
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Statistical Analysis and Visualization of Single Cell RNA Sequencing Data at Population 
Scale

Permalink
https://escholarship.org/uc/item/6j41m2r1

Author
Wang, Hao

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6j41m2r1
https://escholarship.org
http://www.cdlib.org/


Statistical Analysis and Visualization of Single Cell RNA Sequencing Data at Population
Scale

by

Hao Wang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Biostatistics

and the Designated Emphasis

in

Computational and Genomic Biology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Elizabeth Purdom, Chair
Professor Sandrine Dudoit
Professor John Marshall

Summer 2024



Statistical Analysis and Visualization of Single Cell RNA Sequencing Data at Population
Scale

Copyright 2024
by

Hao Wang



1

Abstract

Statistical Analysis and Visualization of Single Cell RNA Sequencing Data at Population
Scale

by

Hao Wang

Doctor of Philosophy in Biostatistics

and the Designated Emphasis in

Computational and Genomic Biology

University of California, Berkeley

Professor Elizabeth Purdom, Chair

The advent of Single-cell transcriptome sequencing (scRNA-Seq) has revolutionized our abil-
ity to explore the intricate landscape of cellular diversity within complex biological systems.
Initially focused on cataloging cell subtypes and discerning gene expression disparities across
cell types, scRNA-Seq has evolved to address broader inquiries, particularly in the realm of
human health. While past efforts concentrated on analyzing numerous cells from a few
samples, there’s now a growing interest in understanding inter-sample heterogeneity and its
implications for phenotypic outcomes, notably in cancer and inflammatory diseases. How-
ever, existing bioinformatic methodologies inadequately address population-level analyses,
with limited consideration for inter-sample variation. The dissertation introduces a novel
framework termed GloScope Representation, which is introduced in the first chapter in de-
tail, for representing the entire single-cell profile of a sample. In the second chapter, We
applied GloScope across scRNA-Seq datasets spanning diverse study designs, with sample
sizes ranging from 12 to over 300. Through illustrative examples, we showcase how GloScope
empowers researchers to undertake pivotal bioinformatic tasks at the sample level, with a
primary focus on visualization and quality control assessment. In Chapter 3, we demon-
strate GloScope’s efficacy in evaluating and quantifying batch effects, as well as comparing
various batch correction methods’ performance in the patient level analysis of scRNASeq
data. Furthermore, to assess GloScope ’s advantages and effectiveness in detecting different
classes of single-cell differences arising from variations in sample phenotypes, we compared
GloScope to existing visualization tool and other sample level analysis tool in Chapter 4.
We also developed a simulation pipeline for generating single-cell count data. We utilize this
simulation framework to conduct quantitative evaluations of GloScope through a series of
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simulated experiments.
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Chapter 1

Patient Level Representation of
scRNA-Seq

1.1 Introduction to Single Cell RNA Sequencing

RNA-Sequencing (RNA-Seq) is a powerful and versatile technique that appeared in 2008,
and is used to analyze the transcriptome of an organism, providing insights into the quantity
and sequences of RNA in a sample. This method aims to capture a comprehensive snapshot
of all RNA molecules, including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer
RNA (tRNA), and non-coding RNAs. The process begins with the isolation of total RNA
from a sample, which can be derived from tissues, cells, or organisms. This RNA is then
treated to remove rRNA, leaving primarily mRNA, which is subsequently converted into
complementary DNA (cDNA) through reverse transcription. The cDNA is then fragmented
into smaller pieces and tagged with sequencing adapters, allowing them to be read by se-
quencing platforms. Once sequenced, the resulting reads are aligned to a reference genome
or transcriptome using bioinformatics tools. This alignment enables the identification of
where the RNA reads map within the genome, as shown in Figure 1.1 (Van den Berge et al.,
2019). The output of RNA-Seq data for quantitative analysis is usually a gene count ma-
trix where columns represent genes and rows represent different samples. Each cell in the
matrix contains the count of sequencing reads corresponding to a specific gene in a particu-
lar sample. The matrix provides valuable genetic information for researchers to study gene
expression levels, alternative splicing, and the discovery of novel transcripts or gene fusions
(Wang et al., 2009; Mortazavi et al., 2008).

