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Abstract

Approaches to Safety in Inverse Reinforcement Learning

by

Dexter Ryan Richard Scobee

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

As the capabilities of robotic systems increase, we move closer to the vision of ubiquitous
robotic assistance throughout our everyday lives. In transitioning robots and autonomous
systems from traditional factory and industrial settings, it is critical that these systems are
able to adapt to uncertain environments and the humans who populate them. In order to
better understand and predict the behavior of these humans, Inverse Reinforcement Learn-
ing (IRL) uses demonstrations to infer the underlying motivations driving human actions.
The information gained from IRL can be used to improve a robot’s understanding of the
environment as well as to allow the robot to better interact with or assist humans.

In this dissertation, we address the challenge of incorporating safety into the application
of IRL. We first consider safety in the context of using IRL for assisting humans in shared
control tasks. Through a user study, we show how incorporating haptic feedback into human
assistance can increase humans’ sense of control while improving safety in the presence of
imperfect learning. Further, we present our method for using IRL to automatically create
such haptic feedback policies from task demonstrations.

We further address safety in IRL by incorporating notions of safety directly into the
learning process. Currently, most work on IRL focuses on learning explanatory rewards
that humans are modeled as optimizing. However, pure reward optimization can fail to
effectively capture hard requirements, such as safety constraints. We draw on the definition
of safety from Hamilton-Jacobi reachability analysis to infer human perceptions of safety
and to modify robot behavior to respect these learned safety constraints. We also extend
this work on learning constraints by adapting the framework of Maximum Entropy IRL in
order to learn hard constraints given nominal task rewards, and we show how this technique
infers the most likely constraints to align expected behavior with observed demonstrations.
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Chapter 1

Introduction

Advances in mechanical design and artificial intelligence continue to expand the horizons of
robotic applications. As robots become more capable, there are increasing opportunities to
deploy them outside of traditional, controlled industrial settings. However, as we expand
the scope of what robots can do, we have a responsibility to give special consideration to
the types of environments in which these robots will operate and the roles that they will
play there. If the dream of robotics is to have ubiquitous, automated assistants present
all throughout our daily lives, then achieving this dream relies heavily on our ability to
design robots that can successfully and safely operate around, and in coordination with, hu-
mans. As automation becomes more pervasive throughout society, humans will increasingly
find themselves interacting with these autonomous and semi-autonomous systems, and this
expectation has driven activity in the field of Human-Robot Interaction (HRI).

In order to facilitate effective HRI, robots must be able to learn from and adapt to humans
so that they can improve task performance and carry out those tasks in human-compatible
ways. To achieve these goals, techniques in Inverse Reinforcement Learning (IRL) have
been developed to try to understand the underlying motivations of human behavior [1]–
[5]. However, while these approaches to IRL have achieved impressive results, they do not
explicitly recognize the role that safety plays in defining desirable behavior. As we allow
robotic systems more freedom to interact with humans in the world, such as by driving
alongside us, we must ensure that they understand the hard constraints that humans obey
to ensure safety. In this dissertation, we address the challenge of incorporating safety into
the application of IRL in order to create more capable and human-compatible robots in
exciting emerging applications.

1.1 Emerging Human Robot Interactions

The successes of automation technology in fields such as aviation, industrial manufacturing,
or robot-assisted surgery may make it seem as though the challenges of HRI have been
“solved.” However, there is an important distinction between these fields and emerging
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robotic applications: the level of predictability of the environments and the level of training
of the humans with which the robotic systems interact. Robots in industrial settings are
traditionally designed to perform a single task many, many times in almost exactly the same
way. The environment around the robot is carefully controlled to prevent any unexpected
occurrences. In flight, too, the environment is generally predictable due to the relative
emptiness of airspace and strict air traffic control regulations.

Moreover, pilots, factory workers, and surgeons are trained professionals who spend their
careers learning about and interacting with specific systems. Through practice, these experts
are able to adapt to the peculiarities of the systems with which they interact to achieve mas-
tery. In contrast, emerging robotic applications target environments with non-professional,
non-expert humans, such as care-giver robots assisting patients in hospitals or at home, or
autonomous vehicles managing interactions with passengers, pedestrians, and human-driven
vehicles.

In these new applications, the burden of adaptation will shift from humans to the au-
tonomous systems themselves. Users may only have a single interaction with a particular
robot, but these robots will have many interactions with different humans, and they can have
even more experience if data is shared among networks of robots. These experiences will
enable them to learn about human behavior over time. By using this knowledge to adapt
their behavior, these systems can increase the facility and fluidity of their interactions with
humans, making them a more seamless component of our lives.

1.2 Automating Adaptation

With the liberation of robots from carefully controlled environments comes the need for them
to handle uncertainty and multitudes of possible outcomes. The task of “manually” designing
and programming a robot to handle all of these possibilities can range from daunting to
impossible. By instead building these systems to adapt, engineers can free themselves from
the burden of future-proofing these systems at design time.

From a software perspective, this adaptation can be achieved via machine learning, which,
broadly, endeavors to make use of the available information (e.g. observations of the envi-
ronment, human behavior / commands, task outcomes, etc.) to learn how to improve the
performance of an automated system. More specifically, IRL uses observations of human
behavior to infer human preferences and motivations. Typically, these elements are cap-
tured in the form of a reward function that, generally speaking, assigns positive values to
behaviors that humans perform and negative values to behaviors that humans avoid. By
using this learned reward to govern its own behavior, the robot will become more “human-
compatible”, either by imitating human behavior to accomplish the same task or by having
better predictions of what the human intends to do to facilitate interaction.

One drawback of reward-based IRL is that it is not designed to capture hard constraints
from the demonstrated behavior. While rewards can capture soft constraints, behaviors
that are discouraged, they cannot describe behaviors that must not occur. In domains
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where robots operate in coordination with and in proximity to humans, maintaining safety
is an imperative most succinctly described by hard constraints. In this work, we present
research that takes a step towards ensuring that safety is accounted for in IRL.

1.3 Safety and Inverse Reinforcement Learning

Robots employed in industrial settings are subject to regulations put forth by entities such
as the International Organization for Standardization (ISO) and the American National
Standards Institute (ANSI). These regulations put requirements on how robotic systems
can be deployed, with an eye to maintaining the safety of human workers. Some of the
most commonly applied designs for compliance include placing physical barriers around the
robot’s workspace and implementing emergency shut-offs whenever a human approaches the
workspace [6], [7]. Clearly, these approaches to safety will be infeasible for new applications
where the robot’s workspace is, by design, populated by humans.

While newer versions of these regulations have been put forward that account for mobile
robots and more interactive “cobots,” their focus remains on defining safe limits for robot
speed and interaction forces for robots in industrial settings [6]–[8]. These are certainly
important considerations, but we must also consider how safety is incorporated into the
learning elements that will be necessary in new, non-industrial robotic applications. Consider
the case of a shared control task, discussed further in Section 2.2, where a human is assisted
by an autonomous agent, such as advanced driver assistance capabilities in semi-autonomous
vehicles. If the assistance is designed to be adaptive through the application of, for example,
IRL, how can we ensure that the learned assistance will lead to safe interactions?

It may not be possible to offer any firm guarantees of safety when humans are integrated
into a control loop, but there are approaches that can improve the human’s experience of
control and reduce the likelihood of unintended errors. Specifically, prior work has shown
that haptic feedback, assistive forces and torques applied to a human’s control interface, can
improve the shared control experience and task performance [9]–[11]. The results suggest
that it would be advantageous for learning-enabled assistive systems to be able to provide
the same type of haptic feedback. To this end, in Chapter 3 we propose a method for turning
task demonstrations directly into assistive haptic feedback via IRL.

Further, it is possible for learning-enabled assistive systems to have imperfect learning
or to incorrectly infer a human user’s intent. Previous work has shown that, under these
conditions, humans prefer assistance methods that afford them a greater degree of control
over the system [12]. In Chapter 4, we explore this result by examining whether the use of
haptic feedback can provide this sense of control and improve performance and safety in the
presence of imperfect assistance policies.

While incorporating haptic feedback into IRL-based assistance can help address safety
when learning is being applied, it does not modify the common reward-based formulation of
current IRL methods. As mentioned above in Section 1.2, learning reward functions is not
always enough. Sometimes there are behaviors that should not only have a negative value,
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but which simply should not occur. One such example is in obstacle avoidance, where a
collision is not only undesirable, it is catastrophic. To address this issue, in Chapter 5 we
develop a method of learning about the human’s notions of safety by querying the human
about their perception of a robot performing a task. This approach is based on the definition
of safety from Hamilton-Jacobi reachability analysis, which allows us to learn a principled
representation of how the human might perceive the safety of the system. We discuss how
we can use this learned information to modify a robot’s behavior to better align with the
human’s notion of safety, and we show the technique leading to improved performance on a
human-robot teaming task.

One difficulty with this approach, however, is that we only gain information about the
human’s perceived constraints when things are going poorly. That is to say, in order to
obtain an observation where the human views the system to be unsafe, it must be the case
that the human is currently viewing the system’s behavior as unsafe. To address this point,
we develop a method, presented in Chapter 6, that learns these types of constraints from
demonstrated behavior. This approach adapts the formulation of Maximum Entropy IRL
[5] so that, rather than learning a reward function, we can use a nominal reward to learn
hard constraints from safe, successful demonstrations. Using this new paradigm, we are able
to infer the most likely constraints motivating the demonstrated behavior.

1.4 Contributions

The techniques mentioned above in Section 1.3 represent our effort in this dissertation to
better enable safety considerations to be integrated into IRL-enabled applications. We sum-
marize the contributions of this dissertation as follows:

� We develop a method for automatically converting expert demonstrations into haptic
feedback assistance policies via IRL.1

� We present a user study demonstrating that providing IRL-based assistance via haptic
feedback can improve humans’ sense of control and the safety of the system in the
presence of imperfect learning.1

� We incorporate formal notions of safety from Hamilton-Jacobi reachability analysis
into a framework for learning human safety preferences.2

� We adapt the approach of Maximum Entropy IRL to perform Maximum Likelihood
Constraint Inference, which allows us to infer safety, or other, constraints from demon-
strations.3

1We first presented this work in “Haptic Assistance via Inverse Reinforcement Learning” [13].
2We first presented this work in “Modeling Supervisor Safe Sets for Improving Collaboration in Human-

Robot Teams” [14].
3We first presented this work in “Maximum Likelihood Constraint Inference for Inverse Reinforcement

Learning” [15].
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By studying how to improve IRL-based assistance with haptic feedback, the first two rep-
resent approaches to assisting safely, and are detailed in Part II. The second two focus on
integrating notions of safety directly into the learning process, and thus constitute approaches
to learning safety. We present these methods in Part III. Taken together, these contributions
represent approaches to integrating safety considerations into IRL-enabled robotic applica-
tions and human-robot interactions.
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Chapter 2

Background

2.1 Reachability for Safety

In its broadest sense, reachability analysis looks to answer the questions “starting from
here, what can be reached?” and “if we want to reach there, where can we start?” In this
work, we focus specifically on Hamilton-Jacobi (HJ) reachability, a branch of optimal control
that seeks to describe the set of possible outcomes for a dynamical system under bounded
disturbances. The HJ approach allows us to answer the two primary questions of reachability
analysis by computing the set of states reachable from a given initial condition or the set of
states that can reach a given terminal condition.

To compute these sets, HJ formulates the behavior of a dynamical system as the result
of a game played between a controller and a disturbance. The controller is designed to keep
the system out of an undesirable set of states and/or to reach a set of goal states. While
the disturbance typically arises due to stochasticity in the environment or modeling errors
in the system, it is usually modeled as being adversarial to the controller for conservatism.

We are primarily concerned with using reachability to evaluate safety, so we focus on
controllers avoiding undesirable states. Maintaining safety thus equates to respecting state-
space constraints by avoiding these prohibited regions. In this setting, HJ reachability can
be used to compute safe sets of states, from which the model guarantees that there exists
a controller that can preserve safety if it begins driving the system from within the safe
set. Moreover, computing this safe set also reveals the policy of such a controller, which can
then be utilized to enforce safety. We describe the HJ reachability approach to safety in
mathematical detail below.
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2.1.1 Dynamical Systems

Consider a dynamical system with bounded control input u and bounded disturbance d,
given by

ẋ = f(x, u, d),

x ∈ Rn, u ∈ U ⊂ Rnu , d ∈ D ⊂ Rnd ,
(2.1)

where U and D are compact. We let U and D denote the sets of measurable functions
u : [0,∞)→ U and d : [0,∞)→ D, respectively, which represent possible time histories for
the system input and disturbance. Given a choice of input and disturbance signals, there
exists a unique continuous trajectory ζ : [0,∞)→ Rn from any initial state x which solves

ζ̇(t) = f(ζ(t),u(t),d(t)), a.e. t ≥ 0,

ζ(0) = x,
(2.2)

where ζ(·) describes the evolution of the dynamical system [16]. For clarity, we let ζu,dx,t0(·)
specifically denote the trajectory of the system beginning in initial state x at time t0, being
driven by input u(·) and disturbance d(·).

2.1.2 Safe Sets

Obstacles in the environment can be modeled as a “keep-out” set of states K ⊂ Rn that the
system must avoid. We define the safety of the system with respect to this set, such that
the system is considered to be safe at state ζ(0) = x over time horizon T as long as we can
choose u(·) to guarantee that there exists no time t ∈ [0, T ] for which ζ(t) ∈ K. The task
of maintaining the system’s safety over this interval can be modeled as a differential game
between the control input and the disturbance.

When formulating this game, we want to ensure that we produce conservative estimates of
what the control can achieve, such that the outcome of the game provides valid guarantees
on safety. To this end, we follow the convention of modeling the disturbance as having
instantaneous knowledge of the control input but restricting it to play non-anticipatively
[17]–[19]. In this framework, the disturbance can be written as a function of the control
input, such that d(·) = β[u](·), where β : U → D is restricted to the set of non-anticipative
strategies B, given by [19]:

B = {β : U → D | ∀t ≥ 0, ∀u(·), û(·) ∈ U ,

u(τ) = û(τ) a.e. τ ≥ 0 =⇒ β[u](τ) = β[û](τ) a.e. τ ≥ 0}.
(2.3)

By requiring that β ∈ B, the disturbance must not respond differently to any control signals
until the signals themselves diverge, effectively preventing the disturbance from anticipating
future control inputs.

We further define the objective of this game by choosing any Lipschitz payoff function
l : Rn → R which is negative-valued for x ∈ K and positive for x /∈ K. The control input
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Figure 2.1: Relationship between reachability payoff function l and value function V . This
cartoon shows their relationship as described by (2.4): the value of V (ζ∗(t), t) at any point
is dictated by the lowest value of l(ζ∗(t)) found in the future. When the system is currently
at the lowest payoff that will be encountered, the payoff and value functions are equal.

attempts to maximize this payoff, avoid K, while the disturbance attempts to minimize
this payoff, enter K. We define the outcome of this game as the minimum value of l(x)
achieved over the time horizon [0, T ], such that a positive-valued outcome indicates successful
avoidance of K and a negative-valued outcome indicates a collision with K. The value of
this game at any state x and point in time t ∈ [0, T ] is the outcome achieved from that point
by an optimal input and disturbance, given by:

V (x, t) = inf
β∈B

sup
u(·)∈U

min
τ∈[t,T ]

l(ζ
u,β[u]
x,t (τ)). (2.4)

Solving (2.4) will produce an optimal control signal u(·) which attempts to steer the system
away from K and an optimal disturbance d(·) which attempts to drive the system towards
K. The relationship between the value function and the payoff function described here is
illustrated in Figure 2.1.

We can further characterize this value function by the following Hamilton-Jacobi-Isaacs
variational inequality [17]:

min

{
l(x)− V (x, t),
∂V
∂t

(x, t) + max
u∈U

min
d∈D

∂V
∂x

(x, t)· f(x, u, d)
= 0,

V (x, T ) = l(x).

(2.5)

The value function V (x, t) that satisfies the above conditions is the solution to (2.4)
and is equal to minτ∈[t,T ] l(ζ

∗(τ)) for the trajectory with ζ∗(t) = x driven by an opti-
mal control u(·) and an optimal disturbance d(·). We can therefore find the set of states
RT = {x ∈ Rn :V (x, 0) < 0} from which we cannot guarantee the safety of the system on
the interval [0, T ], also known as the backward reachable tube of K over this interval. That
is, for all initial states x ∈ RT and feedback control polices u(t) = g(ζ(t)), there exists some
disturbance d(·) = β[u](·), with β ∈ B, such that ζ(t) ∈ K for some t ∈ [0, T ].
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Figure 2.2: Illustration of the relationship between a keep-out set K, the derived backward
reachable tube R, and the resulting safe set Ω. Note that K ⊆ R, and Ω is equal to the
complement of R. This illustration approximates the result obtained using a simple double
integrator system with ẍ = u, u ∈ [−umax, umax], where K is given by two walls that bound
the space to the left and right. Here, R is the set of states from which the acceleration umax
is insufficient to prevent a collision with a wall in K. Notice that as the system approaches
a wall, it must slow down to maintain safety.

If there exists a non-empty controlled-invariant set Ω that does not intersect K, then we
deem this set Ω a “safe set” because there exists a feedback policy that guarantees that the
system remains in Ω, and thus out of K, for all time. It follows from their properties that
Ω is the complement of RT , and the relationship between K, RT , and Ω is visualized in
Figure 2.2. Within a safe set Ω, the value function becomes independent of t as T →∞ [17].
Because we focus on the case where the system is initialized to some safe state ζ(0) ∈ Ω and
we aim to maintain ζ(t) ∈ Ω for all t ∈ [0,∞), we simplify notation by defining the terms
V (x) , limT→∞ V (x, ·) and R , R∞. The final expression for the safe set Ω is given by

Ω = {x ∈ Rn : V (x) ≥ 0} . (2.6)



CHAPTER 2. BACKGROUND 11

2.1.3 Minimally Invasive Safe Control

One approach to guaranteeing the safety of the system is to apply a “minimally invasive”
safety controller which activates on the zero level set of V (x) [20]. This approach allows
complete flexibility of control as long as ζ(t) ∈ interior(Ω), and applies the optimal control
to avoid K when ζ(·) reaches the boundary of Ω.

