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      Predicting learning and human behavior in general is a challenging endeavor. 

Machine learning driven predictive modeling have been an increasingly popular means 

to understand disparities in student performance. With more than a handful of 

approaches to predictive modeling, the current literature of predicting learning is 

plagued with issues such as lack of standards for predictions, lack of work to 

understand the lower and upper bounds to context specific predictions, and explanatory 

models perceived to be at odds with predictive models. To overcome these issues, I use 

a single predictive modeling framework across three different learning contexts that 

involve four key steps: using approaches that are prediction task specific while reporting 

all metrics; using a baseline model for comparison; using context-specific early learning 

to predict later learning; systematically introducing extrinsic feature sets to derive 

actionable insights. In my first study, I use this framework to predict learning in a 

working memory training context. Results suggest that later learning can be predicted 

from early learning behavior better when using extrinsic features. In the second study, 

this framework is applied in the context of a blended learning environment. Results 
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suggest that students’ study spacing intentions, demographics, and past achievements 

predict later learning, while students’ click behaviors in the learning environment do not 

improve predictions. In the third study, this framework is applied in the context of a fully 

online learning environment. Results show that students’ self-reported motivational, 

affective, and social-emotional data are more predictive of early learning than context-

agnostic click-behaviors. Overall, the current work proposes and evaluates a framework 

that can be used to compare results across learning contexts, between models, and 

approaches to make predictions that may inform future prescriptions. Specifically, the 

framework acts as a means to understand the relationship shared by the three key 

aspects to making successful predictions – ‘how well’, ‘how soon’, and ‘how much 

information’ – and relevance of looking beyond simple accuracies. 
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CHAPTER 1: INTRODUCTION 

“Education is the most powerful weapon which you can use to change the world” 

---- Nelson Mandela 

   

For millennia, human learning has been an important factor for societal 

sustenance and advancement. The two most remarkable advancements in the 

Pleistocene era that molded human evolution, and arguably, the contemporary human 

society were evolution of languages and construction of socio-cultural practices. 

Together, these promoted the acquisition of skills and knowledge from older 

generations to younger generations (Farina, 2013; Kivinen & Piiroinen, 2018). Human 

society emphasizes learning and skill acquisition as means for becoming competent 

adults. From exploratory and self-directed learning in hunter-gatherer cultures to 

apprentice learning to the structured curricular training in typical school settings that 

exist today, the concept of learning as a method for behavioral alteration remains. 

These have been the differentiating factor of humans from other species throughout the 

ages since learning and skill acquisition promoted division of labor and coordinated 

social sustenance through actions.  

Before I proceed further, I wish to clarify my positionality on the definition of 

“learning.” There is no simple or singular answer to the question, “What is learning?”. As 

Visser (2012) discussed in their work, learning is a complex phenomenon that is tightly 

intertwined with the notion of living and developing across lifespan. While learning might 

be a phenomenon which is typically defined with an emphasis on some form of manifest 

behavioral change that is quantifiable, it goes beyond measurable terms. In the current 
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work, I will take the narrow delineation of the definition which is limited to changes in 

ability to perform a task or achieve grades within a course. However, the approach to 

predicting and understanding learning discussed here may be applicable to any setting 

or context, as long as there is a means to express that learning occurred (e.g., change 

in the ways a learner engages with their biological and physical environment, the ways 

in which a learner asks questions and explores answers to those questions, etc.) 

Regardless of the ways in which one defines or measures learning, the cultural 

practice of transferring knowledge and skills from generation to generation formed the 

basis of converting an individual’s potential into proficiencies (Gray, 2009). Such socio-

cultural practices and norms, in turn, act as a cornerstone to ‘human behavioral 

modernity’ (Farina, 2013; Kivinen & Piiroinen, 2018).  The society we live in today with 

near ubiquitous presence of some form of information and communication technologies, 

determine our shared and cultural affordances such as online learning (which I will 

discuss shortly). Ideally, these affordances that facilitate cultural coexistence are 

equitable, and the resulting proficiencies are identical for everyone. However, the extent 

to which the proficiencies are achieved within any learning community of practice, as 

gauged by standardized or non-standardized measures, varies across individuals. Such 

differences arise as a function of how much learning occurred at the individual level as 

well as due to the pedagogical practices that did not tailor learning for an individual’s 

needs, and subsequently due to the way that learning was measured. Research to 

understand individual differences in the quality and quantity of individuals’ learning 

stemmed from the need to identify and reduce these gaps in achievement and 

performance. Lately, an increasingly higher emphasis is being placed on using digital 
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data to transform online learning with educational technologies and the providers of 

such technologies becoming hopes for educational access and equality. The hopes of 

‘generating data to close achievement gap’, ‘protecting data to ensure privacy’, and 

‘using data to expose inequality’ have been some examples for upward trajectory of 

online learning. Macgilchrist (2019) described these endeavors to be enacting ‘cruel 

optimism’ where the desires of edu-technical transformation is tied to a fantasy of good 

education. The hope that educational equity is somehow linked to educational 

technologies and increased data is optimistic. However, the author relates this idea as 

being cruel given that this idea is tied to a ‘fraying fantasy’ of a good life. Eventually, this 

hope, or the ‘cruel optimism’ is that understanding data of such individual differences is 

going to lead to reduced achievement gap and improved equity or access (of learning 

and beyond) to cater to everyone’s need through personalization. Unfortunately, the 

hope that data can at least empower learners is far from achieved as I will discuss later. 

With the advent of machine learning and artificial intelligence, researchers have 

sought to use predictive models that understand the relationship of learners with 

teachers, learning materials, digital learning environments, and user experiences within 

these learning environments. Older generations of personalization efforts included 

intelligent tutoring systems and content-sequencing via semi-automated approaches 

(i.e., rule-based systems) which were later replaced by data-driven personalization 

approaches that may sometimes be determined by neural networks that are difficult to 

interpret (Baker, 2016; Graesser, Hu, & Sottilare, 2018; Kulik & Fletcher, 2016). 

Specifically, in the past decade, revolutionary improvements occurred in the field of 

information technology that led to a significant change (quantitatively and qualitatively) 
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in online learning environments, smartphones, and social networking. These 

transformations led to widely available data that were not possible in the past. While 

“Data Mining” as a field emerged several decades ago, it is only recently that it has 

gained popularity and traction in the field of education (C. Romero & Ventura, 2007; 

Cristobal Romero & Ventura, 2013). Educational data mining (EDM) evolved as a 

separate field of research since it was proposed to be different from conventional data 

mining approaches due to the co-dependence (and hierarchical nature) of features that 

promote learning. The emphasis in EDM is typically placed on the multi-level 

hierarchical modeling that are based on psychometric, socio-cultural, and cognitive 

theories of learning. Therefore, EDM as a field evolved to be an amalgamation of 

theories and techniques drawn from fields such as computer science, learning science, 

psychology, and mathematics (Dutt, Ismail, & Herawan, 2017). Learning analytics (LA), 

a similar field that is gaining popularity recently, also has similar aims as EDM. Both 

EDM and LA aim to improve education by analyzing large datasets to extract useful 

information that stakeholders can utilize to promote learning. However, while EDM 

places a focus on automated discovery of information by reducing the information to its 

components, LA places a focus on human judgement by empowering instructors and 

students (Cristobal Romero & Ventura, 2020). While both fields are interrelated and 

often work together, each have their own issues that are yet to be addressed. For 

instance, stakeholders (learners and instructors) are often not knowledgeable in the 

ways of EDM and LA and how to use the insights derived from these methods. Another 

issue is the diversity of terminology in use to represent the overall approach and a lack 

of standards to compare the literature. Furthermore, not every published work related to 
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LA accounts for the inherent hierarchical nature of the data generated in learning 

contexts. Romera and Ventura (2020) discuss how the fields of EDM and LA have 

evolved enormously over the past decade and show that the extant literature used 

terms such as ‘Academic Analytics’, ‘Institutional Analytics’, ‘Data-Driven Education’, 

‘Big Data in Education’…etc., which lead to increased confusion among the 

stakeholders. 

In my thesis, I assess the state of the current theories of practice in EDM and LA, 

specifically looking at the various predictive modeling approaches used, and discuss the 

shortcomings of some of the approaches taken. I take the view that leveraging data 

pertaining to the affective, motivational, and socio-emotional process of the students are 

critical to improving predictive modeling of online learning. I demonstrate a highly 

reproducible stepwise approach to predictive modeling across learning scenarios to 

evaluate the predictive value of learning performance trends, demographics, 

automatically generated data from learning environments (click behaviors), and learner-

centric data. In addition to presenting a general predictive modeling framework, this 

thesis is comprised of three major components: (1) establish and validate a multivariate 

predictive modeling framework that utilizes on-task performance and demographics in a 

learning environment that is not constrained by factors that affect learning in classroom 

settings (e.g., differences in learners’ subject knowledge). Using a dataset in working 

memory training context, I show that earlier predictions are stronger when predictive 

models learn from demographic data and information related to the training 

environment, facilitated by data mining. I show that using information of on-task 

performance for the first few sessions, predictive models can reliably differentiate 
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learners who perform above the median level. (2) Next, I use this approach to evaluate 

predictive performance within a blended learning environment while incorporating 

learners’ study intentions and corresponding click behaviors within the learning 

environment into the models. I show that understanding learners’ intended study 

spacing are useful for improving predictions whereas click behaviors (including both the 

quantity and frequency) do not improve predictions. (3) With a conclusion that click 

behaviors do not improve predictions in the blended learning environment that I 

evaluated, I further investigate the validity of click behaviors and their predictive value in 

a fully online learning environment. Furthermore, I evaluate the extent to which dynamic 

changes in individuals’ motivation, affective, and socio-emotional processes measured 

throughout the learning phase affect the performance of predictive models. Relying on 

survey measures of the dynamics of features central to learners (‘learner-centric’ 

measures), I show that learners’ self-reported responses on these measures are more 

valuable than artificially derived indicators of learner traits such as engagement, 

diligence, and procrastination through click behaviors. Ultimately, the predictive models 

tested here can be utilized to identify potentially low performing or high performing 

individuals in various learning scenarios at the earliest possible time during the learning 

period or compare predictions at different time points during the learning period given 

the data constraints. Subsequently, I discuss the potential of predictive modeling 

approaches have to understand and identify learner-centric measures that are critical to 

making accurate and robust predictions of future learning without relying on click 

behaviors that do not provide context of the learners’ behaviors. These three 
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components and the overall discussions and implications of the current work will be 

discussed in the next four chapters.  

In the rest of this chapter, I introduce and define learning (as applicable for this 

dissertation) followed by a review of prevalent predictive modeling approaches, their 

heterogeneity and the diversity of results and interpretations. Next, I introduce the need 

to compare the predictive models across learning settings (not just in classroom settings 

such as online or blended learning classrooms). Then, I discuss the overall 

methodology of predictive modeling using standard machine learning models, the 

metrics used to evaluate these models, and their limitations. In chapter 2, I introduce 

predictive modeling in working memory training context. I discuss the benefits of this 

comparative model to establish the stepwise approach I use for the next two chapters 

within classroom learning contexts. In chapter 3, I evaluate, replicate, and build upon 

the model from Chapter 2 within a blended learning context. I discuss the differences 

between the learning contexts in Chapters 2 and 3, compare the results, and discuss its 

shortcomings. In Chapter 4, I evaluate, replicate, and build upon models from the two 

previous chapters in a fully online learning context to validate the need for learner-

centric measures for making optimal future learning predictions. Finally, in Chapter 5, I 

discuss the implications of the current work, its advantages, its limitations, and connect 

them back to the extant literature. Furthermore, I discuss some approaches that can be 

taken in the future to empower predictive models that aim to personalize and promote 

learning. Finally, I provide a summary of the key contributions of my work and I present 

my thoughts on how to improve predictions of learning occurring within any setting. 

Now, more than ever, the importance and limitations of online learning are evident. We 
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are living in the times of one of the greatest threats to education across the globe. 

According to a recent report published on “Education for Global Development” 

(Saavedra, 2020), more than 1.6 billion children and youth are unable to attend schools 

across 161 countries due to COVID-19. Amid these challenging times, much of the 

learning has moved to online venues in hopes of continuing to educate the future 

generations, leading to soaring rates in the usage of online learning. Thus, online 

learning has changed from being an option to being the only option for many students. 

As we are moving our imperfect brick-and-mortar offline education system to an online 

education realm, the need to ensure that we surpass the shortcomings of learning 

environments is greater (Fernandez & Shaw, 2020). Thus, I hope that this dissertation 

work adds to the discussions of how we should approach promoting educational equity 

through thoughtful and careful implementation of our understanding of learners’ needs, 

rather than by understanding data generated through context-agnostic clicks. After all, 

there is no true “personalization” without knowing the “person” and their needs. 

1.1 Defining Learning. 

Learning and other forms of experience-dependent changes are multi-faceted 

and complex phenomena. For instance, learning begins through the attainment of 

declarative memories, the development of appropriate cognitive as well as sensory 

skills either through instruction or practice, followed by the organization of knowledge 

acquired into general representations. In the end, these changes require continual work 

towards improvisation that occurs through experimentation and exploration (Olesen, 

Westerberg, & Klingberg, 2004; Wickelgren, 1981). In general, the processes and 

products of various dimensions (e.g., cognitive, socio-cultural, and motivational factors) 
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work together to enable behavioral changes that are classified as learning. For instance, 

the cognitive dimension of knowledge is assumed to be a result of interactions between 

objects (stimuli) and people (organisms). An individual that engages with a prolonged 

stimulation and undergoes consistent interaction with the stimulus such as the working 

memory training (described in detail further below), often demonstrates experience-

related changes in the underlying cognitive architecture which result in learning on the 

working memory task (Olesen et al., 2004). The extent to which the learning occurs, 

however, is dependent on many different factors beginning with the ways in which an 

individual chooses to learn. 

An individual who wishes to learn something new or gain a new skillset, has a 

few different options: observation, imitation, guided instruction, discovery learning etc. 

Let us briefly compare two options: imitation or guided instruction. Imagine that an 

individual wants to learn to play Chess. Observation and subsequently imitation are the 

primary means to learning basic moves of the game (Bandura & Jones, 1962; Moore, 

2004). Several aspects of the learning behavior such as patterns, states, actions, or 

desirable outcomes maybe imitated via observation. However, the extent to which an 

individual learns solely by imitation is limited. In certain critical situations, it might even 

be considered hazardous (e.g., aircraft piloting). Guided instructions by an expert are 

considered far more effective in many scenarios especially if a learner wants to advance 

from being a novice to being proficient at the learned craft. Instructions that are based in 

behaviorism or cognitive theories do not expect learners to derive strategies and rules 

independently. Instead such an approach depends on the learner’s expected skill-level 

at a given point, their cognitive, and non-cognitive limitations. The content being taught 
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at any given point of time depends on what the learner needs to know until the learner 

becomes proficient (Reid & Stone, 1991). An expert or a master of the craft, however, 

transcends the skills acquired through guided learning and relies on situational and 

intuitive queues that are specific to any given situation. For instance, going back to the 

example of chess, a chess master makes appropriate moves every time he/she sees a 

meaningful chess array drawing on past experiences (Dreyfus & Dreyfus, 1980).  

Regardless of the means, the resulting learning that might have happened is 

broadly considered to take two different forms. First, learning manifests as knowledge 

acquisition. For example, when a person is said to have learned a subject, e.g., biology, 

we assume that this person understands a significant amount of the concepts, theories, 

and the underlying mechanisms that connect these concepts to each other and to living 

organisms. The broader (or deeper) the knowledge, the greater the person’s ability to 

explain more scenarios pertaining to the field. This type of learning is commonly 

demonstrated via curricular training and formal education. According to Michalski and 

colleagues (1983), knowledge acquisition is defined as “learning new symbolic 

information and [the] ability to apply this information effectively.” Secondly, learning 

connects to skill refinement. For example, when a person is said to have learned to 

juggle, we assume that this person has improved the motor and cognitive skills required 

to master juggling through sustained practice and/or training. Much of this form of 

learning process, i.e., skill refinement, involves very little learned symbolic knowledge. 

Rather, it focuses on the necessary ‘refinement of skills’, either motor, perceptual, or 

cognitive, via repeated practice and improvement at the subconscious level (Michalski 

et al., 1983). While the quantity or quality of learning depends on how the learning is 



11 

 

facilitated (e.g., imitation or guided instruction) and what the end goal of the intended 

learning is (e.g., learning a new skill or to increase the depth and breadth of a subject 

knowledge), there are other context and setting specific factors that are known to effect 

learning to varying degrees. An in-depth understanding of these factors is critical to 

understand the process of learning and its key determinants. Before I discuss these 

factors, it is critical to differentiate online learning and offline learning since the key 

constraints and determinants of learning occurred can sometimes differ (T. Anderson, 

2004; Reinig, 2010; Van Bruggen, 2005). 

1.2 What is Online Learning? 

Online courses, once defined by van Bruggen (2005) as “courses that use the 

World Wide Web to deliver some form of instruction to learners separated by time, 

distance, or both”, are a growing venue of learning with millions of users. Online 

courses, as I have mentioned earlier, have become the most ubiquitous form of learning 

in the past three months with learning taking place across internet-based learning 

avenues that go beyond the world wide web (as of May 2020). Online learning has been 

gaining increased enrollments, even without consideration for the increased numbers 

due to the pandemic we are experiencing. Online course enrollment had grown at a 

very rapid pace in the past decade (> 9% year on year growth) with at least one in 3 

students in the United States taking an online course (Seaman, Allen, & Seaman, 

2018). While there is no peer-reviewed literature to report the numbers for early 2020, 

we can suspect that virtually all students with access to the Internet and adequate 

hardware right now might be taking some form of an online course. Several works by 

Bowen and his colleagues have shown over the past few years that these numbers 
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have been increasing due to the growing expenses of higher education and since online 

learning has been pitched as a frugal alternative (H. R. Bowen, Fincher, Bowen, & 

Fincher, 2019; W. Bowen, 2013; W. G. Bowen, Delbanco, Gardner, Hennessy, & Koller, 

2013; Škrinjarić, 2014). The numbers were also boosted due to the effects of recession 

across United States after 2008 where stakeholders at the state policy level urged the 

public university systems to embrace online courses to increase access to high-quality 

education (W. G. Bowen, Chingos, Lack, & Nygren, 2013). For instance, universities 

across California have increased their catalog of fully online courses ever since, that are 

available for cross-campus enrollment as well as made available on some private online 

learning platforms such as Coursera and Udacity. This push for online learning as a 

cost-effective solution has added benefits of enabling learning without being limited by 

time and space constraints. 

In the existing literature, before evaluating the effectiveness and value of online 

learning, it is critical to examine the differences between online and blended learning 

environments first. Terms such as “e-learning”, “cyber-learning”, “web-based learning”, 

and “internet-based learning” are used interchangeably with “online learning”. While, 

“blended learning” and “hybrid learning” are used synonymously. The key difference 

between the two is the extent to which a course involves the use of internet 

(Bienkowski, Feng, & Means, 2014; Hubackova & Semradova, 2016). Typically, a 

course is considered “online” if more than 80% of the content is made available via 

internet. On the other hand, a course is considered ‘blended’ if at least 30% of the 

content is available online and 21% of the content is taught face-to-face. Any course 

that does involve online elements but limited to less than 30% are referred to as “web-
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enhanced” learning (Alpert, Couch, & Harmon, 2016; McPartlan, 2020). Let us now 

consider the factors that predict learning, whether it is in an online, offline, or blended 

learning environment and the need to account for individual differences while optimizing 

learning. 

1.3. What predicts learning? 

Individual differences in learning determine the extent of success of an individual 

as measured by standardized tests. For example, the differences in learning attained is 

a consequence of how an individual has learned/practiced to respond to symbolic 

systems and social cues over the past several years of his/her life, and due to the 

differences in his/her aptitudes (Corno et al., 2001). Therefore, much of the research 

relevant to learning in the past century had a primary focus on identification of student 

characteristics and learning environments that are optimal for learning outcomes. 

Several theories and models of learning have been postulated in the past few decades 

to describe overall learning and to identify individual differences that explain differences 

in learning. However, we do not yet have a parsimonious and coherent theory that 

explains the performance of learners and their individual differences (Cronbach, 2003) 

due to the complexities and the sheer number of domains that contribute towards 

learning. 

It is well established that students’ behavioral, cognitive, and non-cognitive 

characteristics before, during, and after the periods of instruction (or training) interact 

with various environmental factors to produce differential learning outcomes. The 

differences in what an individual knows at any given point of time and the subsequent 

learning outcomes may be driven by individual differences in several dimensions that 
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may broadly fall into three categories (see Figure 1.1) – the learner, the content being 

learned, and the context in which the learning is happening (Beckmann & Birney, 2012). 

According to Beckmann & Birney’s review of adult learning literature, learners’ 

cognitive and neural processes that drive learning undergo changes with age. These 

changes occur in two mutually conflicting directions. Ageing is often synonymous with 

age related declines in domains such as working memory capacity, information 

processing speeds, motor skills, inhibitory control, and attention controls. Whereas, the 

increase in knowledge over the course of age, experience related learning, 

development of schemata that trigger optimal and automated responses to situations 

characterize the growth of learning. While these two opposing general rules are 

common for most individuals, it is an individual’s opportunities to indulge in learning and 

the levels of engagement that determine the amount of learning. Differences in various 

trajectories in these two mechanisms differ for each individual, thus, resulting in a wide 

range of diverse learner profiles (Khribi, Jemni, & Nasraoui, 2009; Premlatha, Dharani, 

& Geetha, 2016). While the differences in learners’ abilities may be due to cognitive 

capacities, many non-cognitive characteristics of individuals such as attitude, self-

efficacy, implicit beliefs have major contributions to the outcomes of learning. Studies 

show that these non-cognitive characteristics are vital later in life of individuals due to 

increased self-directed learning, autonomy, goal-orientation, and the declines in 

cognitive and perceptual skills (Bo, Borza, & Seidler, 2009; Newport, 1990). 
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The content being learned by an individual might be determined by the level of 

selectivity of the individual’s learning goals. Learning might occur as “learning for the 

sake of learning” that focuses on conceptual knowledge acquisition that a learner is 

interested, to a more selective form of learning that focuses on skill refinement. This 

transition in learning that is mediated by selectivity of learners’ needs is targeted 

towards skill acquisition and to succeed in the skill-labor market (Beaudry, Green, & 

Sand, 2016). The selectivity that drives the transition from knowledge acquisition to skill 

refinement is suggested to serve two functions – selectivity in order to overcome age 

related decline in cognitive and executive functioning resources and selectivity in order 

to learn for an immediate skill application such as a career or more generally, to solve 

specific problems (Beckmann & Birney, 2012). As a result of the interactions between 

the selectivity of learning and its underlying motivation to engage in learning activities, 

differences in learning quality might arise differently for each individual. The levels of 

interaction of each individual with the content being learned might also differ by the 

Figure 1.1. Features of learning -- A simple representation of the relationship between the 
learner, content, and context reproduced from Figueiredo & Afonso (2006). In any given 
learning event, the factors that are central to the learner interact with the content being 
taught, and the context of learning (environment). 
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experiences an individual might have incurred with similar learning material in the past. 

As a result, the individual differences in the experiences accumulated over time also 

contribute towards differential learning outcomes. While interest in a particular learning 

material might be the driving force for learning, the quality of learning might not simply 

be a function of how interested an individual is in the content being learned. The amount 

of learning is also driven by whether a learner is going out of their comfort zone to learn 

a material rather than being confined to their comfort zone. As a result, many lines of 

research have been focusing on making the content optimal for best desired learning 

outcomes. Inducing desirable difficulties -- where the conditions of learning are varied 

over time and space, learning is interleaved, learning is spaced as opposed to 

massed/crammed, where learners are required to take frequent tests -- are introduced 

into the learning content to enhance learning (Bjork & Bjork, 2009). 

The context of learning adds further complexity in the ways in which learning 

occurs. As the population of learners move from a highly structured classroom setting to 

an independent learning or a skill-performance based setting (e.g., software coding 

certification programs) the diversity of learning contexts increases. This move from 

structured to semi-structured or unstructured learning is, typically, closely tied to the 

biological age of an individual. Relatedly, a major focus of research in the past few 

decades have been on the differential learning experiences of online (semi-

structured/unstructured) and traditional classroom (highly structured) settings which are 

detailed further below. Overall, a mixture of factors that are internal to the individual 

(interest in the learning material, level of cognition, and cognitive load), to communities 

of learning practices, as a function of societal, historical, and socio-cultural affordances, 
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factors that are external to the individual (learning at home vs learning at school, public 

vs private education, tutoring vs lack thereof, etc.) drive the learning of each individual 

differently. The individual differences in these three dimensions (learner, content, and 

context) interact with each other to produce learning to various degrees during any 

learning event. However, the exact mechanisms by which these interactions drive 

learning are yet to be fully elucidated. 

Several models have attempted to understand the ways in which the three 

factors affect learning and the ways in which they are interlinked. Walberg’s educational 

productivity theory and Hattie’s synthesis of meta-analyses for higher education 

pedagogy (Hattie, 2008) are  a few theories that empirically tested a wide range of 

factors that might determine learners’ outcomes (H.J. Walberg, 1981; Herbert J. 

Walberg, 1984; later reviewed by M. C. Wang, Haertel, & Walberg, 1993). Wang and his 

colleagues’ work (1993) used an accumulated evidence from three methods - a series 

of meta-analyses on 3000 studies, reviews of handbooks and narratives, and opinions 

of experts – to estimate the differential influence of various factors on learning. 

Specifically, the work resulted in a “knowledge base” which included 228 variables 

across 30 categories that influenced learning. Furthermore, Wang and his colleagues 

identified 11 factors that had the most impact on learning: student’s developmental level 

(or age), student’s ability (prior achievement, motor and non-motor skill levels included), 

motivation, amount of instruction, quality of instruction, psychological environment of the 

classroom, home influences (including parental influences), peer group influences, 

exposure to mass media, classroom environment, and adaptive instruction (instructional 

delivery system, program design, and implementation included). Their work also 
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suggested that distal/background influences, the factors that are not central to the 

learner such as state, district, and school policies, are less important to learners’ 

outcomes. In contrast, proximal influences such as psychological and motivational 

factors, quality and quantity of instruction, and variables relevant to home environment 

(e.g., parental involvement in child’s learning) are the most influential to learning.  

Furthermore, this work suggested that interventions which focus on student-level 

variables such as cognitive, meta-cognitive, socio-behavioral, motivational, and affective 

characteristics will yield improved learners’ outcomes as these factors are most 

malleable to targeted interventions. Ultimately, the purpose of these interventions 

should be to provide significant positive learning experiences that are related to learning 

outcomes. Haertel, Walberg, and Weinstein (1983) performed a comprehensive review 

of 8 models of school learning that continue to influence interventions. Their review 

included: (a) Glaser’s psychological learning theory (1976) which investigated 

resources, actions, and practices that foster competence in children such as learning-to-

learn, and reinforcement of learned materials with an emphasis on the cognitive aspects 

of the learner, (b) Carroll’s model of school learning (J. Carroll, 1963; J. B. Carroll, 

1989), which investigated the relationship of efforts spent on a learning task and the 

efforts required to accomplish the task. This model emphasized the importance of 

learners’ aptitudes to the extent of learning, (c) Cooley and Leinhardt’s model that 

investigated classroom processes (1975), which described a model for classroom 

performance of the learners with an emphasis on students’ initial general abilities and 

prior achievement such as SATs and cumulative GPAs to understand the extent of 

learning. This review by Haertel and her colleagues also included other influential 
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models of learning put forth by Bloom (1976), Bennett (1978), Gagne (1977), 

Harnischfger & Wiley (1978), and Bruner (1966). A majority of these eight models 

included very similar constructs to understand learning behavior despite the differences 

in the nomenclature of several constructs across models. Learners’ abilities, 

motivations, affects, state of mind, and the quality and quantity of learning are identified 

as the most recurrent constructs that were represented in these models. These models, 

however, did not include several important factors that influence learning such as school 

and classroom environments, peer influences, parental influences, and the influence of 

the mass media that effect learning. Newer models were built on the foundations of 

Haertel’s et al.’s review to integrate the key factors that were missing from these eight 

models to better determine learning. For instance, Zins and colleagues (2004) explored 

the importance of learners self-regulation, social-emotional skills, and motivational 

alignments in determining learning and found that social-emotional aspects of a learner 

add a significant value in understanding learning behaviors. 

Wang (1993) and Haertel’s (1983) work has been a cornerstone in learning 

literature. Together, these works reviewed and integrated over 3000 research studies 

and eight prominent models of learning to identify the relative importance of key 

dimensions of individual differences in learners’ characteristics that predict learning. Of 

those learners’ characteristics, factors such as cognitive, motivational, affective, 

psychomotor, social, and behavioral domains are identified as the means to various 

trajectories of learning (and the user profiles that are related to these trajectories). 

These characteristics were suggested as the domains that may be most malleable to 

policies and interventions that seek to improve education and learning outcomes. 
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However, practical applications of these models to generate novel policies or 

interventions are significantly challenging due to several reasons. For instance, since 

each of these domains are built on a wide range of multivariate variables that 

encompass the broader domain, educators find it difficult to effectively target specific 

aspects of the learners to produce positive outcomes. The level of complexity of the 

underlying variables that determine the learning quality and quantity increases in the 

absence of the overarching latent variables. For example, Cattell-Horn-Carroll (Gf-Gc) 

theoretical model (CHC model) evaluated over 70 specialized cognitive abilities that 

load into eight cognitive domains (Schneider & McGrew, 2012) that have varying effects 

on learning. Creating interventions in real-life scenarios, that target cognitive abilities 

alone, may not yield the best results, given that one needs to account for a complex 

network of multivariate predictors to sufficiently understand the impacts of this 

intervention, while assuming other influences on learning are “controlled” for. In addition 

to difficulties in creating meaningful and effective interventions, the underlying 

complexity of the networks of domains further increases the levels of difficulty in building 

theoretical and practical frameworks than can be empirically tested for the relative 

contributions of each of those variables to learning. 

In summary, one outstanding limitation of the comprehensive models that seek to 

explain learning is that each of these models make use of latent construct variables that 

hope to capture the meaning of large sets of underlying variables which may not fully 

represent the meaning of the variables’ interactions. These latent constructs, often, do 

not account for the richness of the data underneath. Some of the key research 

conducted on individual subdomains, or those that are studied in isolation -- such as 
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motivational orientations, aptitude, cognitive prerequisites, social-behavioral aspects, 

and self-regulation of the learners -- identified and proposed several theories of learning 

that impact students’ outcomes in isolation. Such models come with their own limitation, 

in that they speak for isolated influences of each variable (or sets of variables) 

separately. This limitation is further exaggerated due to the nature of using averages to 

explain the contributions of these isolated variables. While averages of the latent 

variables may speak for the general relations of these variables to the learning 

outcomes, they fall short in identifying the differential learning trajectories of each 

individual. Part of the solution to this problem is to create both explanatory and 

predictive models in parallel using a single multivariate framework to understand 

learning, predict learning, and apply solutions that drive personalization of learning. 

As an overview, learning is influenced by several dimensions of variables that are 

in-turn influenced by multivariate sets of predictors. These dimensions include cognitive, 

meta-cognitive, motivational, affective, state, socio-cultural factors, etc. Much of the 

existing empirical research focuses on a very narrow set of these dimensions to 

understand learning. A brief look at the research on motivational factors, both extrinsic 

and intrinsic to the organism, show the complexities of factors that tend to drive 

learning. Besides cognitive factors, motivation, and the levels of engagement of an 

individual on a task also significantly effect learning. The amounts of engagement, in 

turn, are often driven by the socio-cultural needs of individuals. The most optimal 

learning occurs when a few conditions are sufficiently met. One such ideal learning 

scenario might involve an individual engaging in a task that is of interest to him/her, 

consists of leaning tasks that fall at the difficulty level that is desirable, provides 
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satisfaction, enhances the sense of belonging in a community, ensues peer, teacher 

and/or parental favor, and subsequently a prolonged engagement with the task in a 

spaced learning setting (Shanks, Holyoak, & Medin, 1996). Models and theories that fall 

short in explaining the connections between the factors, especially at individual levels 

may not lead to effective interventions. The complexity of learning as a phenomenon 

poses several challenges, especially where practitioners seek to improve curriculum 

designs, developing clear goal and sequences of the teaching materials, and to 

reinforce later learning. While it is important to establish a one-on-one relationship 

between each of the variables to the learners’ performance, practical applications of this 

understanding to real-life situations may not fully reflect the anticipated levels of 

improvement in learning. 

Learning as a phenomenon involves many means and many ends which differ as 

a function of all the factors mentioned earlier. When the various models of learning are 

incorporated into a single framework using empirical research or using meta-analytical 

approaches, the average values or the relative contributions of each factor (e.g., 

measured as T-scores by Haertel et al., 1983) do not explain the variances of learning 

at an individual level. There is no known one-size-fits-all approach to learning. Thus, in 

the recent past, a demand for personalized learning platforms such as intelligent 

tutoring systems increased in popularity (Hong, Chen, Chang, & Chen, 2007). 

1.4. A case for personalization. 

In typical grouped learning environments (e.g., classroom) that facilitate skill 

refinement or knowledge acquisition, educators strive to make the learning optimal for 

all students in that setting. However, the optimal settings laid out by an instructor for one 
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student (or the average student) may not fit the needs of other students due to many 

differences among individuals. Take the following scenario as an example: In the 1950s, 

the United States Airforce investigated the difficulties that pilots were having in 

controlling the flights. As part of the investigation, Hertzberg & Daniels (1952) found that 

the cockpits were designed to fit the average pilots of 1920s. They then proposed that 

cockpits that are designed based on updated measurements to fit the needs of pilots in 

1950s (with an understanding that the average ‘size’ of pilots increased by 1950s) will 

fix the problem. Thus, they measured the size of more than 4000 pilot on ten 

dimensions (height, weight, …etc.) to update the cockpit design based on the new 

average. However, it was later found that the human errors in aircraft piloting continued 

since the updated cockpit did not fit the needs of any of the pilots due to the individual 

differences in the measured dimensions. Follow up work later showed that only 3% of 

the pilots fell into the average range even after restricting the dimensions to only three 

of the ten. Not even a single pilot fit the averages on all ten dimensions. This finding, 

eventually, led to growth of adjustable and ergonomic design approaches (Barbé, 

Mollard, & Wolff, 2014) that might better fulfill the individual pilot’s needs.  This is similar 

to the concurrent situation of fixed learning environments that tailor the contents for 

average individuals. 

At a group level, learning is known to be improved by optimizing the routine 

activities conducted in a classroom. For instance, consistently organizing information 

that a student needs to process (e.g., format of the learning materials), regular 

classroom activities (e.g., frequently test-taking), or reflection of content and goals at the 

end of each learning session (Gu & Johnson, 1996; McDaniel, Roediger, & McDermott, 
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2007; Roediger & Karpicke, 2006) have a positive impact on learning. Detailed 

classroom learning objectives implementation, clear formative assessments and 

feedback on tasks and performance of students, and reinforcements such as praise 

from the teachers that satisfy the learners’ motivational needs are also known to 

facilitate learning (Nicol & MacFarlane-Dick, 2006; Norcini, 2010). However, 

accomplishing these broader goals do not fulfill individuals’ learning needs. For 

instance, if a learner has other (non-academic or non-course related) goals that are 

conflicting with the learning demands such as time spent on a learning task, the general 

pedagogical principles may not satisfy the requirements for an individual to improve on 

the learning task (Deci, Ryan, Vallerand, & Pelletier, 1991; Reiss, 2012).  

Three broad strategies were suggested to improve learning at individual levels by 

overcoming the limitations of the pedagogical principles applied to group settings – 

individualization, differentiation, and personalization (Amanda Stedke, 2017). 

Individualization of learning is one strategy where instructions of learning material are 

adapted to different speed levels (pacing of the learning) based on the learners’ needs. 

This approach typically does not alter the overall learning goals of the course or the 

ways in which course material is delivered (in terms of different methods of teaching). 

