the operating temperature of the microheaters, which is around 10 times lower than the degradation temperature of FOTS35 and 20 times than that of Pt36.

Additional advantage of using the microheaters was the insignificant variation in gas sensitivity with changing ambient temperature. Three pulses of hydrogen gas with concentration of 100 ppm, 600 ppm and 1000 ppm were injected in ambient temperatures of 15 °C, 25 °C and 35 °C with a drain bias of 0.6 V and it was seen that the sensitivity decreased by around 5 times as ambient temperature was lowered by 20 °C, from 2.2%/ppm at 35 °C to 0.4%/ppm at 15 °C as shown in Fig. 1a. However, when the microheaters were kept switched-on at a power of 372 mW (chip temperature of 35 ± 3 °C), the sensitivity remained roughly constant; 1.6%/ppm at 35 °C, 1.7%/ppm at 25 °C and 1.8%/ppm at 15 °C, as demonstrated in Fig. 4b (raw data is shown in Supplementary information).
S7). The benefit of maintaining the constant sensitivity regardless of the ambient temperature dramatically simplifies calibration process and ensure detection of low concentration levels as the ambient temperature lowers, for practical usage.

In addition to demonstrating humidity selective hydrogen detection using the Pt/FOTS system, we show this technique’s application to active sensing materials for other gases with the CS-FET platform. Fig. 5a demonstrates that the CS-FET with drain bias as 4 V and InO\textsubscript{x} thin film (~1.5 nm) as active material responded by 895% to relative humidity change from 50% to 90%. With microheaters turned on to keep the chip temperature at 70 ± 8 °C, the sensor showed negligible sensor response to the humidity change along with constant sensor response, -56% and -52% to 100 ppb NO\textsubscript{2} in the humidity levels of 50% and 90% respectively (Fig. 5b).

Conclusion

In conclusion, we have demonstrated that by keeping the temperature of the CS-FET slightly higher than the ambient temperature by utilizing the microheaters, effects of relative humidity change can be eliminated. Added benefits of constant gas sensitivity using this technique in different ambient temperatures have also been proved. We showed the proof-of-concept for this technique using Pt/FOTS as active material for hydrogen sensing and its application to InO\textsubscript{x} for nitrogen dioxide sensing.
The microheater material and design will be optimized in our future work and it is expected that the power needed to reach the chip temperature levels to eliminate humidity response will be much lower, extending the applicability of this technique for gas sensors in consumer electronics. Temperature sensor will be also fabricated on the same chip so that the heaters can be looped with proportional-integral-derivative (PID) controller to maintain constant chip temperature irrespective of ambient temperature for constant sensor responses to same gas concentration level.

Though the employability of this technique with other material systems, specifically their long-term sustainability to the heat emitted by microheaters remains a question now, as the library of gases detected with CS-FET platform expands, the method provides a good beginning to solve the long-standing problem of humidity response in gas sensors based on field-effect transistors.

METHODS

Measurement Apparatus

CS-FET device chips were wire bonded to a 84-pin J-bend leaded chip carrier. Pure dry air was used as diluent gas and was procured from Praxair Technology Inc. For H\textsubscript{2} (Fig. 2-4) and NO\textsubscript{2} (Fig. 5) sensing experiments, 1\% H\textsubscript{2} in N\textsubscript{2} (Gasco) and 1 ppm NO\textsubscript{2} (Gasco) in N\textsubscript{2} were used as source respectively. Selectivity measurements in Fig. 3e were performed with 2.5\% CH\textsubscript{4}, 100 ppm CO\textsubscript{2}, 50 ppm NH\textsubscript{3}, 5 ppm NO\textsubscript{2}, 50 ppm SO\textsubscript{2} and 50 ppm H\textsubscript{2}S in
N₂ (Mesa gas) as sources. Typical gas flow rates were from 1 to 100 sccm, and diluent (air) flow rate was approximately 1000 sccm. Gas delivery was controlled by mass flow controllers (Alicat Scientific Inc.). Measurements involving relative humidity and temperature changes were done in ESPEC Humidity and Temperature Cabinet LHU-113 with gas outlet 1-2 cm from the sensor chip, otherwise in a walk-in fumehood. CS-FET sensors were biased using a Keithley 428 current preamplifier, and the current signals were acquired using a LabVIEW-controlled data acquisition unit (National Instruments, NI USB-6211). The microheaters were powered by the Agilent E3631A DC Power Supply and all the measurements were performed with microheaters placed on the adjacent die to the one with the CS-FET. Infrared images in Supplementary figure S3 were taken using FLIR ETS320.