Fortunately, computing the optimal avoidance control is tied closely to computing the
value function. Considering (2.5), we see that if l(x) > V (x, t), implying that the system will
approach K more closely in the future, then it must be the case that the total change in the
value function must be equal to 0 under the optimal control and disturbance. We note that
this observation makes intuitive sense: the value function captures the outcome of the game
under optimal control and disturbance, so if the system is driven optimally, the value should
remain constant unless the system is already at the point of closest approach. Therefore,
the optimal control input u∗x at state x is given by the solution to the optimization in (2.5).
Considering that we are interested in the case where the safe set converges and becomes
independent of time, we can express this input as:

u∗x = argmax
u∈U

min
d∈D

∂V

∂x
(x)· f(x, u, d). (2.7)

In other words, this optimal input represents the input value that drives the system dynamics
towards the best worst-case change in the value function, which will always be greater than or
equal to zero. Therefore, if we apply this control at the boundary of Ω, when V (x) = 0, then
the system will remain in Ω since this input will prevent the value function from decreasing
below zero.

If we applied this optimal input everywhere, that is u(t) = g∗(ζ(t)) = u∗ζ(t), we would
achieve the optimal avoidance policy. In general, we will have other goals for the system
besides just obstacle avoidance, so it is impractical to simply select the policy g∗(·) for
control. Let us denote the policy designed to achieve these other objectives by g0(·). We can
then define the minimally invasive control policy gmi(·) as

gmi(x) =

{
g0(x) if V (x) > 0

g∗(x) otherwise
. (2.8)

As desired, this minimally invasive control allows flexibility while the system remains within
the safe set but guarantees safety by applying the optimal avoidance controller just before
the system exists the safe set. We can even consider g0(·) to be provided by a human
operator, in which case following gmi(·) allows the human to maneuver the system however
they see fit as long as they do not attempt any unsafe behavior, as described in [20]. We
refer the interested reader to [17], [18], [20] for a more thorough treatment of reachability
and minimally invasive controllers.
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2.2 Shared Control

When controlling or teleoperating a robotic system, a human user will provide input com-
mands designed to achieve some goal behavior. While directly implementing the user’s input
signal may provide the greatest degree of control over the system, the user’s control signal
may not correctly reflect the user’s intent. Such errors in control could be the result of high-
level phenomena, such as the user incorrectly perceiving or interpreting the system state
[21], low-level phenomena, such as deficiencies in the input mechanism or simple noise in the
human’s movements [22], or a confluence of both [23]. In light of these complications, the
performance of the human-robot system can be improved by augmenting the user’s input
rather than passing it directly to the controlled system.

In shared control, or assistive teleoperation, both a human and an autonomous agent
are able to simultaneously influence the behavior of the controlled system [12], [24]–[26].
By allowing the automation to augment the user’s input signal, it is possible for the robotic
system to better reflect the user’s intent, even if the system does not strictly obey the human’s
commands. Consider the minimally invasive safety control policy discussed in 2.1.3: if we
assume that the user never intends to crash (enter the keep-out set K), then this safety
controller respects the users intent by ignoring their inputs and applying the optimal safe
control policy just before K becomes unavoidable.

Abbink and Mulder divide such shared control schemes into two broad categories: “input-
mixing shared control” and “haptic shared control” [27]. With input-mixing, the automation
is able to modify a user’s input signal before passing it along to the system’s actuators. This
type of intervention can usually be modeled as some variation of a policy-blending approach,
where the actual system input is constructed based on the user’s input and some policy
determined by the automation [12], [26]. With haptic shared control, the automation is able
to exert forces on the control interface used by the human, thereby influencing the input
signal through force interactions with the user [24]. In contrast to input-mixing approaches,
haptic approaches maintain the coupling between the configuration of the user’s control
interface and the behavior of the actuators. In Chapter 4, we examine how employing haptic
feedback can improve a user’s sense of control and make the safety of the overall system
more robust to errors in intent inference.

2.2.1 Intent Inference

A key element of providing assistance to a human, and interacting with humans in general,
is to understand what the human intends to do. Inferring intent allows the automation to
provide useful, rather than counter-productive, assistance. The simplest way to infer intent is
to assume that it is constant, that any human interacting with the system will be attempting
to accomplish the same task in the same way [28]. A more flexible approach would be to
assume that certain sub-tasks remain constant while the overall task may change [20], [29].
For instance, the minimally invasive safety controller framework discussed in Section 2.1.3
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and deployed in [20] assumes that the human intends to avoid collisions but does not assume
any other aspect of the human’s intent.

Of course, the most flexible way to provide assistance is to dynamically infer the human’s
intent as more observations of their behavior become available [20], [29]–[34]. While we could
ideally infer any possible goal G, for tractability the inference is typically restricted to a finite
hypothesis space G. This space G could be a finite set of possible goals, or it could consist
of goals parameterized by finite-dimensional parameters θ. For example, as is common in
IRL, we could describe the human’s goal as maximizing a reward function Rθ parameterized
by θ. A common example is to let Rθ be a linear combination of features φ observed in the
human’s behavior, such that Rθ = θTφ, as discussed in Section 2.3.2. Inferring the goal in
this case is equivalent to finding a value for the parameters of the reward which can explain
the observed behavior.

The problem of inferring a human’s goal can in general be restated as finding the most
likely goal G∗ given the available observations. If these observations reveal the human’s
behavior as a trajectory ξ[t0,t] from initial time t0 to the current time t, then we can find G∗

by solving
G∗ = argmax

G∈G
P (G | ξ[t0,t]). (2.9)

If we further wish to predict how the human intends to accomplish this goal, we can formulate
the problem as finding the most likely trajectory ξ∗[t,T ] given the observations and the inferred
goal, as in

ξ∗[t,T ] = argmax
ξ∈Ξ

P (ξ | G, ξ[t0,t]). (2.10)

The problem still remains as to how these probabilities should be defined, or put another way,
what is an appropriate probabilistic model of human behavior? This issue is also important
to formulating IRL, and we discuss the topic in Section 2.3. To see different approaches to
intent inference in more detail, we also refer the interested reader to [12], [30].

2.2.2 Input-Mixing Assistance

Once the human’s objectives are understood, assistance can be generated to help them in
that endeavor. Let us consider the case where the system being controlled can be modeled
as a dynamical system as in 2.1.1. In input-mixing shared control, the input applied to this
system, u is a function of the input provided by the human, uH , and the input provided by
the automated assistance uA. If we let g denote the mixing function, then we can express
this relationship as

u = g(uH , uA). (2.11)

In a switched-control system, the human and the automation may take turns command-
ing the system depending on the specific sub-task being carried out at a given moment
[20], [35], [36]. In this case, the mixing function will switch between g(uH , uA) = uH and
g(uH , uA) = uA as necessary depending on which agent should command the current sub-
task. The minimally invasive safety controller described by (2.8) follows this paradigm: the
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Figure 2.3: Illustration of Artificial Force Fields. The obstacle is modeled as emitting a
repulsive force, while the goal emits an attractive force. A robotic system is shown at various
locations to illustrate the different resultant inputs u that will be generated by combining
the state-dependent repulsive and attractive inputs, u− and u+, in the absence of human
input uH .

automated assistance is fully in control when obstacle avoidance is necessary, but the human
remains fully in control at all other times.

The artificial force field, or potential field, assistance paradigm can be used to assist a user
in avoiding undesirable regions while reaching goal regions [37]–[39]. This method is so called
because it is based on treating obstacles as emitting repulsive fields and goals as emitting
attractive fields, as visualized in Figure 2.3. If we consider the net effect on the input due
to repulsion as u− and the effect due to attraction as u+, then the assistive input uA will be
equal to u− + u+. The resulting input is generally given by g(uH , uA) = uH + u− + u+.

Another common paradigm for assistance is known as virtual fixtures [28], [40], [41].
Virtual fixtures act as virtual objects in the space which constrain the motion of the system.
For example, to prevent motion into a restricted region, a virtual fixture could act as a
wall which prevents inputs that could drive the system into that region, as in Figure 2.4b.
Alternatively, if we know that the human intends to follow a specific path, then a virtual
fixture could act as a guide rail, where only the human input commands along the direction
of the fixture are accepted, as in Figure 2.4a.

While there are a variety of approaches to input-mixing assistance, Dragan and Srinivasa
present a unifying framework of linear policy blending [12]. In this case, the resultant input
signal u : [0,∞)→ U is simply a linear combination of the input signal uH from the human
and the input signal uA from the assistance, and can be written as

u(t) = (1− α(t))uH(t) + α(t)uA(t), (2.12)

where α : [0,∞) → [0, 1] is a time-varying arbitration function that trades off between
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(a) Guidance Virtual Fixture (b) Avoidance Virtual Fixture

Figure 2.4: Illustration of Virtual Fixtures. In (a), the virtual fixture is employed to restrict
motion so that it must lie along a desired path, much like a guide rail. In (b), the virtual
fixture is used to prevent motion that would collide with an obstacle, without otherwise
restricting motion.

the human’s and the assistance’s inputs. For example, a switched control assistance policy
can be achieved by varying the value of α from the set {0, 1} as appropriate depending on
the current sub-task. It is the responsibility of the automation to choose an appropriate
value of α to best assist the user. As another example, the value of α could vary with the
automation’s confidence in its inference of human intent [12].

When providing assistance, it is important that the assistance is actually useful and not
harmful. In the case of using policy blended inputs without on-line goal inference for input-
mixing assistance, it is possible for the performance of the assisted system to be worse than
either the human or automation acting alone [42]. Figure 2.5a shows an example where the
human and the automation disagree on the best course of action, and the resulting blended
input leads to a collision. However, as shown in Figure 2.5b active intent inference will allow
the automation to update the policy behind uA, which can help avoid these issues. Applying
a haptic-feedback-based assistance scheme can also help alleviate this difficulty by giving the
human the ability to directly override the assistance, and we explore how this affects safety
and user experiences in Chapter 4.

2.2.3 Haptic Feedback

Haptic feedback spans the gamut from simple vibration alerts to complex force interactions.
For our purposes, we are specifically interested in kinesthetic feedback, that is force or torque
feedback related to motion, which has been applied in a variety of settings [9]–[11], [43], [44].
Consider, for example, a human and a robot collaborating to lift a heavy load. Coordination
between the two agents is key to their success. One natural way for the robot to communicate
its intent to the human (and vice-versa) is through the application of force to the shared
load. In this scenario, there is a physical linkage between the human and the robot (the
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(a) Static Goals (b) Online Goal Inference

Figure 2.5: Illustration of the potential pitfalls of linear policy blending without online intent
inference. The figures represent the resultant forces of a simple arbitration function where
u = 0.5uH +0.5uA. In both figures, the human’s true intended goal GH is to pass to the right
of the obstacle, that is GH = G2. However, the assistance begins with a prior probability
that makes passing to the left, G1, seem more likely. In (a), the assistance does not update its
beliefs over possible goals, and the resultant input u drives the system towards the obstacle.
In (b), the assistance performs a Bayesian update to its beliefs over possible goals, and the
final resultant input avoids the obstacle while driving the system towards correctly towards
G2.

joint load), which provides a natural, intuitive communication channel. This type of haptic
communication has several benefits:

� It takes advantage of actuation and sensing already being utilized by the agents.

– Both the human and the robot are already generating and sensing forces, so other
communication channels can remain free (such as vision).

� The messages travel nearly instantaneously between the two agents.

– Contrast this with speech, which requires additional time both to deliver and
process.

� Haptic feedback can be used by the human’s fast low-level neuromuscular control,
bypassing slower high-level cognition [27].

– This mode takes advantage of the same neural processes that allow humans to
balance and perform athletically.

While there are certainly limitations to the types of information that can be delivered through
haptics, this communication channel is naturally suited to processing information relevant
to the physical control of dynamical systems.
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In the context of teleoperation, the physical linkage between the human and the system
being controlled is lost, but haptic feedback between the automation and the human can still
be maintained through the use of haptic interface devices, such as the Phantom Premium
[45]. Using such haptic feedback for shared control leads to natural implementations of
both artificial force fields [11], [29], where a user feels force guiding them toward desirable
inputs, and virtual fixtures [40], [43], [44], where a user feels the motion of their input device
restricted.

2.3 Inverse Reinforcement Learning

A formulation of the Inverse Reinforcement Learning (IRL) problem was first proposed by
Kalman [46] as the Inverse problem of Optimal Control (IOC). Given a dynamical system and
a control law, the author sought to identify which function(s) the control law was designed to
optimize. This problem was brought into the domain of Markov Decision Processes (MDPs)
and Reinforcement Learning (RL) by Ng and Russell [1], who proposed IRL as the task of,
given an MDP and a policy (or trajectories sampled according to that policy), find a reward
function with respect to which that policy is optimal. The ability to automatically learn
a reward function is enticing: while humans may be good at implicitly understanding task
goals or even carrying out the tasks ourselves, we can struggle to design a reward function
that properly describes a task for a robot [47], [48]. We first define MDPs in the following
section, then further discuss approaches to IRL.

2.3.1 Markov Decision Processes

Markov Decision Processes (MDPs) model the interactions of an agent with their environ-
ment. The environment includes a set of states S, and the agent is able take actions from
a set A. In general, the set of possible actions may vary depending on the state, so we can
denote a separate action set for each state s as As ⊆ A. Based on the current state s of
the system, taking an action a will cause a transition to a new state s′. This transition
is in general stochastic, and taking action a in state s results in a probability distribution
over next states Ps,a : S → [0, 1] such that s′ ∼ Ps,a. The initial state of the system is also
stochastic in general, so there exists a distribution D0 over these possible starting states.
As the state evolves, the agent observes features in the environment from a feature space Φ.
Typically, these features are represented by real-valued vectors that describe the degree to
which a feature is present in the environment. The features observed at any time depend on
the state and action taken, so we can define a feature map φ : S×A→ Rnφ , where nφ is the
number of features in the environment. The agent’s behavior, the actions it chooses to take
from each state, is motivated by a reward R : S ×A→ R, and that reward is often modeled
as depending on the features that the agent observes.

We can combine all of the elements described above to define an MDP M as a tuple
(S, {As}, {Ps,a} , D0, φ, R). Figure 2.6 shows a simple graphical representation of the states
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Figure 2.6: A simple state machine representation of a Markov decision process. The circular
nodes represent the state space S = {s1, s2, s3}. The available actions at each state are
indicated by arrows, and we can see that As1 = {a1}, As2 = {a1, a2}, and As3 = {a2}. The
transition probabilities Ps,a are shown for every state-action pair. The split arrow leaving s1

indicates a stochastic transition, in accordance with the transition probabilities.

and actions of an MDP. The actions that an agent in an MDP is likely to take in a given
state are defined by the agent’s policy π, which produces a probability distribution π(·|s, t)
over actions given the current state s and time t. For time-invariant policies, it is common
to drop the explicit dependence on time t. If the policy is deterministic, then it assigns
probability one to a single action and probability zero to all others. In this case, the policy
can alternatively be expressed as a mapping from states to actions π : S → A. By following
a policy, the agent will produce a trajectory ξ through the MDP, alternatively referred to
as a trace ξ. An MDP trajectory ξ consists of one state st and one action at for every
time step in the trajectory, up to the length of the trajectory T , and we can express this as
ξ = {s0:T , a0:T}.

As we mentioned earlier, this behavior for the agent is motivated by the reward func-
tion R. More specifically, the agent is typically modeled as attempting to maximize the
expected sum of discounted rewards, which, in the case of an infinite planning horizon,1 can
be expressed as

Vπ(s) = E
ξ∼π

[
∞∑
t=0

γtR(st, at)

]
, (2.13)

1For finite planning horizons, the value functions and policy in (2.13), (2.14), and (2.15) are largely
unchanged, though the values are, in general, dependent on the current time, where the summation in (2.13)
is modified to run from the current time to the end of the finite planning horizon.
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where the expectation is taken over the distribution of trajectories generated by following
policy π starting from state s, γ ∈ [0, 1) is a discount factor2 that de-weights future rewards,
and Vπ(s) is the value function that returns the expected sum of discounted rewards to be
earned by an agent following policy π and starting in state s.

The value function Vπ is sometimes referred to as the state value function, to contrast it
with the action value function Qπ, given by

Qπ(s, a) = R(s, a) + γ E
s′∼Ps,a

[Vπ(s′)] , (2.14)

which is the expected value that will be earned by taking action a from state s, then fol-
lowing policy π thereafter. We say that an agent has “solved” an MDP once they have
discovered an optimal policy π∗ that maximizes the value function everywhere. That is,
π∗ = argmaxπ Vπ(s) for all states s ∈ S. The optimal actions under this policy are given as

π∗(s) = argmax
a∈As

Qπ∗(s, a). (2.15)

2.3.2 IRL Formulations

While Reinforcement Learning (RL) uses observations about rewards earned in an environ-
ment to find an optimal policy for performing a task, IRL learns about the specifications of
a task by using an expert’s policy (or more typically a set of demonstrations generated by
an expert following that policy) to infer a reward function with respect to which that policy
is optimal. In this context, optimality is typically defined with respect to maximizing the
value function, as defined in (2.13). In broad terms, IRL can be characterized as solving

R∗ = argmax
R

E
s0∼D0

[Vπ(s0, 0)] , (2.16)

where the expectations in (2.13) and (2.16) can be replaced with empirical estimates from
demonstrations.

One of the chief difficulties in the problem of IRL is the fact that a policy can be optimal
with respect to a potentially infinite set of reward functions. The most trivial example of
this is the fact that all policies are optimal with respect to a null reward function that
always returns zero (or any other constant). Much of the work in IRL has been devoted to
developing approaches that address this ambiguity by imposing additional structure on the
problem to make it well-posed. In [3], the authors propose considering the class of rewards
that are linear in the features of the MDP. Rewards of this form can be parameterized by
weights θ ∈ Rnφ , and the reward function can be expressed as

Rθ(s, a) = θTφ(s, a). (2.17)

2In finite-horizon planning, the discount factor γ may, and often does, take the value 1 so that the state
value corresponds to the expectation of the un-discounted sum of rewards over the horizon.
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Figure 2.7: A basic illustration of IRL on a grid world MDP. The grid cells represent states,
and each state is colored to correspond to the feature earned from taking any action in that
state. First, on the left, we do not know the reward function of this MDP, but we have
demonstrations of behavior which avoid red states and reach yellow states while passing
through as few white states as possible. On the right, after performing IRL, we have learned
a feature-based reward function that explains the demonstrated behavior.

With this formulation, solving (2.16) amounts to finding an optimal parameter vector θ∗.
Moreover, if we overload the map φ to give the feature count of a trajectory as

φ(ξ) =
∑

t:st,at∈ξ

φ(st, at), (2.18)

then we can overload the reward function Rθ to express the cumulative reward earned by a
trajectory as

Rθ(ξ) = θTφ(ξ) (2.19)

Under this reward linearity assumption, matching expert performance on an unknown reward
function is achieved by finding any reward that causes the agent to match the expert’s
expected feature counts. Figure 2.7 shows an example of a feature-based reward that IRL
might learn from a given set of demonstrations.