All students in the learning setting are expected to learn the same material, via the 

same modality, and with the same learning goals. Each student, however, is allowed to 

self-pace their learning. Students are allowed to learn material faster or slower as they 

need, skip content, re-read content that they need additional help with (Greeno, Collins, 

& Resnick, 1996; Heift & Schulze, 2015). 
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Differentiation of learning is the one of the strategies where unlike in the 

Individualization, the instructions are different by person. The learning goals, speed of 

learning, and the material being learned are same for all the students and the difference 

arises in the medium in which the learning material is provided to the students (Gibson 

& Gibson, 1955; Thomas & McKay, 2010). Based on a notion that individuals have 

preferred learning styles (verbal and visual learners) referred to as meshing hypothesis, 

researchers used differentiation as a means to improve learning, university-level 

teaching strategies, and tutoring services. Following a critical review of the literature 

relevant to learning styles, Pashler and colleagues (2009) concluded that the empirical 

evidence for learners having varying styles does not exist. Subsequent studies by 

Rogowsky and her colleagues (2015) supported this evidence against learning styles. 

However, the ability to differentiate the learning material into different learning 

modalities such as auditory and visual material is known to have benefits as long as the 

material in different modes support and supplement each other as opposed to adding 

conflicting or noisy information (Moreno & Mayer, 2007; Picciano, 2009). 

Personalization of learning refers to the overall tailoring of learning experiences. 

In this strategy, learning material is altered to fit the needs, goals, speeds, and to the 

learners’ preferences. This refers to environments that are fully personalized and thus 

encompasses the ideas of differentiation as well as individualization. Whereas the other 

two strategies focus on the teacher-environment level characteristics, personalization 

focuses on the individuals’ characteristics. Thus, personalization gives the choice and 

voice to the learners and makes the learners active participants in the design of their 
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own learning. In the 21st century, personalization is made possible due to the advent 

and increasingly available online learning platforms (Amanda Stedke, 2017). 

1.5. Online Learning and personalization.  

Personalization of learning, especially of the learning that occurs via online 

platforms, has been a focus of research in recent years. Since online courses are a 

growing venue of learning with millions of users, and since they are conducted in 

information technology-driven platforms, personalization by means of tailoring online 

content has increased in popularity in the recent past. Personalized learning via online-

platforms emphasize independent, student-led, and out-of-class learning experiences. 

The ability of online-learning platforms, in theory, is said to promote learning by allowing 

the students to monitor the progress of learning, pace the learning, and by setting 

personal goals that they are keen to achieve. Personalization via technology is also 

hypothesized to improve “non-grade band curricular frameworks,” where individuals of 

different age groups and grade levels can learn the same content at the same difficulty 

level, based on their current skill level and personal goals. While such technology 

enabled personalized learning is a key to improving individual level learning, the existing 

research does not support the idea that increased diversity in learning personalization 

translates to improved learning overall. One of the predominant issues that plague 

online personalized learning platforms, such as Coursera, is the immense rates of 

dropout (Patterson & McFadden, 2009; Rivard, 2013). Online degree completion rates 

remain around 30% in most developing countries. While many institutions offer 

academic support programs that aim to increase retention and course completion rates, 

the problem with dropouts persist. However, the amount of dropout rates could be due 
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to factors such as the students learning the content that they are interested in (as 

opposed to taking a course for the sake of completion or a certification/degree), which is 

one of the key purposes of personalized learning platforms. This shows that the ways in 

which the adaptive algorithms define “completion” are in some cases, non-adaptive. The 

notion of large dropout rates being attested to online learning do not hold true when the 

online learning occurs at a higher education institution since the goals of learning are 

set by instructors and the course is required to be completed within the set academic 

time frame (i.e., semester or quarter). Thus, some researchers posit that despite the 

high attrition rates, the issue of retention rates may not be as severe as the numbers 

denote. Rather, it indicates a need to rethink the way we define completion and 

students’ success and to improve the adaptive algorithms that determine the goals and 

mark completion of the said goals (Glance & Barrett, 2014; Rizzardini, Chan, & Guetl, 

2016). Aside from the high attrition rates, another issue that remains is the lack of 

unified models for predicting and personalization efforts. 

Many higher education institutions in the U.S. use a software based learning 

platform, usually referred to as Learning Management system (LMS) that integrates 

teaching materials, learning activities, course administration tools, and exam 

administration tools all in one elaborate information management ecosystem 

(Dahlstrom, Brooks, & Bichsel, 2014). With the help of the tools in LMS, teachers and 

university management, often collect students’ “digital trails” – when, where, and how 

the information from the LMS is accessed by the students in order to understand the 

students’ engagement with the course resources such as lecture materials, exams, and 

other resources (Mah, 2016). While the goal of many LMS tools is to improve student 
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engagement, understanding, and eventually learning outcomes via personalization, 

there is a need to empirically test frameworks that optimize LMS platforms to 

accomplish these goals. 

In her review of “Learning Analytics” and “Digital Badges”, Mah (2016) explains 

the importance of understanding these two key words to build predictive models that 

may understand the learning trajectories of each individual that aims to improve 

personalization of learning. As a quick recap, Learning Analytics, a method to analyze 

and mine data from online course learning management systems (LMS) has been a 

crucial research endeavor in the recent years due to its importance in understanding 

students’ learning and behavior. For instance, learning analytics are employed to 

examine the frequency of students’ engagement with the learning material in relation to 

the quality and quantity of learning of individuals. Digital Badges are described as a 

“new way to capture and communicate what an individual knows and can demonstrate”, 

often in an online learning environment or on social media platforms such as LinkedIn. 

Digital badges act as digital stickers of achievements, coding skills, language mastery, 

digital or non-digital competencies, and affinity or affiliation towards skill sets. 

Historically, the use of digital badges lies in the world of video games where 

achievements and mastery of aspects of game leads to badges or levels as rewards 

that the players use to showcase their skills (Ahn, Pellicone, & Butler, 2014; Hickey, 

Jovanovic, Lonn, & Willis, 2015; Hickey, Willis, Jovanovic, & Lonn, 2015). Digital 

badges act as a proxy to measure the current skill level of an individual, their levels of 

motivation and engagement with the learning material, and as a means to alter his/her 

self-regulation (Jovanovic & Devedzic, 2015). Overall learning analytics act as powerful 
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ways to assess, analyze, and predict the quality and quantity of learning as well as the 

learning environment and may improve retention of learners in MOOCs (Ifenthaler, 

2015). While digital badges are said to be useful markers for advancement or progress 

in learning a skill or subject, the implementation of badges in training, learning, and 

online courses conducted at universities (that are not part of the open-source Massive 

Open Online Courses - MOOCs) are sparse. 

1.6. A case for predictive modeling. 

 Humans have attempted using predictions of future to guide the present since 

ancient times. From shamans in the ancient world seeking signs of success and hope in 

inanimate objects to scientists using data-driven models to making predictions, the field 

of predictions as a science has come very far. Machine learning driven approaches are 

at the heart of current predictive modeling efforts with practical applications in nearly 

every field. Social scientists are historically known for seeking explanations of social 

phenomenon and human behavior via interpretable causal mechanisms (Breiman, 

2001; Veltri, 2017). Predictive accuracy of these causal models was often ignored in 

favor of reproducible causal modeling with unbiased estimates from individual 

parameters. In contrast, fields such as physical sciences, have embraced predictive 

modeling to drive the field forward. Partly, the reason for this trend is due to the 

unambiguous predictions and widely available data (Hofman, Sharma, & Watts, 2017). 

Lately, due to the massive proliferation of data streams, in terms of available data and 

the quality of the data itself, social scientists are increasingly turning towards machine 

learning driven predictive modeling approaches. Another reason for the rise of 

predictive modeling is also due to the increasing concern over the paucity of replicability 
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of results, and counter-narratives regarding validity of existing causal models (Gilbert, 

King, Pettigrew, & Wilson, 2016; Open Science Collobaration, 2015). In a recent review, 

Hofman and colleagues (Hofman et al., 2017) have proposed that three major issues 

require prompt resolution before social sciences can benefit from machine learning 

driven predictive models. These include standardizing practice for evaluating predictions 

from models, establishing theoretical limits of predictive accuracy in complex social 

systems, and complementing predictive accuracy and interpretability (via explanatory 

models) and not treating these disparate approaches as substitutes for each other. In 

order to extrapolate these three key aspects within the context of predicting online 

learning, first, we need to understand the current state of predictive modeling within 

online learning contexts. 

Online learning has been criticized for not being an effective mode of education 

since its inception and continues to be questioned and doubted, specifically about its 

value and tradeoffs as it aims to cut costs (Deming, Goldin, Katz, & Yuchtman, 2015). 

Thus far, very little concrete evidence has been gathered to address the issues of 

quality and value of online learning over offline and blended learning. This is expected, 

and perhaps, very hard to gain evidence for, given that it is near impossible to randomly 

assign students to one or the other group in a full randomized controlled trial setting 

(Bienkowski et al., 2014; H. R. Bowen et al., 2019). A fairly recent meta-analysis of the 

existing research by Lack (2013) and a slightly older review by Means and colleagues 

(Means, Toyama, Murphy, Bakia, & Jones, 2009) show that combining face-to-face 

elements is relatively more effective approach than fully online environments for student 

performance. In the 45 studies considered for meta-analysis by Lack, not a single study 
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involved random assignment. A few recent papers that investigated the value of online 

courses using random assignment suggested that the results are grimmer for online 

learners compared to face-to-face courses (for an example, see Alpert et al., 2016). 

Furthermore, on a very large-scale study with a sample size over 200,000 comparing 

face-to-face courses versus their equivalent counterparts taught by the same instructors 

following the same course materials, showed that online courses are statistically 

significantly worse for performance and dropout rates. In fact, the very reasons that 

learners have for taking online courses by themselves were associated with nearly half 

a standard deviation drop in students’ performance. These results were also worse for 

below-average performers, youth of color and minorities (Bettinger & Loeb, 2017; Figlio, 

Rush, & Yin, 2013). Given the current levels of online learning enforced on learners, it is 

even more critical to validate online learning, entertain the idea of personalizing 

learning, and promote ways to discover insights that can help predict learners’ 

performance at the earliest possible time. 

Learning analytics have the capacity to use dynamic information of the learners 

in real-time to model, predict, and optimize the processes of learning. Scheffel and his 

colleagues (2014) introduced a framework with five key markers to determine the quality 

of learning analytics that can accomplish these goals. The five qualities include: 

i. learning measures and output (i.e., comparability of the analytics, 

effectiveness and efficiency of the analytics, and helpfulness of the 

analytics)  
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ii. coherent objectives (i.e., awareness of the current learning goals, 

motivations, and behavioral changes of the learners, and the ability to 

derive insights and reflections that are meaningful to learners) 

iii. learning support (i.e., classification and detection of students at risk and 

requiring additional support, perceived usefulness of the learning material 

available, recommendations of things to do to improve) 

iv. data management (i.e., maintaining standards of data, ensuring privacy 

and transparency), and 

v. organization level benefits (i.e., ease of implementation, ability to engage 

non-learner stakeholders, supporting organization level changes, and 

ability and access to training modules). 

While a great learning analytics platform is expected to meet all of these 

qualities, the most critical of these qualities is the ability of the learning analytics to 

support learners’ self-reflection and predicting their future learning. In a fully 

personalized learning platform, the personalization begins with the learner. The learner 

is given an opportunity to reflect, or critically evaluate their current state of knowing, 

define their own goals, determine the difficulty of content they wish to tackle, and decide 

on their own pace of learning. The next step in personalization of learning occurs when 

predictive models and algorithms can appropriately determine the state of learner based 

on their explicit inputs from the reflection, levels of performance in the early phases, and 

their motivations to detect learning trajectories and to empower students who are at risk 

of failure or dropout (Dillenbourg, Schneider, & Synteta, 2001). One thing to note is that 

while learners are allowed to set pace and difficulty, teachers play a critical role in 
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determining constraints of these parameters that each student can then manipulate. For 

instance, students should be able to tweak the difficulty of content within an upper and 

lower bound which is set by a teacher, just enough, to neither lose interest nor be 

discouraged completely to tackle the content. 

As discussed in the earlier sections, there are many ways to measure learners’ 

outcomes and experiences. In the online learning contexts, often, the measures used to 

predict students’ performance involve variables that account for students’ readiness (or 

current state of knowing measured using ACT, SATs, GPAs - Conley, 2008; Komarraju, 

Ramsey, & Rinella, 2013; Porter & Polikoff, 2012; Venezia & Jaeger, 2013), 

expectations to succeed (Nadelson et al., 2013), levels of participation and engagement 

in online course activities, engagement with the learning material on LMS measured via 

click behavior (quality, quantity, and digital trail of clicks), time spent on resources such 

as learning material or quizzes that are made available on LMS – time elapsed between 

two consecutive clicks, and participant demographics (A. Anderson, Huttenlocher, 

Kleinberg, & Leskovec, 2014; Bayer, Bydzovská, & Géryk, 2012; Chaturvedi, 

Goldwasser, & Daumé Iii, 2014; Guo & Reinecke, 2014; Hershkovitz, Baker, Gowda, & 

Corbett, 2013; Huang, Dasgupta, Ghosh, Manning, & Sanders, 2014; Ramesh, 

Goldwasser, Huang, Daume, & Getoor, 2014; Seaton, Bergner, Chuang, Mitros, & 

Pritchard, 2014; Wilkowski, Deutsch, & Russell, 2014).  

However, these studies tend to isolate the effects of these predictors of learning 

leading to widely differing predictions of later learning (accuracy range of 50%-98%) 

painting an incomplete picture of the learners’ characteristics and how these predictors 

are related to each other (Mohamed, Husain, & Rashid, 2015). A handful of studies that 
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used Neural Networks were able to predict learning outcomes with accuracies 

exceeding 95% but the results from these studies did not provide any means for the end 

users to determine what worked, what did not work, and what are the most influential 

factors to their learning (see Kumar & Vijayalakshmi, 2012 for an example). Specifically, 

work by Kumar and Vijayalakshmi achieved a prediction accuracy of 98% to predict the 

5th semester performance using the grades received in the past 4 semesters using 

Neural Networks. While numerically achieving 98% accuracy is astounding, the 

approach simply accounts for past performance in the 4 previous semesters to make 

predictions in the 5th semester with a conclusion that if you had good grades according 

to your academic record, you will be above-median performers. Unfortunately, that 

result is not usable for teachers to improve their own teaching or for the students to 

improve their own learning.  

Additionally, results from a neural network with many hidden layers are very hard 

to interpret. Factors that are central to the learner, factors that can be manipulated, and 

factors that the teachers and students have direct control over (and subsequently create 

action plans for) are rarely included in these predictive modeling efforts. In the review by 

Mohammed and colleagues (Mohamed et al., 2015), only 4 out of the 30 studies 

reviewed included student measures such as motivation with accuracies ranging from 

65% to 83% in online and offline settings. For example, work done by Sembiring and 

colleagues (2011) produced 83% prediction accuracies using machine learning based 

approaches (Kernel K-means and Smooth Support Vector Machines) using features 

such as study behavior, engagement times, beliefs, family support (4 learner-centric 

features) and classified the students into 5 categories (excellent, very good, good, 
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average, and poor). This study included data from 1000 student participants spanning 

across three different courses and utilized questionnaires for the leaner-centric features 

across 4 categories for students enrolled at Universiti Malaysia Pahang (offline 

courses). The four learner-centric measures were categorized into high, medium, or low 

instead of using the full scale of responses. One interesting finding is that when 

classifying the learners into 5 groups, the prediction accuracies for the top 20% vs. 

bottom 20% yielded a significantly better prediction rates (over 94%) than for the rest of 

the 60% students (61%-75%). While these results are promising, they do not provide a 

means to evaluate the relative importance of learner-centric features compared to 

models that only use demographics and past performance. Overall, those studies that 

yielded very high prediction accuracies were either using neural networks that are 

difficult to evaluate or understand, did not provide sufficient guidance for stakeholders to 

understand the results, or provide a reproducible framework to understand the relative 

predictive value of each feature. 

Let us now evaluate these results in terms of the three key challenges that 

Hofman and colleagues identified (2017). First, there is a lack of standards for 

predictions. Typically, when making predictions using machine learning driven models 

(within the context of online learning), researchers have two choices: classification or 

regression. For instance, classification models would involve categorical identification 

and grouping of learners using some form of measure of success within the learning 

context (i.e., predicting dropout (yes/no), predicting letter grade, predicting success 

above or below average…etc.) On the other hand, regression models would involve 

predicting outcomes of interest on a continuous scale (e.g., predicting the scores of 
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learners on final exam, predicting quiz performance…etc.) Each of these two 

approaches include many different model variants that can accomplish these goals (to 

classify or to regress). Not every model is ideal for all tasks. Furthermore, the ways in 

which the performance of these models is evaluated, is also different. Typically, the 

researchers make choices regarding which goal they seek to accomplish, what model(s) 

to use, what metrics to report, and how to report these results. This makes it very 

difficult to cohesively compare results from different studies. Although, researchers in 

the fields of machine learning and artificial intelligence typically use ‘simple-to-

understand’ quantitative metrics, results within any given field will not be comparable 

unless there is a consensus on which metrics to use and report. Thus, it is important to 

report all commonly used metrics where no standards exist. 

Next, it is critical to establish the limits of predictive modeling in any given 

context. Predictability of human behavior is highly context specific. For instance, in a 

given year, if the probability of someone sleeping in their own bed every night is 80%, 

then it is easier to achieve a prediction accuracy of 80% by simply training a model that 

can understand this heuristic. On the other hand, predicting rare events or “black swan” 

events are near impossible even with more complex models due to the inherent nature 

of uncertainty associated with these events. For instance, a catastrophic day in stock 

markets or finding a million dollars under a tree outside a park are rare events and 

inherently harder to predict using typical modeling efforts. Online learning typically falls 

somewhere in the middle with intermediate predictability, where learners with good 

grades are known to do predictably well. However, as discussed earlier, learning 

behavior is more nuanced and the outcomes resemble either a flip of a coin or finding 
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the proverbial needle in a haystack, depending on the context. Thus, establishing the 

baseline and best possible predictions from the modeling efforts for a given context, 

given a specific dataset, is important. First, it is important to establish a robust baseline 

model for comparing the results against. Next, it is important to establish the best 

possible prediction performance given a particular dataset. Note that the best possible 

predictions need not be a model that gets the predictions correct 100% of the times. 

Rather, it is the best iteration (or model) that yielded the highest accuracy compared to 

the baseline. The baseline model is important since it is important to achieve predictions 

beyond known or expected heuristics. Going back to the probability of sleeping in one’s 

own bed every night, simply guessing the highly probable event for every prediction will 

yield 80% accuracy (albeit with a very high false positive rate). In the context of 

predicting above or below average performance within a classroom setting, simply 

predicting above average for every prediction will yield an accuracy of 50% (since every 

event is likely to be correct one-half times for each prediction). Establishing the best 

possible predictions for a given context is important since, often subpar predictions are 

ascribed to insufficient data and/or poor model quality. However, it is not always true 

that higher amounts of data yields better accuracies since the inherent increase in noise 

due to higher amounts of data is known to reduce the quality of predictions (Kwon, Lee, 

& Shin, 2014). Similarly, more sophisticated modeling by itself does not solve issues 

that go beyond limitations of modeling efforts. For instance, rare events are harder to 

predict, inherently due to the nature of rarity and unpredictability associated with the 

event. Furthermore, it is reasonable to assume that, within learning contexts, the best 

possible prediction accuracies are a function of context specific factors as well as the 
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constraints of the task itself. For instance, learning an inherently repetitive task, such as 

WM training, is likely to be a function of cumulative advantage of practice, structured 

repetition, and ability at baseline. Whereas, learning in the context of online learning is 

more nuanced and is influenced by higher number of extrinsic factors (e.g., dynamic 

motivations that are discussed later), making it inherently more challenging to predict. I 

discuss this possibility in more detail, separately, in the next chapter. 

The next critical issue that needs to be resolved is the coexistence of predictions 

and interpretations. The primary concern with predictive modeling applied to complex 

social structures and human behavioral problems is that predictive models involve 

complex models that are hard to interpret. While this is an important aspect to address, 

Hofman and colleagues (Hofman et al., 2017) argue that predictive modeling efforts are 

not at odds with explanatory modeling for three reasons:  

a) “simple models do not necessarily generalize better than complex models” 

(i.e., role of Occam’s razor - (Domingos, 1999)) since generalization depends on the 

entire research process (including the choices the researcher makes regarding the 

modeling). Generalization errors can subsequently be reduced using ensemble 

methods such as boosting and bagging. This approach partially overcomes the tradeoff 

of generalization despite increasing model complexity. 

b) there is a growing amount of evidence that shows that the trade-off between 

predictive and explanatory models is minimizing. It is possible to achieve an 

interpretable model that also provides insight into mechanisms that drive phenomenon 

by reducing generalization errors and by using simplest models that achieve the same 

prediction accuracies. 
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c) the notion of being able to understand a phenomenon should be in terms of 

ability to interpret the gathered data (via explanatory models conducted ex post) as well 

as being able to successfully account for the patterns within data to make future 

predictions ex ante. 

Within the context of predicting online learning, there is a need to implement 

solutions to these three issues to successfully apply predictive modeling that are easy to 

compare across settings. Furthermore, addressing these issues would also help 

accomplish the goals of being able to replicate results, understand the most important 

predictors, and eventually to personalization of learning. So, what does a framework 

that accomplishes these goals look like? 

1.7. A test framework 

  An ideal solution that seeks to solve the three goals discussed earlier, should 

utilize predictive modeling that follows rigorous optimization and systematic testing of 

models and features that are specific to a given context. This can be accomplished by 

following a single framework that is built on common core elements that can be used for 

comparison across all contexts and settings. In the current work, I use a framework with 

4 key elements that seek to accomplish this goal. 

1. Reporting all prediction task specific metrics: The first step of this solution starts 

with identification of the question that needs to be answered. Predictive modeling 

using machine learning approaches can be used to solve two main types of 

problems: supervised and unsupervised. While solving supervised problems, an 

algorithm is trained on a set of features with a set end goal with known labels 

such as above average or below average performers or end result such as quiz 
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scores (classification or regression). On the other hand, unsupervised problems 

require algorithms to organize data without any known set goals (such as known 

categories of the outcomes). For the context of this thesis, I will confine the 

discussion to supervised predictive modeling approaches since all of the 

datasets in the current work are analyzed ex post with known outcomes. 

Specifically, I will discuss classification models and regression models. Problems 

that require classification models will require identification of the categorical 

outcome measures of interest such as classification of learners into above or 

below median performance or letter grades. Problems that require solutions on a 

continuous scale such as predicting performance on final exams use a 

regression model. While the available selection of models differs based the 

question variant, the next steps are applicable to either variant. Note that I am 

not including any discussions regarding all of the clustering methods applied in 

the context of EDM and LA. For a review, please see the work of Dutt and his 

colleagues (2017). Identification of clustering and validation of the identified 

clusters are specific to the data, the nature of the clusters, and what a researcher 

is trying to seek within these clusters that are worth exploration to empower 

learners. Thus, the current framework neither take clustering approaches into 

account nor does it provide a lens to evaluate the results of clustering 

approaches without significant modifications. 

2. Baseline Model: The next step involves identifying a baseline model. A baseline 

model acts a reference point for comparing the results of the rest of the models. 

The performance on the baseline model provides a means to measure the 
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absolute increase in performance as well as lift ratios for each subsequent 

model. There are many ways to establish baseline performance of predictive 

modeling. Some of the most common approaches for classification models 

involve predicting true classes using dummy data, predicting most frequent class 

label,, predicting the class following a prior probability or heuristic, predicting the 

class uniformly at random, and predicting a constant class to check for expected 

false positive rates. For regression models, baseline models typically involve 

predicting median or average or a constant value. For the sake of consistency 

across all models (classification and regression with class balanced or 

imbalanced cases), given that the nature of classes, number of classes, or 

ranges of continuous data typically vary, it is more reliable to generate dummy 

data for any given context using the average and standard deviations of the 

features of interest1. Example baseline models for classification and regression 

models are shown in the next chapter. 

3. Predicting using early learning: Once a baseline model is established, it is 

important to understand if the data from learning itself is valuable for predictions. 

This is an important step given the emphasis placed on existing work. For 

instance, over 80% of the studies (18 out of 22) included in a recent review 

included historic performance to make predictions (Mohamed et al., 2015). 

Perhaps, this model is also important to establish how well and how soon one 

 
1 Across all three studies, standard baseline modeling approaches were also implemented with 

similar results. However, we decided to use dummy data to make our baseline predictions. We used the 
dummy data to make predictions on both classification and regression tasks to determine the 
predictions our models would yield without using any real data to demonstrate that using randomly 
generated data around the true means are sufficient to derive near chance predictions from our models. 
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can predict future learning without relying on any other extrinsic variables. In a 

given context, if early learning behavior alone is able to make reliable and robust 

predictions of future learning early enough, perhaps the predictive modeling will 

not require any other features. This would help minimize the use of resources 

spent on gathering, managing, processing, storing, and removing the noise 

associated with non-essential features. However, it is important to understand 

and establish the best possible potential predictability within the context-specific 

learning scenario. In addition, it is important to assess context specific extrinsic 

(to the measurable performance trends) features, that might improve 

performance of the models. 

4. Using extrinsic feature sets: The next step involves evaluating the importance of 

predictors that go beyond early learning behavior. Given that there are many 

potential differences in individuals’ learning behavior and since these differences 

are driven by context-specific factors and constraints, it is important to establish 

the validity of these features. However, it is a challenging task to systematically 

test and understand the value of each predictor within any given environment 

without leading to spurious results. This issue is likely to be worse if researchers 

that use new tools out of excitement potentially do not understand the 

mechanisms of the models. Furthermore, an emphasis on crunching numbers 

solely to maximize “accuracy” is prone to errors such as overfitting and non-

generalizability. Some seemingly safe choices that are made to improve 

prediction accuracies could lead to wrong conclusions. For instance, reporting 

the prediction accuracies alone does not account for the costs associated with 
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false positives and false negatives. Another issue that is associated with 

predictive models, is the lack of decision-making tools offered to the stakeholders 

within the contexts of learning. For instance, a highly accurate neural network 

that uses all features available (and therefore attesting equal significance to all 

features) can explain why their predictions are correct. However, it does not 

provide any means to understand why their predictions might be wrong and does 

not provide a way to exploit the predictability to improve learning in any way. 

Typically, the first step to evaluating the value of the overall predictive model has 

been placed on whether or not these models offer any prescriptions for future 

actions -- decisions that teachers, students, and administrators can take to 

improve the overall quality of learning. This requires identification of features that 

are malleable to prescriptions such as training a skill or targeted improvement of 

motivational and affective traits. Some features that are commonly used for 

making predictions do not offer any fundamental actionable insights. For 

instance, in a typical learning environment demographic features such as age 

and gender, while important predictors of learning, do not offer any means for 

future manipulation. If age predicts learning in a given context, the most 

reasonable directives for the future would be to make the content age-generic, or 

to limit the learning to specific age groups, or to provide additional support to 

specific age groups. Each of these options, while optimal for the given 

conclusions drawn from the model, do not offer any real solution given that not 

everyone within an age group band is likely to perform equally. Furthermore, 

none of these solutions account for the interest of the learners in the course 
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(regardless of their age). Thus, for the sake of simplicity, in the current work, I 

group the extrinsic features into two sets: 

a. Features that are not malleable: While evaluating the value of features 

within a learning context, it is important to evaluate the features that are 

inherent to the learner, such as demographics and precursor variables 

(prior knowledge and experience/skill). These features should be selected 

based on theoretical importance and empirical evidence. 

b. Features that are malleable: Next, the models can evaluate concomitant 

and/or post-learning features such as course/training specifics, group 

characteristics, situational impacts, social desirability, shifts in motivations 

and affective measures, changes in work load, and other commitments. 

The first two steps (deciding on a prediction task and including a baseline model) are 

used for determining the best fit models and to establish a lower bound for the 

prediction accuracy. The next two steps are used for determining if there is a need for 

extrinsic features for making robust predictions beyond the learning itself. Furthermore, 

the two components within the fourth step can be broken down into multiple steps or 

combined into a single step depending on the amount of data available, importance and 

relevance of the features that can improve predictions. In addition, within this 

framework, I propose to use all commonly used metrics that are relevant for the choice 

of prediction task (discussed in detail in the next chapter). For instance, instead of 

reporting prediction accuracies alone for classification tasks, it is important to report 

precision, recall, F1-score, as well as AUC scores. For regression tasks, it is important 

to report R2, adjusted R2, RMSE, and MAE as required. This provides a means for 
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comparing cross-context and cross-model results with relative ease. Note that while this 

framework enables a means to incorporate a step-wise modeling approach to evaluate 

predictive models, this does not describe the necessary steps needed to reduce 

generalization error such as bagging and boosting (see Chen & Guestrin, 2016; 

Dietterich, 2000; Schapire, 2003). However, in this thesis, I will demonstrate the 

ensemble techniques used for improving generalization of the models for each study 

separately given that the sample sizes and features are varying across the three 

studies. 

1.8. Key research questions  

Overall, the low accuracies of the existing predictive models that seek to 

understand learners performance may be linked to (a) inadequate understanding of the 

dynamic nature of students’ learning behavior, especially, the dynamic nature of the 

situational motivations and their influence on students’ performance, (b) not accounting 

for the study habits of the students (both the intentions and the extent of implementation 

of those intentions.), and (c) not having a single predictive modeling framework to 

understanding context-specific learning. These three issues are interlinked since solving 

one of these issues at a time without accounting for the other two issues, will lead to an 

incomplete solution. For instance, one can use the best possible data-driven approach 

to consistently predict learning and yield really good prediction accuracies (like the 

neural networks described earlier). However, if the factors that are considered for these 

models and the ways in which these factors can be exploited for improving student 

learning are not readily understood by the teachers or the learners, the issue of 

achieving personalization remains unresolved. Thus, in the current work I focus on 
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predicting learning on three datasets across three different learning settings (a Working 

Memory (WM) training task, a blended learning scenario, and a fully online learning 

scenario) in order to understand the dynamic nature of learning over short periods of 

time or short-burst time spans (training periods or length of course). This approach 

provides an opportunity to use net intraindividual variability across the learning periods 

on various dimensions to examine the changes in performance over time.  

The current work focuses on predictive models that seek to understand the 

contribution of on-task behaviors and a few of the individuals’ characteristics discussed 

earlier such as demographics, spacing intentions, and the dynamic nature of 

motivations. The key questions I seek to address in this thesis pertains to the dynamic 

nature of learning and its predictability using a single framework. Specifically, I apply 

models that examine intraindividual variability of on-task performance over short spans 

of time alongside characteristics that pertain to the learning settings and the learners 

themselves (see Figure 1.1). Specifically, I use performance on the content (or mastery 

-- of students’ grades or WM training performance), context specific predictive features, 

and learner-centric features, in hopes of systematically evaluating a single predictive 

framework. Furthermore, I investigate the relative contribution of these factors in early 

detection of low performers. In doing so, I address the gap in the literature pertaining to 

predictive models of learning by accounting for the dynamic nature of predetermined 

spacing of learning, learners self-reported study spacing intentions, adherences to the 

study-intentions, and dynamics of learners’ motivations in learning contexts. I hope that 

the results of this work will add to the conversation around creating a standard 



47 

 

predictive modeling approach that is reproducible across multiple settings and contexts, 

and eventually, improve the personalization tools for learning.  

The aforementioned multivariate predictive model learns from performance 

during the early phase of learning alone, changes in learning, and later the participant 

characteristics in a series of stepwise predictive models to understand the quality of 

learning. These models will be applied in the context of a working memory (WM) 

training scenario first to establish its utility, and later, in two “real-world” scenarios, 

specifically, in two different sophomore biology courses held at the University of 

California, Irvine to make the results more concrete and ecologically valid. I focus on 

participants’ on-task learning behavior (i.e., training or classroom performance) in the 

first model to understand how early learning behavior might predict later learning 

behavior. Next, I incorporate a set of participant characteristics that may improve the 

performance of the predictive models.  

In Study-1, I build models that predict learning on a WM training task which targets a 

crucial component of the brain that acts as a very short-term information storage and 

processing unit that helps accomplish tasks. I set-up a binomial classification problem to 

predict whether a learner ends up above or below median performance level after 15 

sessions of WM training. I investigate the predictive values of training performance in 

the base model isolated from the other variables and then incorporate an array of 

predictors to the full model. Furthermore, by using one session increments leading up to 

the 15th training session, I investigate the changes in accuracy as I incorporate session 

by session training performance into the predictive models. The final predictive model 

not only contributes towards understanding the individual differences in learning on a 
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WM task, but also helps evaluate the importance of each of the features’ predictive 

value, and to understand how much learning information might be required to attain 

predictions of the final performance in a learning scenario that is not constrained by 

subject knowledge or socio-emotional and affective processes that effect online learning 

discussed earlier. 

In Study-2, I seek to replicate the utility of the predictive framework and test the 

performance of the predictive models that have a similar structure from Study-1 in a 

blended classroom setting with context specific features that captures the use of an 

online learning platform to deploy lectures and exams. Similar to Study-1, I set-up a 

binomial classification problem to predict whether a learner ends up above or below 

50% of the peers in the classroom at the end of the 10-week long course. First, I 

investigate the predictive values of students’ performance on the assignments and 

tests. Then, I use students’ performance scores and their demographics into the model. 

Finally, I introduce self-reported study behaviors of the students along with click 

behaviors that are purported to capture the implementations of spacing and 

procrastination behaviors within the blended learning system. In doing so, I evaluate the 

relative predictive value of the features that are considered important in blended 

learning contexts. Similar to Study-1, performance on each of the various tests scores 

will be added to the models in their chronological order one test at-a-time leading up to 

the final exam to investigate how much information might be necessary to accurately 

predict the final grades’ outcome. The final predictive model from Study-2 is used to 

understand the comparability of the results from Study-1 in terms of predictability of 

learning , while establishing the  utility of the framework in an ecologically valid scenario 
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and how study intentions and click behaviors will enhance predictions. Furthermore, this 

study helps understand the utility of self-reported study habits and a data-driven 

measure of students’ behavior that approximate those habits (albeit context-agnostic 

click behaviors), to students’ learning and the predictability of the quality of learning. 

In Study-3, in addition to replicating and testing the models from Study-2, I 

investigate effects of individuals’ observed behavior (number and distribution of clicks 

and time spent on resources) and day-to-day changes in self-reported motivations 

during online learning to predict the quality of learning. I investigate the importance of 

intimately understanding the learners’ motivations on a day-to-day basis in making 

rigorous predictions of their future learning. In this part of the proposed work, I 

investigate learning in a fully online course, that lacks a face-to-face contact with the 

teacher which increases the need for students’ self-regulated learning during the 

entirety of the learning phase. This poses an interesting question as to how the dynamic 

nature of students’ motivations on a daily basis might lead to differences in learning at 

individual levels. This final study helps understand the effects of dynamic nature of 

students’ motivations on independent learning. A detailed description of the predictors 

and the rationale for their inclusion, the specific research questions and relevant 

discussions are provided separately per study. A short summary of the three studies is 

provided in Table 1.1. Note that in studies 2 and 3, instead of a median split, I split the 

students into 2 near equal groups with at least B- or below B- grade groups instead of 

arbitrary median splits. This was done to make the splits with near equal group sizes as 

well as to avoid a split where having above and below the median would yield the same 
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grade. The group splitting procedures are provided in more detail for each study 

separately. 

Table 1.1 

An overview of the three studies of the proposed work. 