Fabrication process

A schematic representing the fabrication process is depicted in Supporting Information S1. CS-FET gas sensors were fabricated on prime grade silicon ⟨100⟩ wafers with sheet resistivity in the range of 10–20 Ω·cm. Before processing, all wafers were cleaned in a standard piranha (1:4, hydrogen peroxide/sulfuric acid) bath at 120 °C and native oxide was removed using a 10 s dip in 1:10 hydrofluoric acid. First, a 350 nm silicon dioxide was thermally grown on the silicon wafers for device isolation, using a three-step dry (5 min)–wet (55 min)–dry (5 min) oxidation process at 1000 °C, at atmospheric pressure for 55 min. Oxide thickness was verified using fixed angle ellipsometry. Next, source and drain doping regions in silicon were
defined using a standard i-line photolithography process (Fujifilm, photoresist: OiR 906-12, developer: OPD-4262) and wet etching the isolation oxide (in 5:1 buffered hydrofluoric acid for 5 min). Following this, ion implantation (4.5e\(^{14}\) cm\(^{-2}\), Phosphorus, 15 KeV) was performed for source-drain doping. To complete the formation of n+2 doped regions, phosphorus drive-in and activation was performed in the silicon source and drain by rapid thermal annealing (RTA) at 1050 °C for 30 s in N\(_2\). The “gate” or sensing layer region was patterned next and etched in 5:1 buffered hydrofluoric acid for 4 min. The channel doping was also performed using ion implantation (5e\(^{11}\) cm\(^{-2}\), Phosphorus, 18 KeV) and subsequently rapid thermal annealing (RTA) at 900 °C for 1 s in N\(_2\). To define source and drain contacts, a separate source-drain metallization mask was used, which underlaps the doped source and drain regions by 11 μm. After this, argon was sputtered to etch the native oxide and then, 20 nm of nickel and 50 nm tungsten were then deposited in the source and drain contact regions, also using the sputtering tool followed by lift-off in acetone. To achieve ohmic source and drain contacts, nickel silicidation (NiSi) was performed in forming gas (5% H\(_2\) in N\(_2\)) using RTA at 400 °C for 5 min. To pattern the microheaters, photolithography was performed and consecutively, 200 nm tungsten was sputtered. The fabrication of bare CS-FET concluded with lift-off.

For the hydrogen sensor, FOTS was deposited using AMST Molecular Vapor Deposition MVD100. Following this, Pt sensing layer was deposited by electron beam evaporation of 1 nm Pt. For the nitrogen oxide sensor, InO\(_x\)
sensing layer was deposited by thermal evaporation of 1.5 nm InO\(_x\) after which the chip was annealed in forming gas at 150 °C for 1 h postdeposition, which completed the sensor fabrication process.

References:

Author contributions: A.J. conceived the idea and supervised the project. N.G. carried out the measurements and analysis. H.M.F fabricated the CS-FET sensors. M.A. contributed to building the measurement setup. X.S. and M.S.
did the TEM characterization of the Pt/FOTS sensing layer. All authors discussed the results and wrote the paper.

Notes: H.M.F and A.J. declare competing financial interests in equity on shares of Serinus Labs, Inc. An invention disclosure on this work has been filed with the University of California, Berkeley.

Supporting information: The Supporting Information is available free of charge.

Bulk CS-FET fabrication process. Enhanced H\textsubscript{2} sensor response characteristics using FOTS underneath Pt (vs only Pt). Plot of chip temperature vs microheater power. Infrared imaging at different microheater powers. Adsorption and desorption hysteresis loop. Effect of heaters on gas sensor response. Experimental data of change in current to different hydrogen concentrations in changing ambient temperatures.

Acknowledgment: A. J. acknowledges the Bakar Fellows Program in funding this research work. N.G. thanks Zhen Yuan, Chaoliang Tan, Wenbo Ji, Yingbo Zhao and Der-Hsien Lien for fruitful discussions.
Fig. 1. (a) Optical micrograph of a competed chip showing the CS-FETs and microheaters, and a (b) schematic of cross-section. (c) Top-down transmission electron microscopic (TEM) image of Pt/FOTS on SiO$_2$ grids. (d)
Schematic of capillary condensation of water occurring in the cavity between nanoparticles.

Fig. 2. (a) Sensor response to relative humidity change at 25 °C for different chip temperatures (T_c) at $V_D = 0.8$ V. (b) Sensor response to relative humidity change from 50% to 90% vs microheater power. (c) Sensor response to 250 ppm and 1000 ppm H$_2$ in relative humidity levels of 50% and 90% with $V_D = 0.65$ V, at a chip temperature of 64 ± 8 °C.
Fig. 3. (a) Sensor response vs time for different hydrogen concentration pulses at $V_D = 0.8$ V and chip temperature of 37 ± 3 °C. (b) Sensor response vs hydrogen concentration. (c) Response time (t_{90}) vs hydrogen concentration. (d) Recovery time (t_{10}) vs hydrogen concentration. (e) Selectivity test at $V_D = 0.8$ V and chip temperature of 37 ± 3 °C. (f) 10-day drift measurement with $V_D = 0.8$ V and chip temperature of 51 ± 6 °C.
Fig. 4. Sensor response vs hydrogen concentration in different ambient temperatures (T_a) at $V_D = 0.6$ V (a) with microheaters off. (b) and with microheaters on at 372 mW.
Fig. 5. (a) Sensor response to relative humidity change at 25 °C at $V_D = 4 \text{ V}$ with microheaters off. (b) Sensor response to 100 ppb NO$_2$ in relative humidity levels of 50% and 90% with microheaters on and chip temperature of 70 ± 8 °C.
TOC Figure