Later, Ratliff, Bagnell, and Zinkevich [2] presented Maximum Margin Planning (MMP),
which cast the problem as one of structured maximum margin prediction, adding a loss
term for learned behaviors that deviate from demonstrations, even if they match feature
expectations. The MMP approach solves a convex relaxation of this problem to select an
approximately optimal reward function to explain demonstrations. By penalizing reward
functions that induce the learning agent to match feature expectations but to deviate from
the specific demonstrated trajectories, MMP attempts to more closely align the learned
reward with the unknown true reward.

Nonetheless, these earlier approaches can struggle when demonstrated behavior is sub-
optimal, variable, or inconsistent, as matching feature expectations may require a mixture of
optimal policies, and many mixtures may satisfy feature expectations while giving zero prob-
ability of reproducing demonstrated behavior. To address these shortcomings, Ziebart, Maas,
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Bagnell, et al. [5] employ the principle of maximum entropy [49] which allows the authors
to develop an IRL algorithm that produces a single stochastic policy that matches feature
counts without adding any additional constraints to the produced behavior. This so-called
Maximum Entropy IRL (MaxEnt) provides a framework for reasoning about demonstrations
from experts who are noisily optimal, with trajectories that produce higher rewards being
exponentially more likely, as described in (2.23).

Many of the more recent approaches to IRL leverage this same noisy behavior model,
and its induced probability distribution over trajectories, to characterize variations among
demonstrations [50]–[52]. In order to apply IRL to problems with large, continuous domains,
the Relative Entropy IRL [50] and Guided Cost Learning [52] techniques use sample-based
methods to estimate this distribution. The authors of [51] similarly extend the applicability
of IRL by using a local approximation of this distribution, which allows them to learn
from demonstrations that only need to be locally noisily optimal. This maximum entropy
probability distribution over trajectories also forms the basis for our efforts in identifying
the most likely behavior-modifying constraints in Chapter 6. Due to its pervasiveness in the
field and relevance to our work, we give extra attention to the details of the MaxEnt IRL
method in the following section.

2.3.3 Maximum Entropy Inverse Reinforcement Learning

Like earlier approaches to IRL, Maximum Entropy IRL (MaxEnt) [5] focuses on selecting a
reward function such that behavior optimizing this reward function will have the same ex-
pected feature counts as the empirical means observed from demonstrations. In this method,
the formulation is based on considering the probability distribution over all possible trajecto-
ries in an MDP with discrete state and action spaces. The MaxEnt approach to IRL resolves
the ill-posed problem of finding an optimal reward function by invoking the principle of
maximum entropy, which dictates that the probability distribution that matches feature ex-
pectations, without imposing additional structure, is the distribution that maximizes entropy
subject to this matching constraint [49].

Given a set D that contains N demonstrations ξ, let us denote the expected feature
counts estimated from these demonstration as

φD =
1

N

∑
ξ∈D

φ(ξ). (2.20)

Considering a finite set3 of possible trajectories Ξ, and letting θ parameterize the reward
function, the expected feature count induced by a reward function is given as

φ̂(θ) =
∑
ξ∈Ξ

P (ξ|θ)φ(ξ). (2.21)

3 The set of possible trajectories will be finite when MDPs with finite, discrete state and action spaces
are paired with agents acting over a finite horizon. With infinite horizons, the set of possible trajectories can
be infinite. However, these infinite sets, as well as large finite sets, can be approximated by a finite subset
of trajectories that are “reasonable” according to some domain-specific criteria, as discussed in [5], [53].
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As discussed in [49], the probability distribution that maximizes entropy, while ensuring that
φ̂(θ) = φD, will be of the form

P (ξ|θ) ∝ eθ
Tφ(ξ), (2.22)

where the equality of φ̂(θ) and φD is achieved by finding the proper value for θ.
Note that the exponent in (2.22) is of the same form as the trajectory reward Rθ(ξ) given

by (2.19). Therefore, the probability distribution in (2.22) will be induced by an agent’s
policy that makes the likelihood of producing a trajectory exponentially proportional to its
cumulative reward:4

P (ξ|θ) =
1

Z(θ)
eRθ(ξ), (2.23)

where Z(θ) =
∑

ξ∈Ξ e
Rθ(ξ) is the partition function that normalizes (2.23) to be a proper

probability distribution. A stochastic policy that induce this probability distribution can be
achieved by utilizing a softened version of (2.15). The maximum entropy policy πθ for a given
θ can be described using the soft value functions5 presented in [54] and defined recursively
as

V soft
πθ

(s) = softmax
a∈As

Qsoft
πθ

(s, a), (2.24)

Qsoft
πθ

(s, a) = θTφ(s, a) + E
s′∼Ps,a

[
V soft
πθ

(s′)
]

(2.25)

where softmaxx∈X f(x) , log
∑

x∈X e
f(x) is a smooth approximation of the maxx∈X operator.

The corresponding stochastic policy is given succinctly as

πθ(a|s) = eQ
soft
πθ

(s,a)−V soft
πθ

(s) (2.26)

Given this model of noisily optimal agent behavior, solving IRL amounts to finding
reward parameters θ∗ such that the probability distribution induced by πθ∗ results in equality
between φ̂(θ∗) and φD. The authors of [5] find this optimal θ∗ by maximizing the likelihood
of the trajectories in the demonstration set D, subject to respecting the maximum entropy
form given in (2.22):

θ∗ = argmax
θ∈Rnφ

∑
ξ∈D

log(P (ξ|θ)). (2.27)

4 This equivalence is only exactly true for MDPs with deterministic state transitions. As discussed in [5],
it serves as an approximation for MDPs with stochastic transitions if agent actions are not greatly influenced
by stochasticity (i.e. they employ approximately open-loop policies). Fully addressing stochastic transitions
requires the introduction of maximum causal entropy [53], [54].

5 The soft value functions as defined by (2.24) and (2.25) actually relate to the maximum causal entropy
distribution over trajectories. However, we present them in this form because the causal and non-causal
entropy distributions are equivalent for MDPs with deterministic transitions, and this form presents elegant
parallelism with the traditional definition of the value functions. The only modification to approximate
maximum entropy with stochastic transistions is to switch an expectation and a logarithm operator in (2.25)

to obtain Qsoft
πθ

(s, a) = logEs′∼Ps,a
[
eθ
Tφ(s,a)+V soft

πθ
(s′)
]
.
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They show that the gradient of this objective at a particular θ is given by the difference
between φD and φ̂(θ). The optimization can be solved through an iterative gradient decent
process: 1. take a gradient step on θ, 2. solve for the new φ̂(θ) by computing πθ through
a modified version of value iteration [55] on V soft

πθ
and Qsoft

πθ
, and 3. repeat these steps until

convergence.
While we focus on learning about safety constraints in this dissertation, rather than on

learning reward functions, we do still rely on models that can explain human behavior. In
particular, our approach to Maximum Likelihood Constraint inference in Chapter 6 relies on
the assumption that human actions can be modeled via the policy in (2.26), with the resulting
distribution over trajectories given by (2.23). As we discuss in that chapter, by assuming we
have access to a nominal reward motivating human behavior, this noisily optimal behavior
model provides us with an expected probability distribution over trajectories. When the
empirical distribution of trajectories in a demonstration set does not match this expectation,
this behavior model provides us with a principled way to infer constraints that will modify
our expectations to align them with the available demonstrations.

Notes on Terminology

Often, a given system can be well modeled as either a dynamical system, as in Section 2.1.1,
or as an MDP, as in Section 2.3.1, depending on which types of techniques and analyses
are of interest. Because we draw on developments from both areas, we employ both models
in this dissertation and endeavor to make use of them clearly and consistently. In order to
clarify usage, we discuss the relationship between their terminology below.

We first highlight that the dynamical system state x and the MDP state s both capture
the same entity, which is the state of the system in its environment. Moreover, dynamical
system inputs u are analogous to MDP actions a in how they influence the evolution of the
system’s state. This evolution is captured by either the dynamics function f or the MDP
transition probabilities Ps,a. Stochasticity in the evolution of the state can be captured
directly by these transition probabilities for MDPs, or by an unknown disturbance d entering
the dynamics function as in (2.1).

There are, however, some concepts that differ slightly between the two domains. In the
context of MDPs, a trajectory ξ typically represents a discrete set of (potentially continuous-
valued) states and actions over time. For a dynamical system, a trajectory ζ represents a
mapping from time to the state of the system. The time history of the system inputs is
usually given separately as the input signal u. The notion of a state’s “value” is typically
denoted by V in both contexts. Value, in both domains, represents how well an agent (for
MDPs) or a controller (for dynamical systems) is expected to perform beginning from a
given state; however, the measures of performance can differ. In an MDP, performance is
typically measured according to an expected accumulation of rewards, as in (2.13), and a
similar formulation is possible for designing optimal control of dynamical systems. However,
the meaning of value employed in safety-focused reachability theory for dynamical systems
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is based on the minimum distance to a keep-out set, as in (2.4). Whenever we use the term
“value” in this dissertation, the local context should make clear which definition we intend.

The definitions and notation that we use throughout this dissertation should generally
align with the common usages that we present in this chapter. Occasionally, we need to
make slight modifications to facilitate the presentation of our theory, but in such cases we
add comments and context that clarify our usage.
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Part II

Assisting Safely
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Chapter 3

Haptic Assistance via
Inverse Reinforcement Learning

As we continue to make advances in the field of robotics, the number of opportunities for
people to interact with autonomous and semi-autonomous systems will only continue to
increase. In this chapter, we address the challenge of making these interactions as seamless
and natural as possible for the human users to improve system performance and safety.
Specifically, we use the framework of shared control, detailed in Section 2.2, to examine the
role that haptic feedback can play in shaping these experiences.

Haptic shared control has been shown effective in assisted driving by modifying torques
or resistances on steering wheels and accelerator peddles [9]–[11] as well as by providing
guidance in surgical tasks [43], [44]. In cases where haptic feedback is applied, the feedback
policy is typically explicitly specified by hand to reflect expert knowledge of the task, such as
generating forces to guide the system towards goal areas (such as desired steering angles) and
away from obstacles (such as excessive acceleration). In this work, we make use of Inverse
Reinforcement Learning (IRL) to develop haptic feedback policies that implicitly incorporate
expert behaviors. As described in Section 2.3, IRL uses a set of observed trajectories to infer
the underlying reward function that motivated those trajectories [1]. Using this learned
reward function, it is possible to implement a feedback policy for environments where the
optimal behaviors are not easily specified.

In this chapter, we use a 2D driving task as our motivating example. We detail our
method for using IRL to generate underlying assistance polices, and we demonstrate how
those policies can be used to drive both input-mixing and haptic shared control schemes.
In Chapter 4, we use those control schemes as test conditions in a user study where we
analyze the trade-offs between these two modalities, demonstrating how task performance
and user preference vary depending on the setting in which the assistance is applied. Our
results provide insight into how haptic feedback affects the user experience of shared control
systems.

The work in this chapter first appeared in “Haptic Assistance via Inverse Reinforcement Learning” [13].
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3.1 Related Work

3.1.1 Shared Control

Previous work on shared control has successfully used an autonomous agent to assist users in
a variety of tasks, including the control of robotic arms [26], [56], [57], drone flight [20], [29],
and assisted surgery [40], [43], [44]. While there are a number or approaches for implementing
shared control, they generally share the common elements of predicting the human’s intent
and assisting to help realize the human’s intent [26]. Prediction can be achieved online by
continuously monitoring the user’s input [12], [43] or a priori by making general assumptions
about the user’s desires (such as collision avoidance) [20], [29]. In this work, we generate
a priori predictions by performing IRL using expert demonstrations and assuming that the
user intends to behave similarly to the expert.

Assistance to the user can be provided in a number of ways, as discussed in Section 2.2.
For example, Artificial Force Fields are based on an underlying control policy that pushes the
system towards goals and away from obstacles [29], [37]. Virtual Fixtures restrict or impede
inputs along certain directions, which can guide users along paths or prevent them from
entering dangerous areas [28], [40], [44]. In input-mixing shared control, where assistance
is achieved by directly modifying the input signal, these underlying assistance policies are
generally combined with the user’s input in one of two broad patterns. With a blending
approach, the actual input to the system is a weighted combination of the user’s input and
the assistance policy, where the autonomous agent determines how much weight should be
given to these two components [12]. As Trautman [42] points out, it is possible for such an
approach to fail even when the uncombined inputs would have succeeded individually. On
the contrary, in an inference-based approach, the control action suggested by the assistance
policy is not only based on the current state of the system but also the current input of the
human [26], [58].

At first glance, the shared control literature may seem to produce some contradictions,
cases where users prefer more [59] or less [60] assistance from the automation. Dragan and
Srinivasa reconcile these results by framing a broad spectrum of assistive teleoperation algo-
rithms as instances of their policy-blending formalism [12]. Through their experimentation,
they reveal that user preferences for assistance depend on the difficulty of the task being
performed and on the accuracy of the automation’s prediction about the user’s intent. We
capitalize on this realization to similarly categorize those cases in which a haptic approach
to shared control is preferable to an input-mixing approach.

3.1.2 Haptic Feedback

As we discuss in Section 2.2.3, haptic feedback can serve as a natural communication channel
between the human and the automated assistance. We focus specifically on kinesthetic
feedback, forces or torques applied by the automation to the human’s control interface,
which has been applied in scenarios from assisted driving [9]–[11] to assisted surgery [43],
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[44]. In previous work, haptic assistance policies have been designed by hand, sometimes
employing haptic versions of artificial force fields [11], [29] or virtual fixtures [40], [44] where
the parameters of these elements are manually specified. Creating these assistance policies
requires expert knowledge of the task on the part of the designer, understanding which
behaviors are desirable, what outcomes should be avoided, and knowing the proper balance
between these potentially competing objectives. As we mention throughout this dissertation,
enabling more advanced automation capabilities will require these systems to rely more on
learning and less on human-designed specifications. We look to bring this type of learning
to the creation of haptic assistance policies, which motivates us to present our method for
generating haptic assistance via inverse reinforcement learning.

3.1.3 Inverse Reinforcement Learning

As we discuss in Section 2.3, in the field of reinforcement learning (RL), encoding a task is
typically done via a reward function, which maps state-action pairs to scalar values measuring
their relative desirability. Using this reward function, one can measure the performance of
a control policy through its induced value function, that is, the expected sum of discounted
rewards, as given in (2.13). This mapping from states to values encodes how well an agent
following a given policy is expected to perform given their current state. The goal of RL is
to use observations of the reward to learn a policy that maximizes the value of every state.

The reward function can sometimes be easily encoded with a specific task in mind;
however, it is often the case that the task is too complex for the manual design of such a
function to be feasible [47], [48]. In those cases, if an expert is available, it is possible to use
the expert’s behavior as a means to derive the reward structure. This problem of inferring
the reward from observed behavior is known as the Inverse Optimal Control (IOC) problem
[46] or Inverse Reinforcement Learning (IRL) problem [1].

IRL has been a central topic of AI research for the past two decades, starting with the
work of Russell [61] and Ng [1]. Later on, Abbeel et al. [62] demonstrated the use of IRL
in the context of learning control policies for complicated helicopter maneuvers, and IRL
has been applied to domains from path planning [2], [5] to quadruped [4] and humanoid
[63] locomotion. There are many techniques available to perform IRL, and we discuss some
prominent examples in Section 2.3.2. Inga et al. [64] applied IRL in order to understand
individual human behaviors in a 2D driving task. They demonstrated that they were able
to explain the observed differences in driving trajectories by learning user-specific reward
functions. In this work, we are similarly interested in using IRL to infer the implicit reward
function of a human navigating a 2D environment. However, not only do we use this learned
information to model observed behavior, we also make use of the learned reward to generate
an assistance policy. We deploy this IRL-based assistance policy in a shared control setting
with the goal of assisting a novice user to follow trajectories that are consistent with expert
behavior.
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3.2 Haptic Assistance in IRL-based Shared Control

Consider a discrete-time dynamical system under shared control given by

xt+1 = f(xt, u),

u = g(uH , uA),

x ∈ X ⊆ Rn, u, uH , uA ∈ U ⊆ Rnu ,

(3.1)

where xt and xt+1 are the state of the system at time t ∈ Z and the next discrete time,
respectively, and the system input, u, is a function of uH , the input provided by the human
user, and uA, the input selected by the assistance policy. The evolutions of these values over
time are given by a state trajectory x : Z → X and input signals u,uH ,uA : Z → U . This
system model combines notation typical for discussing the control of dynamical systems (as
in (2.1)), with the discrete-time nature commonly used to describe MDPs and perform IRL
(as in Section 2.3).

With this discrete-time form, we can define the value function Vπ for this system as
the discounted sum of rewards generated by following a control policy π : X → U , as in
(2.13). The optimal value function V ∗ is the value corresponding to a control policy π∗ that
maximizes the value at every state. Given the optimal value function V ∗ for a given task,
the optimal input u∗ at any time t can be selected by maximizing the sum of the value at the
next time step, plus the reward earned at the current time step. If we assume that providing
any input is no more burdensome to the human than any other, then the reward depends
only on the state, and the optimal input at state xt can be chosen by solving

u∗xt = argmax
u∈U

V ∗(xt+1),

s.t. xt+1 = f(xt, u).
(3.2)

In an input-mixing, blending approach to shared control, the autonomous assistance will
select uA(t) = u∗(t) along with a, potentially time-varying, blending parameter α : Z→ [0, 1]
such that

u(t) = α(t)uA(t) + (1− α(t))uH(t). (3.3)

The blending parameter α trades off the amount of control authority allotted to the human
or the assistance, and the value of α could represent, as in [12], a measure of the assistance’s
confidence in its prediction about the user’s goal. That is, α can correspond to the likelihood
that V ∗(·) is the correct value function to describe the human’s intended control task.

While shared control of this form will ideally properly take into account the human’s ac-
tions to blend the two input sources, it is possible for the automated assistance to completely
override a human’s input by choosing α(t) = 1 for all t. Even without taking full control
authority away from the human, if uA significantly deviates from uH , then it is possible
for the system to follow trajectories that deviate significantly from those that would have
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occurred if the human had been unassisted [42]. Ultimate control of the system lies with
the automation. Although it may be desirable to apply significant corrections to user input
if the assistance correctly predicts the user’s goal, it can lead to frustration if the incorrect
goal is predicted [12].

We put forth that the benefits of replacing input mixing with haptic feedback shared
control can be understood as reducing this frustration by returning the ultimate control of
the system to the user: haptic shared control simply lets u = uH and uses haptic feedback
to influence the user’s selection of uH . As long as the user can overpower the haptic assis-
tance forces, the user has the ultimate authority to select the system input signal u. The
responsibility of intelligently blending inputs is shifted from the automated assistance to the
human: rather than the automation selecting a value for α, the human selects how stiff or
compliant to be in response to the assistance forces.