Study Dataset (s) Sample  

n (age 

range) 

Predictive 

Model Variants 

Outcome 

Measure 

List of 

Predictors 

Study-1 Working 

Memory 

Dataset-1 

(lab 

studies) 

775 (7-

86) 

(1a) Training only 

 

(1b) Training + 

non-training data 

Performance on 

15th session of 

training 

 

Binomial 

Classification 

models – above 

or below 

median 

performance 

(for both WM 

datasets) 

Training 

performance 

(sessions 1-

14) 

Age 

Supervision 

Stimulus type 

Learning rates 

      

      

Study-2 Online 

learning 

with a face-

to-face 

component 

459 

(19-29) 

(1a) Test 

performance 

(Quizzes, 

Assignments, 

Homeworks, and 

Midterms) only 

 

(1b) Test 

performance + 

demographics + 

study intentions 

 

(2) Test 

performance + 

demographics + 

study intentions + 

Final Grade -  

Binomial 

Classification 

models  

at least B- or 

below B- grade 

Performance 

on 

assignments, 

quizzes, and 

HWs 

Age 

Ethnicity 

Low income 

status 

GPA 

SAT 

Study 

Intentions 

(spacing) 

Adherence to 

spacing 
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click behaviors intentions 

(click 

behaviors) 

 

      

Study-3 Fully 

Online 

learning 

147 

(19-25) 

All models from 

Study-2 (1a, 1b, 

2) 

 

(3) Final model in 

Study-2 + 

dynamic changes 

in motivation 

 

 

Final Grade -  

Binomial 

Classification 

models  

at least B- or 

below B- grade 

Performance 

on all tests 

Age 

Ethnicity 

Low income 

status 

GPA 

SAT 

Study 

intentions 

(spacing) 

Adherence to 

spacing 

intentions 

Dynamics of 

learner-centric 

metrics 

 

A typical limitation of using a predictive modeling approach lies in its lack of 

explanatory power in understanding the fundamental connections of the predictors to 

each other and to the students’ grades. However, the predictive modeling approach 

used in this work goes beyond the traditional statistical modeling in that it looks for 

hidden interactions between various motivational and human characteristics at each 

individual’s level beyond looking for average scores or traditional statistical hypothesis 

testing. In the current work, I will test models that are based on a pre-determined 

conceptual framework I described earlier leading up to the motivational dimensions of 

the individuals’ performance beginning with their measured performances. First, I focus 

on the applicability of the framework that is devoid of subject knowledge, motivation, 
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affective, and emotional constraints to understand the value of sequentially introducing 

features to the predictive models. Next, I evaluate whether or not self-reported 

measures of motivation and the students’ self-attested importance to a specific 

motivational construct determines the quality of their learning. This may allow the 

models to explicitly look for interactions of variables of interest. The advantages and 

limitations of each study are discussed in their respective chapters. 

As I have briefly discussed, learning can be a complex phenomenon that is 

driven by learner, content, and context level factors. While all of these factors are known 

to help understand learning using predominantly an explanatory approach, there are not 

many studies that evaluated how well these factors help understand learning using a 

predictive approach. The existing literature is divided on the value and utility of the 

predictive approaches in general. Unfortunately, the widely varying success of 

predictive models that can be attributed to varying degrees of features, differences in 

modeling approaches, and lack of standards to compare results only add more 

confusion. Ideally, a good synergy between explanatory, as well as predictive modeling 

approaches are necessary to understand learning ex post and ex ante. As more and 

more predictive modeling efforts are being put forth, I believe that we need to take a 

step back and understand the current state of literature better in order to understand 

how to move forward. Predictive models are an important addition to the scientific 

repertoire that may, one day, help enable personalized educational technology. I believe 

that we need a better framework to be able to compare the utility of each idea, 

approach, and predictions that we make. Ultimately, we can only hope that the 

predictions we are making today, will have a great impact on the learning of future 
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generations. I hope that this thesis will provide a means to better understand our efforts 

and subsequently the impact of our efforts. 
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CHAPTER 2: PREDICTING LEARNING IN THE CONTEXT OF WORKING MEMORY 

TRAINING 

 

As a summary of the introduction chapter, I have discussed the importance of 

predictive modeling for online learning, specifically, that predictive modeling can be 

utilized to make predictions of later learning from early learning in order to understand 

who needs more help during the early learning. Many studies that have used this 

approach resulted in varying results, using varying approaches, and using varying 

feature sets. In the current work, given that the goal is reuse a single framework to 

evaluate the relative importance of features, here, I explore the idea of using predictive 

modeling to evaluate a learning scenario in order to understand how predictive 

modeling can be used, specifically, to predict later learning, and what to expect from 

such an approach in short-burst time spans. The models that I will employ in this 

chapter will act as a foundation for the next two chapters. Here, I focus on employing 

predictive modeling in the context of a working memory (WM) training dataset, where 

click behaviors and subject knowledge are not relevant. While dynamics of motivation 

are important for any learning setting, typically, WM training literature does not evaluate 

this aspect of training performance. In addition, performance within WM training during 

the later learning phases (or training ‘sessions’) are highly correlated with early learning 

performance as learners typically become progressively better with training on average. 

Therefore, WM training dataset that I discuss here acts a meaningful testing ground to 

evaluate the validity of using early performance alone to determine later performance. In 

addition, since WM training performance are affected by demographic features (that I 
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discuss later), it provides an opportunity to evaluate how utilizing such demographic 

features along with training features might improve the predictions of the model. The 

key point I explore in this chapter is the idea that understanding the learners’ early 

learning trends lead to better predictions of later learning, however, that using 

demographics and other extrinsic features will improve predictions early on but have 

diminishing value later.  

2.1. A brief introduction to working memory and its training. 

Working memory (WM) is the cognitive system that allows for storage and 

manipulation of information, allows for handling of ongoing information while engaging 

with a task, and is responsible for higher order cognitive skills (Cowan, 2017). WM 

capacity is critical to successfully and efficiently perform a wide range of activities such 

as reading, mathematics, mental arithmetic in a classroom environment, or for planning 

and task execution (Conway, Kane, & Engle, 2003; Engle, 2002; Klingberg, 2010). 

Improving WM capacity via training programs and WM related skills have far-reaching 

practical as well as theoretical implications - from improving mechanisms of learning to 

reducing learning disorders, altering cognitive, and perceptual capacities (Engle, 2018). 

However, many WM training programs that aim to improve individuals’ WM capacity or 

efficiency yield inconsistent results both within and across studies.  

In general, most WM training protocols follow the following structure. One or 

more groups of individuals are assigned to a training task where the participants are 

required to perform multiple sessions of training within a given time span (often 

involving a pre-determined amount of sessions and distribution between sessions). 

Before and after the training period, each group performs one or more assessments to 
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determine whether the training led to increased performance on these untrained tasks 

with many variants in how the interventions are designed and implemented (Pergher et 

al., 2019). For example, researchers implement a broad range of training stimuli (e.g., 

letters, symbols, objects, auditory signals), training tasks (e.g., simple span, complex 

span, N-back), training settings (in lab with supervision, without supervision, at home), 

training dosage and spacing between subsequent training sessions – all of which might 

affect training outcome. To date, the full extent of such factors, and how they interact 

with each other are poorly understood. Thus, to determine and to further our 

understanding of the quality of on-task learning, it is important to understand whether 

these features predict learning outcomes beyond demographics. In the current work, we 

focus on N-back training, one of most commonly used approaches to WM training (S. 

M. Jaeggi, Buschkuehl, Jonides, & Shah, 2011; Soveri, Antfolk, Karlsson, Salo, & Laine, 

2017).  In a typical WM training session using N-back task, learners are presented with 

a stimulus such as letters (visual, auditory, or mixed) one at a time with spaced by a 

fixed amount of time (e.g., 3 second per stimulus used in Susanne M Jaeggi, 

Buschkuehl, Jonides, & Perrig, 2008) with the objective of detecting whether the current 

stimulus matched the stimulus from ‘N’ items back in the series. 

Individual differences across multitude of factors, differences in study settings, 

and the differences in execution of each study are attributed to the inconsistent results 

(Au, Buschkuehl, Duncan, & Jaeggi, 2016; Au et al., 2015a; Bogg & Lasecki, 2015; 

Soveri et al., 2017). Much of the extant research operates with an emphasis on 

identifying causal mechanisms that result in training behaviors (i.e., on-task learning 

and transfer), very little research is done to understand the predictability of the 
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performance of individuals on training task. Since WM is a system with limited capacity 

and since working memory training is geared towards improving individuals’ WM 

capacities, it is important to understand if an individual is improving within the training 

task. The predictive modeling approach discussed earlier might be applicable to working 

memory training scenarios in that it can be used to predict who might be a good learner 

and who the training is working for. In the current work illustrates (i) whether predictive 

modeling can be utilized to predict the later performance from early training 

performance alone, and (ii) evaluate whether demographic information and training 

specific information can improve the predictions. In doing so, we evaluate the differential 

contribution of training performance metrics (performance on the WM task on any given 

session) and non-training performance metrics (participants’ background information 

including demographics, training parameters) on predicting the later performance of 

individuals. Additionally, we evaluate the ways in which the data from the training 

studies can be mined for an improved understanding of the performance over the 

course of training to improve predictions of later learning. 

2.2. Why predict working memory training? 

 So far, the focus of the dissertation has been around the discussions of learning, 

personalization, difficulties associated with the process (specifically of predictive 

modeling approaches), and the challenges of the existing predictive models. The work 

discussed here ties into the broader scientific goals of understanding and evaluating 

(perhaps, eventually improving through personalization) working memory training. 

However, in the current work, I treat working memory as an example of skill-acquisition 

as I have discussed earlier. Therefore, first I will provide the rationale for using 



58 

 

predictive modeling within working memory training context.  Working memory training 

involves repeated practice on a specific skill using a specific task (which is often 

increasingly difficult to adapt to the learner akin to increasing complexity of learning 

material). Working memory training data that I analyze here shares several similarities 

with online (and blended) learning –  

i. Use of a digital device: The data for WM training that I analyze here are collected 

using digital devices much like online learning. Machine learning driven predictive 

modeling (and personalization) are, typically applicable and feasible for digital 

environments since data analysis is driven by algorithms. Of course, it is possible 

to digitize data from non-digital sources before making predictions, however, this 

requires significant amounts of work and the predictions will not be readily 

available for automated data-driven personalization. 

ii. Evaluation: Both WM and Online learning involve some form of measure to 

evaluate the learners’ performance. In case of WM training data, an individual 

who starts training at a certain level of WM capacity, undergoes training. 

Subsequently, a measure of performance can be attained by inspecting the 

performance level at the end of training, or as a difference between the initial 

level of performance and the final level of performance. In case of online 

learners, evaluation is conducted using assignments, quizzes, or any other form 

of metric that the instructor determines appropriate for the course. Typically, the 

measure of final performance, would be in terms of grades obtained by learners. 

iii. Individual differences: WM and online learning are influenced by many different 

factors and as a result, the performance differ across individuals. These 
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differences are characterized by magnitudes of differences in performance 

(within subject – growth and between subjects – e.g., high performance/better 

grades).  

While there might be a few other shared similarities (e.g., both have the potential 

to influence life outcomes, albeit in different ways), these three similarities are critical for 

the ensuring that the current predictive modeling is applicable. Since, the goal is to 

predict later learning from early learning as measured from data generated using a 

digital platform using individual differences in learning, it is necessary to have these 

similarities. Note, that these similarities are broadly defined and there might be critical 

differences (for instance, online learning involves the use of internet, working memory 

training does not have to). These differences are not critical for the sake of predictive 

modeling. There are also a few critical differences, however, that make the predictive 

modeling more challenging in case of online learning scenarios. 

i. Knowledge: While, for the context of the current work, it is not necessary to 

differentiate the core knowledge structures (also referred to as mental models, 

schemas, or conceptual frameworks (Day, Arthur, & Gettman, 2001)) that 

determine WM and classroom learning, one fundamental difference is that 

learning in a classroom setting rely on specific subject knowledge (and related 

subject domains), WM training performance does not depend on subject 

knowledge. 

ii. Repetition: In a typical WM training protocol, the learners are required to practice 

the same task (sometimes at a higher or lower difficulty level) over the course of 

the training or learning period. On the other hand, in a typical online learning 
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context, the progression of course structure and the content being taught could 

be diverse and complex. 

iii. Motivation and Affective traits: Motivation of learning is a very complex topic and 

difficult to evaluate across various learning contexts. For instance, self-regulated 

learning is known to play a very crucial role in learning within online contexts 

(Kuo, Walker, Schroder, & Belland, 2014; Schunk & Zimmerman, 2012), but there 

is no empirical evidence that suggests that self-regulated learning influences WM 

training. Furthermore, typical WM training studies do not include motivation 

related measures with a few exceptions (for e.g., Katz, Jaeggi, Buschkuehl, 

Stegman, & Shah, 2014; Mawjee et al., 2017). However, the scales used to 

measure motivation, expectancies, and socio-emotional aspects of learning in 

online learning contexts are not used for valid reasons (motivation does not play 

a similar role in two contexts, learning in academic contexts carry high costs 

associated with failure and have direct impact on life choices such as career.)  

Thus, it is reasonable to argue that WM training can be considered a context of 

learning where learning occurred shares similarities with online learning yet different 

since it is a less complex prediction problem (since subject knowledge and motivation 

and affective processes are not considered in WM training evaluation). In addition, 

since, WM training is sequential repetition of a training task spaced in time with varying 

difficult levels, it retains the overall structure (single or similar tasks used throughout the 

training process). Furthermore, the WM training task that I analyze involves training 

regimen that were assigned by the researchers and sometimes conducted in the lab 

with supervision. This is not the case in fully online learning settings, where most of the 
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learning habits are driven by the students’ motivations and effort. Thus, it is reasonable 

to argue that WM training is a relatively easier prediction problem that does not need to 

account for changing motivations, knowledge requirements, or differences in lecture 

delivery (and differences induced by instructor). WM training data provides exceptional 

opportunity to evaluate the step-wise predictive modeling approach (and prior to using 

it) within a learning context that is considerably more complex. Therefore, I hypothesize 

that the predictions within WM training context will lead to comparably better results 

than in online learning.  

2.3. Specific Research Questions: 

RQ 1 – To what extent can we predict learners’ performance on later WM training 

sessions from early WM training sessions, demographics, and training related 

information? 

There are two subcomponents to RQ 1 that need to be addressed before we can 

fully answer “to what extent” we can predict learners’ performance. By answering each 

of these subcomponents, we can determine the extent of predictions, the constraints, 

and the advantages. 

(a) How accurately can we predict learners into those who learn more (above 

median) or those who learn less (below median) in the later training 

sessions? How accurately can we predict learners’ actual performance in the 

later training sessions? 

This subcomponent pertains to determining if the data gathered for addressing RQ 1 

are useful to classify or differentiate learners into groups/categories or if the data are 

useful for predicting the performance in the later sessions. To address this part of the 
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research question, we employed two different predictive models – classification models 

and regression models. Classification models are aimed at categorizing learners into 

those who learned more and those who learned less compared to the median. 

Regression models are aimed at predicting the performance levels of the learners. Each 

approach uses a range of different machine learning models which are discussed in the 

analytical approach. 

(b) What features are the most predictive of overall later learning? What are the 

relative predictive values of learning during the early WM training sessions, 

demographics, and training related information? 

This subcomponent is aimed at determining which of the features are most predictive of 

later learning. To address this component, following the proposed framework, we 

created four models. Model 1a was the baseline model. This model was used to 

understanding if the other three models are performing as expected (better than the 

baseline). Model 1b included training performance data of the learners. Model 1c 

included training performance as well as demographics. This model was used to 

estimate the predictive value of the non-malleable features available for the current 

dataset. Model 1d included training performance as well as demographics and training 

related information. Here, we chose to incorporate demographics and training related to 

evaluate the predictive value of potentially malleable training related information. Note 

that these training related information are context specific (to WM training) and are not 

available for the other two datasets I evaluate later. For each model, we provided the 

predictive model with increasingly more information about the training performance to 

determine how much training data is necessary for making ‘good’ predictions. 
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Combined, these two steps address questions related to “How much information is 

necessary?”, “How soon can be predict?”, and “How well can we predict?” Note that 

given the nature of the step-wise inclusion of information, answer to one question will 

change in response to the other two questions. For instance, how well we can predict is 

a function of how soon we are hoping to make predictions and how much relevant 

information is available for making the predictions. We hypothesized that prediction 

accuracies during early learning are highest with all features included compared to 

models that only rely on training information alone (Model 1b performs worst early on). 

Later, once the models can reliably understand and learn from the learners training 

trends, we hypothesized that both models perform similarly. 

2.4 Methods 

The analytical approaches that are discussed here, specifically, the machine 

learning based prediction model selection and predictive modeling approach are 

applicable to all three studies that are included in this dissertation. First, we describe the 

data source and participants. Next, we discuss the machine learning model selection 

process following the proposed framework. Then, we provide the list of features used 

for each model. Finally, we detail the analysis for the models. 

2.4.1. Dataset. We used a cumulative dataset from an array of WM training studies that 

were mostly conducted in a lab setting (with a few exceptions listed in Table 2.1). These 

studies were selected as data sources since all of them used a single training protocol 

(N-back) with some differences as detailed in Table 2.1. We revisit N-back training data 

from several studies conducted either at our lab or collaborating labs. We included data 



64 

 

from 15 studies which were conducted between 2008 and 2019. Details of the studies 

are presented in Table 2.1.  

Data from 739 participants (mean age ± SD, 24.73 ± 21.11; range 7-86) were included. 

Participants were included if they completed an adaptive N-back training over the 

course of at least 15 sessions. During the N-back task, the participants are presented 

with a sequence of stimuli (spatial, verbal, object or in combinations of these stimuli) 

one at a time. The participants were asked to decide if the current stimulus was the 

same as the one presented ‘N’ trials ago (N = {1, 2, 3, …}). The higher the N-level, the 

more difficult the task is expected to be. Typically, an adaptive algorithm (such as a 

staircase method) is used to increase or decrease difficulty adjusting to participants’ 

performance. Previous work showed that longer training periods lead to higher gains 

with significant performance on the gain scores after 2 weeks of training (Jaeggi et al., 

2008). Thus, we excluded the participants who completed less than 15 sessions of N-

back training from our final dataset. As noted earlier, machine learning models typically 

perform better when provided with more data. Thus, we restricted the current analysis to 

the first 15 sessions in order to maximize the available data for our machine learning 

models while retaining a theoretically meaningful level of training information. Note that 

around 40% of the participants completed more than 15 sessions of training. After
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Table 2.1. 

List of studies, sample and training details for the studies included. 

Study N Population Location 
Length of 
training 
sessions 

Training 
Context 

C 
(Y/N) 

Training 
Condition  

 

Jaeggi et al. (2008). PNAS 15 
Young 
adults 

Bern, 
Switzerla
nd 

20 rounds lab Y Dual N-back  

Jaeggi et al. (2010). Intelligence 46 
Young 
adults 

Taipei, 
Taiwan 

15 rounds 
Lab (in 
group) 

N 
Dual/Single 
N-back 
(Spatial) 

 

Jonides et al. (2010). Presented at the Office of Naval 
Research Contractor's meeting, Arlington, VA 

22 
Young 
adults 

Ann 
Arbor, 
Michigan 

20 rounds Lab Y Dual N-back  

Seidler et al. (2010) Technical Report No. M-CASTL 
2010-01, University of Michigan, Ann Arbor. 

18 Older adults 
Ann 
Arbor, 
Michigan 

20 rounds 
Lab (not 
closed 
cubicles) 

Y Dual N-back  

Jaeggi et al. (2011). PNAS.  32 
Typically 
developing 
children 

Ann Arbor 
& Detroit, 
Michigan 

10 rounds Home N 
Single N-
back 
(Spatial) 

 

Angera et al. (2012). Behavioral Brain Research. 29 
Young 
adults 

Ann 
Arbor, 
Michigan 

20 rounds 
Lab (not 
closed 
cubicles) 

Y Dual N-back  
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Jaeggi et al. (2014). Memory and Cognition 50 
Young 
adults 

Ann 
Arbor, 
Michigan 

15 rounds 
 

N 

Dual/Single 
N-back 
(Auditory/ 
verbal) 

 

Home  

Stpankova et al. (2014). Developmental Psychology 20 Older adults 
Prague, 
Czech 
Republic 

20 rounds Home Y 
Single N-
back 
(Verbal) 

 

Zhang et al. (2014). 26th Annual Convention of the     
Association for Psychological Science, San Franc-
isco, CA  

26 
Young 
adults 

College 
Park, 
Maryland 

15 rounds Home Y 
Single N-
back 
(Object) 

 

Katz et al. (under review) 55 
Typically 
developing 
children 

Ann 
Arbor, 
Michigan 

20 rounds 
School 
(large 
groups) 

Y 
Single N-
back 
(Spatial) 

 

Tsai et al. (in prep) 30 Adolescent 
Irvine, 
California 

15 rounds 
School 
(small 
groups) 

Y 
Single N-
back 
(Object) 

 

Jones et al. (2019). Journal of Attention Disorders 39 
Children 
with ADHD 

Irvine, 
California 
& Ann 
Arbor, 
Michigan 

15 rounds Home Y 
Single N-
back 
(Spatial) 
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Jaeggi et al. (in press) Journal of Gerontology: 
Psychological Sciences. 

79 Older adults 

Irvine, 
California 
& Ann 
Arbor, 
Michigan 

20 rounds Home Y 
Single N-
back 
(Object) 

 

 

Katz et al. (2018) Learning and Memory 36 
Young 
adults 

Ann 
Arbor, 
Michigan 

20 rounds Home Y Dual N-back 

 

 

Pahor et al., (under review) 242 
Young 
adults 

Irvine, 
California 
& 
Riverside, 
California 

20 rounds 
Lab (not 
closed 
cubicles) 

Y 
Single N-
back 
(Object) 

 

Note. C stands for Compensation. 
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excluding those who did not complete at least 15 sessions of training (N=54) and 2 

other participants who had data missing on various variables of interest, the final 

sample included 683 participants (mean age ± SD, 22.51 ± 16.11). The sample included 

more female participants than males (58% female). Overall, the N-back performance at 

baseline (i.e. average performance in the first three sessions) was 2.61 ± 0.92 N-back 

levels (range = 1 to 6.25 N-back levels). The N-back final performance (i.e. average 

performance in the last three sessions) was 3.64 ± 1.58 N-back levels (range = 1.04 to 

9.05 N-back levels). A description of the sample population, demographics details, and 

training details can be found in Table 2.2. Specifically, we have provided the proportions 

of participants that were supervised during the training process (trained in a lab setting), 

participants from USA (given that our sample included data from more than one study – 

this was not used for the training purposes), Single N-back and Dual N-back 

proportions. 

 

Table 2.2 

A description of the sample population, demographics details, and training details  

feature Mean SD Proportion 

Age (range 7-86 years) 25.37 18.54  

Gender (proportion female)   0.58 

Supervised participants   0.50 

USA based participants   0.82 

Single N-back type    

Spatial   0.42 
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Verbal   0.10 

Object   0.12 

Dual N-back type   0.36 

N-back level at Session 1 2.30 0.79  

N-back level at Session 15 3.21 1.56  

Change in performance  
(Session 15 – Session 1) 1.03 1.01  

 

2.4.2. Raw Data Collection and Data Preprocessing. The flow of the data beginning 

from the preprocessing to final predictions are presented below. De-identified raw data 

were collected in secure files, processed, and analyzed using custom Python scripts. To 

achieve this, we collected raw data into csv files (separately for each study) and 

preprocessed the data by cleaning (e.g., by dropping the data from participants who 

may have missing data on the key variables described below). 

Defining the Class variable (P). Next, we extracted the preliminary feature of interest – 

the outcome measure by categorizing the learners into “above” or “below” median 

performers based on the change in performance on the 15th training session2 compared 

to the 1st training session (see below).  

The next step in ‘Feature-extraction’ involved transforming data to generate 

features of interest that are expected to carry high predictive values. This step was 

conducted to encode the outcome variable as well as the features that are used to 

predict the outcome variable. The primary goal of feature extraction was to create a set 

 
2 A preliminary attempt to calculate the final performance of each individual based on how 

many sessions they completed (instead of making an arbitrary cut-off at the 15th session) showed very 
similar findings. 
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of features that were expected to influence the performance of the individuals on 

working memory training task. We selected the variables following two criteria: 1. the 

features were theoretically grounded in the literature. For instance, demographic details 

and training details alongside performance on the training task and other extrinsic 

features such as supervision, and compensation associated with participation are 

known to drive learning. 2. The variables selected carried high variance and low 

correlation with other variables. In other words, the dimensionality of the datasets was 

reduced by dropping features that had no mutually exclusive information. Specifically, 

based on previously mentioned meta-analyses (Au et al., 2015; Karbach & Verhaeghen, 

2014; Melby-Lervåg & Hulme, 2013; Shipstead, Redick, & Engle, 2012; Wager & Smith, 

2003), a set of features were extracted to be used as predictors. We included the 

following key variables for each individual participant:  

Performance trends. The first goal of this study was to understand the value of on-task 

performance to understand learning without the presence of any other information to 

predict learning. The on-task performance act as true measures of intraindividual 

variability regardless of the cause for the variability. Thus, we use the raw performance 

as well as changes in performance in the first few sessions as measures of training 

trends. 

(a) Performance on each session. The average performance of each individual 

from training session 1 through 14 (N-back levels) were used as measures of variability 

within task across the micro timespan of training. 

(b) changes in performance. Changes in performance from session 1 to 

session 2 (t2-t1); session 2 to session 3 (t3-t2); session 1 to session 4 (t4- t1) were 
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used as features. The changes in subsequent training sessions represent the changes 

in learning rate on the N-back task per session and capture the intraindividual 

variabilities for the first four sessions. Fast learners show larger learning rates in each 

subsequent training sessions. Although the learning rate can be calculated for each 

subsequent training session, we restricted this to the first four sessions since our 

interest was in predicting the later gains using minimal early training information. We 

added the cumulative learning rate for the first four sessions (t4-t1) to account for the 

total learning attained during this period with a hypothesis that understanding the 

learning rate would improve prediction accuracies. 

Demographics. Next, we used non-malleable learner level measures to understand the 

overall learning and their predictive values.  

(a) Age. The age of participant (in years) was used as a feature based on some 

of the previous work that showed a positive predictive value (see Au et al., 2015; Jaeggi 

et al., 2014; Jaeggi, Karbach, & Strobach, 2017). Several other features that were 

derived based on age, including groups of age (children, young adults, older adults, 

etc.), decade of age (less than 10 years old, 10-20 years old, etc.) were tested. We 

included age in years as a feature since the other variables did not yield any further 

predictive value. 

(b) Gender. Based on Au and his colleagues’ meta-analytical work (2015), the 

performance of individuals did not differ by gender. Furthermore, a preliminary analysis 

using validation dataset yielded a low predictive value of gender. Thus, we ultimately 

excluded participants’ gender as a feature. 
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Training details. As discussed earlier, learning is influenced by the context of learning, 

the content features, and other environmental factors. Thus, we used type of the trained 

stimulus and context of training as measures of learned activity. 

(a) Stimulus type. Two key features were generated from the type of stimulus 

material used during training, a binomial dummy variable to represent whether the type 

of N-back training was single or dual (i.e. only one stream or two streams of stimuli), 

and the type of N-back stimuli (Spatial, Verbal, Object, and Dual). The feature N-back 

stimuli type did not yield additional predictive value beyond a simple binomial variable 

for single or dual N-back. Thus, we dropped type of N-back stimuli as a feature from the 

final modelling.  

Extrinsic features. Based on the literature, extrinsic features are known to influence 

the performance of learners. Thus, we included two measures of extrinsic features that 

are known to influence WM training performance.  

(a) Supervision during training. A dummy variable was created to represent 

supervision during training and used as a feature. Specifically, individuals who trained at 

home were labeled as unsupervised and those who trained in the lab setting were 

labeled as supervised with a hypothesis that learning about supervision during training 

might improve predictions of performance (Au et al., 2015). 

(b) Compensation. A dummy variable was generated to represent whether the 

individual received compensation or not. Compensation is an extrinsic motivational 

factor that is hypothesized to increase the prediction accuracies since earlier studies 

have shown that being compensated leads to negative impact on performance. 
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The final steps of analysis included training, hyperparameter optimization 

(correcting for false positives and false negatives), post-processing (final model 

selection, defining and calculating performance metrics for the selected model), and 

then testing and evaluating the model on the test dataset. 

2.4.3. Prediction task. Following the framework introduced in the previous chapter, we 

establish our prediction task first. In the current study, we aim to predict the final 

performance of each individual using predictive models in two prediction tasks: (a) To 

demonstrate the utility of the proposed framework to predict WM training behavior, we 

attempted to predict the performance of each individual on the 15th training session. We 

attempted a classification model as a less challenging problem (than predicting the 

performance on 15th session) since this requires less data and less computational 

power. The outcome measure for each individual is a categorical “class” variable that 

divides the sample into two groups, one above median and the other below median 

based on their performance level on the 15th session. Specifically, individuals in the 

subclass that gain above or equal to median performance will be given a label "1" and 

the rest will be given a label "0" to created balanced classes. This ‘Class’ variable will 

then act as the outcome measure for the classification models. An outstanding classifier 

will have assigned a ‘predicted label’ that will correspond to the assigned ‘target label’. 

In other words, all below median gainers will receive a prediction label ‘0’ and all above 

median gainers will receive a prediction label ‘1’. (b) We attempted to predict the 

performance of each individual on the 15th training session on a continuous scale using 

regression models. Since the training performance are measured on a continuous 
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scale, no further manipulation was required for this prediction task unlike for the 

classification task that required artificial categorization. 

2.4.4. Machine Learning Algorithm selection. Next, although algorithm selection is a 

vital part of the framework proposed, it is not treated as a separate step for two reasons. 

First, typically the model selection process depends on the prediction problem 

(classification vs regression models). Next, once the prediction problem is set, the 

selection of the model depends on the level of researcher knowledge in determining 

best fit for the given problem. For instance, researchers may choose either standard 

machine learning based predictive models, neural network-based models, or custom 

kernels to fit their own needs. Thus far, the three most popular classification models 

included Decision Trees, Support Vector Machines, and Logistic Classification models. 

The two most popular regression approaches included Linear Regressions and 

Regression Trees. While it is important to establish the value of custom algorithms to 

boost prediction accuracies, in the current work we focus on most popular approaches 

rather than pursuing custom approaches. This makes it easier to compare results better 

and to establish the limits of models that are easier to understand and use for 

researchers (as they are available off the shelf) with no computer science background 

(Jasny & Stone, 2017).  
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In general, the classification of individuals is done by projecting the selected 

features into a hyper-dimensional feature space which in turn is used to generate a 

hyperplane to classify the data into required categories, in this case two, ‘above median’ 

or ‘below median’ (I H Witten, Frank, & Hall, 2005). Since the data was labeled (as 

Figure 2.1: Data Splitting Protocol -- A simplified representation of data splitting 
protocol for our models. We repeated this process 200 times for each model to get a 
robust measure of accuracies over the 200 iterations to establish the variability of our 
predictions. Testing dataset was untouched during algorithm selection and tuning 
process. Cross-validation is only applicable to Study-3 that will be discussed later. 
Recursive feature elimination was used during the validation stage to evaluate relative 
values of features. Trimming the training dataset involves removing features that were 
found to be of little value for solving the prediction task. 
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above or below median), we used supervised ML algorithms for classification and 

followed the WEKA toolkit protocol (Ian H. Witten, Frank, & Hall, 2011) to compare 

different algorithms. We compared several popular classification supervised ML 

algorithms including Logistic Classifier, Support Vector Machines (SVMs), Random 

Forests, Boosted Trees, and Decision-Making Trees to identify the model with best 

performance. We used regularized classification methods that punish the models for 

being extremely incorrect in their predictions. For example, a general equation for the 

regularized logistic regression uses Ŷ = 1/(1+exp(−yi((w,xi)+b))) instead of max(0,1-

yi((w,xi)+b) where Ŷ is the predicted label, yi is the actual class for the ith learner with xi 

feature vector, w is the weight matrix associated with the x features, and b is the bias. 

The optimal models were selected based on a two-step performance criteria that is 

used to reduce generalization errors: a) the data was divided into 75% training dataset 

(used to train the models), 25% testing dataset (untouched during training in order to 

test the model efficacy). In addition, 5% of the data (part of training dataset) is used for 

validation of the selected model (see Figure 2.1). We used all of the most common 

metrics (listed below) on the untouched testing dataset to determine the robustness of 

the models. b) The data was divided at 200 unique seed locations (the point of 

reference for the division of the three subsets listed above) followed by repeated 

measurements of each of the metrics 200 times. This two-step approach ensured the 

predictions’ robustness and generalizability to new datasets that are similarly structured 

(Guyon & Elisseeff, 2011). 
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There are many different metrics that are used to represent success of a 

predictive model. For instance, precision is a common metric for rule learning, 

information gain in decision trees, weighted accuracies for identification of subgroups. 

However, the most common metrics for evaluating the performance of a model on the 

testing dataset include Accuracy, F1-score, and area under ROC curves or AUC (Flach, 

2003). However, these measures are determined by historic use of metrics within a 

given field. In the fields of LA and EDM, the most common metrics used are Accuracy 

and AUC. However, they are insufficient to fully characterize the performance of the 

machine learning models. In the current work, we use all common metrics in order to 

promote the idea of using all relevant metrics across settings to better understand the 

value of predictions. 

 

A confusion matrix (also referred to as a contingency matrix) is commonly used 

to evaluate the quality of models in a tabular form (Brownlee, 2016). Table 2.3 shows a 

typical representation of a confusion matrix that includes four components. The 

components include TP = true positive; TN = true negative; FP = false positive; FN = 

Table 2.3 

A matrix of predicted and actual class from the predictions can be used to count the true 
positive (TP), false positive (FP), false negative (FN), and true negative (TN) which can 
then be used to calculate the performance metrics of the classification prediction 
models. 

                                       Actual Class 

Predicted Class 

 Positive Negative 

Positive TP FP 

Negative FN TN 
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false negative. Most models’ performance is evaluated based on their successful 

identification of TP and TN groups (correctly identifying above median and below 

median learners) and the errors made (FN and FP cases).  

Accuracy is the simplest and most intuitive metric derived from the confusion 

matrix. It counts the total number of correct cases detected across all classes and 

compares them with all cases. Simply put, it is a proportion of correctly detected cases 

to all cases. Thus, higher accuracy is better. However, it is an incomplete representation 

of the performance of the predictive model, especially if the classes are unbalanced (the 

class sizes are skewed) or if the heuristics that drive the predictions make the 

predictions extremely easy or hard. Furthermore, accuracies are also not a good 

measure when detecting either classes (in a binomial classification problem) takes 

priority. For instance, detecting positive cases of cancer are considered more important 

and negative cases in criminal cases are considered more important. The formula for 

calculating accuracy is provided below. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision measures the extent of correctly identified positive cases. Precision is a 

good measure when the cost associated with false positive cases is very high. Recall 

measures the extent of performance of the model for all cases that were needed to be 

identified as positive. Recall is a valuable metric when the cost associated with false 

negatives is very high. However, as evident from their definition, they do not account for 

the success amongst the negative cases which, incidentally, are accounted by 

accuracies. The formulae for Precision and Recall are provided below. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

In addition, F1-score is derived as a harmonic mean of Precision as well as 

Recall, which in turn makes better judgment of the performance of the model for 

incorrectly identified cases. The formula for F1-score is provided below. Note that ‘P’ 

stands for Precision and ‘R’ stands for Recall. Overall, F1-score acts a better metric in 

the presence of skewed class distributions or if understanding the incorrectly classified 

cases takes priority. 

𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
 

Finally, Area under the ROC curve (AUC) is used as performance metrics for the 

predictive models. AUC uses two metrics: Recall and False Positive Rate or FPR 

(FP/N). ROC curves are plotted using the False Positive Rate on the x-axis and Recall 

on the y-axis. Intuitively, the model that best performs is located simultaneously close to 

0 on the x-axis (indicating a low FPR) and close to 100% on the y-axis (indicating a high 

Recall). 