In what follows, we detail our approach for constructing haptic assistance policies for
shared control. First, in Section 3.2.1, we detail our approach to using IRL for generating
underlying value functions from expert demonstration. Then, in Section 3.2.2, we explain
how we leverage these value functions to implement haptic shared control. Finally, in Chapter
4, we present a user study performed to evaluate the effects of using haptic feedback in lieu
of input mixing given the same underlying IRL-based assistance policy.

3.2.1 Inverse Reinforcement Learning for Navigation Assistance

In order to provide assistance for shared control, we seek a policy π∗(x) = u∗x, as in (3.2),
based on the optimal value function V ∗(·). Before we can find this optimal value function,
however, we must first learn the underlying reward function of the environment, R(·). An
estimate of this reward function can be generated by applying an IRL algorithm to expert
trajectories. Given the learned reward function, the optimal value function can be found
through methods such as generalized policy iteration [65] or estimated via more complex RL
algorithms.

As mentioned above, we are specifically motivated by the case of 2D navigation, which is
the task that humans must solve to maneuver vehicles along roadways. Given this setting, we
present our approach to the general problem given in the preceding paragraph. We describe
positions in the 2D environment by two orthogonal coordinates [x1 x2]T ∈ X . The vehicle we
focus on will move forward with a constant speed v, but its direction of motion is determined
by an angular input u, such that its continuous time dynamics are given by

ẋ1 = v cos(u),

ẋ2 = v sin(u).
(3.4)

When performing IRL, we assume that the observed trajectories are generated by an unas-
sisted expert such that u = uH . It is straightforward to discretize these dynamics with
respect to time to recover a discrete-time dynamical system, as in (3.1).

In order to prepare expert trajectories for max-margin IRL, we divide the state space
into a coarse grid of equally sized tiles, S, with each tile s ∈ S centered at xs ∈ X and
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encompassing all states x ∈ X such that ‖x− xs‖∞ < δ, where δ ∈ R is the coarseness of the
grid. Letting these state tiles themselves constitute the features of the environment, expert
trajectories of length T can be represented as a T -tuple of visited tiles φ = (s0, s1, . . . , sT ).
The set of actions over this tile space can be given as A = {up, down, left, right}, where each
action causes a transition from a tile to one of its four adjacent tiles. We choose a reward
function R : S → R that only depends on the current tile, such that it can be encoded as
a vector R ∈ R|S|. Correspondingly, we can represent a trajectory’s feature history φ by a
matrix φ ∈ {0, 1}T×|S|, such that the ts-th element is zero unless the trajectory visited tile
s at time t. If we additionally allow Γ′ = [1 γ γ2 ... γT−1] to be a row vector of discounts
over time, then the discounted sum of rewards earned over a trajectory is given by Γ′φR.

As previously stated, the IRL approach we will be using to estimate the reward will be
a max-margin approach, as in [2], [3], based on a standard optimization of the form:

maximize
||R||2≤1

l

subject to
1

N
Γ′(

N∑
i=1

φE
i − φj

i )R ≥ l + λ||
N∑
i=1

φE
i − φj

i ||1,

j = 0, . . . ,m.

(3.5)

where N corresponds to the number of sampled trajectories, and φE
i ,φ

j
i ∈ {0, 1}T×|S| repre-

sent the sequence of states visited by the i-th trajectory from the expert and from the j-th
estimated policy, respectively (see Algorithm 3.1). Here, λ is a small constant that penalizes
trajectories that are far from the expert’s.

The optimization problem in (3.5) can be interpreted as trying to maximize the margin
between the expert’s (sampled) mean performance and the policies’, while penalizing those
policies whose trajectories differ from the expert’s. With this optimization procedure in
place, Algorithm 3.1 was used to obtain the assistance policy.

In Algorithm 3.1, CollectExpertTrajectories and CollectPolicyTrajectories are functions
used to obtain N rollouts from the expert and the intermediate policies from a predefined
set of starting states. ValueIteration runs the well-known value iteration algorithm [66] up
to an ε accuracy in order to obtain the policy and value function. For the deterministic
transition function, off road states and goal states were taken to be trapping states.

Even though we are using a max-margin IRL approach to compute the reward function
and value iteration to obtain the value function, we note that the algorithm can be imple-
mented with any desired IRL / RL combination to compute the reward and value functions.

Finally, it is important to note that the algorithm just described returns a discrete value
function over the set of state space tiles S. Recall, however, that in order to provide haptic
assistance for shared control, we will need a value function over the continuous state space
X . We construct such a continuous function V ∗ : X → R by letting V ∗(xs) = V ∗(s) for all
tile center points and performing multilinear interpolation to evaluate V ∗(x) for any point
x which does not lie at the center of a tile. In the following sections, V ∗ will refer to this
continuous value function.
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Algorithm 3.1 IRL for assistance policy synthesis

Input: N , M , λ, γ
Output: R, V ∗, π∗

1: πrnd ← RandomPolicy()
2: φE ← CollectExpertTrajectories(N)
3: φ0 ← CollectPolicyTrajectories(N, πrnd)
4: Φset ← {φ∗,φ0}
5: for m = 0 to M do
6: R← Solve (3.5) with Φset

7: V ∗, π∗ ← V alueIteration(R, ε)
8: φm+1 ← CollectPolicyTrajectories(N, π∗)
9: Φset ← Φset ∪ {φm+1}

10: end for
11: Return R, V ∗, π∗

3.2.2 Haptic Shared Control from Value Functions

Once the value function V ∗ has been obtained, a straightforward approach to haptic as-
sistance is simply to select uA to be the global optimum according to (3.2). Because the
automated assistance believes that uA is the best possible input given the current state of
the system, the goal of haptic feedback is to influence the human user to align their input
with uA. In order to achieve this goal, we adopt the model of a saturated, multi-dimensional,
damped spring:

F (t) = σ
(
−K

(
uH(t)− uA(t)

)
−B

(
uH(t)− uH(t− 1)

))
, (3.6)

where σ : Rnu → Rnu is an element-wise saturation function, K,B ∈ Rnu×nu are diagonal
matrices with positive entries, and F (t) ∈ Rnu is a vector of forces and/or torques (depending
on whether the human’s input interface is rotational or translational for each input dimen-
sion) applied by the automation to the input interface at time t. The saturation function σ(·)
ensures that these forces and torques are bounded, which is an important consideration due
to the actuation limitations of haptic interfaces and safety, comfort, and usability concerns
for human users. For simplicity, we will use the term “force” to refer to both forces and
torques moving forward.

In the case where uA takes a constant value (e.g. u0: the zero vector for all time), by
applying the haptic feedback policy given by (3.6), the user will always feel a restorative force
pulling them towards the equilibrium point u0. In the more general case where uA varies
over time, a user will feel as if their input interface is being pulled by a spring attached to
the moving value of uA. This virtual spring force is equivalent to a time-varying virtual force
field which attracts to the current value of uA.

It is important to note that, unlike input mixing shared control, which can instanta-
neously change the system input u, haptic shared control is only able to change u by in-
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fluencing uH through forces applied to the user interface. This relationship leads to two
fundamental properties of haptic shared control:

� Haptic assistance must be applied anticipatively.

� Haptic shared control is restricted in the level of assistance that it can provide.

The requirement of anticipative haptic assistance arises from the facts that humans are
not able to instantaneously react to forces and input interfaces are not able to instanta-
neously travel from one configuration to another. Similarly to [10], preliminary trials of the
experiment in Chapter 4 revealed that if F (t) is based on a value of uA(t) computed as
in (3.2), that is, based directly on the system configuration at time t, then the user may
perceive these forces as lagging behind the system: by the time the user can react to these
forces, they no longer relate to the current state of the system. To combat this issue, haptic
assistance should be based on some form of Look-Ahead Guidance as in [10]. For our ap-
proach, this means that uA(t) should ideally be selected based on the future state x(t′) of
the system at some future time t′ = t+T ′, where T ′ captures the reaction time of the user to
the haptic assistance. Assistance applied in this manner will elicit responses from the user
at the appropriate time to be effective. Because shared control systems are causal, we must
form an estimate of the future state denoted as x̂t(t

′), the state of the system at time t′ as
predicted at time t. The selection of uA(t) is then given by the following:

uA(t) = argmax
u∈U

V ∗(x̂t(t
′ + 1)),

s.t. x̂t(t
′ + 1) = f(x̂t(t

′), u),

t′ = t+ T ′.

(3.7)

Following from the fact that haptic assistance acts on a limited time scale and with
bounded forces, haptic shared control is restricted in its level of assistance. That is, select-
ing uA according to (3.7) is still insufficient for a haptic assistance approach: uA(t) may be
far removed from the current uH(t), such that the assistance force will not be able to drive
the user’s input sufficiently towards uA(t) over a relevant time period. Given this limita-
tion, better performance could be achieved by selecting the optimal input that lies within a
neighborhood of the current uH(t). We thus reformulate the selection of uA(t) as:

uA(t) = argmax
u∈U

V ∗(x̂t(t
′ + 1)),

s.t. x̂t(t
′ + 1) = f(x̂t(t

′), u),

t′ = t+ T ′,

‖u− uH(t)‖ ≤ δu,

(3.8)

where δu ∈ R+ is chosen to restrict the values of uA(t) under consideration to be input values
that are achievable with bounded haptic assistance.
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(a) uA(t) selection (b) Learned value function

Figure 3.1: The primary components of our assistance approach, as applied to our user study
in Chapter 4. Following (3.8), and shown in (a), selecting uA(t) is done by first predicting
the future state assuming constant input, then searching to find the optimal input within an
angular arc of 2θcheck about uH(t). The optimality of potential inputs is judged according to
a value function generated via IRL, shown in (b) for the Hard road in our study (see Figure
4.1c). The arrows indicate the interpolated direction of greatest value increase at each point.

We adopt the input selection in (3.8) and the force calculation in (3.6) as our approach
for translating learned value functions into actionable haptic assistance policies. Figure
3.1 shows an example of this assistance method as applied in the user study detailed in
Chapter 4.
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Chapter 4

Improving Shared Control with
Haptic Feedback

4.1 Study on Haptic Assistance Preferences

In order to test our ideas about the effects of haptic feedback on shared control interfaces,
detailed in Chapter 3, we conducted an experiment where subjects used a haptic feedback
device (Phantom Premium 1.5 6DOF [45]) to carry out a computer simulated control task.
The users would hold the handle of the device and they would control the simulation shown
in Figure 4.1. The yellow vehicle moved at a constant speed, but with a variable heading
based on the user’s input, uH , which corresponded to the angular position of the device
handle (represented in simulation by a teal arrow, as in Figures 4.1 and 3.1a). Subjects were
tasked with driving the vehicle from the bottom of the map to the top while remaining on
the road.

4.1.1 Roadmaps

We created two primary road maps that we would ask subjects to navigate, an Easy and a
Hard road, shown in Figures 4.1a and 4.1c. In order to successfully steer the vehicle along the
Easy road, the user only needs to rotate their wrist by approximately 45°, well within a typical
person’s comfortable workspace. On the contrary, the Hard road requires wrist rotation of
approximately 90°, which approaches the edge of the typical human workspace [67].

4.1.2 Assistance Policies

To generate the value functions that would underlie our assistance policies, we performed
the IRL-based procedure detailed in Section 3.2.1 using expert trajectory data gathered
from one of the authors successfully performing the task, with an example result shown in

The work in this chapter first appeared in “Haptic Assistance via Inverse Reinforcement Learning” [13].
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(a) Easy (b) Easy (Wrong)

(c) Hard (d) Hard (Wrong)

Figure 4.1: The roadmaps employed in the user study. Navigating the Easy road (a) requires
less wrist rotation than the Hard road (c). The Wrong variants, (b) and (d), are designed to
induce navigation assistance that is generally but imperfectly aligned with the original roads.
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Figure 3.1b. For both the Easy and the Hard road, trajectories were gathered for the roads
as shown in Figures 4.1a and 4.1c, as well as modified versions that expanded the width of
the road in certain locations, shown in Figures 4.1b and 4.1d. Value functions generated
from the original roads correspond to Right assistance predictions (they describe the actual
road on which the user will drive) while value functions generated from the modified roads
correspond to Wrong predictions (not perfectly aligned with the navigation goal).

We created both an input-mixing- and a haptic-feedback-based approach to assistance,
which we dub IM and HF, respectively. HF is created by selecting uA(t) as in (3.8) and
generating torques on the haptic device handle as in (3.6). To implement the input bound
condition from (3.8), we restricted the search for inputs to a range of ±θcheck = π/8, as shown
in Fig 3.1a. For the purpose of comparison in this study, we apply the same restriction to
input selection for IM, however we do not first predict a future state since input-mixing
methods are able to instantaneously alter the input to the system. IM performs blending
shared control as in (3.3) with α(t) = 1 for all t, meaning that the input passed to the system
is the optimal input within a neighborhood of uH(t).

4.1.3 Experimental Design

We recruited 12 participants for this study from among the graduate student population of
our department. While some where familiar with robotics in general, none were familiar with
our specific project or the use of haptic interface devices. Of the subjects, 5 were female and
7 were male, and their ages ranged from 20 to 28.

The experimental procedure was divided into four scenarios: the cross of the Easy and
Hard roadmaps with the Right and Wrong assistance policies. Every subject experienced
each of these four scenarios, but the order in which they were presented to the subjects
was counter balanced using a balanced Latin square scheme to combat ordering effects. In
each scenario, the subjects were asked to perform the driving task described above 6 times:
3 consecutive trials with each of the two assistance paradigms, IM and HF. The ordering
of the paradigms was balanced such that each subject and each scenario was paired with
the two possible orderings an equal number of times (twice per subject and six times per
scenario).

4.1.4 Measures

In order to objectively evaluate task performance, we recorded how many off-road states the
vehicle entered (a measure of safely achieving the control goal) as well as the total angular
distance travelled by the haptic device’s handle (a proxy measurement for the amount of
cognitive effort expended by the user). For each user, we record the average value of these
measures from their three trials with each assistance mode.

We also collected subjective data about user preferences. After experiencing both as-
sistance modes for a given scenario, users were asked to use a seven-point Likert scale to
respond to a number of statements about each mode of assistance, such as “I found System
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[A/B] helpful” or “I felt in control using System [X/Y].” Statements were grouped into three
categories measuring how in control users felt, how natural they found the assistance, and
how helpful they found the assistance. These categories were found to be internally consis-
tent (Cronbach’s α > 0.85 for each), and the recorded responses are the average response
across statements within a category. Users were also directly asked which mode of assistance
they preferred using the same seven-point scale, with 1 and 7 corresponding to extreme
preferences for one mode over the other and 4 representing indifference.

4.1.5 Hypotheses

1. There will be a significant interaction between Prediction and Assistance and between
Difficulty and Prediction on task performance (IM will perform better for Right pre-
dictions, while HF will perform better for Wrong predictions; however, these results
will be more pronounced on the Hard road than the Easy road).

2. There will be a significant effect of Prediction on user preference (IM will be preferable
with Right predictions, but HF will be preferable for Wrong predictions) and sense of
control (HF will give users a greater sense of control with Wrong predictions).

4.2 Analysis and Discussion

4.2.1 Task Performance

We performed a factorial repeated-measures ANOVA on the data with a significance level of
α = 0.05. For our measure of control effort, significant interactions were identified between
Prediction and Assistance (F (1, 11) = 16.79, p < .01) and between Difficulty and Assistance
(F (1, 11) = 35.93, p < .001). Post-hoc analysis using a Wilcoxon paired signed rank test
revealed that while IM required less control effort than HF on the Easy map with Right
predictions (p < .001), IM required significantly more effort than HF on the Hard map with
Wrong predictions (p < .01) (Figure 4.2a).

Additionally, for the number of offroad states visited, there were significant interactions
between Difficulty and Prediction (F (1, 11) = 9.21, p < .05) and between Prediction and
Assistance (F (1, 11) = 64.57, p < .001). Examining the data reveals that, when the predic-
tion was Right, IM lead to significantly fewer offroad states visited than HF on the Hard
road (p < .05). However, when the prediction was Wrong, HF had significantly fewer offroad
states visited than IM on both the Easy (p < .05) and Hard (p < .01) maps (see Figure 4.2b).

Overall, these effects support our first hypothesis. When input-mixing assistance was
based on correct predictions of the road, users expended less control effort to successfully
navigate the Easy road and exited the Hard road less frequently compared to their perfor-
mance with haptic feedback. However, given assistance based on an incorrect prediction of
the road, users were better able to avoid offroad states under haptic feedback than with
input-mixing, and they did so with less control effort on the Hard road.
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(a) Control Effort (b) Offroad States Visited

Figure 4.2: Task performance for each of the four scenarios, with error bars representing ±
one standard error. IM required significantly less control effort for the Easy and Right case,
but HF required significantly less control effort for the Hard and Wrong case. With Wrong
predictions, HF lead to significantly fewer offroad states visited, but IM lead to fewer offroad
states in the Hard and Right case (* - (p < .05), *** - (p < .001), based on a Wilcoxon
paired signed-rank test).

4.2.2 User Preference

We found a significant main effect of Prediction on the reported user preference. With Right
predictions, there is no significant preference between HF and IM on either the Easy (p = .3)
or Hard (p = .48) roads. In contrast, when predictions are Wrong, there is a marginally
significant preference for HF on the Easy road (p = .068) and a strongly significant preference
for HF on the Hard road (p < .001) (see Figure 4.3a).

Analysis also revealed a significant interaction of Prediction and Assistance on users’
reported sense of control during the task (F (1, 11) = 10.63, p < .01). In scenarios with
Wrong predictions, users reported a significantly greater sense of control with HF (p < .05
on Easy, p < .001 on Hard), which we suspect to be a major contributor for users’ preference
for HF in these cases. When the prediction is Right, however, this effect is weaker on the
Hard road (p < .05), and it is not significant on the Easy road (p = .37) (see Figure 4.3b).
We suspect that the sense of control with IM in the Easy and Right case is due to an effect
reported by Dragan and Srinivasa that occurs when assistance is so well aligned with the
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(a) Preference (b) Sense of Control

(c) Felt Natural (d) Helpful Assistance

Figure 4.3: Results of the survey given to participants in the user study, where the error
bars show ± one standard error. Figs (b) through (d) show the average response value to
questions that gauged a user’s sense of control, how natural they thought the assistance felt,
and how helpful they found the assistance, respectively. There is no significant preference
between IM and HF for Right predictions, but there is a strongly significant preference for
HF in the Hard and Wrong condition. Additionally, when predictions were Wrong, users felt
significantly more in control with HF than with IM (* - (p < .05), *** - (p < .001), based
on a Wilcoxon paired signed-rank test).
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user’s intent that they do not feel as though they are being assisted [12].
Overall, these results partially support our second hypothesis. While users did not sig-

nificantly prefer IM with Right predictions, there was a significant preference for HF in the
Hard and Wrong case. This preference may be partially explained by the fact that users felt
significantly more in control with HF when they were required to override Wrong predictions
for assistance.

4.3 Conclusion

In Chapter 3, we detail our approach for using IRL to generate haptic assistance policies to
aid users in shared control tasks, and in this chapter we demonstrate that on such tasks,
using haptic feedback can mitigate the detrimental effects of incorrectly predicting the user’s
intent. In particular, we show that haptic feedback can be used to maintain a user’s sense
of control while still providing assistance, as well as providing a reduced degradation of task
performance and safety when the assistance’s prediction is incorrect. These results suggest
that in situations where predictions are static or there is a reasonable likelihood of making
incorrect predictions, haptic feedback could be used to provide assistance in lieu of a timid
arbitration policy from an input-mixing system. By shifting the role of arbitration to the
human, they are better able to reject erroneous assistance, and they become the final control
authority in the human-robot team.
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Part III

Learning Safety
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Chapter 5

Supervisor Safe Sets

As automation becomes more pervasive throughout society, humans will increasingly find
themselves interacting with autonomous and semi-autonomous systems. These interactions
have the potential to multiply the productivity of human workers, since it will become
possible for a single human to supervise the behavior of multiple robotic agents. For example,
a single human driver could manage a fleet of self-driving delivery robots, but the driver would
only take full control for the “last mile,” guiding the robots to precisely deposit packages in
environments where autonomous navigation may not be reliable. Human experts regularly
serve as failsafe supervisors on factory assembly floors staffed with robotic arms [68]. Air
traffic controllers soon will have to manage completely autonomous drones flying through
their airspace alongside existing traditional mixed-autonomy planes and their autopilots [69].

While a human may be able to successfully exert direct control over a single robot, it
becomes intractable for a human to directly control teams of robots (in fact, humans often
benefit from automated assistance when controlling even a single robot, as discussed in the
literature on assistive teleoperation [12], [70]). In order to manage the increased complexity
of multi-robot teams, the human must be able to rely on increased autonomy from the robots,
freeing the human to focus their attention only on those areas where they are most needed.
Our goal is to model what grabs the supervisor’s attention in order to modify robot behavior
to reduce the occurrence of distractions.

This project is inspired by work like Bajcsy et al. [33] and Jain et al. [71] that learn from
supervisor interventions in a “coactive” learning framework. These works apply Learning
from Demonstration techniques to the more challenging domain where the given data is
just a correction from a trajectory rather than a full trajectory. The authors of [33] posed
this correction challenge in model-based framework that interprets the human’s signals as
resulting from an optimization problem. This inverse optimization framework has also been
used in Inverse Reinforcement Learning [3], [5] which applies Inverse Optimal Control (as
conceived of by Kalman [46]) to interpreting human trajectories (see Section 2.3 for more

The work in this chapter first appeared in “Modeling Supervisor Safe Sets for Improving Collaboration
in Human-Robot Teams” [14].
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Figure 5.1: Top: if a robot’s behavior does not take into account a human supervisor’s notion
of safety, the misaligned expectations can degrade team performance. Bottom: When a robot
acts according to a human supervisor’s expectations, the supervisor can more easily predict
the robot’s behavior.

details). Our work applies the inverse optimization framework to learn from the supervisor’s
decisions to intervene.

Results in cognitive science suggest that humans observing physical scenes can be modeled
as performing a noisy “mental simulation” to predict trajectories [72], [73]. The use of mental
dynamical models is also supported by work in neuromechanical motor control which asserts
that human action mastery involves building a dynamical model of the human body [74].
Robinson et al. posited that this dynamics learning extends not just to direct control of
the body but to external systems with which the human interacts, such as human-cyber-
physical systems [75]. We posit that human supervisors utilize this same cognitive dynamic
simulation to predict robot safety and intervene accordingly. Specifically, we theorize that the
intervention behavior is driven by an internal “safe set” which we can attempt to reconstruct
by observing supervisor interventions.

Safe sets are conceived from the Formal Methods notion of “Viability”. A set of states is
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“viable” if for every state in the set there exists a dynamic trajectory that stays within the set
for all time. Reachability analysis, as described in Section 2.1, calculates the largest viable
set that doesn’t include any undesirable state configurations (e.g. collisions with obstacles,
power overloads, etc.). Since the set is viable, it is possible to guarantee that the dynamic
system will always stay within the set and therefore stay safely away from the undesirable
states. For this reason, viability kernels are often referred to as “safe sets”. Reachability
can be used for robust path planning in dynamically changing environments [76] or working
around multiple dynamic agents [77], and recent results have leveraged the technique to
bound tracking error in order to generate dynamically feasible paths using simple planning
algorithms [78].

Hoffman et al. [79] used the safety guarantees of reachability analysis to engineer a multi-
drone team that could automatically avoid collisions. Similarly, Gillula [20] could guarantee
safety for learning algorithms by constraining their explorations to stay within the safe set.
Extending this, Akametalu and Tomlin [80] were able to guarantee safety while simulta-
neously learning and expanding the safe set. All of these controllers supervise otherwise
un-guaranteed systems and intervene to maintain safety whenever the system threatens to
leave the viable safe set. In this paper, we explore how this intervention behavior is similar
to human supervision, and apply this to representing human safety concerns as safe sets in
the state space.

5.1 Supervisor Safe Set Control

Based on the success of cognitive dynamical models for explaining humans’ understanding
of physical systems, we posit that human operators may have some notion of reachable sets
which they employ to predict collisions or avoid obstacles. We propose a noisy idealized
model to describe the behavior of the human supervisor of a robotic team, and we develop
a framework for estimating the human supervisor’s mental model of a dynamical system
based on observing their interactions with the team. We then propose a control framework
that capitalizes on this learned information to improve collaboration in such human-robot
teams. We describe our ideas using the notation for reachability analysis that we present in
Section 2.1, and which we briefly summarize here. To ground our discussion, we will visualize
concepts using the Dubins car system described by (5.9) and depicted in Figure 5.2.

5.1.1 Reachability for Safety

In this formulation, we adopt the notion of a dynamical system described in Section 2.1.1,
whereby the evolution of a system’s state x ∈ Rn is governed by a dynamics equation
f(x, u, d), which also depend on an input u ∈ U ⊂ Rnu and disturbance d ∈ D ⊂ Rnd , as
shown in (2.1). Given an input signal u : [0,∞)→ U and a disturbance signal d : [0,∞)→ D,
which return the values of the input and disturbance over time, and an initial state x, the
trajectory of the system state is given by ζ : [0,∞)→ Rn, as in (2.2).
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(a) Dubins Car Dynamics

(b) 3D Reachability (c) 2D Slice of Safe Set

Figure 5.2: Reachability with Dubins Car dynamics. (a) illustrates the dynamics for a
Dubins car system, as described by (5.9), with a keep out set K that is circular in the
x-y plane. (b) shows the backwards reachable tube R of unsafe states for this system, which
is the complement of the safe set Ω. (c) illustrates a two-dimensional slice of the safe set
taken when θ = 0.

Safety is defined with respect to avoiding a “keep-out” set of states K ⊂ Rn which
represent dangerous or undesirable outcomes. If we model the input and the disturbance as
attempting to drive the system away from and towards K, respectively, then we can define
the value V of this game between them as the least signed distance that will occur between
ζ(t) and K, as shown in (2.4). Under some assumptions discussed in Section 2.1.2, this value
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becomes independent of time, and we have a mapping from states to values V : Rn → R.
The states with non-negative value are the ones from which the input is guaranteed to be
able to avoid K, and we denote this safe set by Ω = {x ∈ Rn : V (x) ≥ 0}. Conversely, the
set of states where the input cannot guarantee safety is denoted as R = {x ∈ Rn : V (x) < 0}
and is also known as the backwards reachable tube of K. The relationship between K, Ω,
and R for a Dubins car system is depicted in 5.2c.

Assuming that the system is initialized within the safe set Ω, one way in which we can
guarantee the continued safety of the system is by applying a minimally invasive safety
controller, described in detail in Section 2.1.3. Such a controller allows for any input while
ζ(t) ∈ interior(Ω), but applies the optimal avoidance input, given by (2.7), on the boundary
of Ω when V (ζ(t)) = 0. Such a control policy grants the system as much flexibility as possible
while maintaining safety guarantees.

5.1.2 Noisy Idealized Supervisor Model

We define an idealized model of the supervisor of a robotic team whose responsibility it
is to ensure that no robots collide with obstacles represented by the keep-out set K. The
idealized supervisor behaves as a minimally invasive controller as described in Section 2.1.3.
However, while the robotic team members’ true dynamics are given by the function f(x, u, d)
as in (2.1), the supervisor possesses an internal model of the robots’ dynamics given by
fS(x, u, d), which is not necessarily equal to the true dynamics. Following the differential
game characterized by (2.5), the supervisor also possesses an internal value function VS(·)
and safe set ΩS which they use to evaluate the safety of each state x in the environment. We
allow for the possibility that the supervisor adds some amount of margin µ to their internal
safe set, such that ΩS = {x ∈ Rn :VS(x) ≥ µ}. Therefore, the idealized supervisor will always
intervene when a robotic team member reaches the µ level set of VS(·), rather than the zero
level set of the true V (·). We further specify that the idealized supervisor is conservative:
∀x ∈ Rn, V (x) ≤ 0 =⇒ VS(x) ≤ µ. This condition implies that the supervisor will never
let a robot teammate leave the true safe set Ω since ΩS ⊆ Ω. Additionally, we propose a noisy
version of this idealized supervisor which does not always intervene exactly on the µ level
set. A common model for noisily rational behavior is to use the Boltzmann distribution,
which assigns probabilities to available action in proportion to the exponentiated values of
those actions [81]. However, in this setting, applying a Boltzmann distribution to potential
intervention locations x, using the values VS(x), would model the supervisor as being most
likely to intervene as early and as far away from the obstacle as possible, which conflicts
with our model of the supervisor as a minimally invasive safety controller. We instead select
the normal distribution, which will peak at µ and distribute interventions around that point
with an exponential decrease in probability based on the squared distance to µ. With this
model, the noisy idealized supervisor will intervene when they observe a robot reach the
µ + w level set of VS(·), where w is drawn from N (0, σ2

S) whenever a supervisor makes a
safety judgement.
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5.1.3 Learning Safe Sets from Supervisor Interventions

We choose to model the human supervisor of a robotic team as approximating the behavior
of the idealized supervisor model presented in Section 5.1.2. That is, the human supervisor
will allow the robots to perform their task however they choose, but intervene whenever they
perceive that a robot is approaching an obstacle K in the state space. Given this model, we
can interpret the points at which the human intervenes as corresponding to the unknown
µ level set of some value function VH(·) : Rn → R, which characterizes the human’s mental
safe set ΩH . Our goal is to use observations of human interventions to derive an estimated
value function V̂H(·) and µ̂ which describe the observed behavior and induce an estimated
Ω̂H . We approach this task by deriving a Maximum Likelihood Estimator (MLE) of the
human’s mental safe set. If we assume that a human supervisor always intends to intervene
at the µ level set of VH(x), but their ability to precisely intervene at this level is subject
to Gaussian noise, either from observation error or variability in reaction time, then we can
consider the value at an intervention point xi as being drawn from a normal distribution
centered at µ (that is, VH(xi) ∼ N (µ, σ2)).

Given a proposed value function V̂H(·) and a set of intervention points {x1, x2, · · · , xp}
with corresponding values {V̂H(x1), V̂H(x2), · · · , V̂H(xp)}, we wish to estimate the most likely
µ and σ2 to explain these interventions. Gaussian distributions induce the following proba-
bility density function for a single observation V̂H(xj)

f
(
V̂H(xj) | µ, σ2

)
=

1√
2πσ2

exp

−
(
V̂H(xj)− µ

)2

2σ2

 (5.1)

which leads to the following probability density for a set of p independent observations
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(5.2)

The likelihood of any estimated parameter values µ̂ and σ̂2 being correct, given the obser-
vations and the proposed value function V̂H(·), is expressed as

L
(
µ̂, σ̂2 | V̂H(·)

)
= f

(
V̂H(x1), · · · , V̂H(xp) | µ̂, σ̂2

)
. (5.3)

It can be shown that the values of the unknown parameters µ and σ2 that maximize the
likelihood function are given by

µ̂∗ =
1

p

p∑
j=1

V̂H(xj) and σ̂∗2 =
1

p

p∑
j=1

(
V̂H(xj)− µ̂∗

)2

, (5.4)
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which are simply the mean and variance of the set of observations.
Notice that the estimates given by (5.4) are computed with respect to a given value

function V̂H(·). If we were to assume that the human supervisor has a perfect model of
the system dynamics, then we could simply set V̂H(·) to equal the true V (·) of the sys-
tem in (2.1), and µ̂∗ would be the maximum likelihood estimate for the level at which the
supervisor will intervene. However, it is unlikely that a human supervisor’s notion of the
dynamics will correspond exactly to this model, and we would like to maintain the flexibil-
ity of estimating value functions that are not strictly derived from (2.1). To this end, we
define the maximum likelihood of V̂H(·) being the VH(·) that produced our observations as
L∗(V̂H(·)) = maxµ̂,σ̂2 L(µ̂, σ̂2 | V̂H(·)). The value of L∗(V̂H(·)) is obtained by substituting the
estimates from (5.4) into the probability density function from (5.2). That is,

L∗
(
V̂H(·)

)
= f

(
V̂H(x1), · · · , V̂H(xp) | µ̂∗, σ̂∗2

)
. (5.5)

We seek the most likely value function to explain our observations, which will be the
value function V̂ ∗(·) with the greatest maximum likelihood L∗(V̂ ∗(·)) (the maximum over
maxima)

V̂ ∗(·) = argmax
V (·)∈V

L∗ (V (·)) , (5.6)

where V is the set of all possible value functions.
In order to make this optimization tractable, we can restrict ourselves to a set of value

functions {Vθ(·)}θ∈Rm corresponding to a family of dynamics functions {fθ(·, ·, ·)}θ∈Rm pa-
rameterized by θ ∈ Rm, making the optimization in question

V̂ ∗(·) = argmax
θ∈Rm

L∗ (Vθ(·)) . (5.7)

In practice, we may not be able to find an expression for the gradient of L∗(Vθ(·)) with
respect to θ, since the value function is derived from the dynamics fθ(·, ·, ·) via the differential
game given by (2.5). The lack of a gradient expression restricts the use of numerical methods
to solve the problem as presented in (5.7). In these cases, we can compute a representative
library of b value functions {Vi(·)}bi=1 corresponding to a set of b representative parameter
values {θi}bi=1 (see Figure 5.3 for an example library). The optimization then reduces to
choosing the most likely value function from among this library

V̂ ∗(·) = argmax
i∈{1,··· ,b}

L∗ (Vi(·)) . (5.8)

In order to ensure that the learned safe set is conservative, we can extend our MLE to a
Maximum A Posteriori (MAP) estimator by incorporating our prior belief that, regardless of
the safe set that the supervisor uses to generate interventions, they do not want the robots
to be unsafe with respect to the true dynamics. In this case, we maintain a uniform prior
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Figure 5.3: Two dimensional slices of the zero level sets of the value functions Vi(·) from the
library used for the experiment described in Section 5.2. We used a family of Dubins car
dynamics (see (5.9)) parametrized by ωmax. Notice that as ωmax decreases (the modeled con-
trol authority is decreased), the level sets extend farther away from the obstacle, indicating
that a robot is expected to turn earlier to guarantee safety.

P (θ) that assigns equal probability to all Vθ(·) whose zero sublevel sets are supersets of the
zero sublevel set of the true V (·), and zero probability to all other Vθ(·). In other words, we
assume that the supervisor does not overestimate the agility of the robots, and in practice
we can enforce this condition by choosing the library in (5.8) to only contain appropriate
value functions. Moreover, regardless of the choice of V̂H(·), we assume that the supervisor
intends to intervene before reaching the zero level set of V̂H(·), which always includes the
boundary of K. If we choose a prior P (µ) that assigns zero probability to all non-positive
µ and uniform probability elsewhere, it can be shown that the MAP estimates are obtained
by letting µ̂∗ equal max {µ̂∗, 0} and otherwise proceeding as before. Figure 5.4 provides an
example of this algorithm estimating a safe set from human supervisor intervention data.

5.1.4 Team Control with Learned Safe Sets

We propose that safe sets learned according to the approach in Section 5.1.3 can be used to
create effective control laws for the robotic members of human-robot teams. Recall our model
of the human supervisor of a robotic team: the supervisor must rely on each robot’s autonomy
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Figure 5.4: An example data set from the experiment described in Section 5.2. The red circles
represent the location of supervisor interventions, and the colored background represents the
learned value function V (·) with contour lines shown in black. In this case, the learning
algorithm chose a dynamics model parametrized by ωmax = 0.75.

to complete the majority of their tasks unassisted, but the supervisor may intervene to correct
a robot’s behavior when necessary (such as by avoiding an imminent collision with the keep-
out set K). We put forth that in the scenario where the human intervenes to prevent a
collision, they do so because they observe that a robot has violated the boundaries of their
mental safe set ΩH .

Now, consider a team of robots navigating an unknown environment, and which are able
to avoid any obstacles that they detect. One approach to safely automating this team is to
have each robot behave according to a minimally invasive control law: the robots are allowed
to follow trajectories generated by any planning algorithm, so long as they remain within Ω,
the reachable set computed using the baseline dynamics model (2.1) with associated value
function V (·). Whenever these robots detect an obstacle, they add it to the keep-out set
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K, thus modifying Ω and V (·). If a robot reaches the boundary of Ω, it applies the optimal
control to avoid K until it has cleared the obstacle. However, it is possible that a robot does
not detect an obstacle, and a human supervisor must intervene to ensure robot safety.

As stated above, the human supervisor will intervene when a robot reaches the boundary
of ΩH , not the boundary of Ω. This discrepancy leads to the possibility that the supervisor
will intervene when the robot reaches some state x, even if the robot would have avoided the
obstacle without intervention. These situations arise whenever VH(x) ≤ µ but V (x) > 0.
These “false positive” interventions represent unnecessary work for the human supervisor,
and we seek to eliminate them in order to improve the human’s experience and the team’s
overall performance.