Next, in the regression models, we estimate the relationship between the target 

and explanatory variables by fitting a curve to the data points so that the distances 

between the curve and target data are minimized. Specifically, the goal of the 

regression models is to map Ŷ = f(X), where Ŷ is the predicted approximate for the 

outcome measure Y. The function f(X) varies depending on the model selected. For 

instance, the general linear regression model for prediction solves the equation Ŷ = 

WTX + b0 where W contains the weight vectors for the features and b0 is the bias that 
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can compensate for the offset in predictions. Similar to the logistic classification models, 

we regularized the models by minimizing the error functions (Lee, Lee, Abbeel, & Ng, 

2006; Xu, Caramanis, & Mannor, 2009). Furthermore, optimization of the model was 

performed using the fmin_slsqp.optimize in the scipy python package that uses 

sequential least squares programming to minimize the least square errors (Engel, 

Mannor, & Meir, 2004). 

Similar to classification models, there are many different metrics that can be used 

to evaluate the performance of the regression models. Besides the R2 and the adjusted 

R2 metrics, the measurements of errors are typically scale-dependent (e.g., Mean 

Squared Error – MSE; Root Mean Squared Error – RMSE; Mean Absolute Error – 

MAE…etc.). There are other less used error metrics such as errors based on relative 

errors, relative measures, scaled errors, percentage errors (Botchkarev, 2019). 

However, since within the context of our regression models used for predicting learning, 

we limit our metrics to the scaled measures since having the errors in the same scale as 

the outcome measures make it easier to compare performance across models. MSE is 

usually used as the loss function for regression models because of its differential 

property and large penalties on small errors due to squaring the errors However, it is not 

on true scale as the outcome measure. RMSE and MAE both have the same scale as 

the target values but RMSE puts more penalties on large errors than MAE. Therefore, 

we used RMSE as a preferred metric instead of MAE. Furthermore, R2 reflects the 

percentage of variance explained by the model, but as it is prone to artificial inflation 

with the increasing number of explanatory variables. Therefore, we used adjusted R2 
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instead of R2 since our models have varying number of features. The general equations 

for the metrics are given below. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦 − 𝑦̂)2 

𝑅2 = 1 − 
∑(𝑦 − 𝑦̂)2

∑(𝑦 − 𝑦̅)2
 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −  
𝑁 − 1

𝑁 − 𝑘 − 1
∗ (1 − 𝑅2) 

 

where N is the number of observations, k is the number of explanatory variables, 

y is the target value, 𝑦̂ is the predicted value, and 𝑦̅ is the mean target value. 

2.4.5. Models of interest. 

Following the proposed framework for predictive modeling, we identified four models 

of interest to solve the prediction tasks that will address our specific research question. 

As a brief reminder, the research question aims to understand the extent of predictive 

accuracy achievable from early training performance, age, and training details. This RQ 

consisted of two subcomponents specifically to evaluate the quality of predictions on a 

classification as well as a regression task and the identification of features that are most 

predictive of later learning. The four models identified will be used to solve the 

classification and regression tasks separately. Note that all four models were provided 

with increasingly more training session performance in order to make predictions of later 

learning. This provided a means to understand the three dimensions of interest across 

the classification and regression models (how much information necessary for 
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predictions? how early we can predict later learning? and what is the quality of 

predictions?) 

a. Baseline model - We derived a baseline model for predictions using dummy 

data that is generated using “Random” package in python. Essentially, we used a 

function within the package to derive a Gaussian distribution around the mean 

and standard deviation of each week’s performance of learners in the training 

data. Each learner was assigned a random number from the Gaussian 

distribution around the true mean and standard deviations. These artificially 

derived data were then used to train and test the baseline model performance. 

b. Model with only performance trends – Next, we used the true performance of 

the learners to train and test our models. We hypothesized that these models 

would perform better than the baseline models since models that predict later 

learning from true learning performance are expected to have a significant 

advantage.  

c. Model with performance trends and age – Next, we used features that are not 

malleable within the context of our learning setting. The only feature we identified 

that cannot be manipulated was age which was included in the model along with 

the training performance. 

d. Models with performance trends, age, task details, and extrinsic features – 

Finally, we used features that were malleable within the context of our learning 

setting. Specifically, alongside training performance and age, we included the 

three features identified – Stimulus type, Supervision, and Compensation – into 
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model d. An overview of all features used for each model are provided in Table 

2.4. 

 
 

Table 2.4. 

Models tested and list of features included in each model variant. 

model RQ 1 - model a 

(Baseline) 

RQ 1 - model b RQ 1 - 

model c 

RQ 1 - model 

d 

overview (random data 

generated using 

average and standard 

deviations of each 

session's training 

performance) 

(Learners' 

performance on 

each training 

session) 

 (model a + 

age) 

 (model b + 

task details 

and extrinsic 

features) 

     

features random noise average weekly 

lecture quiz 

performance 

average 

weekly 

lecture quiz 

performance 

average 

weekly lecture 

quiz 

performance 

   
Age Age 

    
Stimulus type 

    
Supervision 

        Compensation 

 

   

2.5. Results 

Results from the validation dataset tested on our best models identified multiple 

linear regression as the best regression model with a validation-RMSE of 0.21. 

Regression tree-based modeling yield very poor validation-RMSE in comparison (0.93). 
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On the other hand, within our classification models, both logistic classifier and random 

forests (classification tree-based models) did well with validation accuracies of 92% and 

85% respectively. Training log loss and validation log loss (negative log-likelihood of the 

true labels) were 0.28 and 0.39 respectively for the logistic classifier which were 

relatively better compared to 0.53 and 0.77 achieved by random forest models. Thus, 

here we restrict our results to multiple linear regressions and logistic classification 

models to illustrate the utility of the framework proposed. Prediction performance for all 

4 models are shown in Figures 2.2 and Figure 2.3 for classification and regression task, 

respectively. 

Figure 2.2: Prediction Accuracy with Logistic Regression -- Features included in Models a 
through d are listed in Table 2.4. 
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Model a (Baseline model) is shown in black in both figures showing the least 

prediction performance across as expected. The average prediction accuracy for 

baseline classification model ranged between 0.55 and 0.45 around the expected 

chance prediction (0.50) given that our data classes were equally distributed. For the 

regression task, baseline model performed around an adjusted R-squared of 0.10, 

setting the lower bound for our prediction models of interest. Model b (which was trained 

on performance data alone) is shown in orange in both figures. This model showed a 

prediction accuracy of 0.62 (14% gain over the baseline model) at the outset. The 

Figure 2.3: Adjusted R-squared --  different models predicting performance on 15th 
session of the WM training. 
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prediction accuracies increased as more and more information of the learners’ 

performance trends were incorporated into the model. Similarly, Model b outperformed 

Model a consistently across the board on the regression tasks. Model c (which included 

age as an additional feature) is shown in blue in both figures. This model showed a 

prediction accuracy of 0.72 at the outset with a steady increase overtime. Similarly, 

Model c quantitatively outperformed Model b in the regression task. Finally, Model d 

(which included stimulus type, compensation, and supervision as additional features) is 

shown in Yellow. This model showed a prediction accuracy of 80% at the outset on the 

classification task. Furthermore, Model d outperformed every other model on the 

regression task. The prediction accuracies peaked by session 10, followed by a 

relatively small change in classification model performance. On the other hand, the 

performance of the regression models did not indicate a plateauing. The overall training 

accuracy achieved with Model d across all training sessions 81% (+/- .05). The overall 

average precision for model was 83% (+/-.03) and average recall was 85% (+/-0.03) 

with an F1-score of 0.84 (+/-.04). In contrast, the average prediction accuracy for 

Models a, b, and c were 0.51 (0.03), 0.76 (0.08), and 0.78 (0.09) respectively. On the 

other hand, average performance for the regression task were 0.49 (0.14), 0.52 (0.13), 

and 0.57 (0.12) respectively for Models b, c, and d with corresponding average RMSE 

scores of 0.93 (0.54), 0.82 (0.46), and 0.68 (0.39). The fluctuations in the accuracies 

over the 200 iterations of the analysis with random seeding showed a prediction 

accuracy range of 0.67 – 0.90 for Model d. The overall prediction was significantly 

different from chance prediction (p<.001) for all models at Session 1. The average ROC 

Area under the curve (AUC) for Model d was 0.91 (95% CI: 0.93 - 0.88) indicating that 
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the overall predictions are very good. In addition, the model evaluation indicated the 

features with most predictive value for Model d at Session 10 (session at which the 

model performed above average for the first time) were early performance (sessions 1-

3), age, and stimulus type respectively. 

2.6. Discussion. 

Our RQ aimed to understand the extent of predictive accuracy achievable from 

early training performance, age, and training details, and extrinsic features. 

Furthermore, this RQ was broken down into two subcomponents specifically to evaluate 

the quality of predictions on a classification as well as a regression task and the 

identification of features that are most predictive of later learning. Our models have 

shown that baseline models performed the least across both our prediction tasks. When 

two models (Model b and Model c) was trained, one with and one without demographic 

information, and provided with increasingly more training performance information, the 

model without demographic information started with a better than chance prediction 

accuracy (~0.60) and the model with demographic information performed slightly better 

at an accuracy of 66%. However, when the model was provided with details related to 

the training task (Stimulus type) alongside the extrinsic features (supervision and 

compensation), the performance was significantly larger at 0.80. However, this 

difference between the three models only continued to remain until session 6-8. This 

indicated that predictive models require an understanding of age, task details, and 

extrinsic features to perform well during the early learning phase. However, once the 

predictive models are able to learn from the actual performance of each individual over 

the early learning phase, the ability of the models to predict later learning is similar to 
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that of the other two models. This indicates that the models understanding of the 

variances within training performance fairly well and the non-training characteristics do 

not add any more predictive value at the group level. Furthermore, we were able to 

identify that early learning, age, and stimulus type had the highest predictive values for 

our best model at Session 10. Similarly, regression models performed better when 

provided with more data to learn from during the early phases. However, unlike in the 

classification models, convergence of the accuracies only occurred at Session 11. The 

results of our regression models show that our Model d can predict the amount of n-

back gains of individuals with an average error rate of half an n-back level (~0.68 

RMSE) at Session 10. However, these models that sought to predict the actual final 

performance of individuals on the 15th session did not have sufficient success rates 

during the early phases with relatively higher error rates for the first few sessions (1.34 - 

1.69 RMSE). This indicates that the models are relying on the significantly more training 

performance data to determine how much change is expected in their learning on 

average based on training trajectories. However, these results are understandable 

given that the performance on regression tasks, are typically lower than on a binomial 

classification task due to the higher error rates associated with determining exact 

performance of each individual. 

The results from our work show that Model d (on classification task) can reliably 

predict above and below median performers nearly 82 out of 100 times on average 

indicating that performance on training task can be predicted by including features that 

go beyond the training performance alone. The results support the findings from an 

earlier study showing that factors such as baseline abilities, age, and features such as 
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compensation and supervision could be related to individuals’ learning. This was evident 

due to the sequential modeling approach we have taken following the proposed 

framework. Critically, this framework helped us illustrate the idea that more data leads to 

better prediction at the early learning phases, whereas less data that is more directly 

related to on-task performance such as historic performance, are sufficient to make 

reliable predictions. To answer the critical question of how soon we can make reliable 

predictions, the answer differs for each model. Here, we have shown that Models b, c, 

and d were able to achieve average performance at Sessions 6, 8, and 10 respectively. 

However, this answer would have made more sense if our models were consistently 

doing better with more training information provided. Unfortunately, as evident from 

Model d (on the classification task) starts out with a high prediction accuracy of 80% 

and continues to hover around 80% with very little change until Session 13. Thus, 

answering the question of how soon meaningful predictions are attained should be 

determined by more specific questions posed by the researchers or policy makers. For 

instance, if a researcher is interested in achieving, say at least 75% prediction accuracy, 

Models b and c will require at least 6 sessions worth of training information. Whereas, 

Model d can achieve this accuracy at Session 1. Thus, the researcher can determine 

the level of accuracy they are interested in and then determine what data are required 

to achieve this threshold and how early they want to intervene. Overall, the results from 

the current analysis shows promise in the ability to predict the individual’s training 

outcomes at a relatively early phase during the training process that may allow for 

interventions (if any).  



90 

 

Interestingly enough, non-training related features add a significant boost to 

predictions when the training performance information of only 1-3 training sessions is 

provided to our models. However, there is a general decline dependence on non-

training related features (age, stimulus type, compensation, and supervision) as more 

and more information related to the training is provided to the Models b and c. In 

general, by session 8, this convergence of model accuracies occurred indicating that 

once a sufficient learning related to training performance occurred, non-training related 

information has diminishing value of returns. However, this finding was only confined to 

our classification task indicating that the classification tasks’ prediction accuracies 

reaches an upper limit sooner with more features and later without these features. On 

the other hand, the regression tasks’ predictions show a continual improvement for all 

three models. Thus, in the absence of sufficient training dynamics related information, 

non-training related information boosts predictions. This behavior of our models fits well 

with the general notion that an individual’s initial performance levels when encountering 

a novel task are often determined by their baseline ability, which are often a function of 

their age. However, once the advantages and disadvantages of age and baseline 

performance are accounted for, learning can be predicted more efficiently by 

understanding how well an individual is doing on the actual task. Furthermore, the upper 

bound of the classification task predictions are, perhaps, linked to the extrinsic features 

that we included in model d, given that the predictions reached ceiling values very early 

and stayed relatively stable. 

Overall, we have utilized the stepwise framework described in the previous 

chapter to establish the value of such an approach in determining how much information 
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is needed, how soon we can make predictions above a threshold determined by 

researchers, and determined the lower and upper bound estimates for the predictive 

modeling within the WM training context. The stepwise modeling approach is valuable in 

its flexibility that it offers to researchers in making decisions related to what features are 

critical to their own context and what level of thresholds they are interested in. 

Furthermore, fully reporting the metrics available also makes it easier for comparisons 

of model performances across learning contexts. In our data, the accuracies, precisions, 

and F1-scores were closely related to each other for the classification models because 

of the artificially created balanced class. However, in many real-life scenarios (for 

instance letter grade distributions within an online classroom setting), the distributions of 

the classes are not necessarily balanced. Thus, non-accuracy metrics could be more 

valuable. 

2.7. Limitations 

The current results have limitations, specifically, since the data comes from 

different studies, with different populations who are tested and trained under slightly 

different conditions. This may yield differing training performance across the studies. For 

instance, the number of participants from Jaeggi et al. (2008) included in Dataset-1 are 

only 15 whereas those from Pahor et al., (in prep) are 242. In theory, If these two 

datasets follow different Gaussian distributions of performances, the predictive models 

will lead to predictions that are biased against the dataset with lower sample size since 

the probability of a learner being a part of the latter study is more likely than a learner 

being part of former study. Thus, the learning achieved by our models that are used to 

predict future learning might be driven by those participants that were part of Pahor and 
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her colleagues’ study. Furthermore, the performance of participants within each of the 

studies might follow their own distributions which may make it difficult to predict the 

actual end-of-the-training performance. In theory, we can circumvent this limitation by 

using “study” as a feature that uniquely identifies each of those subsets within our data. 

However, we chose not to do this to limit our discussions on the value of our stepwise 

framework. Furthermore, using ‘study’ as a feature acts as a proxy for the differences in 

the study settings, which is a latent variable that does not add further theoretical value 

or a means to explain why this feature boosted our predictions and the differential effect 

of this latent variable on each study. Furthermore, other limitations such as unequal 

representation of age (in particular, missing the 40-60 age range) are present in our 

data. Furthermore, our classification models depended on an arbitrary binomial 

classification of data (a median split) while the training gains are on a continuous 

distribution. The additional problem with this approach is that our model might be 

struggling with determining the subtle difference in performance of those individuals that 

eventually gained 0.85 (labeled as below median) vs 0.87 (labeled as above median). 

This might have led to a prediction accuracy cap of 88% of our best models. 

Furthermore, our models are missing information that might be critical for the 

interpretation of the results, for example, an individual’s level of engagement in training, 

which were not included in our data. We posit that inclusion of these missing features 

may have potentially explained low probability predictions of certain individuals (non-

confident predictions where class labels were assigned at a near chance level). 

Furthermore, while our method retrospectively demonstrates that machine learning 



93 

 

based models can predict future learning, it is not a real-time application of such 

modeling to identify the individuals who might need the most support to succeed.  

Nonetheless, the current analysis is a crucial step to understand the fate of the 

participants depending on their individual differences in training dynamics. Further 

research is required to identify and understand how crucial training relevant parameters 

(that are directly mutable) such as training difficulty level, speed, length of training per 

day, total training period, target sensory modality for training material (e.g., auditory and 

spatial), implementation of motivational features (such as adding a storyline, themes, 

and unlocking achievements) are required to fully tailor training experience based on 

the individual needs. With an improved understanding of the features that lead to better 

training quality at an individual level we may expect more pronounced transfer effects. 

Furthermore, the ability to predict learning on a WM training task, creates an opportunity 

to intervene as needed to improve training outcomes in real-time if a robust prediction 

model can parse individual variances at the earliest possible time. Specifically, the 

extraction of features that promote training efficacy could ultimately contribute to 

development and implementation of personalized approaches that further enhance 

training success. In theory, a successful WM training intervention will account for 

individual differences and personalize training to match the needs of individuals. Such 

successful learning on-task of every individual within each study may then lead to 

broader learning consistent with theoretical expectations. However, these discussions 

are beyond the scope of the current thesis. 

2.8. Conclusions 
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Overall, our work demonstrated that predictive modeling approaches are good at 

identifying good and poor learners at an early stage during the training. We have also 

demonstrated that, while early predictions rely on participants’ age, stimulus type, 

compensation, and supervision, these features added diminishing returns as the training 

progresses and more and more training related information is available to our models. 

Consistent application of data mining and machine learning framework can be used to 

compare results across models as well as setting. One must be cautious when applying 

machine learning modeling, however, since the results obtained are specific to the 

context and dataset. Once researchers come together to promote availability and use of 

large-scale open source datasets, results of these predictive models can be replicated, 

improved upon, and applied in real-time applications. However, this would require a 

comprehensive understanding of factors that affect training performances. Thus, we 

posit that solving the problem of enhancing cognitive capacities should be tackled using 

both explanatory modeling approaches as well as predictive modeling approaches. 
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CHAPTER 3: FROM INTENTIONS TO ACTIONS: UNDERSTANDING STUDENTS’ 

SELF-REPORTED STUDY PLANS, ADHERENCE TO STUDY PLANS, CLICK 

BEHAVIORS, AND THEIR RELATION TO LEARNING OUTCOMES 

  

As a summary of the previous chapter, I have demonstrated that predictive 

modeling can be utilized to make predictions of later learning from early learning in a 

WM training dataset using the proposed framework. This framework enabled deriving 

insights that may not be readily available without stepwise inclusion of features. The 

primary goal of the current chapter is built upon the results from the last chapter. In 

Chapter 2, I have explored the usage of predictive modeling to evaluate a learning 

scenario in order to understand how predictive modeling can benefit from step-wise 

inclusion of features, specifically, to predict later learning, and what to expect from such 

an approach in short-burst time spans. Specifically, I explored if within a short-burst time 

span of learning, predictive models improve as more and more information is made 

available. Furthermore, I also investigated whether predictive models need any 

information about the learner or the learning context at all, in making robust predictions. 

The results show that the models employed were able to approach near 85% prediction 

accuracies by session 7 of the WM training. Furthermore, the results also show that the 

models are able to learn better if age and features related to learning context (and any 

relevant data beyond the training data itself) are provided during the earlier phases of 

learning. However, this advantage from additional data beyond the actual learning itself, 

showed diminishing returns. This is perhaps expected given the definition of later 

learning (learning on 15th WM training session), is quite narrow and highly correlated 
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with performances of sessions that are immediately closer to sessions 15 (say sessions 

13 and 14) than the training sessions that occurred earlier (sessions 1, 2, and 3). 

However, within a more complex learning environment such as in a typical classroom 

experience, performance on later learning, such as in case of a final exam, the 

relationship of early learning and later learning are not simply a function of chronological 

co-occurrence. Rather, performance in final exam (and the final grade the students 

receive) are driven by factors such as students’ knowledge, learning practices, and 

motivations. Thus, let us consider applying the predictive model to real-world scenarios 

moving forward (i.e., a blended learning environment and a fully online learning 

environment) to replicate the results from Chapter 2 and include relevant features for 

each of these scenarios. While doing so, in addition to the demographics and 

performances of the students, let us establish the value of self-directed learning of 

students, in hopes of making quantitatively better predictions, since students’ learning 

intentions and the actions they take to accomplish the learning intentions are known to 

influence learning with classroom settings. The key point I explore in this chapter is the 

idea that understanding the learners’ self-reported study plans lead to better predictions 

of later learning.  

In addition, I use two features, the overall quantity of the click behaviors and the 

frequency of the click behaviors to specific assignments/tasks, to differentiate the 

learners’ grades beyond demographics and early learning quality. A few studies that will 

be discussed later use predictive modeling in hybrid classrooms to investigate the idea 

of looking towards click behaviors and autogenerated interaction logs within LMS to 

make predictions of later learning and dropout rates. Specifically, blended learning 
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classrooms (those that include face-to-face as well as online learning components), 

have demonstrated a positive association with learning outcomes compared to fully 

online learning scenarios. Blended learning incorporates support structures and 

guidance from instructors directly since critical aspects of learning such as lectures and 

discusses are held face-to-face. Since, meetings and lectures held via remote 

instruction tools and technology lack engagement or teacher-directed regulation of 

learning, blended learning has been touted as the best possible middle ground for 

bridging the advantages of both learning scenarios (offline and online). However, key 

factors that influence learning, specifically, self-regulated learning are as applicable to 

blended learning environments as they are to any other classroom learning 

experiences. Specifically, in the current chapter, I focus on students’ intentions of 

spacing their work and how, if at all, click behaviors within LMS can capture the 

adherence of students to such intentions.  

3.1 Learning in Blended learning environments 

The term blended learning defined earlier as any course that involves 30% of 

academic activities via internet and 21% of the content is taught face-to-face. Blended 

learning has been pitched as a middle-ground between fully face-to-face learning 

environments and full online-learning environments, sharing the advantages of both. In 

fact, blended learning has been one of the top ten trending technologies in the 

knowledge delivery industry (Boelens, Van Laer, De Wever, & Elen, 2015; Graham, 

2006). Blended learning offers two significant advantages over face-to-face learning by 

providing increased accessibility as well as flexibility and reduced cost. However, given 

the nature of “blending” two different approaches of learning without a particular 
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standard or model, blended learning has taken up a few different approaches which are 

broadly classified into one of the four groups: activity level blending, course level 

blending, program level blending, and institution level blending. As evident from the 

naming scheme, each of these variants use approaches to blend online learning into the 

traditional face-to-face classroom as a function of instructors practices (activity level and 

course level) or as a function of policies determined at the program or institution levels. 

Each of these blending approaches could differ in their goals, including for the purposes 

of enabling learning (for access and convenience), enhancing learning (incremental 

changes to instructional practices), and transforming learning (learners transform from 

passive listeners to active constructors of learning). Specifically, factors such as access 

to knowledge, social interactions, personal agency and study-habits…etc., are known to 

play a critical role in blended learning environments (Nickel & Overbaugh, 2012; So & 

Brush, 2008). When it comes to predictive models, learning analytics are employed to 

examine the frequency of students’ engagement with the learning material in relation to 

the quality and quantity of learning of individuals. The existing literature that seeks to 

predict behavior in blended learning environments, typically, utilize attributes such as 

skill level and demographics, participation in online course activities , student 

engagement with optional online forums, click behavior, and time spent on resources as 

markers of learning (Anderson, Huttenlocher, Kleinberg, & Leskovec, 2014; Bayer, 

Bydzovská, & Géryk, 2012; Chaturvedi, Goldwasser, & Daumé Iii, 2014; Guo & 

Reinecke, 2014; Hershkovitz, Baker, Gowda, & Corbett, 2013; Huang, Dasgupta, 

Ghosh, Manning, & Sanders, 2014; Ramesh, Goldwasser, Huang, Daume, & Getoor, 

2014; Seaton, Bergner, Chuang, Mitros, & Pritchard, 2014; Wilkowski, Deutsch, & 
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Russell, 2014). Many of the existing models, often, do not take individuals’ motivations 

and study habits into account.  

Demographics are often used as a proxy measure for general abilities and 

cognitive skill levels of each individual within the existing models. However, an 

individual’s motivation is known to play a key role in learning, more so in the online 

learning context, due to the sustained need for self-efficacy throughout the learning 

phase (Chen & Jang, 2010; Lim, 2004; Miller, Deci, & Ryan, 1988). Bjork (2017) 

recently reviewed the cognitive theories of learning that pertains to spacing and learning 

which informed recent work (Jeffrey and Roediger, 2008; Hartwig & Dunlosky, 2012) 

which showed that students’ intentions to spacing or cramming have a positive effect on 

the quality of learning. The higher the spacing, the more forgetting that is expected to 

occur, and better memory formations that attribute towards greater long-term learning 

retention. 

One such behavior that was recently explored by Rodriguez et al. (2019) is 

students’ study intentions pertaining to a STEM course in a blended learning 

environment. Specifically, this work looked at students’ spacing intentions to understand 

the performance of the students -- spacing (splitting study sessions across multiple 

days) and cramming (doing most of the studying on the day before the exams). 

Rodriguez and his colleagues utilized a combination of self-reported study intentions 

(‘spacing’ or ‘cramming’) and students’ clickstream data that reflects an individual’s 

engagement with course material to understand learning and how intentions might 

reflect in students’ performance in a course. The results of this work showed that 

students’ self-reported study patterns, i.e., self-reported intentions and implementation 
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of spacing strategies, showed significantly better learning than those students who 

crammed during the learning period. Results from this study suggested that those who 

claimed to have maintained spacing across the learning period showed better grades 

overall. However, this work did not explore the potential differences between individuals 

that reported maintaining spacing but did not get good grades. This limitation relevant to 

differentiating the learners who did and did not receive a good grade despite intentions 

of spacing is due to the lack of clear connection of students’ intentions to adherence to 

such intentions at the individual level. 

Rodriguez and colleagues used a combination of students’ pre and post survey 

responses to categorize the students into those who ‘maintained cramming’, ‘stopped 

spacing’, ‘started spacing’, and ‘maintained spacing’ (e.g., students that reported 

cramming before and after the course are categorized as maintained cramming) and 

restricted their analyses to those who ‘maintained spacing’ and those who ‘maintained 

cramming.’ In doing so, however, this approach overlooked examining students’ initial 

intentions—what their study intentions were prior to studying for the course.  

It is important to account for adherence and implementation of spacing intentions 

for a richer and more detailed understanding of behavior and how it relates to learning. 

For example, what differentiates those students who identified as spaced learners 

during the pre-survey that followed through and those who did not? Furthermore, a few 

questions are not fully explored in their work, such as - What demographics, if any, have 

a problem with implementing the spacing intentions from the pre-survey? Which 

individuals failed to succeed despite implementing the spacing of the learning? How 

early can one detect the students’ performance trajectories based on the click-behavior 
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and intended study strategies. Perhaps, an answer to these questions might be 

revealed by an approach that not only looks at students’ self-reported study intentions, 

but parses out the nature of behavior of those students who intended to space their 

learning (i.e., did those students adhere to their intended study plans). 

3.2 Specific Research Questions. 

Gollwitzer (1999) did an extensive amount of research showing the importance of 

understanding not just the self-reported intentions towards learning, but also to what 

extent each student is diligent to accomplishing these intentions. This ties into the 

Bandura’s self-efficacy theory (1982) - the ability to create realistic goals based on their 

understanding of their own capabilities and the diligence necessary to accomplish those 

tasks. To the best of my knowledge, there is no existing work that utilizes individuals’ 

self-reported intentions and planned behavior to predict students’ performances at the 

individual level. This area can benefit from utilizing predictive models that understands 

the extent to which students’ intentions and ability to adhere to the study intentions 

predicts learning. Furthermore, it is important to understand if the intentions, and 

implementation can predict outcomes of later learning during the early phases of the 

learning (i.e., as early as the first three weeks) that provides a window of opportunity for 

the teachers to make adaptive changes to the curriculum and the pedagogy. To fill 

these gaps in the literature, the current work aims to address two specific research 

questions (RQ) - 

RQ 1 – To what extent can we predict students’ performance on review quizzes 

and final grade using (a) reading and weekly quiz scores, (b) demographics and study 

intentions? 
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RQ 2 – Can click behaviors improve predictions of models from RQ 1? If so, 

which of the click behavior features has the highest predictive value? 

Addressing these RQs have several purposes. First, since we seek to validate 

our results from the earlier study, our focus in RQ 1 is to understand if we can predict 

later learning from early learning trends on a weekly basis as well as use the weekly 

trends to predict the final grades. As before, we will use two different models, one 

without (RQ 1 Model a) and one with demographics (RQ 1 Model b), to understand if 

demographics have predictive value beyond actual performances in the course. In 

addition, we included students’ study intentions along with demographics as these 

intentions are innate to the students and are not mutable ex ante. We hypothesize that 

demographics and study intentions carry high predictive value during early learning 

predictions, but later learning can be predicted from early learning trends alone (i.e., 

without the need for demographic information or study intentions) since these features 

carried diminishing returns for predictions in the previous study. Next, our focus in RQ 2 

is to understand if click behaviors can be used to boost our predictions from RQ 1. In 

this model, we included students’ clicks behaviors that hoped to measure the intentions 

of study spacing along with all features in RQ 1 Model b (i.e., model which includes 

demographics, past performances, and in addition, measures of click behavior.) We 

hypothesize that click behaviors have very little value in prediction accuracies since the 

measures of clicks, as we have argued earlier, do not provide any context to students’ 

learning nor do they act as a good behavioral indicator of students’ changing 

motivational, social-emotional, and affective needs and demands. Following our 

framework, we evaluate the relative predictive value of each of these predictive models. 
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Specifically using this stepwise approach, our final models are going to include all the 

features of interest, which provides an opportunity to understand their relative 

importance in predicting their learning on a weekly basis and in predicting their overall 

grades. A summary of all models tested are presented in Table 3.1. 
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Table 3.1 

List of models tested, and features used in each model variant. 

model Baseline model RQ 1 - model a RQ 1 - model b RQ 2 

overview (random data generated using 

average quiz scores and 

standard deviations) 

(students' 

performance on 

weekly quizzes) 

(RQ 1 model a + 

demographics) 

(RQ 1 model b + spacing 

intentions and click 

behaviors) 

     

features random noise average of pre-lecture 

quiz performances 

average of pre-

lecture quiz 

performances 

average of pre-lecture quiz 

performances 

  
average of homework 

performances 

average of homework 

performances 

average of homework 

performances 

   
age age 

   
gender gender 

   
low-income status low-income status 

   
part-time status part-time status 

   
minority status minority status 

   
first-generation status first-generation status 

   
high school GPA high school GPA 
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SAT scores SAT scores 

   
study spacing 

intention 

study spacing intention 

   change in study plan change in study plan 

    
click-data total course 

activity till date 

    
click-data frequency of 

course activity per quiz 

    
click-data spacing 
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3.3. Methods 

Dataset (face-to-face lower division Molecular Biology Course). We analyzed 

learning behavior occurred in a 10-week long face-to-face lower division Molecular 

Biology course implemented at University of California, Irvine during two separate years 

-- in 2016 (course period of 74 days total) and 2017 (course period of 73 days total). 

Data were collected over two consecutive years with consistent format, syllabus, and 

method of instruction (Rodriguez et al., 2019). This course consisted mostly sophomore 

students and is structured in a way that nearly 50 percent each of the course period was 

dedicated to lectures and interactive peer group work. This course had three cumulative 

midterm examinations, one cumulative final exam, pre-lecture quizzes, and weekly 

Figure 3.1. Grade point distributions of the students (shown as 
gb_finalpoints on the x-axis) -- Scores are cumulative for all individual 
quizzes, midterms, and final exams. 
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homework assignments which were conducted via Canvas Learning Management 

System (Canvas LMS). All of the course material, including the lecture videos, and 

slides are made available for the students via course’s Canvas LMS. 

Participants. Year 1 consisted 224 students and Year 2 consisted of 422 students. 

However, since the predictive models required the students’ responses on the survey 

data (used to assess study strategies – such as spacing), we excluded students who 

did not complete the surveys. The final dataset consisted of 132 students from Year 1 

(58.92% response rate) and 327 students from Year 2 (77.48% response rate). There 

were significantly more female students (n=137, p<0.05) in the year-1 dataset 

compared to male students. There were no statistically significant differences in other 

demographic features of the data. Therefore, we combined the data from both years for 

our predictive analysis. A detailed description of Students’ demographics data is 

provided in Table 3.2.  

Table 3.2 
Descriptive statistics of students’ demographic 
information  

Feature Mean SD 

 

Age (range 19-29) 

20.51 1.50 

College GPA 3.22 0.46 

High School GPA 3.41 1.51 

SAT Score 1586.23 597.44 

   

  proportion 
 

   

Low Income 0.37  

First Generation 0.49  

Relevant Major 0.75  

   

Gender   

female 0.61  
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male 0.39     

Ethnicity   

Asian 0.52 
 

Latino 0.21 
 

White 0.07  

International 0.06  

Other 0.04  

   

 

Clickstream data were collected from Canvas LMS for all the students in the 

dataset. LMS data included time-stamped records of all the clicks made by each of the 

students, and the web URL specific to each click while using the LMS. Institutional 

records for all students are collected to identify underrepresented minority status (UMS - 

African American, Native American, or Latino/a).  

Prediction Task. Students’ final letter grade in the course was used as the outcome 

measure for our classification task, whereas their final exam score was used for 

regression task. To avoid issues with prediction biases, the outcome measure was 

simplified to a binomial prediction problem to differentiate learners that received “At 

least a ‘B-’ grade” and “Below ‘B-’ grade”. Equal distribution of the outcome measure is 

a critical step to avoid overfitting of prediction models, and reduction of false positive 

predictions due to the differences in the grade distributions of the course (for example, if 

70% of students received a grade worse than A, the prediction model would have a 

70% accuracy if it assigns a grade lower than A  to all individuals within the dataset 

leading to 100% false negative rate for A grades skewing the predictions). Overall, 117 

students achieved at least a ‘B-’ grade, whereas 107 students received ‘Less than B-’ 

grade. The final grade point distributions are shown in Figure 3.1. The distribution of the 
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corresponding final letter grades is presented in Figure 3.2. Additionally, we used 

students’ performance on the in-class comprehensive exams that were conducted 

during week 3, 6, and 9 and the final exam conducted in the final’s week (see Table 3.3 

for descriptive statistics) with a median split (for classification task) or a continuous 

scale (for regression task) so as to mimic the session by session performances 

predicted in the WM training context earlier. Note that we did not seek to predict the 

weekly homework assignments or pre-lecture quizzes since their variability was very 

low rendering them biased prediction tasks. 

 

Table 3.3  
Descriptive statistics of class examination information 

Characteristics Mean SD 

 

Quiz 1 (range 0-80) 51.69 13.27 

Figure 3.2. Final letter grade distributions of the students -- Numerical values corresponding to 

letter grades are as follows: 13 = A+, 12 = A, 11 = A-…….0 = F  
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Quiz 2 (range 0-80) 52.11 13.22 

Quiz 3 (range 0-80) 51.72 15.13 

Final Exam (range 0-100) 58.19 12.32 

 

3.4. Measures 

Demographic variables. Demographic variables were collected from the UCI’s 

institutional records once the course was completed (after post-test). We collected 

features such as age, gender, low-income status, part-time status, first-generation 

status, minority-status, SAT scores, and high school GPAs. 

Grades. Students’ performances were recorded from all the graded assignments 

which were provided by the instructor. These included pre-lecture quizzes (29 which 

were conducted before a lecture began - conducted online), take-away homework 

assignments (9 which students complete on their own). Following the protocol from 

Study-1, we used scores of all quizzes and homework assignments leading up to weeks 

3, 6, and 9 review quizzes for predicting performances of the students on 

comprehensive quizzes. All grades were collected ex post. 

Click data – total course activity per day. Students’ total clicks per day were 

measured by summing up the total clicks each student made on the Canvas course 

space. 

Click data – frequency of course activity per quiz. We also measured the 

frequency of clicks per assignment by counting the total number of clicks a student 

made on each web page specific to the quizzes. 