We propose using a safe set Ω̂H learned from previous observations of supervisor inter-
ventions, as outlined in Section 5.1.3, as a substitute for Ω in the robots’ minimally invasive
control law. By estimating the human’s internal safe set, we take advantage of the following
property:

Property 1. For an idealized supervisor collaborating with a team of robots as described in
Section 5.1.4, if the robots avoid detected obstacles K by applying an optimally safe control
at the boundary of safe set ΩS, then if the supervisor plans to intervene because they observe
ζi(t) ∈ RS for robot i, the supervisor can infer that robot i has not detected an obstacle and
any supervisor intervention will not be a false positive.

Proof. The proof of this property follows constructively from the definitions of safe set,
idealized supervisor, and false positive. If robot i had correctly detected an obstacle and
adjusted its representation of ΩS accordingly, then it would have applied the optimal control
to remain within the supervisor’s safe set. Therefore, if the supervisor is able to observe that
robot i has left ΩS, it must be the case that the robot has not detected the obstacle. False
positives are defined to be supervisor interventions that occur when a robot has detected an
obstacle, but the supervisor still intervenes. In this case, the supervisor can correctly infer
that robot i has not detected an obstacle, so any intervention at this point cannot be a false
positive. �

For an idealized supervisor, as Ω̂S becomes an arbitrarily good approximation of ΩS, the
number of false positive interventions will approach zero. For a noisy idealized supervisor,
the supervisor will intervene whenever VS(x) + w ≤ µ where w ∼ N (0, σ2

S). This noise will
continue to produce false positives, even with a perfect fit Ω̂S = ΩS, if the robots apply the
optimally safe control at the µ level set of ΩS. Instead, the level set α where the optimally
safe control is applied can be raised arbitrarily high to drive the false positive rate to zero.
For example, α = µ + 2σS is sufficient to avoid over 97% of intervention states used for
learning, in expectation. We test the efficacy of our approach through the human-subjects
experiment described in Section 5.2.
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Figure 5.5: Safe sets tested in our experiment (illustrated by their complementary reachable
set): (left) Standard safe set (calculated from true dynamics and obstacle size), (middle)
example Learned safe set (calculated from fitted supervisory perception of dynamics and
obstacle size), (right) Conservative safe set (calculated from true dynamics and inflated
obstacle size)

5.2 Experimental Design for User Validation

Our goal in understanding and modeling the supervisor’s conception of safety is to improve
team performance by decreasing cognitive overload. Although we have based our human
modeling on the cognitive science literature, we do not intend to verify humans’ exact cog-
nitive processes. Instead, we aim to apply our inspiration from cognitive science toward
building better human-robot teams. To this end, our hypotheses are:

H1. Representing supervisor behavior as cognitive keep-out sets allows intervention signals to
be distilled into an actionable rule which will decrease supervisory false positives and cognitive
strain, thereby increasing team performance and trust.

H2. Fitting danger-avoidance behavior to a supervisor’s beliefs is preferable to generic con-
servative behavior.

In our experiment, we gather supervisor intervention data, fit our model to the data, and
then run a human-robot teaming task that assesses performance.

5.2.1 Procedure

Our experiment applies the idealized supervisor theory and learning algorithm to supervising
simulated robots. The robots moved according to the Dubins car model:

ẋ = v cos(θ),

ẏ = v sin(θ),

θ̇ = u,

v = 3, u ∈ [−ωmax, ωmax], ωmax = 1,

(5.9)
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Figure 5.6: Screenshot of the task from Phase III of the experiment. Robotic vehicles
make trips back and forth across the screen, detecting and avoiding each obstacle with
80% probability. The human supervisor must remove an obstacle in the event that it is
undetected, but must infer this information from the robots’ motion.

which is illustrated in Figure 5.2a.
The experiment is divided into three phases. In Phase I, the subject is given an oppor-

tunity to familiarize themselves with the robotic system’s dynamics. The user is allowed
to directly apply the full range of controls through the computer keyboard for one minute.
After ensuring the user has some experience from which to build an internal dynamics model,
we then assess their emergent conception of safety. In Phase II, supervisory data is extracted
from the subject by showing them scenes where the robot is driving towards an obstacle, and
the supervisor decides where to intervene to avoid a crash. This intervention data is then
fed into our algorithm (described in Section 5.1.3) that extracts the best fitting safe set. Our
estimator used a library of candidate dynamics functions parameterized by values of ωmax
between 0 and 3, as shown in Figure 5.3. In this experiment, we enforced conservativeness
by excluding subjects whose Learned sets were not supersets of the Standard safe set, rather
than enforcing a prior directly on ωmax. The Learned safe set is assessed in Phase III against
two fixed safe sets (see Figure 5.5) pre-calculated from the true dynamic equations.

These safe sets were calculated using Hamilton-Jacobi reachability as described in Section
2.1 using the Level Set Toolbox [82] for MATLAB. During this final phase, the subject
sequentially supervises homogeneous teams of robots, each team avoiding obstacles based
on one of the three assessed safe sets. Ten randomly placed obstacles are strewn about
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the screen impeding the robots’ autonomous trips back and forth across the screen (see
Figure 5.6). Although robots will detect and avoid an obstacle in 80% of their interactions
with it, there is a 20% chance that the robot will not detect an obstacle as it approaches.
The subject is charged with catching these random failures and removing an obstacle before
the robot crashes. Crashing is disincentivized by decrementing an on-screen “score” counter.
Removing an obstacle costs only half of what a crash costs the player. This system encourages
saving the robot but not guessing wildly. Moreover, simply clearing out all obstacles is not
a viable strategy because every obstacle removed generates a new obstacle elsewhere. This
score mechanism was also used to make the participant invested in team success by awarding
points every time a robot completes a trip across the screen.

5.2.2 Independent Variables

To assess our hypotheses, we manipulate the safe set used between team supervision trials.
We exposed the human subject to three teams, each driving using one of three safe sets.
The Learned set is derived from Phase II supervisor intervention observations as described
in Section 5.1, using α = µ. The two baseline kernels are calculated using Hamilton-Jacobi-
Isaacs reachability on the true dynamic equations. The Standard set is calculated using the
true obstacle size. The Conservative set adds a buffer that doubles the effective size of the
obstacle, inducing trajectories that give obstacles a wide berth.

5.2.3 Dependent Measures

Objective Measures

The team was tasked with making trips across the screen to reach randomized goals. The
robots’ task was to travel across the screen, safely dodging obstacles along the way, while the
human was tasked with supervising as a failsafe to remove an obstacle if the robots should
fail to observe and avoid it.

Team performance was quantified using three objective metrics: number of trips com-
pleted, number of supervisory interventions, and the number of obstacle collisions. These
metrics were presented to the subject as an aggregated, arcade-style score. To incentivize
participants to only intervene when necessary, obstacle-removal interventions reduced the
score, but only by half as much as an obstacle collision.

The number of interventions taken by the supervisor can also serve as a proxy measure-
ment to quantify the amount of cognitive strain they experience while working with the
robotic team. Of particular note are the number of interventions that were not actually
required, as the supervisor incorrectly judged that a robot had not detected an obstacle.
These false positives needlessly drain supervisor attention and indicate a lack of trust in
the system. We aim to increase the human’s trust in the system, which we quantify by a
decrease in these false positives.
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Subjective Measures

After each round of pairwise comparison (completing the task with two different robotic
teams), we presented the subject with a questionnaire to gauge how the choice of safe set
impacted their experience. These questionnaires contained statements about each team
that subjects would respond to using a 7-point Likert scale (1 - Strongly Disagree, 7 -
Strongly Agree). These statements were designed to measure Trust, Perceived Performance,
Interpretability, Confidence, Team Fluency, and overall Preference between the teams in the
comparison.

5.2.4 Subject Allocation

The subject population consisted of 6 male, 5 female, and 1 non-binary participants between
the ages of 18-29. We used a within-subjects design where each subject was asked to complete
all three possible pairwise comparisons of our three treatments (the safe sets used). We used
a balanced Latin Square design for the order of comparisons, with no treatment being first in
a pair twice. Furthermore, we generated six randomized versions of the task so that subjects
were presented with a different version of the task for each trial across the three pairwise
comparisons. To avoid coupling the treatment results to a particular version of the task, each
treatment was paired with each task version an equal number of times across our subject
population.

5.3 Analysis and Discussion

5.3.1 H1: False Positive Reduction over Standard

Our first hypothesis is that a Learned safe set that reflects the supervisor’s intervention
behavior would decrease the number of false positives compared to the Standard safe set. To
test this, we performed a one-way repeated measures ANOVA on the number of supervisory
false positives from Phase III of the experiment with safe set as the manipulated factor.
A false positive was any supervisor intervention where the removed obstacle was actually
detected by all nearby robots, which would have avoided it successfully. The robot team’s
safe set had a significant effect on the number of supervisory false positives (F (2, 20) = 8.72,
p < 0.01). An all-pairs post-hoc Tukey method found that the Learned safe set significantly
decreased (p = 0.0328 < 0.05) false positives over the Standard safe set, but there was no
significant difference between the Learned safe set and the Conservative safe set (which also
significantly decreased false positives over the Standard safe set, with p < 0.01). These results
support our main hypothesis that representing supervisor behavior as cognitive keep-
out sets allows intervention signals to be distilled into an actionable rule which
will decrease supervisory false positives .

The second half of that hypothesis, that decreasing supervisory false positives
will increase trust and team performance was not shown conclusively from our data.
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Figure 5.7: Average number of false positives per trial plotted against the three safe set
types. There were significant differences between Standard and Learned (p < .05) and
between Standard and Conservative (p < .01). There was no significant difference between
Learned and Conservative.

We performed a one-way, repeated measures ANOVA on the pairwise comparison surveys
between the teams using the Learned and the Standard safe sets. Measures of trust showed
no significant improvement (F (1, 9) = 1.86, p = 0.21).

5.3.2 H2: Preference over Conservative

For 9 of 11 participants, the Learned safe set had shorter avoidance arcs than the Conser-
vative set. We hypothesized that this greater efficiency would make the tailored conser-
vativeness of the Learned set preferable to the baseline Conservative safe set. However, a
t-test showed that the survey responses for preference were statistically indistinguishable
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Figure 5.8: Regressed safe sets (viewed on the θ = 0 slice) from supervisor intervention data
overlaid on baselines. Three users’ safe sets clustered to arcing like the Standard safe set.
Three others clustered to arcing like the Conservative safe set. The final five safe sets exhibit
a distinct behavior that reflects supervisors’ preference for gradual, pre-emptive arcs.

(p = 0.8) from a neutral score: an inconclusive result for Hypothesis 2. We believe that
this result stems from users judging preference more on intelligibility, the ease of avoiding
false positives, than on efficiency, the shortness of paths. As discussed in Section 5.3.1, both
the Learned and Conservative safe sets led to significant false positive reductions over the
Standard set.

This indistinguishability is further compounded since a preference for intelligibility seems
to be expressed by some subjects in their Phase II intervention data, resulting in their
Learned safe sets having similar arcs as the Conservative safe set (see Figure 5.8). Future
work could investigate this efficiency-intelligibility trade-off further by using a conservative
baseline that is distinguishably more conservative than user safe sets and by making efficiency
more central to the team task.
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5.3.3 Model Validity

The statistically significant decreases in false positives observed in Phase III agree with
the decreases predicted by the supervisor model based on intervention data from Phase II.
Our model posits that interventions occur at states noisily distributed about a safe set
boundary. Therefore, it predicts that the empirical distribution of Phase II intervention
states contained within a proposed safe set (see Figure 5.9) will mirror the proportion of
false positive interventions observed in Phase III: if states are deemed safe by the controller,
they will not be avoided, even when the noisy supervisor would judge them to be unsafe.
Since the Learned safe set controller intervenes at the µ̂∗ level set (see Section 5.1.3), exactly
half the intervention states will be contained within the Learned safe set in expectation. The
model’s predictions are compared against observed false positives in Table 5.1.

Interventions Predicted Average Observed
in Safe Set F.P. vs Std. F.P. F.P. vs Std.

Standard 397 / 440 100% 12.54 100%
Learned 220 / 440 55.4% 7.31 58.3%
Conservative 115 / 440 29% 4.68 37.3%

Table 5.1: Predicted and observed false positives. Left: Predicted false positives from Phase
II data. Right: Observed false positives in Phase III.

5.4 Conclusion

Automation with human supervisors relies on leveraging the human supervisor’s cognitive
resources for success. Respecting these resources is essential for creating well performing
human-robot teams. It is especially important to avoid overtaxing the human as automated
teams continue to scale up, and a single human worker both accomplishes more and bears
more cognitive load than ever. To alleviate this burden, we can decrease the number of issues
that command the supervisor’s attention by reducing false positives. By modeling which
system states command supervisory attention, we can program autonomous systems to avoid
those states when they do not require attention. To capture this information, we combine
the concept of mental simulation from cognitive science with formal safety analysis from
reachability theory to propose the noisy idealized supervisor model. We employ the noisy
idealized supervisor as the generative model in a learning algorithm to predict supervisor
safety judgements, and we present a safety controller for robotic agents that respects the
supervisor’s perception of safety. This safety controller is guaranteed to reduce false positives
for idealized supervisors. Furthermore, for actual supervisors, our human-robot teaming
user study demonstrated a significant reduction in false positives when using our approach
compared to the standard baseline.
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Figure 5.9: Empirical distribution of intervention states observed during data collection
(Phase II of the experiment). The interventions within the Conservative reachable set are
colored in red, leaving 115 interventions in the corresponding safe set. Similarly, the inter-
ventions within the Standard reachable set are colored darker, leaving 397 interventions in
the corresponding safe set. Intervention states not contained within a reachable set would
have generated a false positive during the human-robot teaming task.

Our results show that it is possible to reduce false positives, and thus cognitive load, by
aligning robot behavior with humans’ expectations. Our approach is applicable whenever
reachability theory can tractably analyze a dynamical system that will be subject to human
safety judgements. Future work will explore the impact of this framework on application
domains from air traffic management to self-driving vehicles.
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Chapter 6

Maximum Likelihood Constraint
Inference

Advances in mechanical design and artificial intelligence continue to expand the horizons
of robotic applications. In these new domains, it can be difficult to design a specific robot
behavior by hand. Even manually specifying a task for a reinforcement-learning-enabled
agent is notoriously difficult [47], [48]. Inverse Reinforcement Learning (IRL) techniques,
discussed in Section 2.3, can help alleviate this burden by automatically identifying the
objectives driving certain behavior. Since first being introduced as Inverse Optimal Control
(IOC) by Kalman [46], much of the work on IRL has focused on learning environmental
rewards to represent the task of interest [1]–[3], [5]. While these types of IRL algorithms
have proven useful in a variety of situations [13], [53], [62], [83], their basis in assuming that
reward functions fully represent task specifications makes them ill suited to problem domains
with hard constraints or non-Markovian objectives.

Recent work has attempted to address these pitfalls by using demonstrations to learn
a rich class of possible specifications that can represent a task [84]. Others have focused
specifically on learning constraints, that is, behaviors that are expressly forbidden or infeasi-
ble [14], [85]–[88]. Such constraints arise in safety-critical systems, where requirements such
as an autonomous vehicle avoiding collisions with pedestrians are more naturally expressed
as hard constraints than as soft reward penalties. It is towards the problem of inferring
such constraints that we turn our attention. In this work, we present a novel method for
inferring constraints, drawing primarily from the Maximum Entropy approach to IRL [5].
We use this framework to reason about the likelihood of observing a set of demonstrations
given a nominal task description, as well as about their likelihood if we imposed additional
constraints on the task. This knowledge allows us to select a constraint, or set of constraints,
which maximizes the demonstrations’ likelihood and best explains the differences between
expected and demonstrated behavior. Our method improves on prior work by being able

The work in this chapter first appeared in “Maximum Likelihood Constraint Inference for Inverse
Reinforcement Learning” [15].



CHAPTER 6. MAXIMUM LIKELIHOOD CONSTRAINT INFERENCE 62

to simultaneously consider constraints on states, actions and features in a Markov Decision
Process (MDP) to provide a principled ranking of all options according to their effect on
demonstration likelihood.

6.1 Related Work

6.1.1 Inverse Reinforcement Learning

As presented by Kalman [46], the objective of IOC/IRL is to use knowledge about a dy-
namical system and a control law governing that system in order to infer which function
this controller was designed to optimize. More recent work on IRL has focused specifically
on modeling systems as MDPs and using expert demonstrations to infer the reward func-
tion which these demonstrations attempt to optimize, as in (2.16) [1]–[3], [5], [50]–[52], [89].
While many different formulations of IRL have been developed, they almost universally focus
specifically on learning Markovian rewards, which depend only on the current state and/or
action.

One of the main difficulties of using IRL to learn these rewards is the fact that potentially
infinite reward functions can make demonstrated behavior appear optimal. Resolving this
ambiguity has received a lot of attention in IRL research, and we discuss some specific exam-
ples in Section 2.3.2. In particular, Ziebart, Maas, Bagnell, et al. [5] resolve the ambiguity
by allowing demonstrations to be noisily optimal with respect to rewards and employing
the principle of maximum entropy [49]. Their resulting Maximum Entropy IRL (MaxEnt)
technique, which we discuss in detail in Section 2.3.3, induces a probability distribution over
possible trajectories, according to (2.23), in which the likelihood of an agent producing a tra-
jectory increases exponentially with the reward earned along that trajectory. This approach
allows the authors to learn a reward function that will match the expected feature counts
from the demonstrations without injecting any additional preferences between possible tra-
jectories. This induced probability distribution over trajectories has been broadly adopted
by more recent IRL techniques [50]–[52], and it is central to our efforts in identifying the
most likely behavior-modifying constraints.

6.1.2 Beyond Reward Functions

While Markovian rewards do often provide a succinct and expressive way to specify the
objectives of a task, they cannot capture all possible task specifications. Vazquez-Chanlatte,
Jha, Tiwari, et al. [84] highlight the utility of non-Markovian Boolean specifications which
can describe complex objectives (e.g. do this before that) and compose in an intuitive way
(e.g. avoid obstacles and reach the goal). The authors of that work draw inspiration from
the MaxEnt framework to develop their technique for using demonstrations to calculate the
posterior probability that an agent is attempting to satisfy a Boolean specification.



CHAPTER 6. MAXIMUM LIKELIHOOD CONSTRAINT INFERENCE 63

A subset of these types of specifications that is of particular interest to us is the speci-
fication of constraints, which are states, actions, or features of the environment that must
be avoided. Chou, Berenson, and Ozay [88] explore how to infer trajectory feature con-
straints given a nominal model of the environment (lacking the full set of constraints) and
a set of demonstrated trajectories. The core of their approach is to sample from the set of
trajectories which have better performance than the demonstrated trajectories. They then
infer that the set of possible constraints is the subset of the feature space that contains the
higher-reward sampled trajectories, but not the demonstrated trajectories. Intuitively, they
reason that if the demonstrator could have passed through those features to earn a higher
reward, but did not, then there must have been a previously unknown constraint preventing
that behavior. However, while their approach does allow for a cost function to rank elements
from the set of possible constraints, the authors do not offer a mechanism for determining
what cost function will best order these constraints.

Our approach to constraint inference from demonstrations addresses this open question
by providing a principled ranking of the likelihood of constraints. We adapt the MaxEnt
framework to allow us to reason about how adding a constraint will affect the likelihood
of demonstrated behaviors, and we can then select the constraints which maximize this
likelihood. We consider feature-space constraints as in [88], and we explicitly augment the
feature space with state- and action-specific features to directly compare the impacts of
state-, action-, and feature-based constraints on demonstration likelihood.

6.2 Maximum Likelihood Constraint Inference

6.2.1 Problem Formulation

Following the formulation presented by Ziebart, Maas, Bagnell, et al. [5], we base our work
in the setting of a (finite-state) Markov Decision Process (MDP). We define an MDP M as
a tuple (S, {As}, {Ps,a} , D0, φ, R) as in Section 2.3.1, with the specific definitions of those
elements given here as:

� S is a finite set of discrete states;

� {As} is a set of the sets of actions available to be taken for each state s, such that
As ⊆ A, where A is a finite set of discrete actions;

� {Ps,a} is a set of state transition probability distributions such that Ps,a(s
′) = P (s′|s, a)

is the probability of transitioning to state s′ after taking action a from state s;

� D0 : S → [0, 1] is an initial state distribution;

� φ : S × A→ Rk
+ is a mapping to a k-dimensional space of non-negative features; and

� R : S × A→ R is a reward function.
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A trajectory ξ through this MDP is a sequence of states st and actions at such that s0 ∼ D0

and state si+1 ∼ Psi,ai . Actions are chosen by an agent navigating the MDP according to a,
potentially time-varying, policy π such that π(·|s, t) is a probability distribution over actions
in As. We denote a finite-time trajectory of length T + 1 by ξ = {s0:T , a0:T}.

At every time step t, a trajectory will accumulate features equal to φ(st, at). We use the
notation φi(·, ·) to refer to the i-th element of the feature map, and we use the label φi to
denote the i-th feature itself. We also introduce an augmented indicator feature mapping
φ̃1 : S × A → {0, 1}nφ , where nφ = k + |S| + |A|. This augmented feature map uses binary
variables to indicate the presence of a feature and expands the feature space by adding binary
features to track occurrences of each state and action, such that

φ̃1φi(s, a) =

{
1 if φi(s, a) > 0

0 otherwise
, φ̃1si(s, a) =

{
1 if s = si

0 otherwise
, φ̃1ai(s, a) =

{
1 if a = ai

0 otherwise
.

(6.1)

Typically, agents are modeled as trying to maximize, or approximately maximize, the
total reward earned for a trajectory ξ, given by R(ξ) =

∑T
t=0 γ

tR(st, at), where γ ∈ (0, 1] is
a discount factor. Therefore, an agent’s policy π is closely tied to the form of the MDP’s
reward function.

Conventional IRL focuses on inferring a reward function that explains an agent’s policy,
revealed through the behavior observed in a set of demonstrated trajectories D. However,
our method for constraint inference poses a different challenge: given an MDPM, including
a reward function, and a set of demonstrations D, find the most likely set of constraints C∗

that could modify M to explain these demonstrations. We define our notion of constraints
in the following section.

6.2.2 Constraints for MDPs

Constraints are those behaviors that are not disallowed explicitly by the structure of the
MDP, but which would be infeasible or prohibited for the underlying system being modeled
by the MDP. This sort of discrepancy can occur when a generic or simplified MDP is designed
without exact knowledge of specific constraints for the modeled system. For instance, for
a generic MDP modeling the behavior of cars, we might want to include states for speeds
up to 500km/h and actions for accelerations up to 12m/s2. However, for a specific car on a
specific roadway, the set of states where the vehicle travels above 100km/h may be prohibited
because of a speed limit, and the set of actions where the vehicle accelerates above 4m/s2

may be infeasible because of the physical limitations of the vehicle’s engine. Therefore,
any MDP trajectory of this specific car system would not contain a state-action pair which
violates these legal and physical limits. Figure 6.1 shows an example of constraints driving
behavior.

We define a constraint set Ci ⊆ S × A as a set of state-action pairs that violate some
specification of the modeled system. We consider three general classes of constraints: state
constraints, action constraints, and feature constraints.
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(a) Nominal MDP (b) Constrained MDP

Figure 6.1: Illustration of trajectories likely to be produced by noisily optimal agents nav-
igating an MDP. (a) Expected behavior on a generic, nominal MDP. (b) Demonstrated
behavior from a specific, constrained MDP. Numbers represent state-based rewards, and the
red-shaded tiles represent state constraints.

� A state constraint set Csi includes all state-action pairs such that the state component
is si. That is, Csi = {(s, a) | s = si}.

� An action constraint set Cai includes all state-action pairs such that the action com-
ponent is ai. That is, Cai = {(s, a) | a = ai}.

� A feature constraint set Cφi includes all state-action pairs that produce a non-zero
value for feature φi. That is, Cφi = {(s, a) | φi(s, a) > 0}.

If we augment the set of features as described in (6.1), it is straightforward to see that
state and action constraints become special cases of feature constraints, with constraint
sets given by Ci = {(s, a) | φ̃1i (s, a) = 1}. It is also evident that we can obtain compound
constraints, respecting two or more conditions, by taking the union of constraint sets Ci to
obtain C =

⋃
iCi.

Adding Constraints to an MDP

We need to be able to reason about how adding a constraint to an MDP will influence the
behavior of agents navigating that environment. If we impose a constraint on an MDP,
then none of the state-action pairs in that constraint set may appear in a trajectory of the
constrained MDP. To enforce this condition, we must restrict the actions available in each
state so that it is not possible for an agent to produce one of the constrained state-action
pairs. For a given constraint C, we can replace the set of available actions As in every state
s with an alternative set ACs given by

ACs = As \ {a ∈ As | (s, a) ∈ C} . (6.2)
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Performing such substitutions for an MDP M will lead to a modified MDP MC such that
MC = (S, {ACs }, {Ps,a}, D0, φ, R).

The question then arises as to the how we should treat states with empty action sets
ACs = ∅. Since an agent arriving in such an empty state would have no valid action to select,
any trajectory visiting an empty state must be deemed invalid. Indeed, such empty action
sets will be produced for any state si such that Csi ⊆ C.

For MDPs with deterministic transitions, agents know precisely which state they will
arrive in following a certain action. Therefore, any agent respecting constraints will not take
an action that leads to an empty state, since doing so will lead to constraint violations. If we
consider the set of empty states Sempty, then for the purposes of reasoning about an agent’s
behavior, we can impose an additional constraint set

Cempty = {(s, a) | ∃ sempty ∈ Sempty : Ps,a(sempty) = 1}. (6.3)

In this work, we will always implicitly add this constraint set, such thatMC will be equivalent
to MC∪Cempty , and we recursively add these constraints until reaching a fixed point.

For MDPs with stochastic transitions, the semantics of an empty state are less obvious
and could lend themselves to multiple interpretations depending on the nature of the system
being modeled. In our context, we use constraints to describe how observed behaviors from
demonstrations differ from possible behaviors allowed by the nominal MDP structure. We
therefore assume that any demonstrations provided are, by the fact that they were selected
to be provided, consistent with the system’s constraints, including avoiding empty states.
This assumption implies that any stochastic state transitions that would have led to an
empty state will not be observed in trajectories from the demonstration set. The omission
of these transitions means that, for a given (s, a), if Ps,a(Sempty) = p, then a proportion p
of these (s, a) pairs which occur as an agent navigates the environment will be excluded
from demonstrations. Therefore, as we modify the MDP to reason about demonstrated
behavior, we need updated transition probabilities which eliminate the probability mass of
transitioning to empty states, an event which will never be observed in a demonstration.
Such modified probabilities can be given as

PC
s,a(s

′) =

{
0 if s′ ∈ Sempty

Ps,a(s′)
1−Ps,a(Sempty)

otherwise
. (6.4)

We must also capture the change to observed state-action pair frequencies by under-
standing that any observed policy πC will be related to an agent’s actual policy π according
to

πC(a|s, t) =
π(a|s, t)(1− Ps,a(Sempty))∑

a′∈ACs
π(a′|s, t)(1− Ps,a(Sempty))

. (6.5)

It is important to note that the modifications presented in (6.4) and (6.5) for stochastic
MDPs are not meant to directly reflect the reality of the underlying system (we wouldn’t
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expect the actual transition dynamics to change, for instance), but to reflect the apparent
behavior that we would expect to observe in the subset of trajectories that would be selected
as demonstrations. We further note that applying these modifications to deterministic MDPs
will result in the same expected behavior as augmenting the constraint set with Cempty.

Nominal MDPs

The nominal MDPs to which we will add constraints fall into two broad categories, which
we denote as generic and baseline. The car MDP described at the beginning of Section 6.2.2
is an example of a generic nominal model: its state and action spaces are broad enough to
encompass a wide range of car models, and we can use this nominal model to infer constraints
that specialize the MDP to a specific car and task. For a generic nominal MDP, the reward
function may also come from a generic, simplified task, such as “minimize time to the goal”
or “minimize energy usage.”

A baseline nominal MDP is a snapshot of a system from a point in time where it was well
characterized. With a baseline nominal MDP, the constraints that we infer will represent
changes to the system with respect to this baseline. In this case, the nominal reward function
can be learned using existing IRL techniques with demonstrated behavior from the baseline
model. We take this approach in our human obstacle avoidance example in Section 6.3.2:
we use demonstrations of humans walking through the empty space to learn a nominal
reward, then we can detect the presence of a new obstacle in the space from subsequent
demonstrations.

6.2.3 Demonstration Likelihood Maximization

Our goal is to find the constraints C∗ which are most likely to have been added to a
nominal MDP M, given a set of demonstrations D from an agent navigating the con-
strained MDP. Let us define PM to denote probabilities given that we are considering
MDP M. Our problem then becomes to select the constraints that maximize PM(C | D).
If we assume a uniform prior over possible constraints, then we know from Bayes’ Rule
that PM(C | D) ∝ PM(D | C). Therefore, in order to find the constraints that maximize
PM(C | D), we can solve the equivalent problem of finding which constraints maximize the
likelihood of the given demonstrations. In this section, we present our approach to solving
maximum likelihood constraint inference via solving demonstration likelihood maximization.

Under the maximum entropy model presented in [5], the probability of a certain finite-
length trajectory ξ being executed by an agent traversing a deterministic MDP M is expo-
nentially proportional to the reward earned by that trajectory.

PM(ξ) =
1

Z
eβR(ξ)

1
M(ξ), (6.6)

where Z is the partition function, 1M(ξ) indicates if the trajectory is feasible for this MDP,
and β ∈ [0,∞) is a parameter describing how closely an agent adheres to the task of optimiz-
ing the reward function (as β → ∞, the agent becomes a perfect optimizer, and as β → 0,



CHAPTER 6. MAXIMUM LIKELIHOOD CONSTRAINT INFERENCE 68

the agent’s actions become perfectly random). In the sequel, we assume that a given reward
function will appropriately capture the role of β, so we omit β from our notation without
loss of generality.

In the case of finite horizon planning, the partition function will be the sum of the
exponentially weighted rewards for all feasible trajectories on MDP M of length no greater
than the planning horizon. We denote this set of trajectories by ΞM. Because adding
constraints C modifies the set of feasible trajectories, we express this dependence as

Z(C) =
∑
ξ∈ΞM

eR(ξ)
1
MC

(ξ). (6.7)

Assuming independence among demonstrated trajectories, the probability of observing a
set D of N demonstrations is given by the product

PMC (D) =
1

Z(C)N

∏
ξ∈D

eR(ξ)
1
MC

(ξ). (6.8)

Our goal is to maximize the demonstration probability given by (6.8). Because we take
the reward function and demonstrations as given, our only available decision variable in this
maximization is the constraint set C which alters the indicator 1M

C
and partition function

Z(C).

C∗ = argmax
C∈C

PMC (D), (6.9)

where C ⊆ 2S×A is the hypothesis space of possible constraints.
From the form of (6.8), it is clear that to solve (6.9), we must choose a constraint set that

does not invalidate any demonstrated trajectory while simultaneously minimizing the value
of Z(C). Consider the set of trajectories that would be made infeasible by augmenting the
MDP with constraint C, which we denote as Ξ−MC = {ξ ∈ ΞM | 1M

C
(ξ) = 0}. The value of

Z(C) is minimized when we maximize the sum of exponentiated rewards of these infeasible
trajectories. Considering the form of the trajectory probability given by (6.6), we can see
that this sum is proportional to the total probability of observing a trajectory from Ξ−MC on
the original MDP M ∑

ξ∈Ξ−
MC

eR(ξ) ∝
∑

ξ∈Ξ−
MC

PM(ξ) = PM(Ξ−MC ). (6.10)

This insight leads us to the final form of the optimization

C∗ = argmax
C∈C

PM(Ξ−MC )

s.t. D ∩ Ξ−MC = ∅
. (6.11)
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(a) Nominal MDP (b) Add constraint C1 (c) Add constraint C2

Figure 6.2: Selecting constraints to maximize demonstration likelihood. Trajectories that are
likely to be observed on a given MDP are shown as dashed, angular arrows, and a provided
demonstration is shown as a solid, curved arrow. Figure (a) shows these trajectories on a
nominal MDP, and Figures (b) and (c) show the effects of adding two different constraints.
While both C1 and C2 are possible constraints (i.e., they do not conflict with the demonstra-
tion), adding C1 in (b) does little to align the expected trajectories with the demonstration.
On the other hand, adding C2 in (c) makes the original expected trajectories infeasible and
causes the new expected trajectories to agree with the demonstration, greatly increasing the
likelihood of the demonstration on this constrained MDP. This simple example illustrates
how choosing constraints that eliminate likely trajectories on the nominal MDP will do more
to increase the likelihood of demonstrations on the constrained MDP.

In order to solve (6.11), we must reason about the probability distribution of trajectories on
the original MDPM, then find the constraint C such that Ξ−MC contains the most probability
mass while not containing any demonstrated trajectories. Figure 6.2 provides a graphical
representation of this reasoning. We highlight here that the fact that the chosen C must not
conflict with any demonstration is an important condition: all provided demonstrations must
perfectly respect a constraint in order for it to be learned, otherwise a less restrictive set of
constraints may be learned instead. A promising future direction is to relax this requirement
in order to learn about constraints that are generally respected by a set of demonstrations,
without needing to first isolate just the successful, constraint-respecting demonstrations.

While equation (6.11) is derived for deterministic MDPs, if we can assume, as proposed by
Ziebart, Maas, Bagnell, et al. [5], that for a given stochastic MDP, the stochastic outcomes
have little effect on an agent’s behavior and the partition function, then the solution to
(6.11) will also approximate the optimal constraint selection for that MDP. However, in
order to fully address the stochastic case, we would need to reformulate our approach based
on maximum causal entropy [53]. We save this extension for future work.
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Constraint Hypothesis Space

In order for the solutions to (6.11) to be meaningful, we must be careful with our choice
of the constraint hypothesis space C. For instance, if we let C = 2S×A, then the optimal
solution will always be to choose the most restrictive C to constrain all state-action pairs
not observed in the demonstration set.

One approach to avoid this trivial solution is to use domain knowledge of the modeled
system to restrict C to a library of plausible or common constraints. McPherson*, Scobee*,
Menke, et al. [14] construct such a library by using reachability theory to calculate a family
of likely unsafe sets.

We could also potentially address this problem by adding a regularization term to the
optimization that would penalize constraints based on some notion of “size,” which would
encourage the selection of “smaller” constraints. The size of a constraint set could be defined
by the number of minimal constraints that it contains. These minimal constraint sets con-
strain a single state, action, or feature, and were introduced in Section 6.2.2 as Csi , Cai , and
Cφi , respectively. While penalizing this definition of size would effectively discourage over-
fitting, considering every possible combination of minimal constraints causes the hypothesis
space to grow exponentially in the number of states, actions, and features of the MDP, which
may make directly solving this formulation intractable.

Another approach, which avoids this combinatorial explosion, is to use the minimal con-
straint sets themselves, not their combinations, as our hypothesis space, and to select from
among these constraints in an iterative, greedy manner. By iteratively selecting individual
minimal constraint sets, and choosing a proper stopping condition, it is possible to gradually
grow the full estimated constraint set and avoid overfitting to the demonstrations. It is this
method that we will utilize in this work. Section 6.2.4 details our approach for selecting the
most likely minimal constraint, and Section 6.2.5 details our approach for iteratively growing
the estimated constraint set.

6.2.4 Probability Mass for Minimal Constraints

As detailed in Section 6.2.3, the most likely constraint set is the one whose eliminated trajec-
tories Ξ−MC have the highest probability of being demonstrated on the original, unconstrained
MDP. Therefore, to find the most likely of the minimal constraints, we must find the expected
proportion of trajectories which will contain any state or action, or accrue any feature. By
using our augmented indicator feature map from (6.1), we can reduce this problem to only
examine feature accruals.

Ziebart, Maas, Bagnell, et al. [5] present their forward-backward algorithm for calculating
expected feature counts for an agent following a policy in the maximum entropy setting.
This algorithm nearly suffices for our purposes, but it computes the expectation of the total
number of times a feature will be accrued (i.e. how often will this feature be observed
per trajectory), rather than the expectation of the number of trajectories that will accrue
that feature at any point in time. To address this problem, we present a modified form
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Algorithm 6.1 Feature Accrual History Calculation

Input: an MDP M, a policy π(a|s, t), a time horizon T

Output: expected feature accrual history Φ̃[1,T ]

/* Initialize state visitation and feature accrual history */
1: for s ∈ S do
2: Ds,0 ← D0(s)

3: Φ̃s,0 ← 0nφ×1

4: end for

/* Track feature accruals over the time horizon */
5: for t ∈ [0, T − 1] do
6: for s ∈ S do
7: for a ∈ As do
8: /* New feature accruals */
9: /* “�” denotes element-wise multiplication */

10: ∆Φ̃s,t(a)← φ̃1(s, a)�
(
Ds,t1nφ×1 − Φ̃s,t

)
11: end for
12: end for
13: for s′ ∈ S do
14: Ds′,t+1 ←

∑
s∈S

∑
a∈As

Ds,tπ(a|s, t)P (s′|s, a)

15: Φ̃s′,t+1 ←∑
s∈S

∑
a∈As

(
Φ̃s,t + ∆Φ̃s,t(a)

)
π(a|s, t)P (s′|s, a)

16: end for

17: Φ̃t+1 ←
∑
s∈S

Φ̃s,t+1

18: end for

19: Return Φ̃[1,T ]

of the “forward” pass as Algorithm 6.1. Our algorithm tracks state visitations as well
as feature accruals at each state, which allows us to produce the same maximum entropy
distribution over trajectories as [5] while not counting additional accruals for trajectories
that have already accrued a feature.