Click data – spacing. We measured an estimate of “spacing” of each student’s 

clicks by measuring the total number of clicks made each day of the week for each 

corresponding quiz. This acted as a proxy objective measure of adherence to spacing 
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intentions (clicks are spread throughout the week before taking up the assignment) or 

cramming (clicks are focused just the day before the assignment). We also included an 

alternate measure of spacing, by calculating the days between the assignment due date 

and first attempt to submitting that assignment. This measure also acted as a proxy for 

procrastination behaviors since, procrastinators (planned or otherwise) tend to submit 

the assignments in the last minute/hour (McPartlan, 2020). 

Study-2 followed a similar protocol for data analysis as discussed in Study-1. 

Due to the nature of the target variables discussed earlier, we used: 1) regression 

models to predict students’ comprehensive quiz performances and final scores, and 2) 

classification models to classify students as “above” or “below” median performers for 

the comprehensive quiz performances and “above B-” or “below B-” for students’ final 

grades. Regression models estimate the relationship between the target and 

explanatory variables by fitting a curve to the data points so that the distances between 

the curve and target data are minimized. Specifically, we started with a multiple linear 

regression model and compared the results with a 2nd order polynomial regression to 

account for variable interactions. In addition, we also tested the performance of 

regression trees given that our models are more complex compared to those in the 

previous chapter. Next, classification models were used to project the selected features 

into a hyper-dimensional feature space, generating a hyperplane to classify the data 

into required categories of interest. We tested two binomial classification models - 

Logistic Classifier (LC) and Random Forests (RFs) following the WEKA toolkit protocol 

discussed earlier to compare these algorithms (Ian H Witten, Frank, & Hall, 2011). The 

optimal regression/classification models were selected based on a two-step 
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performance criteria: a) data splitting into three groups (70% training + 5% validation + 

25% testing) and b) repeated training and testing after data splitting using 200 unique 

seed locations for the best algorithm selected. We used the average of several metrics 

described earlier (i.e., RMSE, adjusted R2 for regression models and Accuracy, 

Precision, Recall, F1-score, and AUC for classification models) on the testing set to 

determine the robustness of the models. This two-step approach, consistent with Study-

1 was used to ensure the predictions’ robustness and to minimize generalization errors. 

(Iguyon & Elisseeff, 2003; Tang, Alelyani, & Liu, 2014). Using the validation dataset, we 

determined that Random Forest model outperformed Logistic classification model 

significantly (validation accuracies of 83% and 71% respectively), whereas Multiple 

Figure 3.3. Results from the regression models for study-2 RQ1 -- predicting the performance on 

comprehensive quizzes held during weeks 3, 6, and 9 using three models Baseline (Black), RQ 1a 

(Orange), and RQ 1b (Blue). 
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linear regression performed better compared to 2nd order polynomial and regression 

trees at the regression task (adjusted-R2 of 0.55 to ~0.36). Thus, the results provided 

here are for Logistic classification model and Multiple linear regression model, 

respectively. 

3.5. Results 

RQ 1 – To what extent can we predict students’ performance on review quizzes and 

final grade using (a) reading and weekly quiz scores, (b) demographics and study 

intentions? 

 

Figure 3.3. shows the results of the three multiple linear regression models that is 

used to answer RQ 1 (regression task). Baseline model is presented in Black. As 

Figure 3.4. Results from the classification models for study-2 RQ1 -- predicting the performance 

on comprehensive quizzes held during weeks 3, 6, and 9 using three models Baseline (Black), RQ 

1a (Orange), and RQ 1b (Blue). 
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hypothesized, the baseline model has the worst performance, close to 0.1 across all 

predictions. RQ 1 Model b (shown in Blue) performed better compared to RQ 1 Model a 

(shown in Orange). Recall that model ‘a’ only included the learners’ performance on the 

course and model ‘b’ included demographic data as well as students’ self-reported 

study plans and adherence. The maximum adjusted R-squared achieved by baseline 

model was 0.13, whereas the maximum adjusted R-squared achieved by RQ 1 Model a 

and RQ 1 Model b were 0.43 and 0.52, respectively for week 9 predictions. 

 

Figure 3.4 shows the results of the logistic classification model that is used to 

answer RQ 1 (classification task). As before, Baseline model is shown in Black which 

performed poor compared to the other two models with prediction accuracies close to 

chance around 45% across. Classification accuracy for model ‘a’ is shown in Orange 

and model ‘b’ is shown in Blue. Similar to the regression models, model ‘b’ 

outperformed model ‘a’ and baseline models across all predictions. The maximum 

classification accuracy achieved by baseline model was 0.46, whereas the maximum 

classification accuracy achieved by model ‘a’ and model ‘b’ were 0.75 and 0.81, 

respectively for week 9 predictions. In addition, the final grade classification accuracies 

(which used data from posttest survey data and average performance on all review 

quizzes) over the 200 iterations of our model for model ‘a’ and model ‘b’ were 0.81 (+/- 

0.06) and 0.86 (+/- 0.05), respectively and the adjusted R-squared was 0.69 (+/- 0.09) 

with RMSE of 7.59 (+/- 2.34). The overall average precision (0.84), recall (0.81), F1-

score (0.82), and AUC (0.86) were very close to the levels of accuracy indicating that 

the models performed well. 
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Overall, the results from these three models shed similar light as the previous 

study. Baseline models that do not use any actual student learning data tend to do 

poorly compared to the other two models. This is an expected behavior of the baseline 

model and required to evaluate if the other two models’ performance are better in 

comparison. If the results of the Baseline model are (abnormally) high, it would mean 

Figure 3.5. Results from the regression models for RQ2 -- predicting the comprehensive quiz 

scores during weeks 0, 3, 6, and 9 using the features listed for RQ 2 (shown in Yellow color). 

Models from RQ 1 discussed earlier are faded out but left in for comparison. 
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that the models are learning to predict outcomes from random noise. This would have 

indicated spurious results. However, the results shown from our baseline model are 

consistent with our expectation. Next, results suggest that the prediction trends we have 

seen from the last study partially hold true. During the early learning phase, since the 

predictive models cannot learn from the students’ performances are insufficient for 

making good predictions. However, once the model (b) is provided with demographics 

and the students’ study intentions, the predictions are quantitatively better. This trend 

continued to hold true across our predictions. However, convergence did not occur, 

unlike in the previous study for both regression as well as classification tasks. This is 

perhaps expected since later learning in a classroom setting is not a function of simple 

Figure 3.6. Results from the classification models for RQ2 -- predicting the comprehensive quiz 

scores during weeks 0, 3, 6, and 9 using the features listed for RQ 2 (shown in Yellow color). 

Models from RQ 1 discussed earlier are faded out but left in for comparison. 
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repetition and mastery as I have argued to be the case for WM training task. 

Furthermore, perhaps the number of predictions that we made compared to the 

previous study are also very limited (4 vs 14). Perhaps, this provided our model ‘a’ an 

insufficient understanding of the trends in students’ learning performances for the model 

to converge with the performance level of model ‘b’. The advantages gained from using 

non-performance features in model ‘b’ continued to hold across all predictions. This 

indicates that the extra features introduced in model ‘b’ are important for making early 

predictions which then continue to help our prediction models to better classify and 

quantify learners. 

RQ 2 – Can click behaviors improve predictions of models from RQ 1? If so, which of 

the click behavior features has the highest predictive value? 

Let us now consider the results of models for RQ 2. Figures 3.6 and 3.7 show the 

results for regression task and the classification tasks, respectively. The baseline model 

(shown in Black), and the two models from RQ 1 are left in for comparison in both 

figures. Model RQ 2 (shown in Yellow) show that the results for this model have not 

improved in comparison with model ‘b’ form RQ 1. Recollect that model RQ 2 

incorporated data from click-behaviors in addition to the features used in RQ 1 Model b. 

These results suggest that using click behaviors, as they were derived and utilized in 

the current context, do not provide any predictive value. This could be due to the nature 

of the click-behaviors that were derived within Canvas LMS. Specifically, since Canvas  

Table 3.4 
 
Feature importance derived for comprehensive quiz predictions  
 

Feature Feature importance - Week 0 

highschool GPA 0.30 
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 LMS is not a fully integrated learning environment and since the resulting clicks 

do not speak for students’ learning out of the LMS, it is difficult to explain learning 

performances using click-behaviors. Furthermore, in comparison to the best model from  

RQ 1 (i.e., model ‘b’), the results can be considered slightly worse, given that the 

additional features have a high variability and noise. This finding is in line with our 

previously reviewed literature where click-behaviors and log activities of students 

yielded varying degrees of value for understanding learning. 

 Next, to investigate which features contributed the highest predictive value, we 

used the feature importance derived from the logistic classification model to inspect the 

top 5 features for each prediction made from RQ 1 Model b (see Table 3.4). Results 

indicated that the most important features during week 1 were highschool GPA, spacing 

spacing intentions 0.12 

SAT scores 0.10 

part-time status 0.08 

low-income status 0.07  
Feature importance - Week 3 

average of pre-lecture quiz performances 0.35 

average of homework performances 0.14 

highschool GPA 0.11 

SAT scores 0.09 

study spacing intention 0.06  
Feature importance - Week 6 

average of pre-lecture quiz performances 0.39 

average of homework performances 0.20 

highschool GPA 0.11 

SAT scores 0.06 

study spacing intention 0.06  
Feature importance - Week 9 

average of pre-lecture quiz performances 0.26 

average of homework performances 0.18 

highschool GPA 0.09 

change in study plan 0.09 

study spacing intention 0.06 
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intentions, SAT scores, part-time status, and low-income status. Specifically, students 

past academic records were the most valuable to making predictions of later learning 

during week 0 (without any data of the students’ performances within the course). 

Specifically, the students’ self-reported spacing intentions were relatively more 

important than that of SAT scores, the students’ part-time status, and low-income 

status, indicating that it is important to ask the students of their study plans for the 

course. It is also possible that just by asking the students to discuss their study plans 

may have somehow played a role in their later self-regulation which determines their 

learning in the course. From week 3, the students’ average performances on the pre-

lecture quizzes and average homework grades were more predictive of their learning 

than Highschool GPA, SAT scores, and study spacing intentions. These features 

continued to be important throughout the predictions made. Notice that SAT scores 

were replaced by students’ self-reported change in study plan which were collected 

after the course was completed. These findings make theoretical sense, given that early 

predictions are typically based on students’ past achievements and perhaps immutable 

demographic features. Later, once the models start learning from the students’ 

performance within the course, the predictions become more accurate and highly 

dependent on the students’ performance during the course itself. One interesting thing 

to notice is that age and gender were not in the important features listed. In this context, 

this makes sense, given that the age range is very narrow and there was no reason for 

us to suspect any gender differences in the course (biochemistry). Overall, results 

across all models were consistent with our hypothesis and showed that students’ 
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learning predictions were driven by highschool GPA, SAT scores, their study spacing 

intentions, and their performances during the course itself. 

3.6. Discussion 

 In the current study, we attempted to predict students’ learning performances 

using the proposed stepwise predictive modeling framework from earlier. Specifically, 

we used features that are important for a blended learning course with both online and 

face-to-face components of pedagogy. Predictive models that were employed in the 

context of blended learning reviewed earlier, suggested that the prediction accuracies 

typically range between 65% – 83%. However, answers to the three fundamental 

questions – “How soon can we predict?”, “How well can we predict?”, and “How much 

information is needed for predictions?” have not been thoroughly answered. Results 

from this work, indicated that answers to these questions are typically dependent on 

one another. For instance, during week 0 (the earliest possible time for the predictions), 

the accuracy of our best models was around 70% which required all of the available 

features (except the click-behaviors). However, this was not the best possible model. If 

a researcher is willing to wait a few more weeks, say until week 6, then the prediction 

accuracy increased to 80% with the same amount of data as well as the students’ 

performances through week 6. Thus, the current work provides a means for researchers 

to evaluate the urgency – accuracy tradeoffs when making relevant predictions. 

Furthermore, results from our model with only the data from the students’ learning 

performances (RQ 1 Model a) has provided us insights into the limitations of predictive 

modeling efforts when researchers do not know much information about the learners. In 

this model, gaining prediction accuracies of over 70% would require the researchers to 
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use data until week 6 or beyond. Thus, this result can be considered synonymous with 

our findings from Study-1. Specifically, predicting later learning from early learning 

performances within a given context (or from on-task performances) yield subpar results 

and perhaps not ideal for making very early predictions. Furthermore, the results 

indicate that more information is generally better for robust early predictions. However, 

this is not always true.  

In this specific study, using click-behaviors that the students displayed within the 

course LMS, did not improve the results. In fact, the results were worse compared with 

the model without this data. There are two potential explanations for this result: a) click-

behaviors are not a good measure of students’ learning behavior. As we have noted 

earlier, it is possible that context-agnostic click behaviors are not a good enough 

indicator of students’ learning behaviors at all. This makes theoretical sense because 

believing that click behaviors or students activity log from the LMS provides insights into 

their learning and behavior would mean that we are attesting click behaviors to 

students’ behaviors such as attention, engagement, interest, and attitude towards the 

course. Unfortunately, there is no clear way to make those connections between 

artificially generated metrics with students’ goal-directed behaviors. One way to make 

those connections is by simply asking students about their intentions for making every 

potential click on the LMS. However, this is implausible given that on average, students 

within this course made over 800 clicks over the course of 11 weeks. Keeping track of 

every single one of clicks would be unrealistic, cumbersome, and error-prone. b) 

Perhaps another potential reason for why click behaviors did not predict learning could 

be due to the ways in which we measured the importance of click behaviors. 
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Specifically, the current work used three different click-behavior metrics: click-data for 

total course activity, click-data frequency of course activity per a given quiz, and click-

data spacing. While none of these features added any predictive value to our models 

here, perhaps there might be more robust or innovative ways to remove noise from the 

click-data. For instance, perhaps identifying regular and irregular patterns in clicks of 

each student and using these patterns to making predictions might be a better 

approach. Perhaps making using of highly extreme click behaviors to analyze black 

swan cases might have yielded better predictions. However, for the sake of this thesis, 

we limited our analysis to the three features that we identified. More work is necessary 

to better understand and evaluate click-behaviors in the context of blended learning 

environments. 

Overall, as hypothesized the models showed that including information about the 

students’ study intentions during the pre-survey is a good predictor of overall grades 

and later performances. Specifically, the current best algorithm from RQ 1 (Model b) 

predicts students’ learning accurately predict whether a student achieved at least a ‘B-’ 

grade nearly 80 out of 100 times as early as 3rd week of the course. This prediction 

accuracy is slightly lower than in a skill refinement context, such as on a cognitive 

training (working memory training) context seen in the previous chapter that has 86% 

accuracy on average by 1/3rd of the training period. The reason could be that the 

variances on working memory dataset are slightly lower because of the task being 

straightforward and increasingly difficult unlike in a typical classroom setting where 

knowledge building is known to be a more complex operation than skill acquisition 

(Michalski, Carbonell, & Mitchell, 1983).  
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The efforts of the current work are crucial to understand the relationship between 

study intentions and prediction of learning. Additionally, understanding features that 

affect various learning outcomes are not only a critical step for integrating predictive 

modeling, but also to understand the fundamentals of students’ motivations that relate 

to learning. Current results show a promise in detecting, early in the learning phase, 

whether an individual learner may receive at least a B+ grade. This information may 

help inform pedagogical practices that can alter these projected learner trajectories by 

providing additional support to those students that might need more help. 

The limitations of the current work pertain to its limited prediction capability. The 

current models can only differentiate those individuals that are above or below B+ grade 

level. This is due to the unequal distributions of grades of the current dataset. With the 

limited data we have, we did not seek to make predictions of grossly unbalanced letter 

grades. Further limitations related to bias in data selection exist with the current work. 

Specifically, those students that responded to the surveys might be intrinsically different 

than those students who did not respond to the surveys. Further work is necessary to 

overcome these two limitations. 
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CHAPTER 4: DYNAMIC OF MOTIVATIONS, PRIORITIES, AND STUDENT 

LEARNING: LOOKING BEYOND CLICK BEHAVIOR TO PREDICT STUDENT 

LEARNING IN AN ONLINE COURSE 

As a summary of the two previous chapters (2 & 3), I have demonstrated that 

predictive modeling can be utilized to make predictions of later learning from early 

learning in two different scenarios. The primary goal of the current chapter is built upon 

the results from the last two chapters. In chapter 2, I have explored the idea of using 

predictive modeling to evaluate a learning scenario in order to understand how 

predictive modeling can be used, specifically, to predict later learning, and what to 

expect from such an approach in short-burst time spans. The models employed were 

able to approach near 90% prediction accuracies by session 7 of the WM training in the 

short-burst time span of interest. In chapter 3, I applied this model to a real-world 

scenario (i.e., blended learning environment) and I was able to replicate the results from 

chapter 2. In doing so, I established the value of self-directed learning of students in 

making quantitatively better predictions over the models that learned only from the 

students’ early learning behavior. The results suggested that we can predict later 

learning as early as half-way through the short-burst timespan of interest (i.e., an 

academic quarter or a fixed duration WM training) with accuracies consistently above 

80%. I have also demonstrated that click behavior as a feature has very little to no 

predictive value in a blended learning environment. Furthermore, neither the overall 

quantity of the click behaviors, nor the frequency of the click behaviors to specific 

assignments/tasks were able to differentiate the learners’ grades beyond demographics 
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and early learning quality. Let us now consider the possibility of click behaviors adding 

value to the learners’ behavior in a fully online classroom experience.  

The key point I explore in this chapter is the idea that understanding the learners’ 

motivational, social-emotional, and affective processes lead to better predictions over 

click behavior-based models. This is not a controversial idea. A few studies discussed 

below from the existing literature of predictive modeling in online learning contexts 

investigated the idea of looking towards more learner-centric metrics (as opposed to 

using click behaviors alone) to make predictions of later learning and dropout rates. 

Most of the studies that did not make use of learner-centric metrics in building predictive 

models acknowledge the need to include these key factors that go unaccounted for to 

develop stronger predictive models. Therefore, the need for learner-centric metrics to 

empower predictive modeling of learning is not foreign or naïve. Note that I use ‘learner-

centric’ as a word to encompass the learners’ motivational, social-emotional, and 

affective processes that are at the heart of the goals of the current chapter. The issue of 

understanding context of students’ actions is increasingly critical due to several 

reasons. In online learning, there is a lack of support and guidance from instructors 

directly since there is no face-to-face learning time. Meetings and lectures held via 

remote instruction tools and technology do not provide the same levels of engagement 

or teacher-directed regulation of learning. Thus, it falls up on the student to define, 

process, and regulate the learning. The lack of structed classes, fixed schedules, and 

emphasis on learning as a social process emphasizes self-regulated learning, goal 

setting, and the ability of the students to make decisions and determine when and how 

to engage or disengage from learning tasks. Prior research has shown that a majority of 
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learners in online platforms struggle with effective self-regulation and thus display poor 

learning (Kizilcec & Halawa, 2015; Tempelaar, Rienties, & Giesbers, 2011; Winne et al., 

2006).  

The question that remains unanswered is, to what extent are the click-behaviors 

valuable in making predictions of the students’ later learning, their grades, and are 

learner-centric metrics effective means to empower predictive modeling above and 

beyond click-behaviors? To answer this question and to understand the value of 

learner-centric metrics, I explicitly compare predictive models that include or exclude the 

features of interest. In addition, I also explore the idea of using the dynamics of learner-

centric metrics over the period of the course to look for consistency of the predictive 

relationship of the changes in learner-centric metrics and changes in performance of 

learners over the short-burst time span of interest. 

4.1 Click Behaviors in Predictive Modeling of Online Learning 

There are many challenges to environments of learning, be it offline, online, or 

blended learning, and with the process of learning itself, that are yet to be fully 

understood. One of the major problems that received attention in the recent past is the 

need for personalized learning. The root of this challenge is the individual differences in 

the varying factors that influence human behavior and specifically learning behavior 

differently for individuals. When a curriculum is designed and delivered to an average 

student with average skill level and average level of acceptable prior subject knowledge, 

then some students are likely to fall behind while some students feel unchallenged. Both 

of these issues are known to debilitate learning quality (Larrivee, 2000). While adaptive 

learning algorithms are said to alleviate this problem to a certain extent, the adaptive 
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technologies fail to account for the needs such as motivational and state of mind that 

might change from day-to-day in favor of prior ability, learning rates, and click behaviors 

(Mangaroska & Giannakos, 2019). 

Specifically, most of the extant literature used click behavior within learning 

management systems (LMS) to understand student behavior. An emphasis has been 

placed on click behavior within fully online learning environment because of the lack of 

face-to-face time with teachers (that provides teachers with an intuition about students’ 

learning during a lecture) and because click behavior is a readily available metric. Since 

teachers do not have the direct ability to observe, adjust, alter, or control the learning 

process, the reliance on metrics generated via the LMS in the form of learning analytics 

(LA) are widely promoted (see Aldowah, Al-Samarraie, & Fauzy, 2019 for a recent 

review). Per Aldowah and colleagues review (Aldowah et al., 2019), there are four 

important categories that educational data mining (EDM) and LA have been used to 

understand and promote learning: computer-supported Learning Analytics (CSLA – 120 

articles or 30% of the reviewed articles), computer-supported predictive analytics 

(CSPA – 253 articles or 63.25%), computer-supported behavioral analytics (CSBA – 80 

articles or 20%), and computer-supported visualization analytics (CSVA – 38 articles or 

9.50%). 

In their review, Aldowah and colleagues classified any article that utilized data 

mining techniques to understand the interactions within the course such as assessing 

students’ click behavior in group activities to identify potential interventions, as CSLA. 

Typically, these studies used data generated via click behavior in the LMS to associate 

system-level objects (e.g., course related activities such as discussion forums, content 
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delivery, assessments) to the students’ preferences in order to provide a greater level of 

support for individuals, specifically to make students more aware and better understand 

course activities and objectives. Most of the studies categorized as CSLA are focused 

on enhancing different aspects of learning that promote collaboration, networking, self-

learning, self-assessments, and self-regulated learning. The studies classified as CSLA, 

also offered insights into effective ways to promote usage of task-specific activity logs to 

understand collaborative learning, associations of students within small social group 

work, communication habits, self-learning behavior such as self-explanations of 

complex concepts using the learning tools within LMS. Overall, goal-specific click 

behaviors and logs from LMS are used to broadly understand learner behavior to 

provide the teachers with tools to assess and evaluate the effectiveness of material and 

tasks assigned within online learning (Agudo-Peregrina, Iglesias-Pradas, Conde-

González, & Hernández-García, 2014; Nussbaumer, Hillemann, Gütl, & Albert, 2015; 

Shum & Ferguson, 2012). 

Aldowah and colleagues classified all articles that focused on predicting students’ 

performance and retention as CSPA. Much of the reviewed literature fell into this 

category (63.25%) reflecting the importance of predictive analytics within literature. The 

overarching goals of articles classified as CSPA involved using user logs (often to act 

as a proxy for student engagement and participation), achievement, grades and quiz 

scores, and subject knowledge to discover hidden patterns within large datasets to 

predict outcomes and behaviors. CSPA were used to predict early dropouts, later 

learning, and to identify students who needed extra support to master learning material. 

Furthermore, predictive analytics were applied to understand and enhance quality of 
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learning material, constructing coursework, planning and scheduling classes, 

evaluating, assessing, and monitoring student performances (Baradwaj & Pal, 2012; 

Manek, Vijay, & Kamthania, 2016; Salas, Baldiris, Fabregat, & Graf, 2016). 

Another major category of articles, classified as CSBA, were articles where data 

mining and learning analytics were applied to understand students’ learning behavior. 

Information of students’ behaviors within group work were assessed using click 

behaviors in lieu with aspects of personality and state of mind including motivation, 

metacognition, and attitudes to promote learning process. For instance, irregularities in 

students’ performances and poor final grade performances were also detected using 

outlier behaviors in students’ activities on LMS without looking at their actual 

performances in class (McCuaig & Baldwin, 2012). 

Finally, Aldowah and colleagues classified any articles that utilized visualization 

techniques alongside data mining approaches as CSVA. Essentially, visual analytics 

were used to represent individual behaviors with respect to assigned class activities 

such as assignments to understand the learners’ behavior (Peña-Ayala, 2014; Varun & 

Chadha, 2011). Some of the work reviewed included studies that used visual analytics 

to map online discussions and evaluating the quality of the posts using engagement 

(measured using clicks). Things such as frequency of visiting a resource, time spent on 

the resource, associations between subsequent clicks, associations/networks within 

group activities were visually analyzed (i.e., using graphical representations). The 

overall goal of the CSVA articles was to simplify complex data to track and understand 

students’ behaviors within the LMS. 
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4.1.1. Closed vs Open Models: Clicks Out of Context in Learning Analytics  

Out of the 402 articles reviewed, regardless of the data mining tools and 

analytical approaches used (e.g., sequential patterns, text mining, association rules, 

regression) to represent student learning and behavior, one common aspect was the 

use of click behaviors within LMS across a majority of the articles to understand student 

behavior and learning. There are two critical issues with using click behaviors to gauge 

engagement and course mastery. First, typically, the clicks that arise from students’ 

interactions within LMS do not provide any context to their activities. For instance, every 

click within the environment are equal regardless of what the student was doing while 

clicking within LMS. The underlying assumption is that the click represents some form of 

engagement with the course content or with artifacts created in the LMS and that such 

engagement translates to learning outcomes. Second, there are a lack of clear 

guidelines and openness to using the clicks and student engagement within LMS to 

predicting their behaviors. For instance, the students (often, even educators) are not 

included in decision making process to tracking and determining student behaviors 

(Baylor & Ritchie, 2002; Brusilovsky et al., 2014). 

In the earlier generations, the models that drive personalization within LMS were 

hidden from the end users (i.e., teachers and students). This approach was criticized for 

not providing transparency to the personalization process, not being inclusive, and not 

accounting for the students’ self-efficacy or study strategies. Later, with the introduction 

of open learner models, the students and teachers were provided with an ability to 

incorporate self-reflections and self-organized learning elements to enhance the 

transparency of LMS. The advantage of including and accounting for study strategies 
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promotes positive value by understanding the potential differences in individuals click 

behaviors based on their task priorities and resource allocations (i.e, time of day or day 

of week a student wishes to study for the given course). However, working with open 

and transparent models does not only mean showing the end users the learners 

knowledge representations (which are obscure and hard to understand), but rather it 

means that the LMS is treated as a fully transparent and controllable medium that the 

students have access to and can interact with at their leisure (Bodily et al., 2018; Bull & 

Kay, 2013, 2016). 

Learning analytics (LA), when used to provide feedback of students’ activities, 

their engagement within LMS, and their interactions with resources of the course in a 

constructive manner could empower the end users to carefully assess and understand 

the impact of every step of the learning process. In theory, the open models of LA can 

help achieve these goals. Specifically, the guidelines provided by empirical research on 

visual analytics dashboards (Chatti et al., 2014; Verbert et al., 2014) have laid out the 

ground work to accomplish the greater goal of providing individualized feedback to 

students. The crucial elements identified by these guidelines are discussed by Vesin 

and colleagues (2018) in their recent review. These guidelines include data awareness; 

visualizations of activity data; self-reflection on activities; sensemaking; comparison with 

other learners; goal-oriented visualizations; open-learner model; and impact and 

behavior change. The goals of the proposed open model framework were to establish a 

robust criterion that makes the LA fully transparent for the end users (specifically, 

students). This will promote the ability of the learners to not only become aware of the 

data, the flow of the data, and the ways in which the data is used to drive the 
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recommendations and predictions, but also to help them by impacting the best practices 

to master the course content. Verbert and colleagues (Verbert et al., 2014) discussed 

their work centered on such an open LA model to answer questions pertaining to 

elements within LMS user activity that can be considered relevant user interactions, 

actions, and the ability of LMS to create opportunities for learners to self-reflect (on their 

progress, mastery, and overall learning). They discuss the relevance of including 

artifacts such as blogs, fora, twitter feeds, question responses, help requests, 

annotations, student-generated artifacts, social interactions, ratings, comments on 

blogs, time spent on tasks, test scores, and self-assessment results. Most of such 

artifacts within LMS are tracked via click behaviors of the learners within LMS. While 

getting information from virtual sensors hidden within LMS (e.g., time stamp trackers, 

click trackers…etc.) can accomplish the goals to some extent, they do not provide the 

full context of ongoing learning and the shifts in learning demands and social-emotional 

and affective processes. They suggest that in addition, use of physical sensors to 

capture facial expressions of learners alongside virtual sensors that can track actions of 

learners within the LMS (login behavior, contributions) are crucial to benchmarking and 

tracking the overall learner behavior. Their review provided some indication (7 out of 24 

LA dashboards) that supports evidence for better engagement, higher grades, posttest 

results (of their choice of metrics such as final exams), and improved self-assessments 

using a combination of physical as well as virtual sensors. 

Unfortunately, however, automated tracking of students via click behaviors within 

LMS are not fully capable of detecting student behaviors. For instance, evaluation 

studies reported by Verbert and colleagues (Verbert et al., 2014) also showed that 
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students rated learning dashboards very poorly due to the incompleteness of their 

context and scope. For instance, many relevant learning activities happen outside the 

LMS that are not tracked using clicks generated within LMS. For instance, a student 

might be accessing one resource within LMS only once and then study the material by 

themselves offline or they might be learning using resources beyond LMS (e.g., Khan 

Academy or YouTube videos). Furthermore, lacking comprehensive tracking is noted to 

be challenging within closed environments such as Canvas LMS since the clicks only 

represent the “tip of the iceberg” of the entire learning process (Verbert et al., 2014). 

The issue of inability to track every productive activity of the learner that leads to good 

grades can be extended to open learning models. A wide array of tools and services are 

used to drive learning within open learning models without universal standards and 

comprehensive access to all activities that go beyond the LMS (for instance, third-party 

tools can be used to promote visualizations of students’ click behaviors). This makes it 

harder to track everything the students do to gain knowledge and succeed in the 

course. There are also other issues of student privacy that go beyond the scope of the 

current work which make it difficult to track every relevant (to the learning) click 

behavior. This leads us back to the central questions of the current work: 

Can click behavior within Canvas LMS be used to predict learning quality beyond 

demographics and information about the students such as past academic records? 

If so, to what extent? If not, can we predict the students’ learning better by 

understanding the learning needs, motivations, cost-value associated with learning the 

course, and other non-academic obligations? 
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For instance, the disproportionately high rates of attrition in online learning (an 

indicator of negative motivation) has been extensively studied and by far remains the 

pressing issue of online learning as a platform that can compete with face-to-face 

learning (Bawa, 2016; Gallego & Topaloglu, 2019; Jordan, 2015; Kizilcec & Halawa, 

2015). One potential reason for the lack of sufficient work investigating the motivation 

and subsequent failure to reduce dropout rates could be due to the emphasis on 

students’ cognition while ignoring affective and social-emotional processes (Miltiadou & 

Savenye, 2003). Thus, we need to shift our focus towards understanding the complex 

behavioral experience of learning with an emphasis on behavior, early performance 

trends, demographics, intentions of study spacing, adherence to the study intentions, 

and expand our modeling efforts to include the dynamics of motivation on a daily basis. 

The overarching goal is to understand the differential predictive value of these key 

features in determining the quality of learning and the individual differences in the 

predictive values of these features beyond the click behavior. Note that the goal of 

current work is not to determine the factors that lead to the high attrition rates that 

plague most online learning platforms. Rather, the goal is to understand the predictive 

value of motivational, affective, and social-emotional processes in a fully online course 

conducted at a university setting that does not have the issues of high attrition rates 

typically noticed in private online learning platforms such as Coursera (Glance & Barrett, 

2014; Kolowich, 2013). This provides an opportunity to focus on the predictive value of 

learner-centric factors and click behaviors to the on-going learning itself rather than as a 

marker for dropout rates. 
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4.1.2. Learner-Centric Factors 

So far, I have discussed the importance of further investigating the validity of 

click behavior in predicting the quality of learning within fully online learning 

environments due to its importance, in theory and in practice. Next, I will discuss the 

need to understand the interactions of click behaviors with other important learner-

centric factors (e.g., motivation) that determine quality of learning in making predictions 

of learning. I investigate factors central to the learners, specifically, their motivations, 

goals and values, state of mind, and self-efficacy that are known to be important 

mediators of learning in online environments in predicting the grades alongside the 

students’ click behaviors within the LMS (Aldowah et al., 2019; Daud et al., 2019; 

Larrabee Sønderlund, Hughes, & Smith, 2019; Pardo, Jovanovic, Dawson, Gašević, & 

Mirriahi, 2019). There are a wide range of factors that contribute to an individual’s 

learning regardless of the learning medium (online, hybrid, or offline) that simply cannot 

be captured by click behaviors. Let us now consider the learner-centric factors that are 

explored in the context of online learning behavior that can empower predictive models 

tested in the previous chapter. 

Self-efficacy is defined as “beliefs in one’s capabilities to organize and execute 

the courses of action required to produce given attainments” (Bandura, 2010). Self-

efficacy beliefs are known to drive an individual’s thinking, feeling, motivation, and 

behavior through cognitive, motivational, affective, and selection processes. Self-

efficacy is described as the prime factor that drives human agency. However, self-

efficacy is known to be domain specific. High self-efficacy in one domain does not 

transfer to or guarantee high efficacy in another domain. However, there has been 
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some evidence to suggest that self-efficacy traits (or sources of confidence or lack 

thereof about their learning abilities) are shared between offline and online classroom 

experiences to some extent (Y. C. Lin, Liang, Yang, & Tsai, 2013). Factors such as past 

performance experiences or enactive mastery experiences (e.g., grades in the past 

courses), vicarious experiences (e.g., performance of other students in a shared 

learning experience), verbal persuasion (e.g., encouragement from an authentic 

constructive feedback), and physiological states (e.g., aversive arousal during learning 

is debilitating). However, past work specific to online learning and self-efficacy has 

shown that four key factors drive learners’ experiences. Success rates in past online 

learning experiences, training received before the start of the course, authentic 

feedback from the instructor, and anxiety related to the learning technology are all 

considered to be impactful to their journey (Alqurashi, 2016; Bates & Khasawneh, 

2007).  

In a recent review of the literature of self-efficacy in online learning environments, 

Alqurashi (Alqurashi, 2016) has discussed the three main categories that have been a 

focus of all related research conducted between 1997 and 2015:  

(i) computer self-efficacy – learners’ confidence in their ability to use a computer 

and other mobile devices,  

(ii) internet and information-seeking self-efficacy – learners’ confidence in their 

ability to search the internet for relevant information to succeed in a 

classroom, and  

(iii) LMS self-efficacy – learners’ confidence in within LMS and how it affects their 

performances within the LMS.  
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Across these three categories, the focus of research so far has been on the factors 

surrounding the confidence in using technology. For instance, Jan (2015) focused their 

work on past academic experiences with computer self-efficacy and satisfaction in an 

online classroom. Similarly, Kuo and colleagues (2014) have focused on internet self-

efficacy and its impact on online learning experiences. Research so far has shown that 

the students’ computer self-efficacy had the largest positive and significant relationship 

with online learning, satisfaction, and likelihood of taking future online courses. Internet 

and information-seeking self-efficacy on the other hand, had shown a weak to no 

relationship with classroom performances and satisfaction. LMS self-efficacy also 

showed a weak relationship with classroom performances in fully online learning 

contexts. However, LMS self-efficacy did have a significant positive relationship with 

hybrid learning.  

In summary, the existing literature is inconclusive and falls short in two important 

ways: 1. It does not speak for course-specific self-efficacy and its role in general self-

efficacy and online learning and 2. None of the existing studies investigated the role of 

changes in self-efficacy over the learning period and impact of its dynamics to learning 

experiences. The former is important to understand the fundamental nature of the 

relationship of self-efficacy and learning within online learning contexts and the latter is 

important to understand how this relationship evolves and drives learning over the 

learning period. Although computer, internet and information-seeking, and LMS self-

efficacies are related to online learning experience in some way, more research is 

needed to develop our understanding of their relationship with successful online 

learning and in lieu with other important factors that drive learning such as grade 
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expectations (self-regulated learning), goal-setting, and subjective task-value, and 

attributions.  