The input of Algorithm 6.1 includes the MDP itself, a time horizon, and a time-varying
policy. This policy should capture the expected behavior of the demonstrator on the nominal
MDP M, and it can be computed via the “backward” part of the algorithm from [5]. The

output of Algorithm 6.1, Φ̃[1,T ], is an nφ × T array such that the t-th column Φ̃t is a vector
whose i-th entry is the expected proportion of trajectories to have accrued the i-th feature
by time t. In particular, the i-th element of Φ̃T is equal to PM(Ξ−MCi

), which allows us to
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now directly select the most likely constraint according to (6.11).

6.2.5 Maximum-Coverage-Based Iterative Constraint Inference

When using minimal constraint sets as the constraint hypothesis space, it is possible that the
most likely constraint still does not provide a satisfactory explanation for the demonstrated
behavior. In this case, it can be beneficial to combine minimal constraints. If the task
of solving (6.11) is framed as finding the combination of constraint sets that “covers” the
most probability mass, then the problem becomes a direct analog for the classic maximum
coverage problem. While this problem is known to be NP-hard, there exist a simple greedy
algorithm with known suboptimality bounds [90].

Algorithm 6.2 Greedy Iterative Constraint Inference

Input: MDP M, constraint hypothesis space C,
empirical probability distribution PD, threshold dDKL

Output: estimated constraint set Ĉ∗

1: Ĉ∗ ← ∅
2: for i ∈ [1, |C| ] do
3: Ci ← solution to (6.11) using MĈ∗ , C, and D
4: ∆DKL

= DKL

(
PD ||PMĈ∗

)
−DKL

(
PD ||PMĈ∗∪Ci

)
5: if ∆DKL

≤ dDKL
then

6: break
7: end if
8: Ĉ∗ ← Ĉ∗ ∪ Ci
9: end for

10: Return Ĉ∗

We present Algorithm 6.2 as our approach for adapting this greedy heuristic to solve the
problem of constraint inference. At each iteration, we grow our estimated constraint set by
augmenting it with the constraint set in our hypothesis space that covers the most currently
uncovered probability mass. By analogy to the maximum coverage problem [90], we derive
the following bound on the suboptimality of our approach.

Theorem 1. Let Cnc be the set of all constraints Cnc such that Cnc =
⋃nc
i=1Ci for Ci ∈ C,

and let C∗nc be the solution to (6.11) using Cnc as the constraint hypothesis space. It follows,
then, that at the end of every iteration i of Algorithm 6.2,

P
(

Ξ−
MĈ∗

)
≥

(
1−

(
i− 1

i

)i)
P
(

Ξ−
MC∗

i

)
.

Proof. The problem of finding C∗nc is analogous to solving the maximum coverage prob-
lem, presented in [90], where the set of elements to be covered is the set of trajectories
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{ξ | ∃C ∈ C : ξ ∈ Ξ−MC and D ∩ Ξ−MC = ∅} and the weight of each element ξ is PM(ξ). Be-

cause Algorithm 6.2 constructs Ĉ∗ iteratively by taking the union of the previous value of
Ĉ∗ and the set Ci ∈ C which solves (8), the value of Ĉ∗ at the end of the i-th iteration is
analogous to the greedy solution of the maximum coverage problem with nc = i. Therefore,
we can directly apply the suboptimality bound for the greedy solution proven in [90] to arrive
at our given bound on eliminated probability mass. �

Rather than selecting the number of constraints nc to be used ahead of time, we check
a stopping condition to decide if we should continue to add constraints. Because we are
attempting to maximize PMC (D), it might seem natural to use a probability-based stop-
ping condition. However, choosing a stopping criterion based on probability is problematic
because the probability of observing a set of demonstrations is dependent on the number
of demonstrations in the set, even if each individual demonstration has the same probabil-
ity. We instead base our stopping condition on KL divergence, which depends only on the
distribution of trajectories in D and not on the number of demonstrations. The quantity
DKL

(
PD ||PMĈ∗

)
provides a measure of how well the distribution over trajectories induced

by our inferred constraints, PMĈ∗ , agrees with the empirical probability distribution over
trajectories observed in the demonstrations, PD. Using this KL divergence in the stopping
condition actually preserves a link to the probability of the demonstration set, since the
KL divergence will decrease monotonically as PMC (D) increases. The threshold parameter
dDKL

is chosen to avoid overfitting to the demonstrations, combating the tendency to se-
lect additional constraints that may only marginally better align our predictions with the
demonstrations.

6.3 Examples

6.3.1 Synthetic Grid World

We consider the grid world MDP presented in Figure 6.3. The environment consists of a
9-by-9 grid of states, and the actions are to move up, down, left, right, or diagonally by
one cell. The objective is to move from the starting state in the bottom-left corner (s0) to
the goal state in the bottom-right corner (sG). Every state-action pair produces a distance
feature, and the MDP reward is negative distance, which encourages short trajectories. There
are additionally two more features, denoted green and blue, which are produced by taking
actions from certain states, as shown in Figure 6.3.

The true MDP, from which agents generate trajectories, is shown in Figure 6.3a, including
its constraints. The nominal, more generic MDP shown in Figure 6.3b is what we take asM
for applying the iterative maximum likelihood constraint inference in Algorithm 6.2, with
feature accruals estimated using Algorithm 6.1. While Figures 6.3c through 6.3e show the
iteratively estimated constraints, which align with the true constraints, it is interesting to
note that not all constraints present in the true MDP are identified. For instance, it is
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(a) True MDP (b) Nominal MDP

(c) Ĉ∗, nc = 1 (d) Ĉ∗, nc = 2

(e) Ĉ∗, nc = 6

Figure 6.3: Algorithm performance on a synthetic grid world MDP. Each subfigure represents
the MDP by showing (clockwise from left) its states, actions, and features. Each element is
shaded according to the proportion of trajectories that are expected to accrue the respective
augmented feature, computed via Algorithm 6.1. Constraints are marked with a red “X,”
and bright bounding boxes mark the green and blue feature-producing states. The result
here are shown for a set of 100 demonstrations sampled according to the expectation for the
True MDP (a). We begin with the nominal MDP shown in (b), and produce (c), (d), and
(e) by applying Algorithm 6.2. Note that (c), (d), and (e) show the selections of feature,
action, and state constraints, respectively.
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so unlikely that an agent would ever select the up-left diagonal action, that the fact that
demonstrated trajectories did not contain that action is unsurprising and does not make
that action an estimated constraint.

Figure 6.4 shows how the performance of our approach varies based on the number of
available demonstrations and the selection for the threshold dDKL

. The false positive rate
shown in Figure 6.4a is the proportion of selected constraints which are not constraints of
the true system. We can observe two trends in this data that we would expect. First, lower
values of dDKL

lead to greater false positive rates since they allow Algorithm 6.2 to con-
tinue iterating and accept constraints that do less to align expectations and demonstrations.
Second, having more demonstrations available provides more information and reduces the
rate of false positives. Further, Figure 6.4b shows that more demonstrations also allows the
behavior predicted by constraints to better align with the observations. It is interesting to
note, however, that with fewer than 10 demonstrations and a very low dDKL

, we may pro-
duce very low KL divergence, but at the cost of a high false positive rate. This phenomenon
highlights the role of selecting dDKL

to avoid over-fitting. The threshold dDKL
= 0.1 achieves

a good balance of producing few false positives with sufficient examples while also producing
lower KL divergences, and we used this threshold to produce the results in Figures 6.3 and
6.5.

6.3.2 Human Obstacle Avoidance

In our second example, we analyze trajectories from humans as they navigate around an
obstacle on the floor. We map these continuous trajectories into trajectories through a grid
world where each cell represents a 1ft-by-1ft area on the ground. The human agents are
attempting to reach a fixed goal state (sG) from a given initial state (s0), as shown in Figure
6.5. We performed MaxEnt IRL on human demonstrations of the task without the obstacle
to obtain the nominal distance-based reward function. We restrict ourselves to estimating
only state constraints, as we do not supply our algorithm with knowledge of any additional
features in the environment and we assume that the humans’ motion is unrestrained.

Demonstrations were collected from 16 volunteers, and the results of performing con-
straint inference are shown in Figure 6.5. Our method is able to successfully predict the
existence of a central obstacle. While we do not estimate every constrained state, the con-
straints that we do estimate make all of the obstacle states unlikely to be visited. In order to
identify those states as additional constraints, we would have to decrease our dDKL

thresh-
old, which could also lead to more spurious constraint selections, such as the three shown in
Figure 6.5a. We note, however, that as shown by Figures 6.5b and 6.5c, those spurious con-
straints actually do serve to better align our expectations with the human demonstrations.
This result indicates that our algorithm for constraint inference is having the intended effect
of maximizing demonstration likelihood, but that there may have been an unmodeled bias
influencing the demonstrated human behavior.
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(a) False positives

(b) DKL

Figure 6.4: Algorithm performance on the synthetic grid world. Each data point represents
the mean result of 10 independent trajectory draws, and the margins show ±1 standard
error.
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(a) Human Demonstrations

(b) Expectations with True Constraints (c) Expectations with Estimated Constraints

Figure 6.5: In (a), we show the humans’ trajectories overlaid on a grid world MDP. The
shaded region represents an obstacle in the humans’ environment, and the red “X”s mark
the estimated constraints. In (b), the “X”s mark the true constraints, and the states are
shaded according to their expected visitation frequencies with those constraints. The same
is true of (c), but with respect to the estimated constraints. By shifting more probability
mass to the left of the obstacle, the expectations under the estimated constraints actually
better align with the demonstrations than the expectations under the true constraints. This
discrepancy indicates that our algorithm is performing as intended, but that there may have
been an unmodeled effect influencing human behavior.
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6.4 Conclusion and Future Work

We have presented our novel technique for learning constraints from demonstrations. We
improve upon previous work in constraint-learning IRL by providing a principled framework
for identifying the most likely constraint(s), and we do so in a way that explicitly makes state,
action, and feature constraints all directly comparable to one another. We believe that the
numerical results presented in Section 6.3 are promising and highlight the usefulness of our
approach.

Despite its benefits, one drawback of our approach is that the formulation is based on
(6.6), which only exactly holds for deterministic MDPs. As mentioned in Section 6.2.3, we
plan to investigate the use of a maximum causal entropy approach to address this issue
and fully handle stochastic MDPs. Additionally, the methods presented here require all
demonstrations to contain no violations of the constraints we will estimate. We believe that
softening this requirement, which would allow reasoning about the likelihood of constraints
that are occasionally violated in the demonstration set, may be beneficial in cases where
trajectory data is collected without explicit labels of success or failure. Finally, the structure
of Algorithm 6.1, which tracks the expected features accruals of trajectories over time, sug-
gests that we may be able to reason about non-Markovian constraints by using this historical
information to our advantage.

Overall, we believe that our formulation of maximum likelihood constraint inference for
IRL shows promising results and presents attractive avenues for further investigation.
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Part IV

Conclusions
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Chapter 7

Future Directions

We are excited by the contributions that we have made toward integrating safety consid-
erations into the IRL learning process and learning-based assistance. We believe that the
approaches we present open up promising opportunities for further research, and we offer
some possible future direction in this chapter.

Combining Haptic Feedback and Input-mixing Assistance

While we examine the differences between pure haptic feedback and pure input-mixing assis-
tance in Chapter 4, we do not explore the possible benefits of combining the two approaches
into a single learning-enabled assistance policy. As we mention in that analysis, this com-
parison was inspired by the user study in [12], which found that when intent inference was
uncertain, users preferred a “timid” input-mixing assistance policy that gradually increased
the level of assistance as confidence in intent prediction increased. It would be worthwhile
to explore if a similar trade-off, with stronger haptic feedback under uncertain predictions
and stronger input-mixing under confident predictions, could further enhance the user’s ex-
perience of control and the safety of the system.

Performance vs. False Positives in Supervisor Safe Sets

As we discuss in Sections 5.1.4 and 5.3.3, by learning σ2 in addition to µ, we are able to
make predictions about the percentage of supervisor false positives that will be eliminated by
avoiding keep-out sets at any given value threshold µ+zσ, with z ∈ R. Executing avoidance
maneuvers at higher value thresholds causes robots to leave larger buffers between themselves
and the keep-out set, which can lead to more circuitous and less efficient trajectories. If we
assign a cost to each expected false positive, it would become possible to optimize for the
trade-off between reducing false positives and increasing path efficiency. Such an analysis
could shed light on the results from Section 5.3.2, where no significant preference was found
between avoidance based on the Learned safe set and the Conservative safe set, which was
less efficient but tended to produce fewer false positives.
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Adaptive Supervisor Safe Sets

Once we begin using a learned safe set for robot control, the robots should never again
violate that learned safe set (under nominal operation). However, the learned safe sets are
based on human data collected at a specific point in time, and the approach assumes that
human safety preferences are static. As humans become more experienced with a system
and their understanding of its dynamics improves, could their preferences for safety become
less conservative? This change in preference seems like it may be a natural consequence of
increased familiarity with the system. Nonetheless, the question remains as to how we could
update learned safe sets to become less conservative when the safety controller itself will
prevent the robot from leaving the current learned safe set and inducing interventions based
on the human’s new safe set. In this case, the supervisor safe set technique would benefit
from a modified formulation that allows for this type of adaptation.

Softening Constraint Learning

Our method for learning constraints from demonstration (Chapter 6) requires that all pro-
vided demonstrations respect a constraint in order for that constraint to be learnable. In
a sense, we require all demonstration trajectories to be “labeled” as respecting constraints,
and we assume that if any example trajectories did violate a relevant constraint then it was
discarded and not provided as a demonstration. However, this approach may be restric-
tive, as we may not have access to labels to identify only the trajectories that respected the
constraints of interest. We may benefit from integrating ideas in [84], where the authors
are still able to infer task specifications from demonstrations, even in the presence of some
demonstrations that may, unintentionally, violate a task specification. We note that while
such an advance would soften the requirements of the learning process, we would still be
learning hard constraints which are satisfied probabilistically by demonstrators.

Causal Entropy for Constraint Learning

The Maximum Likelihood Constraint Inference formulation in Chapter 6 is developed from
the formulation of Maximum Entropy IRL [5], which adopts a noisily rational model of hu-
man decision making to assign a probability to each possible MDP trajectory. As the authors
of [5] note, this formulation is only exactly correct for MDPs with deterministic transitions,
since only in those cases is it possible for a human to directly “choose” a trajectory. While
the Maximum Entropy formulation may still approximately describe behavior for nondeter-
ministic MDPs, an exact solution requires introducing the notion of casual entropy [53], [54].
The Maximum Causal Entropy IRL formulation only allows actions to be conditioned on
information observed up to the current time. This change in formulation means that the
noisily rational probability distribution is over policies, rather than trajectories. Since our
formulation for constraint inference is based so heavily on probability mass being assigned
directly to trajectories, special care must be taken to successfully integrate causal entropy.
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Simultaneously Learning Rewards and Constraints

The learning techniques that we present in Part III of this dissertation focus on learning
safety constraints either without particular consideration for a reward function (Chapter 5)
or with a nominal reward already acquired (Chapter 6). A natural question arises: rather
than learning a reward and then learning constraints separately, is it possible to learn rewards
and constraints simultaneously? Instead of considering the human’s policy as being driven
by either a reward-based value function (e.g., the expected sum of rewards R in Section
2.3.1) or a safety-based value function (e.g., minimum future distance l to the keep-out
set in Section 2.1.2) we could model the human as optimizing some combination of these
values. However, without any other assumptions, this problem is ill-posed: a sufficiently
negative reward can lead to avoidance of keep-out sets, and maximizing distance from keep-
out sets could also drive agents towards high-reward regions. Careful consideration must
be given for possible additional restrictions or regularizations that could be applied to this
joint optimization problem to disambiguate the two effects. We believe that this could be
an illuminating direction for future investigations.
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Chapter 8

Conclusion

In this dissertation, we have taken a step toward addressing the incorporation of safety into
the context of Inverse Reinforcement Learning. This effort is part of a larger goal to ensure
that new robotic systems are safe to use and deploy, which is a critical element to their
acceptance and wide adoption. Because emerging robotics applications will involve human
interaction in uncertain and dynamic environments, robust solutions will need to be learning-
enabled in order to adapt themselves to changing and difficult-to-specify conditions. It is this
connection that drives us to focus on ways to integrate safety into the learning framework
and the application of that learned knowledge.

One approach that we explore in Chapter 6 is to learn about safety considerations di-
rectly from human demonstrations. By adapting the formulation of Maximum Entropy IRL,
we are able learn hard constraints given demonstrations and a nominal reward function mo-
tivating the demonstrated behavior. The constraints we learn are in general over features
of the environment, which allows this knowledge to generalize to new regions sharing those
features. Learning hard constraints also offers an advantage over soft constraints (i.e. re-
ward penalties), because whether an agent respects those constraints is not dependent on
variations to other aspects of the reward function. We argue that this invariance is a key
component of capturing information related to safety.

While using knowledge gained about safety to modify robot behavior, we must also
consider how that behavior will impact human-robot interactions. As our work in Chapter 5
highlights, it is important that autonomous systems are not only physically safe, but that
they also appear safe to any humans interacting with or observing them. The Supervisor Safe
Sets formulation that we develop allows us to learn about how humans perceive the safety
of a dynamical system and to use that information to align robot behavior with human
expectations. Our user study results illustrate how robot motion can communicate safety
and reduce confusion on the part of human observers. This effect is just one way in which
designing a robotic system with the human experience in mind can yield benefits.

In Part II, we explore another technique for applying learned information to create safer
human-robot interactions in shared control. Because learning and human intent inference
will not always be perfect, it is important to provide assistance in a flexible manner that
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allows the human to maintain control in situations where the automation’s understanding
may be incorrect or incomplete. We found that employing haptic feedback for learning-
based assistance can be an effective method for delivering assistance while maintaining the
human’s sense of control and improving safety in cases where the automation misunderstands
the human’s intent.

All of these contributions are aimed towards a future where interactions with learning
robotic agents are both frequent and safe. There is still plenty of work left to achieve that
goal, and we highlight some promising future directions in Chapter 7. We are excited about
all of the resources, energy, and creativity being devoted to the advancement of robotics and
artificial intelligence, and we are thankful to be able to contribute to this rewarding field.
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