Self-regulated learning involves the effortful and deliberate actions that an 

individual takes in order to plan, execute, observe, evaluate, and alter behavior specific 

to different learning contexts (Nussbaumer et al., 2015). While self-efficacy speaks for 

the confidence an individual may have towards their own ability to complete a goal (i.e., 

course), it is only part of the entire story about how to complete challenging online 

courses (Cho & Heron, 2015; Hodges & Kim, 2010). It is important to maintain 

sustained motivation and necessary actions to set and accomplish goals throughout the 

learning process. These effortful and deliberate actions, referred to as regulation and 

volition, are known to be strong predictors of academic success (Corno et al., 2001; 

Gabrielle, 2003; Gollwitzer, 1999; Zimmerman, 1989). Self-regulation has been long 

established as a very important aspect of learning process. According to Zimmerman 

(1989) classic work, there are three components of self-regulation.  

(i) Behavioral component – For example, alterations to behavior based on 

observations, judgments, adjustments to performances 

(ii) Environmental component – For example, through social interactions, 

persuasion by peers, parents, or teachers, indirect peer influences such 

as class performances 

(iii) Personal component – For example, choices and actions taken to engage 

or disengage from tasks and persistence through the tasks 

Specifically, the personal component of self-regulation is directly related to self-efficacy 

of an individual since the choices and actions taken to engage with a task (or a choice 
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not to engage with the task) are directly dependent up on the confidence of an individual 

in the said task. Therefore, it is implied that while self-efficacy impacts learning at the 

beginning of the course, self-regulation impacts sustained learning. For instance, 

studies have shown that self-regulation can become impaired in online mathematics 

learning, despite high levels of self-efficacy, due to the lack of face-to-face interactions 

with the instructors and peers (Dennen, Darabi, & Smith, 2007). Despite consistent work 

showing that low self-regulation impairs online learning, very few studies have inspected 

the nature of self-regulation over the period of a course and how it alters the 

performances of individuals. Specifically in online learning contexts, self-regulation is 

said to be influencing students’ performances via various mechanisms including goal-

setting, commitments, effort regulation, and persistence (Corno et al., 2001; Kizilcec & 

Halawa, 2015). Overall, there is a need to understand the reciprocal and dynamic 

impacts of self-regulation and self-efficacy in online learning contexts. 

Goal-setting, a part of social learning theory of Bandura (Bandura, 2012; 

Bandura & Jones, 1962), is a central aspect of self-regulation. According to this theory, 

learners often set goals such as specific skill acquisition, gaining knowledge, completing 

work, securing good grades at the beginning of any activity. This is referred to as goal-

setting and has been studied alongside the many social and affective processes that 

influence learning process. Goal-setting plays a key role in the first of the three cyclical 

phases of self-regulation described by Zimmerman (2000) described as “Forethought 

phase” where a learner sets goals and plans strategically to achieve a certain goal 

which are molded by self-motivation beliefs such as self-efficacy, outcome expectations, 

and intrinsic interests, values, and goal orientations. Therefore, it is important to 
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understand how a learner within online learning setting sets goals and follows through 

with specific goals related to the course. It is also important to understand how an 

individual ranked the importance of current goals with competing goals they are 

required to accomplish during the learning period (i.e., other courses and non-academic 

goals). Recent review and meta-analysis work to evaluate goal-setting in online learning 

has shown that determining goals, time management, and effort regulation surrounding 

each goal have a strong statistically significant relationship with learners’ performances 

compared to factors such as elaboration, rehearsal, and help seeking (Broadbent & 

Poon, 2015; Richardson, Abraham, & Bond, 2012). For instance, self-regulated learning 

improved substantially in an online web-based portfolio assessment system by 

incorporating a diary where the students can set goals and keep track of these goals 

over the learning period (Chang, Tseng, Liang, & Liao, 2013). Additionally, Broadbent 

and Poon’s meta-analysis (2015) has shown that self-regulated learning and goal-

setting strategies had a weaker relationship with performance in online learning settings 

compared to face-to-face classroom experiences. They surmise that potential reasons 

for the smaller effect sizes could be due to a combination of issues such as 

measurement errors of self-regulation and engagement in online contexts, assumptions 

that self-regulation strategies work similarly in both offline and online contexts, and that 

fact that taking online courses by itself does not promote self-regulation. Additionally, it 

is important to evaluate the effects of self-efficacy, goal-setting, and the overall process 

of self-regulation during online learning by considering the second (performance and 

volitional control) and third phase (Self-reflection and self-evaluation) of the three 

cyclical phases of self-regulated learning proposed by Zimmerman (2000). The second 
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phase of this cycle is relatively straight forward where the learners engage in a learning 

activity, controlling their learning processes, and monitor their own performances over 

the learning period to fine tune their learning, perhaps, via open learning models 

described earlier (Abrami, Bernard, Bures, Borokhovski, & Tamim, 2011). The third 

phase, self-reflection, involves self-judgement via evaluations and casual attribution and 

self-reaction via notions of self-satisfaction, affective, as well as defensive responses. 

Thus, it is also important to understand the ways in which the learners’ attributions mold 

the learning within the self-regulated learning cycle triad. 

Attributions for successful academic endeavors are part of the final phase in the 

self-regulated learning cycle. Attributions refer to the interpretations a learner makes to 

make judgements about causes of own and others’ behaviors and the results of such 

behaviors (i.e., academic success or failure). In the iterative process of the self-

regulated learning, attributions play a central role because it affects as well as predicts 

several behavioral traits displayed during the learning process (Kitsantas & Zimmerman, 

2006; Schunk & Zimmerman, 2012; Zimmerman, 1989). Traits such as procrastination, 

effort, perceptions of ability, perceptions of context and external influences, and luck are 

evaluated via students’ attributional beliefs. Such beliefs are critical to the learning 

process since they act as a feedback mechanism within the self-regulated learning 

process that influence and drive the interpretations students’ make about their 

performances. The attributions are more important in online learning experiences due 

the bulk of learning and self-regulation lies with the students and peer and teacher 

interactions have little influence on student beliefs leading to negative tendencies such 

as procrastination (Klingsieck, Fries, Horz, & Hofer, 2012). To remedy the potential 
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maladaptive practices and to understand the uncertainty and unpredictability of 

influences such as novel or recurrent daily life experiences (i.e., entering a new school, 

taking a new job, babysitting to help parents, moving to a new location, dealing with 

illness...etc.), it is important to understand the students’ attributions and how they 

change over the learning period (Heckhausen, Wrosch, & Schulz, 2010). These 

attributions are not only important in learning mechanisms but also important to overall 

life-span development as well as for success and healthy aging (Haase, Heckhausen, & 

Wrosch, 2013; Schulz & Heckhausen, 1996). Specifically, at the university level, shifts 

from high school to university, having to move to a new location, increased frequency in 

failures, boredom, lack of support from professors, increased financial demands, and 

unstable social networks are identified as straining objectives that the learners’ need to 

overcome (Hamm, Perry, Chipperfield, Murayama, & Weiner, 2017; Parker, Perry, 

Chipperfield, Hamm, & Pekrun, 2018). In the current world, having to deal with a global 

pandemic while taking courses in an online environment, sometimes for the first time, 

might be considered a factor that leads to negative attributions and poor performances. 

Thus, it is important to understand the cyclical relationship and the predictive values of 

these features in an online learning environment. For instance, Perry and Hamm (Perry 

& Hamm, 2016) have shown that treatments that target negative attributions can alter 

the self-regulated learning process in a positive way by understanding the negative 

setbacks from previous unsatisfactory experiences in online learning environments, and 

promoting deep self-reflections to initiate cognitive processes that facilitate 

receptiveness and engagement which eventually lead to higher academic performances 

(Rakes & Dunn, 2015; Rakes, Dunn, & Rakes, 2013). 
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Subjective task-values (STV) of students interact with their self-efficacies to drive 

the learning and course experiences according to the expectancy-value theory (EVT - 

Eccles, 2013). According to EVT, an individuals’ learning and performance, persistence 

(or dropout from a task), and individual choices leading up to a completion (or lack 

thereof) of a task depend on the expected success rates and values attested with the 

task. In contrast to self-determination theory (Deci et al., 1991) which emphasizes the 

use of learners’ motivations to explain behaviors of students, expectancy-value theory 

describes the ways in which motivation is represented through mental processes. One 

thing to note is that expectations of task performances, while analogous to self-efficacy, 

differ in the way the self-concept of ability (expectations in EVT vs competency beliefs in 

self-regulated learning). STVs include several sub factors: 

a. Attainment value: the subjective importance of attaining success on a task 

b. Intrinsic value: the perceived enjoyment of doing the task itself 

c. Utility value: the perceived relation of the success at current task with present 

and future goals 

d. Cost: the negative emotions and feelings related to engaging in the task such as 

fear of failure, anxiety, remorse, effort required to succeed, lost opportunity by 

engaging in the current task. 

Per Eccles’ model, values are a relative worth of commodity, activity, or person and the 

consequent attraction/repulsion by the object/activity. This value is subjective due to the 

individual differences in assigned values to each task. The models show that STVs are 

a function of intrinsic value (enjoyment gained from doing the task), utility value 

(usefulness in the current and future plans of the individual), attainment (sense of self, 
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and personal goal achievement), and costs (a subjective opinion about the amount of 

effort spent on a task and the worth of doing such task). An extensive amount of work 

has shown the importance of STVs to predicting learners’ intentions as well as goal-

setting and persistence in traditional classroom environments such as for learning and 

persistence in mathematics (Meece, Wigfield, & Eccles, 1990) and to attend graduate 

school, family life, and STEM research careers (Battle & Wigfield, 2003; Tan-Wilson & 

Stamp, 2015). While not as extensive as in traditional classrooms, some evidence 

exists for the importance of understanding students’ intrinsic value (Bong, 2001, 2004), 

utility value (Yang, 2018), or the entire spectrum of subjective task values (Chiu & 

Wang, 2008; T. Lin, Imamiya, & Mao, 2008) in online learning contexts. The results of 

these students indicated that expectancies, attainment, utility, and intrinsic values, and 

negative emotions associated with failure and anxiety were moderate to strong 

predictors of performance in online classrooms along with self-efficacy and goal-setting.  

Additionally, Eccles and her colleagues’ (1983) extensive work showed that ‘subjective 

task value (STV)’ is a key determinant of goal attainment. Various studies have shown 

that factors such as self-determination, satisfaction, ARCS (attention, relevance, 

confidence, and satisfaction), self-efficacy, task value, self-determination theory (SDT) 

have a positive predictive value towards students’ performance and success rates in 

online courses and the performance is moderated by self-regulated learning process 

(Doménech-Betoret, Abellán-Roselló, & Gómez-Artiga, 2017; Gabrielle, 2003; Roca & 

Gagné, 2008; Vallerand & Blssonnette, 1992).  

 

 



145 

 

4.2. Current Study 

With the primary conclusion that the click behaviors yielded no predictive value to 

learning of students within a hybrid classroom environment, here, I look to reproduce 

the results of Study-2 in a fully online course. While a plausible outcome is that the 

results are, indeed, replicable, it is important to understand the validity of the results 

within the context of a fully online course due to the reasons explained earlier. 

Furthermore, I will investigate five important factors (Table 4.1) and affordances that are 

known to be of theoretical importance for learning as discussed earlier: self-efficacy, 

grade expectations, subjective task value, goal-setting (academic and non-academic), 

and the emotions associated with the goals (regret/satisfaction). I hypothesize that 

these learner-centric affordance measures yield more predictive value than the click 

behaviors since click behaviors do not provide context of learning and behavior and 

might be inaccurate indicators for engagement and learning.  

 

Table 4.1.  

An adaptation of MACM: theories and variables of interest and their definitions 

(McGrew, 2007). 

Theory of 

motivation 

Variables of 

interest 

Definition 

Self-efficacy theory Self-Efficacy “A person’s belief about the 

perceived causes (internal 

vs. External) for their 

success or failure. An 

internal attribution 

orientation is present when 

a person perceives their 

success or failure as 

contingent on their own 
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behavior and due to 

relatively unchanging 

personal characteristics. An 

external orientation is 

present when success or 

failure is perceived as being 

under the control of others, 

unpredictable, and the 

result of luck, chance, or 

fate.” 

Grade expectations 

(Self-regulated 

learning theory) 

Online Self-

Regulation, 

effort 

regulation, 

online 

expectations 

grade 

expectations 

A learner’s use of “self-

regulated learning 

strategies, responsiveness 

to self-oriented feedback 

about learning 

effectiveness, and their 

interdependent motivational 

processes. Self-regulated 

students select and use 

self- regulated learning 

strategies to achieve 

desired academic outcomes 

on the basis of feedback 

about learning effectiveness 

and skill” 

Subjective task 

value 

(Expectancy-value 

theory) 

Utility Value, 

interest value, 

attainment 

value, cost 

value 

“An individual’s behavior is 

a function of the 

expectancies of utility, 

interest, attainment and the 

cost consequences and the 

value of the goal the 

individual is working 

towards” 

Goal-setting theory Goal-setting – 

Helpful, list of 

other courses, 

other activities, 

completion 

“A person’s ability to set, 

prioritize and monitor 

progress towards 

appropriate and realistic 

short-(proximal) and long-
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rates and 

ranks of 

activities 

term (distal) academic goals 

that serve to direct 

attention, effort, energy, and 

persistence toward goal-

relevant activities (and 

away from goal-irrelevant 

activities)” 

Attribution theory Consciousness “A person’s beliefs, self-

evaluation, and self-

awareness regarding their 

academic-related skills and 

abilities.” 

Note. Reproduced from the Model of Academic Competence - McGrew (2017). The definitions 
are copied verbatim to retain the meaning intended by the original author. In the public domain. 
(c) Institute for Applied Psychometrics,llc 01-07-08 

 

4.2.1. Dataset (Online lower division Biology and Chemistry of Cooking Course) 

I analyzed learning behavior of 147 students, enrolled in a 5-week long online 

lower division course, Biology and Chemistry of Cooking, held at UCI in Summer 2018. 

This was an elective sophomore course that fulfills breadth requirement for non-biology 

majors. This course was implemented in a fully online environment with no face-to-face 

elements. The course consisted of 17 lectures with post-lecture quizzes that were worth 

4 possible points each, 18 reading quizzes worth 6 possible points each, two cumulative 

midterm exams, and one cumulative final exam. Additionally, the course consisted of 5 

weekly quizzes with 20 maximum points possible for each. All exams, quizzes, and 

course materials were completed online via course Canvas LMS. The aim of this study 

was to understand the predictive value of self-reported study strategy, and self-reported 

motivational dispositions listed in Table 4.1 in addition to in-class performances of 

students on their quizzes and tests, demographics, and prior performances measured 

as SATs and GPAs. The self-reported study intentions were measured using the same 
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protocol detailed in chapter 3. The motivation of each student and the dynamics of the 

motivations over the learning period were captured using questionnaires that targeted 

specific motivational dimension listed in Table 4.1. A list of sample questions that are 

used to measure motivation across constructs are listed in Table 4.2. Each construct 

was measured using standardized questionnaires listed. Each questionnaire consisted 

of 1-7 questions varying depending on the questionnaire. While many of the 

questionnaires involved measures on Likert scales, some of the questions also included 

fields for open-ended responses from the learners (see Table 4.2 for examples). 

4.2.2. Participants and study context.  

Institutional records for all 147 students are collected to identify demographics 

including age, gender, SES status, underrepresented minority status (African American, 

Native American, or Latino/a), as well as GPAs, and SAT scores (Table 1). 98% of the 

enrolled students are sophomores with an age range of 18-25 with a mean age of 19. 

40 students declined to complete the surveys and are excluded from further analysis. 8 

students dropped the course within the first 2 weeks and were not included in the final 

dataset. The final dataset consisted of 99 participants. The final dataset included slightly 

Figure 4.1 Timeline of data collection -- Data were collected using pre-course survey, post-course 

survey, weekly surveys at the end of each weeks’ learning (4 weekly surveys), and 6 daily 

surveys at the end of each day during week 3 (excluding Sunday). 
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more female students (56%) than male students and 60 (41%) students reported 

minority status. 59% of the students reported that they were taking an online course for 

the first time. Students were requested to respond to surveys before and after the 

course (Pre-and post), Once every week for the weekly surveys, and once every day for 

the daily surveys during week 3 (Figure 4.1).  
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Table 4.2 

A list of sample questions by construct used as predictors for the full predictive model in Study-3 

Name of the 

variable 

Pr

e 

Po

st 

Construct Sample questions Response values Brief Description 

Course 

Goals 

x   Motivation for 

Taking Course 

Please select all your goals for 

taking this course 

1=Get a high grade, 2=Just 

pass the class, 3=Learn the 

material thoroughly, 4=Learn 

specific parts of the material 

that I'm especially interested 

in, 5=Get better at cooking, 

6=Broaden my interests, 

7=Other 

goals for this 

course 

        What is the goal you wish to 

accomplish by taking this 

course? 

open-ended  goals for this 

course – open 

ended question 

Study Days x x Course Plan – 

Study Intentions 

How many days of each week 

will you work on this course? 

1 to 7 days per week you 

will work on course 

Study Plans x   Course Plan – 

Study Intentions 

Would you say you have a study 

plan for the course? 

0=no, 1=yes have a study plan 

for the course 

        What are your study plans for 

this course? 

open-ended   

Change in   x Course Plan – Think about the study plan that 0=No, I stuck to my study changed study plan 
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Name of the 

variable 

Pr

e 

Po

st 

Construct Sample questions Response values Brief Description 

study plans Adherence to 

Intentions 

you had at the beginning of the 

course. Did you end up 

changing your study plan? 

plan, 1=I never had a study 

plan, 2=Yes, I changed my 

study plan a bit, 3=Yes, I 

changed my study plan a lot 

for the course 

Study hours x x Course Plan – 

Study Hours 

On average, how many hours 

per week do you plan to spend 

on all aspects of this course? 

1 to 40 hours spent per 

week? 

Grade 

wanted 

x x Grade 

Expectations 

What grade do you want to get 

in this course? 

13=A+, 12=A, 11=A-, 10=B+, 

9=B, 8=B-, 7=C+, 6=C, 5=C-, 

4=D+, 3=D, 2=D-, 1=F 

wanted grade 

Grade 

expected 

x x Grade 

Expectations 

What grade do you expect to get 

in this course? 

13=A+, 12=A, 11=A-, 10=B+, 

9=B, 8=B-, 7=C+, 6=C, 5=C-, 

4=D+, 3=D, 2=D-, 1=F 

expected grade 

Other 

courses 

x x Other Courses – 

Course load 

How many other courses are 

you taking this summer? 

1=0, 2=1, 3=2, 4=3+ number of other 

courses taking 

Importance 

of course 

x x Other Courses – 

Relative Course 

Importance 

Compared to other courses you 

are currently taking, how 

important is this course? 

4=Most important, 3=Second-

most important, 2=Third-most 

important, 1=Fourth-most 

important 

importance 

compared to other 

courses 

Other 

activities 

x   Other Activities 

List 

What other important activities 

do you plan on doing in July 

while completing this course? 

(e.g., working for pay, caring for 

family members, taking another 

open-ended other activity 1-15 
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Name of the 

variable 

Pr

e 

Po

st 

Construct Sample questions Response values Brief Description 

course, playing sports, 

completing home projects, etc.) 

Other 

activities 

completion 

rate 

  x Other Activities 

Completion 

At the beginning of the course, 

you said you planned on doing 

the activities below. Did you end 

up doing them? 

0=No, 1=Yes actual completion 

of other activity 1-

15 

Course rank x x Other Activities 

Rank 

Please drag and drop your 

responsibilities during this 

course in order from most 

important to least important  

1 to 16 importance rank of 

course 

responsibilities 

Other 

activities 

rank 

x x Other Activities 

Rank 

Please drag and drop your 

responsibilities during this 

course in order from most 

important to least important  

1 to 16 importance rank of 

other activity 1-15 

Hours spent 

on other 

activities 

x x Other Activities 

Time 

On average, how many hours 

per week will you spend on each 

of these activities in the month of 

July? 

0 to 40 hours per week on 

other activity 1-15 

Online self-

regulation 

x x Online Self-

Regulation 

how often do you work in a 

place where you can read and 

work on assignments without 

distractions? 

slider: 1=Never, 5=All the time work where there 

are no distractions 

(study habits) 

Effort 

regulation 

x x Effort Regulation I often feel so lazy or bored 

when I study for this class that I 

slider: 1=Strongly disagree, 

5=Strongly Agree 

often feel lazy or 

bored studying 
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Name of the 

variable 

Pr

e 

Po

st 

Construct Sample questions Response values Brief Description 

quit before I finish what I 

planned to do 

Online 

expectation

s 

x   Online 

Expectations 

When taking an online course, I 

expect to perform... 

slider: 1=Not at all well, 7 = 

Very well 

expect to perform 

well in ol course 

Self-efficacy x x Self-Efficacy I’m certain I can master the skills 

taught in this course 

slider: 1=Not true at all, 5 = 

Very true 

can master skills in 

this course 

Utility value x x Utility Value How beneficial for your daily life 

is understanding the biology and 

chemistry of cooking? 

slider: 1=Not beneficial at all, 

7 = Very beneficial 

course beneficial 

for daily life 

Interest 

value 

x x Interest Value How often do you wonder about 

the science behind cooking? 

slider: 1 = Never, 7 = Very 

often 

wonder about 

science of cooking 

Attainment 

value 

x x Attainment Value How important to you, 

personally, is it to be a person 

who understands the science 

behind cooking? 

slider: 1=Not at all important, 

7 = Very important 

important to be a 

cooking science 

person 

Cost value x x Cost Value 

(Emotional) 

How stressful will this class be? slider: 1=Not at all stressful, 7 

= Very stressful 

class will be 

stressful 

Attributions   x Consciousness I see myself as someone who ... 

does a thorough job 

1 = Strongly disagree, 3 = 

Neither agree nor disagree, 5 

= Strongly agree 

I do a thorough job 

Attributions x   Persistence How likely are you to stay slider: 1=Not at all likely, 7 = likely to stay in this 
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Name of the 

variable 

Pr

e 

Po

st 

Construct Sample questions Response values Brief Description 

enrolled in this course? Very likely course 

Adherence 

to 

Intentions 

  x Activities Preparing for classes (studying, 

reading, writing, homework, lab 

work, etc.) 

(0) 0 hours per week ... (1) 1-

5 ... (2) 6-10 ... (3) 11-15 ... 

(4) 16-20 (5) 21-25 ... (6) 26-

20 ... (7) 31+ 

hours spent 

preparing for 

classes each week 

Goal setting   x Goal Setting 

Helpful 

In the paid surveys during the 

course, you were asked to list 

your planned activities and goals 

for each day or week. Do you 

remember doing this? 

0=no, 1=yes remember goal 

setting 

 Goal 

setting 

  x Goal Setting 

Helpful 

To what extent did you find 

planning daily or weekly 

academic activities was helpful? 

- Planning daily academic 

activities 

slider: 1=not helpful at all, 

7=absolutely helpful 

planning daily 

activities helpful 

Note. A full set of construct items are listed in Appendix A, Table A.1. 
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4.2.2. Survey Design  

Pre-survey was assigned three days before the course began. Students were 

requested to complete the pre-survey in four days. In the pre-survey, students were 

asked whether they were interested in participating in the study. The post-survey, 

however, was activated on the day after the last lecture and was due before the final 

exam (thus obtaining final grade expectations before taking the final exams). A sample 

list of questions asked during pre- and post-survey are listed in Table 4.2.  

Weekly surveys were given four times in total throughout the class. Each weekly 

survey was due two days after the due date of their first four weekly reviews. Survey 

questions mainly collected information on students’ activity plans for the incoming week 

and their change of grade expectations. 

Daily surveys were assigned to students in week 3, every day from Monday 

through Saturday. Students were asked about their reflections of the activities and 

priorities for the past day, to what extent those activities were accomplished, the 

associated emotions with each of the task completion rates, and their activity plans for 

the next day. 

Most of the questionnaires were implemented using QualtricsTM (Qualtrics, 2016) 

since the adaptive algorithms on the platform can be used to generate formative 

questions. In other words, responses from one question can be used to generate 

subsequent questions that are used to follow-up the next day. For instance, one of the 

questions in the daily surveys asked each student “what activities are you going to do 

today (relevant to this course)?” If, say, a student responded to the question with “watch 

videos”, or “office hours”, the follow up questions asked subsequently included the 
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student’s own responses as part of the question. For example, a sample follow up 

question was “How likely is it that you will do this task: watch videos?” Similarly, a follow 

up question asked on the next day’s daily survey included, “Yesterday, you said you 

were going to watch videos. To what extent did you complete it?”. Furthermore, the list 

of responses on the activity questions were also integrated into follow up questions that 

required the students to drag and drop the list items into their respective rank order 

based on the importance of the activity. This approach allowed us to understand the 

students’ academic needs, other academic (i.e., other courses) and non-academic 

commitments, and intentions of academic activities in detail and an opportunity to 

follow-up on the implementation rates of each activity. 

Survey data consisted of quantitative and qualitative (open-ended) 

questionnaires. The survey data included an aggregate of 1343 survey variables (due to 

the repeated measures of variances of motivation and affective processes using the 

pre-post, weekly, and daily surveys) that are based on standardized questionnaires 

(Appendix A, Table A.1). The surveys measured a range of variables that included 

expectancy-value, self-efficacy, self-regulation, intrinsic and extrinsic motivation, goal-

setting and implementation intentions, planned behavior relevant to the academic and 

non-academic activities, achievement goal orientation, task autonomy, task challenge, 

and emotions related to the course performance. The current analysis included survey 

data that measured the five constructs of interest that I have discussed earlier, due to 

their strong purported predictive value in online learning contexts. 
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4.2.3. Measures 

Demographic variables. A wide range of variables were collected from the 

UCI’s institutional records once the course was completed (after post-test). These 

measures included age, gender, low-income status, part-time status, first-generation 

status, race/ethnicity, SAT scores, and high school GPAs. 

Grades. Students’ performances were recorded from all the graded assignments 

which were provided by the instructor. These included lecture quizzes (18 which were 

part of lectures conducted online), reading quizzes (18 which were conducted as part of 

the reading materials or lessons assigned), weekly review quizzes (5 – comprehensive 

quizzes conducted each week), two midterms, and one final exams. Following the 

protocol from Study-2, we used weekly review quizzes for predicting weekly 

performances of the students, while reading and lecture quizzes were used as features. 

These were collected after post-test. 

Self-efficacy. Students’ self-efficacy was operationalized as a measure of 

confidence in taking the course using five items. Statements such as “I am certain I can 

master the skills taught in this course” and “I can do almost all the work in this course if I 

don’t give up” were provided to the students who were then required to rate those 

statements on a scale of 1 (Not true at all) to 5 (Very true). Higher ratings implied better 

self-efficacy. These were measured the pre- and post-test surveys. This was included 

as a feature for predictions of performance on first quiz as well as for final exam. This 

measure was not included in the weekly quiz performance predictions. 

Self-regulation. Students’ self-regulation was measured using four sets of items: 

grade expectations, online expectations, online self-regulation, and online regulation. 
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Students’ expectations pertaining to grades were obtained by 3 survey items. We asked 

students to report the grade they wanted, grade they expected, and the worst grade 

they could get that is considered acceptable. All grade expectations were obtained in 

the form of letter grades. Students’ online learning expectations were obtained with two 

items. We asked students to rate their online learning performance expectations on a 

scale of 1 to 7, higher being better. Students’ online-regulation was obtained from seven 

items where the students were asked to rate their self-regulation within online 

environments such as maintaining distraction free learning environment, tracking 

assignments on Canvas…etc., on a scale of 1 to 5, higher being better. Students’ effort 

regulation was measured using 6 items, on a scale of 1 to 5, higher being better. We 

asked students regarding their effort and persistence through course work (see 

Appendix A, Table A.1). These measures were conducted during pre-, post-, weekly- 

and daily-surveys. Average of each weeks’ scores were used to predict the review quiz 

performance for that week. All of the self-regulation measures were included in pre-, 

post-, weekly-, and daily-surveys.  

Grade achievement. Students’ final grades were subtracted from their expected 

grade to derive grade achievement measures. 

Motivation. Following the Expectancy-Value Theory of motivation (Eccles, 

2013), motivation was operationalized using the expectancies of success within the 

course and the values attached to the course. We measured utility value using five 

items, interest value using four items, attainment value using 3 items, and cost value 

using 3 items each for emotions, loss of valued alternatives, and outside effort. All of 

these items were adapted from Gaspard et al. (2015) and have been described by 
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McPartlan (2020). These measures were collected during pre-, post-, weekly-, and 

daily-surveys. 

Goal-setting. Students’ goal-setting were measured with items that asked about 

their study plan for the course (spacing or cramming intentions similar to Study-2), 

number of days in each week do the students intend to study for the course, total 

number of courses taken in that academic quarter, course importance compared to 

other courses being taken, other planned activities, time spent of academic activities, 

and time spent on non-academic activities. In addition, the students were asked to rank 

their course activities in relation to other courses and non-academic activities planned. 

We also asked the relative interest in the current course compared to other courses. We 

asked the students the amount of time they intend to spend on all other activities in a 

given week on a scale of 0 to 40 hours. Finally, we asked students about the completion 

rates of each task and used an aggregate measure based on these responses to 

understand task-completion rates as well as implementation of intentions. This acted as 

a proxy quantitative measure of students’ self-efficacy and diligence towards tasks. This 

measure was collected at pre- and post-tests. 

Attributions. Students’ attributions were measured using 6 items at post-test. 

Statements such as “I see myself as someone who… does a thorough job/is a reliable 

worker/ tends to be lazy” were provided. Students rated themselves on a scale of 1 

(strongly disagree) to 5 (strongly agree). All negatively-coded items’ scales were 

reversed for consistency in the final analysis. For instance, 5 on a negatively-coded item 

was changed to 1. These measures were collected during pre-, post-, weekly-, and 

daily-surveys. 
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Click data – total course activity per day. Students’ total clicks per day were 

measured by summing up the total clicks the students made on the Canvas course 

space.  

Click data – frequency of course activity per quiz. We measured the 

frequency of clicks per assignment by counting the total number of clicks a student 

made on each web page specific to the review quiz each week. 

Click data – spacing. We measured an estimate of “spacing” of each student’s 

clicks by measuring the total number of clicks made each day of the week (Monday 

through Sunday). This acts as a proxy objective measure of spacing (clicks are spread 

throughout the week) or cramming (clicks are focused on a single day, typically on 

Tuesday since the weekly review quiz was due on Wednesday). We also included an 

alternate measure of spacing, by calculating the days between the assignment due date 

and first attempt to submitting that assignment. This measure also acted as a proxy for 

procrastination behaviors since, procrastinators (planned or otherwise) tend to submit 

the assignments in the last minute/hour (McPartlan, 2020). 

Other activities – open ended questions. Apart from quantitative variables, the 

surveys also contained open-ended questions. Specifically, we asked the students to 

report course-related activities and other important non-course-related activities they 

planned to do. Since these open-ended questions lacked conclusive answers, we 

attempted to group free responses into several major categories through unsupervised 

clustering algorithms. Once the categories were found, we could label students’ 

answers correspondingly, turning indeterminate variables into categorical variables that 

would replace each open-ended response with a category that the open-ended 



161 

 

response would represent. These categories were used for training the predictive 

models. To accomplish this goal, we adapted two popular unsupervised clustering 

methods: 1) KMeans and 2) Latent Dirichlet Allocation. 

KMeans is a classic distance-based unsupervised clustering method, first 

introduced by Lloyd (Lloyd, 1982). Based on the pre-selected K number, KMeans will 

randomly assign K partitions each with a random centroid, which are iteratively reset by 

reassigning each point to the nearest center (by calculating distances between each 

data entry to the centroids), reassigning data to its nearest centroid, and then updating 

the centroid locations until the centers do not move any further. Once KMeans 

converges, each data will be allocated to a group respective to its assigned centroid. 

The algorithm is considered “straightforward” but selecting the K number of centroids 

and validating the clusters is necessary. In order to find the optimal K, we fit the 

KMeans model on the preprocessed (see below) open-ended questions using K number 

ranging from 2 to 8, as we did not expect more than 8 major activity categories after 

reading the open-ended responses. We derived sum of squared errors for each K and 

picked four clusters based on the “elbow-effect”, similar to a scree-plot in PCA. We 

validated the clusters by generating word cloud plots of the four identified clusters for to 

check whether the words in those clusters are human-interpretable.  
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Latent Dirichlet Allocation (LDA) is a recent topic modeling technique that utilizes 

hierarchical Bayesian models to obtain inference on topic and word distributions (Blei, 

Ng, & Jordan, 2003). LDA assumes each students’ response as a “bag-of-words” which 

clusters commonly co-occurring words as topics. LDA assumes that these bag-of-words 

follow a certain topic distribution (i.e., a sequence of words are correlated with all 

antecedent and subsequent segments) and that each topic has its own word distribution 

(e.g., progressive sequential dependency). From the topic distribution, we can learn 

which topic the response most likely consists of, and according to the word distribution, 

we can observe which several words contribute most to the topics. Since LDA also 

requires the pre-selected K number to determine the number of expected topics, we 

chose the K number from 2 to 8. To evaluate the trained LDA models, we utilized the 

coherence score - a metric that measures semantical compactness of topics. Given that 

there are many existing coherence score computing methods, we chose the one with 

 

Figure 4.2. (a – top panel) word clouds -- generated through Kmeans approach. KMeans 

found four optimal clusters. (b – bottom panel) Word clouds generated using LDA 

method. LDA found four optimal topics. 

 

a 

b 
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the best coherence measure performance, C_v, as discussed by Roder et al (2015). 

After deriving the coherence scores for each of the K topics, the K number associated 

with the highest coherence score was selected. 

Before fitting the models on the raw students’ responses, we employed several 

NLP preprocessing techniques on the open-ended response text data. For the sake of 

consistency, we lower-cased and lemmatized every word (e.g. “Better” will be converted 

to “good”). To avoid extremely low- and high-frequency words, we only considered  

words that appeared at least 5 times and at most 500 times among all responses 

following the protocol described by Alteras and Stevenson (2013). We also removed 

commonly used non-informative words or “stop words”, such as “a/an” and “s/he/it.” 

Lastly, we took advantage of Tf-idf (term frequency-inverse document frequency) to 

weigh each word according to their relevance in each students’ response, so that a 

common word would weigh less than a rare word in one sentence (Ramos, 2003). After 

pre-processing the open-ended question responses, we followed the procedures of 

each unsupervised clustering method discussed above and obtained four clusters using 

LDA, similar to Kmeans. Results of both approaches are shown below - Figure 4.2.(a) 

for KMeans clusters and 4.2.(b) for LDA topics. 

Figure 4.3. LDA generated word clouds -- for students’ course-related activities. LDA found 

three optimal topics. 
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For “other activities” open-responses, of the four clusters KMeans produced, 

cluster 1 was significantly larger (~1500 responses) than the other three clusters (~250 

responses each). Though there were overlaps, we were able to reliably label cluster 1 

as “Class/Friend”, cluster 2 as “Work”, cluster 3 as “Personal/Family”, cluster 4 as 

“Another Course”. In contrast, LDA generated much cleaner word clouds because only 

important words in each topic were plotted. Similar to KMeans, we generated 4 

labels/categories for the topics in the same order as the clusters. While both 

approaches derived the same number of clusters and same topic models, since LDA 

provided relatively less noisy data, we used the results from LDA to label our data. 

Following a similar approach, we were able to generate a variable with three 

categorical labels for “course related activities” of students using the LDA method. 

These clusters were labeled, “Quizzes”, “Lecture videos”, and “discussion/reading 

guide” (Figure 4.3). 

Figure 4.4. Final grade distributions for Study-3 
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4.2.4 Outcome Measures or Target Variables 

 Similar to Study-2, there were four outcome measures of interest (two each for 

regression and classification models): (a) Students’ performances on weekly review 

quizzes. The review quizzes were held on Wednesdays each week (5 in total) with a 

maximum possible score of 20 points each. This acted as our intermediary prediction 

a b c 

e d 

Figure 4.5. Weekly review quiz score distributions -- from week 1 through week 5 (Panels 'a' through 'e'). 
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targets for regression models, much like predicting session by session performances in 

WM training from Study-1, (b) above or below median performance on weekly review 

quizzes. Students were divided into two equal groups for our classification modeling of 

each week’s performance, (c) Final scores – which were a weighted sum of 

performances across the course with 100 being the maximum possible  

points, and (d) above or below ‘B+’ final grade consistent with Study-2. The distributions 

of final scores are shown in Figure 4.4. Individual review quiz score distributions are 

shown in Figure 4.5 panels (a) through (e) respectively for each week’s review quiz. 

Table 4.3 shows the mean, median, standard deviation, and ranges for all 5 review 

quizzes, averages for the average reading quiz scores, average review quiz scores, and 

average lecture quiz scores. 

 

Table 4.3.  

Descriptive statistics for the review quizzes, average reading quiz and lecture quiz 

scores. 

  
Review 
quiz 1 
grade 

Review 
quiz 2 
grade 

Review 
quiz 3 
grade 

Review 
quiz 4 
grade 

Review 
quiz 5 
grade 

Average 
reading 

quiz 
score 

Average 
review 

quiz 
grade 

Average 
grade on 
lecture 
quizzes 

N  147  147  147  146  147  146  146  147  

Missing  22  22  22  23  22  23  23  22  

Mean  15.6  16.3  15.4  16.0  15.7  5.10  15.9  3.68  

Median  16  18  17  17.0  18  5.39  16.6  4.00  

Standard 
deviation 

 4.43  4.33  4.94  4.51  6.06  0.94  3.19  0.69  

Minimum  0  0  0  0  0  1.51  3.60  0.00  

Maximum  20  20  20  20  20  6.00  20.0  4.00  

 

4.3. Research Questions and Hypotheses 

As discussed earlier, studies have shown that dynamics of motivation and mood 

are linked to processes of learning, decision making, and changes in behavior (Madigan 
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& Bollenbach, 1986; Eldar, Rutledge, Dolan, & Niv, 2016). To understand the integrative 

behavior of learning as a dynamic process, it is important to understand the nature of 

the dynamic processes that are associated with performances of learners (Cattell & 

Child, 1975), and to predict the trajectories of learners accurately. In the review of the 

literature relevant to the effects of all the motivation social-emotional, and affective 

dimensions listed in Table 4.1, I discussed the two important shortcomings of the 

existing work – the prevalent use of click behaviors to predict learning outcomes 

disregarding the value of context-agnostic click behaviors, and the lack of studies that 

sought to understand multiple dimensions of dynamics of the discussed factors 

together, over the learning period, to predict learning over the course (Mayer, 2014). 

Unlike human personality, motivations and moods of individuals vary by situation, by 

day, by experience, which in-turn effect the learning and performance of individuals 

(Dayan & Daw, 2008). Therefore, the current work will focus on understanding the 

dynamic nature of these dimensions to predict the learning outcomes throughout the 

learning period. In the end, the goal of the current work will be to identify learners who 

have relatively stable performances overtime despite the variances in motivations which 

might indicate that these types of learners might be rigid to changes in motivations and 

vice versa (to detect highly labile learners whose performances may change with 

change in motivation and affective processes). In Study-3, I will build on the existing 

models from Study-2 to understand the predictive value of the intraindividual variabilities 

in these dimensions of interest that may facilitate better predictions. To accomplish this 

goal, Study-3 is driven by three research questions that explore the predictive value of I 

seek to answer the following research questions - 
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RQ 1 – To what extent can we predict students’ performance on weekly review 

quizzes and final grade using demographics and reading and weekly quiz scores? 

RQ 2 – Can click behaviors improve predictions of models from RQ (1)? If so, 

which of the click behavior features has the highest predictive value? 

RQ 3 – Can motivational and affective measures and their dynamics improve 

predictions of models from RQ 1 and RQ (2)? If so, which of the motivational and 

affective features carry the highest predictive value? 

Addressing these RQs have several purposes. First, since we seek to validate 

our results from the earlier two studies, our focus in RQ 1 is to understand if we can 

predict later learning from early learning trends on a weekly basis as well as use the 

weekly trends to predict the final grades. As before, we will use two different models, 

one with and one without demographics, to understand if demographics have predictive 

value beyond actual performances in the course. I hypothesize that demographics carry 

high predictive value during early learning predictions, but later learning can be 

predicted from early learning trends alone (i.e., without the need for demographic 

information) since demographics carry diminishing returns for predictions in our studies- 

1 and 2. Next, our focus in RQ 2 is to understand if click behaviors can be used to boost 

our predictions from RQ (1). This model will be similar to the third model from Study-2 

(i.e., model which includes demographics, past performances, and in addition, 

measures of click behavior). I hypothesize that click behaviors have very little value in 

prediction accuracies since the measures of clicks, as I have argued earlier, do not 

provide any context to students’ learning nor do they act as a good behavioral indicator 

of students’ changing motivational, social-emotional, and affective needs and demands. 
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Finally, our focus in RQ 3 is to understand if the survey metrics that directly ask the 

students about their own motivational, social-emotional, and affective processes will add 

predictive value. This fourth model will illuminate the value of collecting survey data 

from students throughout the learning process, specifically, about their learning habits, 

other priorities, task values, self-efficacy, and emotions associated with success in 

course towards predicting their learning. Since our predictive models are going to 

include all these features, we have the opportunity to understand their relative 

importance in predicting their learning on a weekly basis and in predicting their overall 

grades. 

4.4. Analytical approach. 

Study-3 follows a similar protocol for data analysis as discussed in Study-1 and 

Study-2. Due to the nature of the target variables discussed earlier, we used: 1) 

regression models to predict students’ weekly review quiz performances and final 

scores, and 2) classification models to classify students as “above” or “below” median 

performers for the weekly quiz performances and “above B+” or “below B+” for students’ 

final grades. In general, the regression models estimate the relationship between the 

target and explanatory variables by fitting a curve to the data points so that the 

distances between the curve and target data are minimized. Specifically, we started with 

a multiple linear regression model and compared the results with a 2nd order polynomial 

regression to account for variable interactions. On the other hand, classification models 

project the selected features into a hyper-dimensional feature space, generating a 

hyperplane to classify the data into required categories, specific to the problem (i.e., 

“below B+” vs “above B+” or “below” vs “above.”) We tested the two identified binomial 
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classification models - Logistic Classifier (LC) and Random Forests (RFs) following the 

WEKA toolkit protocol discussed earlier to compare these algorithms (Ian H Witten et 

al., 2011). The optimal regression/classification models were selected based on a two-

step performance criteria: a) three-fold cross-validation: the data were randomly split 

into three equally-sized groups (33 students each), where one group was held out as 

the testing set and the other two were used as the training set at a time repeated until 

each group had become the testing set once. Then, we used the average of several 

metrics described earlier (i.e., RMSE, adjusted R2 for regression models and Accuracy, 

Precision, Recall, and F1-score for classification models) on the testing set to determine 

the robustness of the models. b) The data were shuffled randomly at 50 unique seed 

locations (the point of reference for the division of the two subsets listed above) followed 

by the repeated measurement of each of the metrics 50 times. The two-step approach 

was used to ensure the predictions’ robustness and generalizability to new datasets that 

are similarly structured (Iguyon & Elisseeff, 2003; Tang et al., 2014). 

First, we collected raw, declassified data into csv files and preprocess the data 

(i.e., cleaning the formatting inconsistencies, and dropping missing data that do not 

have results on key outcome variables listed below). Then we extracted the preliminary 

features of interest (such as categorizing and making dummy variables of the outcome 

measure into “above B+” or “below B+” performers.) Next, we sampled the data by 

dividing the data using the 3-fold approach discussed earlier. Cleaning of data was 

performed using a three-step approach discussed in the previous chapter. In summary, 

all features with more than 10% missing values were dropped, features with low 

variance were dropped, features with high correlations were collapsed into a single 
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variable (for instance, since all five items in the self-efficacy questionnaire showed very 

high bivariate correlations (>80%) we used the average self-efficacy as a feature 

instead of the individual features). In addition, the dimensionality of the datasets is 

reduced by dropping features with no predictive value and those that have no mutually 

exclusive information (for instance, dropping standardized English language test scores 

which were only available for 2 students). This further reduced the number of features 

used to build the prediction models for the listed RQs. Furthermore, we standardized all 

the performance measures for pre-lecture quizzes, reading quizzes, weekly review 

quizzes, mid-terms, and final exams into percentages for consistency since the scales 

for these variables were different. The final steps of analysis included training, 

hyperparameter optimization (correcting for false positives and false negatives using a 

5% validation dataset from the training dataset), and post-processing (final model 

selection and calculating performance metrics for the selected model) and then testing 

and evaluating the model separately for RQ (1), RQ (2), and RQ (3). All of the features 

used to answer the three RQs are provided in Table 4.4. There were a total of 5 models 

that were used to answer the three RQs. First model was a Baseline model that 

predicted learning on each week’s review quiz using randomly generated noise around 

the true mean and standard deviation of the average quiz performances in week 1. 

Since there is no real data to predict from, similar to Study-1 and Study-2, the resulting 

accuracies and Adjusted R-squared were poor. Next, to answer RQ 1 we used two 

models – ‘a’ and ‘b’ – similar to the two previous studies. RQ 1 – model a used only the 

quiz scores to make predictions. RQ 1 – model b used quiz scores as well as 

demographic information. We expected that the model b would significantly outperform 
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model a first the first three weeks of the predictions. Models a and b predictions were 

expected to be similar after converging at third week. Next, to answer RQ 2, we used a 

model that included everything from RQ 1 – model b and study intentions such as 

spacing and click behaviors, similar to Study-2’s final model. We expected the results to 

be similar or slightly better (if the click behavioral measures positively predicted the 

performance unlike in a hybrid classroom). Finally, to answer RQ 3, we used the model 

from RQ 2 and included the dynamics of learner-centric measures. We expected that 

this model will yield the highest predictive accuracies compared to the rest of the 

models since understanding learner-centric features are known to be directly relevant to 

their learning outcomes. All five models used data from week 1 quiz scores, survey 

responses, and pretest-only measures for predicting week 1 performances in the first 

step. The 2nd step included data used for 1st step as well as week 2 quiz performances 

and survey responses, and so forth. During week 3, in addition we included the daily 

survey responses for each of our learner-centric features of interest. Validation 

accuracy of Random Forest model was higher (96%) than that of Logistic Classifier 

(89%). Therefore, we used RFs for all further classification analyses. Multiple linear 

regression resulted in slightly better results overall compared to the non-linear model. 

Thus, all results of regressions presented below are from the multiple linear regression. 

All of the analysis and results are also available in the Github repository link provided at 

the end of this document. All results reported below are for the testing dataset only 

(since the training dataset prediction accuracies and R-squared are not a good indicator 

of model performances). All testing dataset predictions were consistently within 10% of 

the training dataset predictions, implying no overfitting of models occurred. 
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Table 4.4 

Models tested and list of features included in each model variant. 

model Baseline model RQ 1 - model a  RQ 1 - model b RQ 2 RQ 3 

overview (random data generated 

using average quiz scores 

and standard deviations) 

(students' 

performance on 

tests) 

 (RQ 1 model a + 

demographics) 

(RQ 1 model b + 

spacing intentions 

and click behaviors) 

(RQ 2 + dynamics of 

learner centric metrics) 

      

features random noise average weekly 

lecture quiz 

performance 

average weekly 

lecture quiz 

performance 

average weekly 

lecture quiz 

performance 

average weekly lecture 

quiz performance 

  
average weekly 

reading quiz 

performance 

average weekly 

reading quiz 

performance 

average weekly 

reading quiz 

performance 

average weekly reading 

quiz performance 

  
midterm 

performance 

midterm 

performance 

midterm 

performance 

midterm performance 

   
age age age 

   
gender gender gender 

   
low-income status low-income status low-income status 

   
part-time status part-time status part-time status 
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model Baseline model RQ 1 - model a  RQ 1 - model b RQ 2 RQ 3 

   
first-generation 

status 

first-generation 

status 

first-generation status 

   
high school GPA high school GPA high school GPA 

   
SAT scores SAT scores SAT scores 

    
study spacing 

intention 

study spacing intention 

    
change in study plan change in study plan 

    
click-data total 

course activity till 

date 

click-data total course 

activity till date 

    
click-data frequency 

of course activity per 

quiz 

click-data frequency of 

course activity per quiz 

    
click-data spacing click-data spacing 

     
grade expected 

     
grade expectation 

achievement 

     
number of other courses 

     
course importance rank 
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model Baseline model RQ 1 - model a  RQ 1 - model b RQ 2 RQ 3 

     
course interest rank 

     
time spent on course 

     
time spent on other 

activities 

     
activity completion rates 

     
average self-efficacy 

     
average online self-

regulation 

     
average effort regulation 

     
average utility value 

     
average interest value 

     
average attainment 

value 

     
average cost value 

     
average attributions 

      

 



176 

 

 

4.5. Results 

RQ 1 – To what extent can we predict students’ performance on weekly review quizzes 

and final grade using demographics and reading and weekly quiz scores? 

Figure 4.6 shows the results of the multiple linear regression model that is used 

to answer RQ 1 (regression problem). Baseline model is shown in black. As expected, 

the baseline model performed poor compared to the other two models (RQ 1a shown in 

orange and RQ 2 b shown in blue). As expected, RQ  1 b performed better than both 

RQ 1a and Baseline models during the first three weeks. However, convergence did not 

occur until week 5. The maximum adjusted R-squared achieved by baseline model was 

Figure 4.6. Results from the regression models for RQ1 -- predicting the weekly review quiz 

scores using the features listed for RQ 1 - model a and RQ 1 - model b in Table 4.4. 



177 

 

0.14, whereas the maximum adjusted R-squared achieved by RQ 1a and RQ 2 b were 

0.62 and 0.63, respectively for week 4 predictions. 

Figure 4.7 shows the results of the RF model that is used to answer RQ 1 

(classification problem). As before, Baseline model is shown in black. As before, the 

baseline model performed poor compared to the other two models with prediction 

accuracies close to chance around 48% for all 5 weeks. Classification accuracy for RQ 

1a is shown in orange and RQ 2 b is shown in blue. Akin to the regression problem, RQ 

1b outperformed both RQ 1a and Baseline models during the first three weeks. 

However, convergence did occur at week 4 after which there was no difference between 

the two models’ performance. The maximum classification accuracy achieved by 

baseline model was 0.48, whereas the maximum classification accuracy achieved by 

RQ 1a and RQ 2 b were 0.78 and 0.79, respectively for week 5 predictions. In addition, 

the final grade classification accuracies (which used data from posttest survey data and 

average performance on all 5 review quizzes) for RQ 1a and RQ 1b were 0.80 each and 

the adjusted R-squared was 0.65.  

Overall, the results from these three models shed similar light as the two studies 

discussed earlier. Baseline models that do not use any actual learner performance data 

tend to do poorly compared to the rest of the models. This is expected and required for 

the approach being used to be valid for further modeling. If the results of the Baseline 

model are (abnormally) high, there would be no validity for the results from the rest of 

the results. Next, results suggest that the trends we have seen from the other two 

models persist. During the early learning phase, since the predictive models cannot 

learn from the students’ performances (for instance, the variance from the performance 
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of week 1 alone are insufficient to reliable predict later learning), predictive model RQ 

1b seeks to find associations between the demographic features to the performances in 

order to better predict the students’ quiz scores or to classify them as “above” or “below” 

median performers. Once the models tend to achieve a better understanding of each 

students’ performance, the results of the model without these demographic data tend to 

keep up with the model with demographic data. If we assume that the students’ early 

learning is a result of the demographics and the amount of subject knowledge that they 

bring to the table, it is reasonable to hypothesize that the model with this critical 

information tends to outperform the model without these data. However, once the 

predictive models learn and relearn their classroom performances, the predictions 

become as reliable as the models with the demographic data. These results suggest 

Figure 4.7. Results from the classification models for RQ1 -- predicting the weekly review quiz 

scores using the features listed for RQ1 model a and RQ1 model b in Table 4.4. 
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that, knowing the background of a learner is critical to making reliable and better 

predictions of their later learning.  

Results show that the maximum prediction accuracy achieved by the two models 

is highest towards the end of the 5-week learning period at around 79%. This is 

significantly lower than the prediction accuracies on the WM training data (90%) halfway 

through the learning period. This supports our hypothesis that making predictions of 

learning within a skill-acquisition context is relatively easier compared to classroom 

performance due to constraints imposed by the classroom learning scenario (such as 

prior knowledge, subject mastery, relevance of course to career, social structure, 

emotional, and affective processes being different.) However, the prediction accuracies 

are also slightly lower compared to a hybrid classroom (82%) when our predictive model 

was given similar information. This could be due to two different reasons - (a) the hybrid 

classroom performances predicted included a larger dataset (460 compared to 99 

students in this dataset), and (b) the course for which the analysis was conducted in 

Study-2 was held for 10 weeks as opposed to 5-week long course in this dataset. Both 

affect the criteria for optimal performance of machine learning approaches where higher 

amounts of data available to learn tend to yield better predictions. Overall, a theme 

apparent from the results of these three models across the three studies suggest that 

demographics or any theoretically relevant information other than the leaners’ 

performances alone boost early prediction accuracies. Sometime during the stepwise 

training approach, typically halfway through the learning period, the apparent benefits of 

such additional features fade out due to diminishing returns to making predictions of 

later learning. 
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RQ 2 – Can click behaviors improve predictions of models from RQ (1)? If yes, which of 

the click behavior features has the highest predictive value? 

Let us now focus on the results shown in Figures 4.8 and 4.9. First, Figure 4.8 shows 

the results for the regression model RQ 2 listed in Table 4.4. We left the models used to 

answer the questions earlier for comparing the results of those three previous models 

with the results for model RQ 2 (shown in yellow). Recollect that similar to Study-2, here 

we included measures of study intentions and click behavior metrics generated from the 

students’ LMS activity. Similarly, the same set of features were used for the 

classification problem. Results for the classification models for RQ 2 shown in Figure 

4.9 (in yellow) also show the previous three models for comparison. Results for model 

Figure 4.8. Results from the regression models for RQ2 -- predicting the weekly review quiz 

scores using the features listed for RQ 2 in Table 4.4 (shown in Yellow color). Models from RQ 1 

discussed earlier are faded out but left in for comparison. 

 



181 

 

RQ 2 were as predicted. Final grade predictions were the same as week 5 were similar 

to the predictions of RQ 1 b. Students’ study plans and intentions and their click 

behaviors within the LMS do not improve our prediction accuracies over the RQ 1b 

model. The results of RQ 2 follow a similar pattern for both classification as well as for 

regression models. However, note that the results are not worse than that of RQ 1b 

model. The approach taken to aggressively punish false positive and false negative 

predictions (L2 regression-based corrections) that we conducted in Study-2 were also 

utilized here to keep the models from overfitting on the training data. Overall, the model 

accuracies neither improved, nor significantly worsened compared to our predictions 

with demographics and learners’ weekly performances. These results suggest that 

using click behaviors in an online classroom without the context of knowing what the 

Figure 4.9. Results from the classification models for RQ2 -- predicting the weekly review 

quiz scores using the features listed for RQ 2 listed in Table 4.4 (shown in Yellow color). 

Models from RQ 1 discussed earlier are faded out but left in for comparison. 
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click might mean will yield poor prediction accuracies. This also supports previous 

works that have shown that there are no significant predictive values for click behaviors 

(see for e.g., McPartlan, 2020). 

RQ 3 – Can motivational and affective measures and their dynamics improve 

predictions of models from RQ 1 and RQ 2? If so, which of the motivational and 

affective features carry the highest predictive value? 

Next, to answer RQ 3, we used all the features for RQ 2 and included the survey 

metrics for learner-centric measures listed in table 4.4 to predict the students’ weekly 

review quiz scores. The results for regression model are shown in Figure 4.10 (in Green 

color) and results for classification model are shown in Figure 4.11 (in Green color). 

Figure 4.10. Results from the regression models predicting the weekly review quiz scores using the 

features listed for RQ 3 in Table 4.4 (shown in Green color). Models from RQ 1 and 2 discussed 

earlier are faded out but left in for comparison. 
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Note that all four models from RQ 1 and 2 are left in and faded for comparison. Models 

for RQ 3 performed the best overall.  

 

At week 1, the model had the highest performances for both regression as well as 

classification models with 0.47 adjusted R-squared and 68% accuracy, respectively. 

This trend continued for all five weeks review quiz predictions. Notice that there was a 

dip in performance of our models during week 3. This could be due to the higher 

number of features which could lead to increased noise during week 3 due to the 

inclusion of daily survey responses in the prediction models. The prediction accuracies 

bounced back during week 4 since the extra features were only included during week 3 

predictions. However, RQ 3 model outperformed all other models even during week 3, 

Figure 4.11. Results from the classification models predicting the weekly review quiz scores 

using the features listed for RQ3. Results for models RQ1 model a and RQ1 model b in Table 

4.4 are left in but faded out for comparison. 
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albeit, by a very small amount (3% better than RQ 2 model). Overall, the results shown 

follow our hypothesized results with 81% prediction accuracy by week 4. Including the 

survey responses as features improved our prediction accuracies significantly. In 

addition, the final grade classification accuracies (which used data from posttest survey 

data and average performance on all quizzes) over the 50 iterations for model 3 were 

0.88 (+/- 0.07), respectively and the adjusted R-squared was 0.81 (+/- 0.06) with RMSE 

of 6.61 (+/- 3.12). The overall average precision (0.89), recall (0.91), F1-score (0.90), 

and AUC (0.89) were close to the levels of accuracy indicating that the overall model 

performance was acceptable. 

 

Table 4.5 

Feature importance derived for weekly review quiz predictions and final grades. 

Feature Feature importance - Week 1 

Average Self-Efficacy 0.21 

Average Attainment Value 0.15 

Highschool GPA 0.11 

Average Cost Value 0.07 

Course Rank 0.06  
Feature importance - Week 2 

Review Quiz Week 1 Grade 0.31 

Number of Other Activities  0.19 

Average Cost Value 0.13 

Grade Expectations 0.11 

Goal Completion Rate 0.09 
 

Feature importance - Week 3 

Review Quiz Week 2 Grade 0.32 

Review Quiz Week 1 Grade 0.15 

Average Cost Value 0.09 

Grade Expectations 0.08 

Goal Completion Rate 0.08 
 

Feature importance - Week 4 

Review Quiz Week 3 Grade 0.32 
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Review Quiz Week 2 Grade 0.19 

Grade Expectations 0.11 

Average Cost Value 0.09 

Course Rank 0.09 
 

Feature importance - Week 5 

Review Quiz Week 3 Grade 0.29 

Review Quiz Week 4 Grade 0.19 

Grade Expectations 0.13 

Review Quiz Week 2 Grade 0.11 

Goal Completion Rate 0.09 
 

Feature importance - Final Grade 

Average Review Quiz Score 0.34 

Grade Expectations 0.24 

Goal Completion Rate 0.16 

Average Utility Value 0.06 

Average Cost Value (Emotions, Effort, Attainment 

Combined) 

0.02 

Next, to investigate which features contributed most to our predictions, we used 

the feature importance derived from the RF models for each week and retrieved the top 

5 features for each week as well as for the final grade predictions (Table 4.5). Note that 

importance of all variables listed are for the classification model. Self-efficacy carried 

the highest variable importance during week 1 followed by attainment value, high school 

GPA, and cost value with rank assigned to the course being the fifth most important 

feature. Self-efficacy, a measure for how confident the student is in their ability to tackle 

the task was identified as the most important feature. This follows the theoretical 

expectations given that self-efficacy is demonstrated to be a strong predictor of students 

early learning and dropout rates (Kuo et al., 2014). Attainment value and high school 

GPA were the two other features that carried the highest variable importance. For week 

2, the topmost feature was the students’ performance on review quiz-1 indicating that 

relevant past performances carry the highest predictive value as we have seen in 

Study-1. Total number of other activities, a proxy for other academic and non-academic 
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responsibilities the students have, carried the second highest variable importance, 

followed by Cost associated with course (emotional, outside effort, and loss of valued 

alternatives combined). Grade expectations (grades expected for the course) and goal 

completion rate (how many of the activities from past weeks the students were able to 

successfully complete), took the next two spots. During week 3, as before, past 

performance on review quizzes (week 2 followed by week 1) carried the highest feature 

importance followed by the cost values, grade expectations, and goal completion rate. 

During week 4, performance on review quizzes (week 3 followed by week 2) carried the 

highest feature importance followed by grade expectations, cost value, and the rank of 

the current course among other activities. Features of importance for week 5 were 

similar, where, review quiz scores for week 3, 4, and 2 took the ranks 1, 2, and 4 

respectively. Surprisingly, performance for week 3 had a higher feature importance than 

performance for week 4 (0.29 to 0.19). Grade expectations and goal completion rates 

were also in the top 5 list. 

Overall, for week 1, despite the predictions of performance being lower, self-

efficacy and attainment values carried the highest predictive value. High school GPA 

was only important for week 1 predictions. None of the background or demographic 

features made it to the list. Perhaps, the boost in performance of model RQ 1b over RQ 

1a might be driven by the students’ high school GPAs. Results indicated that cost 

values, grade expectations, and goal completion rates were consistently important for 

predictions across all 5 weeks indicating that it is very important to understand the 

values and cost to predict learning rather than using click behaviors, which did not make 

the top 5 (or top 10 – not shown) list across the predictions. Furthermore, it is critical to 



187 

 

establish the expectations that the students have. Perhaps, the expected grades tie into 

students’ behaviors such as planned procrastination or diligence in task completions, 

the latter also being one of the top 5 features consistently after week 1. Finally, the top 5 

features of importance for the overall final grade classification model used in RQ 3 were 

Average review quiz scores, grade expectations, goal completion rates, average utility 

value, and cost values. Yet again, the predictions were driven by learner-centric 

measures rather than the click behaviors. Furthermore, students’ learning predictions 

were not driven by features such as SATs or high school GPAs indicating that relying on 

past performances alone while making future predictions might lead to poor predictions. 

4.6 Discussion 

In this study, we attempted to predict learning using a stepwise approach 

(predicting performance on weekly quizzes) using features that are learner-centric in 

addition to click behaviors. Research reviewed earlier has suggested that predictive 

models employed for future predictions in learning scenarios including in online learning 

settings, typically yield binomial classification accuracies between 65%-77%. Except for 

a very small number of the reviewed studies, most of the existing literature used click 

behaviors as a proxy for many human behavioral traits such as engagement, 

motivation, procrastination. While these endeavors are important to improve the LMS 

platforms (e.g., for making it easier to understand the students’ engagement within the 

learning platform), results indicated that these artificial sensors are woefully short of 

capturing the true learning behaviors and engagement (Aldowah et al., 2019; 

McPartlan, 2020). The results of the current work yielded 81% accuracy roughly mid-

way through the course timeline (just before the second midterm and 2 weeks before 
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the final exam was due). While the results from the current study yielded a small to 

moderately higher prediction accuracies compared to the existing literature, there are a 

few differences in our modeling approaches. Our results suggest that personalizing 

learning to the needs of the learners’, their learning goals, and expectations should 

incorporate learner-centric measures such as self-efficacy, goals, expectancies and 

values, measures to understand students’ task-completion rates, and academic 

diligence. More importantly, we were able to replicate the results from the other Study-1 

and Study-2 to show that demographics boost early predictions, which have a lower 

predictive value later. Next, click behaviors were not a good indicator for students’ 

performance predictions. Finally, we were able to surpass the prediction accuracies of 

our model by incorporating learner-centric measures on a weekly basis. Let us first 

revisit the importance given to click behaviors and how to navigate its advantages and 

disadvantages. 

First, click and activity logs are readily available since most of the modern LMS 

platforms already have mechanisms in place to capture the clicks and activity logs. 

From a managerial perspective, it makes sense to want to explore the value of these 

readily available measures. The reasons for wanting to use these measures could vary 

based on literature review. However, intuitively, the simplest reasoning could be to 

make use of what is available that, in theory, could act as a proxy for students’ learning 

behaviors without having to pour in additional resources. However, while gathering click 

behavior data from an established system is simply a matter of storage space, typically, 

making sense of such data involves a substantial amount of work, specifically, to 

recognize the patterns in users’ behavior if LMS activity logs without any context. For 
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instance, the amount of resources consumed in terms of computation power, hours 

taken to clean, and process click data within our 5-week long course was a huge 

challenge, to derive metrics such as “click data – spacing” feature generated for the 

current study. The lack of clear guidelines in determining most useful click behaviors, 

the differences across LMS platforms used, and the limited involvement of students and 

in determining how and in what ways click behaviors are relevant to learning, the issues 

of overwhelming the students within open learner models, and the ethical concerns of 

tracking the students’ learning beyond LMS activity, all play a role in limiting the ability 

of using click behaviors to making accurate predictions. Thus, it is important to look 

beyond clicks to predict students’ learning. 

Our results show that students’ expectancies and values, attainment and cost, 

task completion rates, and grade expectations consistently yielded the highest 

predictive value throughout the course. This resonates with the previous works where 

comprehensive educational data mining can learn from students’ motivational and 

affective processes which are correlated with classroom performances (McPartlan, 

2020; Park et al., 2018). Specifically, this indicates that expectancies and values are not 

only positively associated with learning behaviors but can also be utilized for predicting 

learning behaviors in an online environment. While we did not specifically look to 

explore spacing behavior of the students in terms of procrastination, our spacing 

measures obtained from click behavior did not predict learning. Task completion rates of 

the students was a better predictor of learning. The fundamental difference between 

these two measures is at the level of the source. While spacing behavior was artificially 

derived from the clicks, number of completed tasks was derived from the self-reported 
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task-completion rates. This emphasizes the critical role of asking the learners about 

their behaviors rather than extrapolating their intentions from clicks. Furthermore, asking 

questions related to confidence of students in tackling an online course (via self-

efficacy), and self-reported motivations were fruitful in our predictions. Therefore, the 

patterns of prediction accuracies of our stepwise modeling also underscore the 

importance of knowing demographics about the learners to get more accurate early 

predictions. Furthermore, using self-reported motivations on a weekly basis, specific to 

each weeks’ tasks, importance non-academic activities and priorities, our models were 

able to learn students learning patterns better as was recently proposed by McPartlan 

(2020). 

There are several limitations of the current work. First, our models were geared 

towards predicting the learning of students. This implies that we did not explore any 

associations between specific learner-centric traits to their actual performances. This 

implies that while we can see that self-efficacy was important to predicting the early 

learning, we do not know what level of self-efficacy is related to what level of student 

performance. Thus, it is difficult to determine the relationship of these learner-centric 

traits to the students’ outcomes from the current work alone. Fortunately, recent work 

related to motivational traits and potential Utility Value Intervention (UVI) studies 

conducted speak for the mechanisms of these relationships. For instance, work done by 

Hulleman and colleagues (2017) investigating the value of UVI to increase student 

learning was possible due to the increased confidence of students in tackling learning 

which led to higher performance than the control group, and especially useful for lowest 

performing students since it improves the students’ interest in the course. In our case, it 
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is reasonable to hypothesis that the students’ performances were highly correlated with 

their motivational and perceptions, specifically their confidence coming into the course 

(self-efficacy), utility and the costs associated with taking the course, as well as the 

priority placed on course. In addition, the task completion rate (a measure of students’ 

diligence and self-regulation) was highly correlated with GPAs and learning outcomes 

(Cochran, Campbell, Baker, & Leeds, 2014; Gore, 2006; Komarraju et al., 2013). 

Furthermore, learner-centric measures such as academic expectations, costs, and task 

completion rates were consistently important for predicting weekly performances. 

Therefore, our work reinforces the importance of measuring the dynamics of changes of 

these learner-centric traits to boost performances.  

Another limitation of our work is in its lack of ability to determine the interplay 

between various features used. The approach we have used to demonstrate our 

classification results are black box models that look for hidden patterns and 

associations among variables. While there are human-interpretable models or ways in 

which we can turn the black box models into white box models, we did not choose to do 

so since the step-vice inclusion of features into our models were theoretically driven. 

Such an approach can only fix the lack of transparency to a certain degree. For 

instance, we know that including learner-centric features boost predictions sufficiently 

enough for us to care about them. However, we cannot elaborate on the ways in which 

these measures interplay with the students’ learning directly. Another way to inspect 

these black box models would be to derive decision paths for each individual student 

(Guidotti et al., 2018). White box models would approach the predictive problems 

slightly differently. For instance, a decision path can be derived for each student to 
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inspect what features were considered relevant to enable the decision. While there are 

many other approaches similar to decision paths, most of these approaches sacrifice a 

certain level of accuracy in favor of interpretability of the model as detailed in the review 

by Guidotti and colleagues. There are two fundamental reasons for our choices to not 

proceed with a white box model. First, we did not seek to understand the decision made 

for each individual separately. The aim of our models was to establish the relative 

importance of our features, which was accomplish by the two steps we have taken in 

our modeling (i.e., theory driven stepwise feature inclusion and making using of robust 

random forest models that subset the data features for each iteration of predictions to 

generate overall features of importance). Next, we decided to forego individualized 

modeling in favor of individualized survey items by using our survey question responses 

to derive follow up questions for each student separately while withholding the overall 

survey items and structure. This goal was also driven by the fact that our models were 

conducted after the course was completed. Had we approached this prediction problem 

as a real-time solution to predicting each student’s learning, we would have made use 

of a more transparent and interpretable modeling approach that would make it easier for 

the teachers and students to understand how to improve. Another potential issue of 

using decision paths approach would be in the varying amounts of data across models, 

and across the 5 weeks of data collection. Take the data from week 3 for instance: 

instead of data for the average learner-centric metrics per week, we would have six 

average learner-centric metrics. This would mean that the decision paths would have 

had a higher complexity and would have to be interpreted differently. However, these 

limits can be overcome in the future work by incorporating explanatory models such as 
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hierarchical linear models or structured equation modeling to determine the statistical 

significance of each predictor for each target metric in parallel to weekly predictions. 

This would help illustrate the significance of each weeks’ predictions and the value of 

the significant (and non-significant) features towards predictions of students’ learning.  

Further limitations related to bias in data selection exist with the current work 

since measures of intentions and motivations are self-reports. Specifically, those 

students that responded to the surveys might be intrinsically different than those 

students who did not respond to the surveys. However, this issue might not be hindering 

of our results since the results presented here are on a held-out testing subset after 

learning from the training subset. Next, measures from self-reported data may also have 

validity issues (Chan, 2008). Schwarz (1999) also showed that self-reported measures 

are imperfect at measuring behavior and maybe affected by the wording and specific 

details within the questionnaires used. However, all of our survey metrics included more 

than one item to measure each learner-centric metric. The questionnaires were 

standardized, and the results of our survey responses demonstrated high reliability 

(Cronbach’s alpha > 0.85 – see McPartlan, 2020). An attempt to overcome these 

limitations is made in the current work by incorporating multiple items of each dimension 

being measured and by including questions that require open-ended responses that 

may partially remove the bias induced by the researcher instrument.  

Regardless of the limitations, the key to the success of our predictive models is 

to learn about user needs and motivations, rather than click behavioral patterns, to 

understand how and when an individual learning trajectory might show variations. 

Building predictive models that can capture and learn from the intraindividual variability 
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of these learner-centric models lead to successful predictions of learners’ future 

behavior. This has several implications and for pedagogical practice. First, predictive 

modeling that seeks to understand students’ learning should emphasize the value of 

learner-centric measures. While our work lays out the groundwork necessary to 

approach this problem, it is done after the course was completed (predictive analysis 

was conducted after the entire data was collected and not in real-time). This limits the 

potential of our work to making suggestions about interventions. For instance, UVI 

interventions that specifically target students’ motivation and affective processes, might 

help improve positive learning behaviors. For instance, passive ‘nudging’ mechanisms 

built into LMS to promote task completion rates might help improve learning outcomes 

(Hulleman et al., 2017). In addition, it is reasonable to assume, given the results of our 

current work, that real-time predictive models will be able to perform better at 

understanding learners’ needs if the models can account for students’ motivations 

immediately prior to a task (task-specific student motivations), to improve student 

learning predictions. This might provide an opportunity for stakeholders such as 

administrators and teachers to allow for meaningful modifications of the learning 

material, speed, or instruction style, and the LMS features to identify those students that 

are struggling with setting timely goals and achieving them. In the absence of any 

learner related information, simply assuming that past repeats itself or somehow 

translates to future learning does a poor job of predicting a user’s future learning. 

However, once the models understand the students’ performance patterns on similar 

course activities (such as review quiz performances in week 3 predicted from week 2 

and week 1 review quiz performances) at least after a sufficient amount of learning 
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trend of the user is available (and learned from). This, however, is not as robust or 

accurate as we have seen in the WM training task, and perhaps, any potential skill-

acquisition task, where the dynamics of subject knowledge and level of understanding 

do not play the same role in learning. As a result, we were compelled to search for other 

sources of data that can complement a model based on the shallow history of a 

learners’ performance in the early sessions of training. Our work demonstrated that a 

robust prediction model will be able to understand the erratic trends in the intraindividual 

variabilities using multidimensional information that are relevant to the learner, content, 

and the context. Overall, results suggested that predictions based solely on the 

learners’ history of past actions may suffice to understand the general fate of the 

learner, as measured by whether a learner is in the upper half of his/her peers. These 

prediction trends are not limited to the level of binomial classifications.  

Our regression models were able to replicate these results and show that we can 

come to a fairly robust estimate of the students’ final scores on a scale of 0-100. 

Unfortunately, based on the current results, we are not confident in suggesting the use 

of our regression models without further considerations. For instance, a predicted score 

of 80 and an actual score of 87 would mean that the students would have a two-grade 

level difference in predictions (B+ vs B). As a result, the current model 

recommendations we can confidently make would be limited to understanding a coarse 

course performance difference (i.e., a median split or quartile splits). Any finer predictive 

modeling would require a more robust model that is resistant to noise, especially given 

the high dimensionality. This issue of higher noise can also be noticed in our own 

models consistently during week 3 performance predictions. As noted earlier, week 3 
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included survey response data on a daily level rather than, which resulted in poor 

predictions (often even compared to the predictions in week 2). Thus, a need for optimal 

predictive model search remains. While we first started our argument that we need a 

robust predictive model to promote equity by understanding learners’ goals, needs, 

capabilities beyond averages, ironically, we can only recommend a model that can 

differentiate learners around the class performance centrality. 

4.7 Conclusion 

The methods in the current work demonstrate the validity of using learner-centric 

measures such as initial and evolving grade-expectations, cost value, self-efficacy, and 

task-completion rates. Our combined models that allowed for theoretical inclusion of 

features as well as stepwise predictions of performances week-by-week, allows for 

understanding the dynamics of learning trajectories over the short-burst time-span of 

interest. In general, our work validates the growing evidence for the lack of predictive 

value of unrefined and context-free click behaviors and the importance of individuals’ 

explicit input in predictive modeling (Aldowah et al., 2019; Baradwaj & Pal, 2012; 

McCuaig & Baldwin, 2012; McPartlan, 2020; Salas et al., 2016). This further supports 

the need for open learner models where students inputs are utilized to improve 

predictive modeling within LMS (Baylor & Ritchie, 2002; Brusilovsky et al., 2014). When 

such theory driven predictive modeling is undertaken and thoughtfully implemented 

within LMS, we may provide an opportunity to identify individuals who are at risk for 

showing poor learning. Predictive models have very robust practical applications that 

can be used to make real-time alterations to many dimensions that help improve 

learners’ trajectories. Thus, the hopeful message is that, we can understand learners’ 
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needs and improve the overall learning process, by asking for learners’ inputs. Perhaps 

a weekly check-in with students to understand their responsibility, priorities, and how 

well they are able to achieve their little goals, are enough to make a difference. This 

may also reinforce the study habits of each individual that may translate to optimal 

learning over time beyond the context of a single classroom.  
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CHAPTER 5: GENERAL DISCUSSION 

In the current state of the world, there is a sudden peak in the interest in online 

learning and virtual classrooms. The rise in growth of online learning has been noticed 

over the past decade despite the concerns over the validity, effectiveness, and quality of 

online learning. Although disparities in learning has been a major concern across 

learning settings, approaches such as personalization are hopeful to promote access 

and quality of learning. Predicting learning quality and quantity at the earliest possible 

time has been a central and recurring theme of these personalization approaches. 

However, there have been differences in the ways predictive modeling has been applied 

in predicting learning behavior. While some of these differences are attributed to the 

exploratory nature of the data mining approaches, a majority of these differences are 

difficult to understand, largely due to the lack of single framework to test varying 

features and models. The three fundamental issues that I have discussed continue to 

prevail in the applications of predictive modeling to online learning settings. These 

issues arise from the lack of standardizations of predictive modeling, the fundamental 

limits of predictability of human (learning) behavior, and the lack of consensus amongst 

researchers regarding the value of predictions. Combine these three issues with the 

extensive use of context-agnostic click behavioral data in determining policies and 

practices that determine learning, and the inability of predictive models to provide 

actionable insights, the fields of EDM and LA have a non-trivial task at hand.  

In the current work, I have proposed to use a single framework that may 

overcome some of these issues. The framework has four critical elements – a) 

identification of the prediction task and reporting all metrics for the best model 
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determined by researchers, b) including a baseline model for comparing the 

performance of the models of interest, c) using data of the learners early learning alone 

in determining later learning, and d) stepwise inclusion of features of interest, starting 

with least malleable to most malleable features that are appropriate for the context.  

Here are some of the key contributions and a summary of the results of my work. 

In the introduction, I discuss the different approaches taken, the complexity of the 

approaches and the features that are used to understand learning. The existing 

literature emphasizes using features relevant to learners, the content being taught, and 

the context in which learning occurs to understand learning. While there are many 

different approaches to making predictions of learning specific to any given context as 

we have seen from the extensive literature, these results lack comparability. The current 

literature has a diversity of features, models, and results. The current work seeks to use 

this single framework to better ascertain the fundamental value of predictions and to 

promote ability to compare results. This framework is novel and meaningful for several 

important reasons. 

- First, focusing on a single or a best model and reporting the results from such 

a model does not provide a meaningful comparability of results across models 

and settings. The current framework encourages a step-wise utilization of 

modeling to report results from varying degrees of information provided to the 

models to compare the value of features. 

- Second, the fundamental nature of using accuracies alone to determine value 

of a classification model is known to lead to many issues such as lack of 

understanding of specificity and sensitivity of models, overfitting to drive 
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higher accuracies from models, and lack of understanding of accuracy-

complexity tradeoffs. The current work has shown that accuracies of models 

are directly related to the two other questions – how soon and how much 

information which are overlooked often. 

- Third, relatedly, the current work hopes to answer the question – how soon 

can we make good predictions? This question is often overlooked in the 

context of making predictions. However, as I have demonstrated and 

discussed across all three studies, the ability to determine the utility of a 

predictive model should not be restricted to how well. In fact, more often than 

not, in a learning setting, teachers would want to get an idea of who is likely to 

fail at the earliest possible time, at the cost of some accuracy. The current 

framework provides researchers and teachers with an opportunity to 

understand the accuracy – recency tradeoffs for their own learning setting. 

- Fourth, the current work showed the varying degrees of utility of features in 

making predictions of learning. For instance, the results have shown that 

across all three settings, predictive models that hope to learn from students’ 

behavior, without knowing much about their demographics or motivations 

seem to underperform early. However, we have seen that it becomes 

relatively easier to make predictions of students’ learning behavior if the 

models are provided with information about the students’ behavior. This 

approach was useful in determining prediction values of features such as click 

behaviors and learners’ dynamic motivations. Specifically, results indicated 

that click behaviors do not offer good predictive value, whereas, asking the 
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learners about their goals, costs, and other motivational and affective traits 

over the learning period is more valuable to making predictions. 

These four key contributions are accompanied by a few separate key points that I 

highlighted across the thesis. First, using a single metric variant (i.e., Accuracy or 

RMSE) might not suffice given that model performances assessed by a single metric 

are rarely meaningful. As such, optimally solving a prediction task requires that the 

researchers make careful and valid choices for data sources and features measured ex 

ante, data preprocessing and feature selection ex post, and evaluation metrics that are 

used to communicate their findings. This implies that subjective choices made by 

researchers, often influence the results. Furthermore, results across predictive models 

are difficult to replicate without sandbox environments due to constantly changing 

software and core implementation of off the shelf algorithms.  Even without using novel 

approaches to optimize models (which might arguably be beyond the ability of social 

scientists that are drawn to the novelty and applicability of machine learning 

approaches), one way to ensure that results are better understood is by reporting all the 

decisions that were taken in determining the model choices. Furthermore, providing full 

sets of metrics (accuracy, precision, recall, F1-score, and AUC for classification tasks 

and adjusted R2 for regression tasks) will help understand the varying results across 

settings. For instance, in Study-1, we have seen that the adjusted R2 obtained on the 

best model by Session 10 of the WM data was ~0.60, indicating that the regression 

model was able to explain 60% of the variance. However, the classification model on 

the same dataset when inspecting using accuracies as a metric yielded an 83% 

accuracy concluding that these predictions are “very accurate”. In theory, even if the 
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data sources and models are held constant, every decision a researcher makes could 

lead to fundamentally differing results and conclusions. Each branch that arises from 

these decisions can be reported as an independent study by itself. For instance, one 

study could be focused on optimal depth and tree size selections (pruning) in a random 

forest model to maximize prediction accuracies and minimizing model complexity. 

Another study could be conducted on the same data to compare different classification 

models. Each of these studies could be rationalized based on what the researchers are 

hoping to accomplish. Thus, it is important to account for all choices being made and to 

report all the results. 

Thus, across all three studies in the current thesis, an emphasis on reporting all 

standard metrics was placed, such that, researchers can see how simple questions 

such as “how well”, “how soon”, and “how much information” can yield varying answers. 

Furthermore, as evidence from this work suggests, answers to these questions are 

often interlinked following a common theme. If we are interested in making robust 

predictions at the earliest possible time, we need to include features that capture the 

context of learning and any known extrinsic features that constrain the learning of 

students to be able to make better predictions within the given context. However, later 

learning can be predicted fairly well, roughly midway through the learning period with 

prediction accuracies hovering around 80% without including any extrinsic features. 

However, the questions that remain unanswered and are likely to be left unanswered for 

the foreseeable future is to what extent prediction accuracies are meaningful and why 

one needs to care about predictions in the first place. The answer to this question is 

more nuanced than any single metric (unless our predictions are near 100% accurate all 
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the time). Thus, inclusion of metrics beyond accuracies are important. Specifically, if the 

goal is to determine which learners need most support to succeed, then we need to 

focus on choices that lead to better understand this group of learners. There are several 

ways to accomplish this. For instance, classification models for the top 25% students 

and bottom 25% students yield better predictions than a median split. Subsequently, a 

focus on subclass accuracies, precisions, and recalls for the bottom 25% students will 

yield a better indicator for predicting who needs most help. Furthermore, manipulating 

the categorical coding schema where ‘positive’ corresponds to ‘below median’ or 

‘students that need most help’ will improve the value of precisions and recalls since 

these two metrics evaluate the successful classifications of the positive class as 

selected by the researchers. 

Next, it is necessary to compare the value of all metrics (and all results for every 

model) against a baseline model using a common task framework. Ideally, all competing 

best algorithms derived by multiple researchers on a single dataset (or relevant 

standardized publicly available dataset) or task are independently evaluated by third 

parties against very high-quality baseline models using all performance metrics. 

However, in reality, this has been very difficult to accomplish within the context of online 

learning contexts. Most datasets are rarely ever made publicly available or standardized 

for replicability. Thus, the best possible approach to understand the value of models is 

to compare the results with itself, bar real data. This provides researchers a way to 

understand how much better results of a model are (or the lift ratios are) in relation to 

the baseline. This is ever more valuable in exploratory predictive modeling when 

researchers have to choose between many different competing models to solve a 
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prediction task. When researchers are reusing the same data set (or subset) for 

assessing different competing models to determine which one model to choose, the 

results lead to overestimates of true predictions. This error, referred to as “human-in-

the-loop overfitting” where researchers intentionally report models that have higher 

prediction accuracies relative to each other rather than relative to the baseline model 

using the same algorithm. For instance, if two competing models have an adjusted-R2  

of 0.91 and 0.89, researchers might choose the former due to the better performance. 

However, if the baseline performance of the models has an adjusted-R2 of 0.69 and 

0.54 respectively, the gain in adjusted-R2 of the second model over its corresponding 

baseline model is higher (0.22 < 0.35). Yet again, comparison of performances of 

models against baselines act a better indicator of how valuable predictions of different 

models are as well as how valuable features of interest are in improving predictions of 

the model of choice. Thus, the current work included baseline models for selecting the 

models as well as model variant comparisons across all three studies. Of course, there 

are many approaches to baseline modeling. However, as long as the baseline models 

are able to demonstrate the best predictions possible by simple heuristics or guess 

rates, they might act as decent first baseline models. 

Next, given the significant differences in features used for making predictions of 

learning in the literature, the proposed framework used a stepwise inclusion of features 

that might predict learning in a given context. Given the importance placed on historic 

performances on the future learning within both explanatory as well as predictive 

models, the current framework included a step that seeks to exploit the relationship of 

past performances to future performances. This served two purposes within this 
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proposed framework. First, this step was used to evaluate if learning performances in a 

given context alone are sufficient to make predictions of later learning. We have seen 

that while later learning can be predicted from learning or performances alone, they are 

only meaningfully robust halfway through the learning phase. Next, this step was used 

to evaluate if using learner-agnostic and context-agnostic models are useful for making 

predictions of future learning. For instance, in an offline classroom, instructors can rely 

on information known about the context, setting, and learner to make pedagogical 

choices and assess learning. However, within fully online learning contexts, teachers do 

not have the same opportunity to understand these extrinsic features. Furthermore, 

predictive models that outright rely on demographic details are known to be prone to 

biases (Kleinberg, Lakkaraju, Leskovec, Ludwig, & Mullainathan, 2018). Furthermore, 

unlike in explanatory models, predictive modeling approaches cannot “account for” or 

“control” for baseline performances. Thus, the current framework made use of a model 

that only relies on learners’ performances/quiz scores alone. This model has shown 

across all studies that early predictions are poor since the models do not have sufficient 

understanding of each learner’s performance. Thus, it is important to use and 

incorporate extrinsic features into the model to improve predictions during the early 

learning phase. 

Finally, the proposed framework utilizes sequential inclusion of two different sets 

of variables. First, we suggest inclusion of non-malleable features followed by inclusion 

of malleable features. One of the biggest issues of predictive modeling in online learning 

contexts (and social sciences in general) is the prevalence of studies that make use of 

features to make robust predictions over 90% but lacking in guiding the policy-makers, 
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teachers, and students as to what makes those predictions meaningful. The problem is 

often attributed to complex modeling approaches that are difficult to interpret. However, 

even those studies that used simple regression-based prediction models do not offer 

valuable prescriptions for future actions. Thus, our framework suggests using features 

that are agreed upon as non-malleable within a given context. For instance, features 

such as age and gender cannot be manipulated and lead to prescriptions that are 

restrictive (task X is beneficial for younger adults, task Y is easier for older adults). 

These restrictive prescriptions are known to be debilitating (negative motivation) to 

those individuals that are drawn to tasks that they are interested in. Thus, to evaluate 

the features that are malleable, they are added to the predictive models at the very end 

to determine if including these features increase predictions. In the current work, we 

have seen that in Study-1, including WM stimulus type, compensation and supervision 

in our final model iteration led to significantly high predictive performances. Including 

these features (alongside the existing features) were able to predict the later 

performance of learners at Session 1 as much as performances and age were able to 

predict later learning at Session 8. Thus, including these features might offer a 

significant advantage while making decisions on how to intervene for those learners that 

are predicted to be below a predetermined threshold. In Study-2, including 

demographics and students’ study spacing intentions were significant predictors of later 

learning, whereas including click behaviors hurt the models’ performances. This 

indicated that not all malleable features improve prediction accuracies since the noise 

associated with certain features lead to overall poor predictions. However, it does not 

necessarily mean that click-behaviors are not a good indicator for learning. Such a 
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conclusion would require evaluation of black-swan cases where, click behaviors indeed 

capture human behavioral traits such as procrastination, study spacing, and task 

diligence of learners. In Study-3, we have seen results similar to Study-2, where, 

inclusion of non-malleable features improved predictions and inclusion of some 

malleable features led to poor or no further improvement in predictions. Furthermore, 

malleable learner-centric features were able to improve predictions of our models, 

indicating that click-behaviors that are context-agnostic, are indeed prone to high noise 

and need very careful consideration when suggesting actionable prescriptions. As a 

side note, we are actively investigating means to understand click behaviors and their 

utility in determining learning. For instance, some of our predictive models utilized click 

behaviors alone to make predictions of learning behaviors. However, due to the highly 

variable quantities of individuals’ clicks, the predictions were below 65% across time 

points for studies 2 and 3. 

Figure 5.1 A screenshot of "New Analytics" -- provided on Canvas LMS at UCI. Each 
row contains information for a single student. 
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Specifically, given that click-behaviors and activity-logs of students on LMS are 

used for predictive modeling as well as for policymaking by administrators, it is 

important to discuss the value of click-behaviors derived from LMS. Let us inspect one 

example of using click-behaviors within LMS at UCI. Figure 5.1 shows a screenshot 

taken from the Canvas, the LMS used at UC Irvine. LMS provides learner analytics 

referred to as “New Analytics” to instructors and teaching assistants (TAs) based on 

students’ participation, performances, and click behaviors. Each row in the figure 

corresponds to a single student. There are 6 columns each corresponding to a different 

measure provided for the convenience of the instructors and TAs. These include Grade, 

% of tasks completed On Time, Last Participation, Last Page View date, Total number 

of page views, and Participation count (on discussion or forums). Upon closer 

inspection, Grade of student 2 and student 4 (see corresponding columns) indicated 

that these two students have similar grade (83% and 85% respectively). However, the 

total amount of clicks for these students differ by 488 clicks (student 4 has more than 

twice as many clicks as student 2.) Similarly, students Grade of student 5 and student 6 

(see corresponding columns) are very similar (93% and 94% respectively). While, there 

were no substantial differences between these two students’ clicks, student 5 completed 

82% of the tasks on time, whereas student 6 completed a mere 35% of tasks on time. 

This is one selective example of the differences that students display within online 

learning contexts. There is no strict one-to-one correspondence of artificially generated 

metrics such as % completed on time or clicks since they are not directly considered 

during grading. However, it is difficult to understand the rationale for including those 

features within LMS for the instructors without knowing the intentions of the 
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administrators. It is possible that these were included within the LMS to provide insights 

into the ways the learners interact with the course deployed within the LMS. 

Furthermore, perhaps these metrics are provided to promote open learning models that 

were discussed in the previous chapters. However, there are several drawbacks of 

providing this data to instructors in light of the results from the current study.  

Specifically, since click-behaviors, in their current state do not act a good metric 

for predicting students’ grades, the decision to promote “New Analytics” implies that 

insufficient evidence was used to push this policy. This is critical since, without proper 

guidance or reasoning for including these measures, instructors might be misled to 

consider artificially generated measures to be signals of good grades. The other 

pertinent issues with this information is the lack of control given to teachers in 

determining what information they can see and cannot see. For instance, if say, a 

teacher places a special emphasis on timely completion of all assigned tasks and 

maybe promotes this behavior by assigning some course credit for timely completion, 

then perhaps it could act as a partial indicator of success in that course. There is no 

means for the teachers to isolate this information from “New Analytics” dashboard. 

Furthermore, in a large classroom setting with hundreds of students, it becomes difficult 

to manually check the differences in patterns of click behaviors. Furthermore, teachers 

are not provided sufficient training on how to look for relevant signals from these data. 

Results from Study-3 showed the importance of measuring students’ 

motivational, affective, and emotional traits that are context-relevant and are continually 

measured over the learning period are more beneficial measures of students’ 

performances than students’ click behaviors. Students’ self-efficacy that was measured 
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at presurvey was a better predictor of students’ quiz 1 performance. Furthermore, 

students goal attainment, costs, task-completion rates were more predictive of weekly 

quiz performances consistently. Although these measures used items that are specific 

to the context of the course, it is reasonable to argue that context-specific motivational 

and affective measures might be more relevant to learning in any learning setting.  

Overall, the results of the current work illustrate the benefits of a unified 

framework to predict learning across many contexts and settings while deriving metrics 

that are comparable. I believe that the approach I have taken highlight the importance of 

understanding that the answer to the three fundamental questions related to prediction 

tasks are related to each other:  

How well can we predict? 

How soon can we predict? 

How much information do we need? 

The answers to these questions vary, not just from context to context, but also from 

model to model. In the current work, I highlighted the shortcomings of the existing 

literature of predictive modeling within online learning contexts. Furthermore, I have also 

proposed a solution that demonstrates that by continuing to combine theoretically driven 

features with machine learning based predictive modeling, using a unified framework we 

may be able to take steps to overcome these shortcomings. While the endeavor of true 

personalization is a long way from being realized, I believe that every step taken to 

promote combining human and machine intelligence as we move forward together will 

add to the discussions in hopes of achieving the greater goals of inclusion and equity in 

learning. 
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 Appendix A 
Table A.1 

 

Table of survey measures used to measure course-level learner-centric measures. 

Name 
Stem - 
In 
Github 
Codebo
ok 

p
r
e 

p
o
s
t 

Construct Item Response Values Item note 
 

se1 x x Self-Efficacy I’m certain I can master the skills taught in this 
course 

slider: 1=Not true at all, 
5 = Very true 

  

se2 x x Self-Efficacy I'm certain I can figure out how to learn even the 
most difficult material in this course 

slider: 1=Not true at all, 
5 = Very true 

  

se3 x x Self-Efficacy I can do almost all the work in this course if I don't 
give up 

slider: 1=Not true at all, 
5 = Very true 

  

se4 x x Self-Efficacy Even if the work in this course is hard, I can learn 
it 

slider: 1=Not true at all, 
5 = Very true 

  

se5 x x Self-Efficacy I can do even the hardest work in this course if I 
try 

slider: 1=Not true at all, 
5 = Very true 

  

wgrade x x Grade Expectations What grade do you want to get in this course? 13=A+, 12=A, 11=A-, 
10=B+, 9=B, 8=B-, 
7=C+, 6=C, 5=C-, 
4=D+, 3=D, 2=D-, 1=F 

*0-100% slider at 
post-survey 

 

egrade x x Grade Expectations What grade do you expect to get in this course? 13=A+, 12=A, 11=A-, 
10=B+, 9=B, 8=B-, 
7=C+, 6=C, 5=C-, 
4=D+, 3=D, 2=D-, 1=F 

*0-100% slider at 
post-survey 

 

badgra
de 

x x Grade Expectations What is the worst grade you would still be 
satisfied with getting in this course? 

13=A+, 12=A, 11=A-, 
10=B+, 9=B, 8=B-, 
7=C+, 6=C, 5=C-, 
4=D+, 3=D, 2=D-, 1=F 

*0-100% slider at 
post-survey 

 

wgradef   x Grade Expectations Think about your grade on the final - What grade 
do you now want to get?  

slider: 0-100%     

egradef 
 

x Grade Expectations Think about your grade on the final - What grade 
do you now expect to get?  

slider: 0-100% 
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Name 
Stem - 
In 
Github 
Codebo
ok 

p
r
e 

p
o
s
t 

Construct Item Response Values Item note 
 

badgra
def 

  x Grade Expectations Think about your grade on the final - What's the 
worst grade you will still be satisfied with? 

slider: 0-100%     

orsh1 x x Online Self 
Regulation 

how often do you...work in a place where you can 
read and work on assignments without 
distractions? 

slider: 1=Never, 5=All 
the time 

  
 

orsh2 x x Online Self 
Regulation 

how often do you...ignore distractions around you 
when you study? 

slider: 1=Never, 5=All 
the time 

  

orsh3 x 
 

Online Self 
Regulation 

how often do you...spend 20 hours a week on this 
course? 

slider: 1=Never, 5=All 
the time 

  

orsh4 x x Online Self 
Regulation 

how often do you...keep a record of what your 
assignments are and when they are due? 

slider: 1=Never, 5=All 
the time 

  

orsh5 x x Online Self 
Regulation 

how often do you...plan your work in advance so 
that you can turn in your assignments on time? 

slider: 1=Never, 5=All 
the time 

  

orsh6 x x Online Self 
Regulation 

how often do you...make sure people around you 
will help you study and not try to distract you? 

slider: 1=Never, 5=All 
the time 

  

orsh7 x x Online Self 
Regulation 

how often do you...use email and other online 
tools to ask your classmates and instructors 
questions? 

slider: 1=Never, 5=All 
the time 

  
 

olsrl1 x x Online Self 
Regulation 

stay on task when studying on your computer  slider: 1=Never, 7=All 
the time 

  
 

olsrl2 x x Online Self 
Regulation 

get distracted when studying on your computer  slider: 1=Never, 7=All 
the time 

*negatively-coded 
 

olsrl3 x x Online Self 
Regulation 

find yourself getting distracted by social media 
while studying on your computer  

slider: 1=Never, 7=All 
the time 

*negatively-coded 
 

olsrl4 x x Online Self 
Regulation 

find yourself getting distracted by internet 
browsing  

slider: 1=Never, 7=All 
the time 

*negatively-coded 
 

olsrl5 x x Online Self 
Regulation 

find yourself getting distracted by your phone 
while studying on your computer  

slider: 1=Never, 7=All 
the time 

*negatively-coded 
 

onlexp1 x 
 

Online Expectations When taking an online course, I expect to 
perform... 

slider: 1=Not at all well, 
7 = Very well 

  

onlexp2 x 
 

Online Expectations How good would you be at learning something 
new in an online course? 

slider: 1=Not at all 
good, 7 = Very good 

  

er1 x x Effort Regulation I often feel so lazy or bored when I study for this 
class that I quit before I finish what I planned to 

slider: 1=Strongly 
disagree, 5=Strongly 

*negatively-coded 
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Stem - 
In 
Github 
Codebo
ok 

p
r
e 

p
o
s
t 

Construct Item Response Values Item note 
 

do Agree 

er2 x x Effort Regulation I work hard even if I do not like what I am doing slider: 1=Strongly 
disagree, 5=Strongly 
Agree 

  

er3 x x Effort Regulation When coursework is difficult, I give up or only 
study the easy parts  

slider: 1=Strongly 
disagree, 5=Strongly 
Agree 

*negatively-coded 
 

er4 x x Effort Regulation Even when course materials are dull and 
uninteresting, I manage to keep working until I 
finish  

slider: 1=Strongly 
disagree, 5=Strongly 
Agree 

  

util1 x x Utility Value How beneficial for your daily life is understanding 
the biology and chemistry of cooking? 

slider: 1=Not beneficial 
at all, 7 = Very 
beneficial 

has highest loading 
among all utility 
items 

 

util2 x x Utility Value How useful in everyday life and leisure time is 
knowledge of biology and chemistry of cooking? 

slider: 1=Not at all 
useful, 7 = Very useful 

  

util3 x x Utility Value How applicable in everyday life is knowledge of 
biology and chemistry of cooking? 

slider: 1=Not at all 
applicable, 7 = Very 
applicable 

  

util4 x x Utility Value How much will you be able to impress others with 
your knowledge of the biology and chemistry of 
cooking? 

slider: 1 = Not at all, 7 = 
A lot 

  

util5 x x Utility Value How important is it to you to get a good grade in 
this course for your academic career? 

slider: 1=Not at all 
important, 7 = Very 
important 

  
 

int1 x x Interest Value How often do you wonder about the science 
behind cooking? 

slider: 1 = Never, 7 = 
Very often 

  

int2 x x Interest Value How curious are you to learn about the science 
behind cooking? 

slider: 1=Not at all 
curious, 7 = Very 
curious 

  

int3 x x Interest Value How interested are you in the science behind 
food and cooking? 

slider: 1=Not at all 
interested, 7 = Very 
interested 

has highest loading 
among all interest 
items 

 

int4 x x Interest Value How much fun will learning about the biology and 
chemistry of cooking be? 

slider: 1=Not at all fun, 
7 = Very fun 
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Github 
Codebo
ok 

p
r
e 

p
o
s
t 

Construct Item Response Values Item note 
 

att1 x x Attainment Value How important to you, personally, is it to be a 
person who understands the science behind 
cooking? 

slider: 1=Not at all 
important, 7 = Very 
important 

  
 

att2 x x Attainment Value How important is it that others see you as 
knowledgeable about the science behind food 
and cooking? 

slider: 1=Not at all 
important, 7 = Very 
important 

  

att3 x x Attainment Value How important to your identity is it to be 
knowledgeable about the science behind food 
and cooking? 

slider: 1=Not at all 
important, 7 = Very 
important 

has highest loading 
among all 
attainment items 

 

cost1 x x Cost Value 
(Emotional) 

How stressful will this class be? slider: 1=Not at all 
stressful, 7 = Very 
stressful 

  

cost2 x x Cost Value 
(Emotional) 

How frustrating will this class be? slider: 1=Not at all 
frustrating, 7 = Very 
furstrating 

has highest loading 
among all cost 
(emotional) items 

 

cost3 x x Cost Value 
(Emotional) 

How emotionally draining will this class be? slider: 1=Not at all 
draining, 7 = Very 
draining 

  

cost4 x x Cost Value (Loss of 
Valued Alternatives) 

How much do you have to sacrifice to do well in 
this course? 

slider: 1=Nothing, 7 = 
An incredible amount 

  
 

cost5 x x Cost Value (Loss of 
Valued Alternatives) 

How many other valued activities does this class 
require you to give up? 

slider: 1=None, 7 = An 
incredible amount 

  

cost6 x x Cost Value (Loss of 
Valued Alternatives) 

How many opportunities will you be missing out 
on if you commit fully to this class? 

slider: 1=None, 7 = An 
incredible amount 

has highest loading 
among all cost 
(lova) items 

 

cost7 x x Cost Value (Outside 
Effort) 

How much will your other commitments get in the 
way of you putting forth effort in class? 

slider: 1=Not at all, 7 = 
Completely 

  

cost8 x x Cost Value (Outside 
Effort) 

How much time will you have for this class after 
taking care of more important activities? 

slider: 1=Not nearly 
enough, 7 = Enough 

*negatively-coded 
 

cost9 x x Cost Value (Outside 
Effort) 

How much effort will you have left for this class 
after taking care of more important activities? 

slider: 1=Not nearly 
enough, 7 = Enough 

*negatively-coded, has 
highest loading among 
all cost (outside effort) 
items 

studyda x x Course Plan How many days of each week will you work on 1 to 7 
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ys this course? 

studyplan_
chg 

x Course Plan Think about the study plan that you had at the 
beginning of the course. Did you end up changing 
your study plan? 

0=No, I stuck to my 
study plan, 1=I never 
had a study plan, 
2=Yes, I changed my 
study plan a bit, 3=Yes, 
I changed my study 
plan a lot 

 

courses x x Other Courses How many other courses are you taking this 
summer? 

1=0, 2=1, 3=2, 4=3+ *at post-survey, 
changed to "compared 
to other courses you 
took in Summer 
Session 1..." 

courses
_imp 

x x Other Courses Compared to other courses you are currently 
taking, how important is this course? 

4=Most important, 
3=Second-most 
important, 2=Third-
most important, 
1=Fourth-most 
important 

*available choices 
depend on previous 
question 

 

oact1 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) 

open-ended 
  

oact2 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) 

open-ended 
  

oact3 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) 

open-ended 
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oact4 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) 

open-ended 
  

oact5 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) 

open-ended 
  

oact6 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) 

open-ended 
  

oact7 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) 

open-ended 
  

oact8 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) 

open-ended 
  

oact9 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) 

open-ended 
  

oact10 x 
 

Other Activities List What other important activities do you plan on 
doing in July while completing this course? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 

open-ended 
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projects, etc.) 

oact11 
 

x Other Activities List During Summer Session 1, were there any other 
important activities you that you didn't plan to do 
but ended up spending a lot of time on? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) - . 

open-ended 
  

oact12 
 

x Other Activities List During Summer Session 1, were there any other 
important activities you that you didn't plan to do 
but ended up spending a lot of time on? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) - . 

open-ended 
  

oact13 
 

x Other Activities List During Summer Session 1, were there any other 
important activities you that you didn't plan to do 
but ended up spending a lot of time on? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) - . 

open-ended 
  

oact14 
 

x Other Activities List During Summer Session 1, were there any other 
important activities you that you didn't plan to do 
but ended up spending a lot of time on? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) - . 

open-ended 
  

oact15 
 

x Other Activities List During Summer Session 1, were there any other 
important activities you that you didn't plan to do 
but ended up spending a lot of time on? (e.g., 
working for pay, caring for family members, taking 
another course, playing sports, completing home 
projects, etc.) - . 

open-ended 
  

oactcompx
1 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes 
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oactcompx
2 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes 
  

oactcompx
3 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes 
  

oactcompx
4 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes 
  

oactcompx
5 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes 
  

oactcompx
6 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes 
  

oactcompx
7 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes 
  

oactcompx
8 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes 
  

oactcompx
9 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes 
  

oactcompx
10 

x Other Activities 
Completion 

At the beginning of the course, you said you 
planned on doing the activities below. Did you 
end up doing them? 

0=No, 1=Yes   
 

courser
ank 

x x Other Activities Rank Please drag and drop your responsibilities during 
this course in order from most important to least 
important  

1 to 16 
  

oact1hr
s 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 
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oact2hr
s 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact3hr
s 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact4hr
s 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact5hr
s 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact6hr
s 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact7hr
s 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact8hr
s 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact9hr
s 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact10h
rs 

x x Other Activities Time On average, how many hours per week will you 
spend on each of these activities in the month of 

0 to 40 *only appears if and 
something is listed 
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July? in this space on 
previous question 

oact11h
rs 

 
x Other Activities Time On average, how many hours per week will you 

spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact12h
rs 

 
x Other Activities Time On average, how many hours per week will you 

spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact13h
rs 

 
x Other Activities Time On average, how many hours per week will you 

spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact14h
rs 

 
x Other Activities Time On average, how many hours per week will you 

spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

oact15h
rs 

 
x Other Activities Time On average, how many hours per week will you 

spend on each of these activities in the month of 
July? 

0 to 40 *only appears if and 
something is listed 
in this space on 
previous question 

 

sp1 
 

x Consciousness I see myself as someone who ... does a thorough 
job 

1 = Strongly disagree,  
3 = Neither agree nor  
disagree, 5 = Strongly  
agree 

 

sp2 
 

x Consciousness I see myself as someone who ... can be 
somewhat careless 

1 = Strongly disagree, 
3 = Neither agree nor 
disagree, 5 = Strongly 
agree 

*negatively-coded 
 

sp3 
 

x Consciousness I see myself as someone who ... is a reliable 
worker 

1 = Strongly disagree,  
3 = Neither agree nor  
disagree, 5 = Strongly  
agree 
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sp4 
 

x Consciousness I see myself as someone who ... tends to be 
disorganized 

1 = Strongly disagree, 
3 = Neither agree nor 
disagree, 5 = Strongly 
agree 

*negatively-coded 
 

sp5 
 

x Consciousness I see myself as someone who ... tends to be lazy 1 = Strongly disagree, 
3 = Neither agree nor 
disagree, 5 = Strongly 
agree 

*negatively-coded 
 

sp6 
 

x Consciousness I see myself as someone who ... perseveres until 
the task is finished 

1 = Strongly disagree,  
3 = Neither agree nor  
disagree, 5 = Strongly  
agree 

 

 

 
 