High-throughput sequencing technologies, also known as next-generation sequencing (NGS),
are advanced methods that enable the rapid and large-scale sequencing of DNA and RNA
(Heather and Chain, 2016; Goodwin et al., 2016; van Dijk et al., 2018). These technologies
utilize massive parallelization, allowing millions of DNA fragments to be sequenced simul-
taneously, significantly increasing the speed and volume of data generated. NGS platforms,
such as Illumina and Ion Torrent, can produce vast amounts of sequence data in a short
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Figure 1.1: RNA-Sequencing workflow. Adapted from Van den Berge et al. (2019)

time and at a lower cost per base compared to traditional methods like Sanger sequencing
(Goodwin et al., 2016). This capability has revolutionized genomics and molecular biology,
making it possible to conduct comprehensive analyses for applications in research, clinical
diagnostics, and personalized medicine.

In the past decade, advancements in high-throughput sequencing technologies have revo-
lutionized the field of genomics, enabling researchers to dive deeper into the study of cellular
heterogeneity (Reuter et al., 2015; Soon et al., 2013; Weaver et al., 2014). Bulk RNA-seq,
which measures the average gene expression levels across a heterogeneous mixture of cells,
provided groundbreaking insights into gene expression patterns and regulatory mechanisms.
However, it lacked the resolution to detect cellular heterogeneity and subtle differences among
individual cells. As technology and computational methods advanced, single-cell RNA se-
quencing (scRNA-seq) has emerged as a powerful tool to dissect cellular diversity at un-
precedented resolution (Soon et al., 2013; Weaver et al., 2014; Luecken and Theis, 2019).
Unlike traditional bulk RNA-seq approaches that average gene expression signals across a
population of cells, as shown in Figure 1.2, scRNA-seq allows for the characterization of gene
expression profiles at the individual cell level (Kulkarni et al., 2019; Li and Wang, 2021).

The fundamental principle of scRNA-seq lies in the isolation and sequencing of RNA
molecules from individual cells, thereby capturing the transcriptomic landscape of diverse
cell types within a heterogeneous population. This approach not only enables the identifi-
cation of rare cell populations but also provides insights into cellular states, developmental
trajectories, and dynamic responses to various stimuli (Luecken and Theis, 2019; Kulkarni
et al., 2019; Li and Wang, 2021). For instance, by mapping the changes in gene expression
profiles of individual cells over time, scRNA-Seq allows researchers to reconstruct the lineage
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Figure 1.2: Bulk RNA-Seq vs scRNA-Seq. Adapted from Lexogen (2024)

and fate decisions of each cell within a developing tissue or organism, offering insights into
the mechanisms of cell differentiation, tissue formation, and the impact of genetic and en-
vironmental factors on these processes. The application of scRNA-seq spans across diverse
fields of biology and medicine, from developmental biology and immunology to oncology
and neurobiology. Researchers have leveraged this technology to unravel the cellular hetero-
geneity underlying complex biological processes, elucidate on disease mechanisms, identify
diagnostic biomarkers, and discover novel therapeutic targets (Soon et al., 2013; Paik et al.,
2020; van Galen et al., 2019).

1.2 Human scRNA-Seq Study

Early studies of scRNA-seq were predominantly focused on profiling large number of cells
from a small number of samples such as mice, which are genetically identical or highly con-
trolled. Such early studies aimed to elucidate shared cell populations and allow researchers
to reconstruct developmental pathways and understand the differentiation processes of vari-
ous cell types within homogeneous cellular populations (Llorens-Bobadilla et al., 2015; Plass
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et al., 2018; Van den Berge et al., 2020). For instance, pioneering work by Macosko et al.
utilized scRNA-seq to profile thousands of cells from the mouse brain, revealing distinct
neuronal subtypes and transcriptional programs underlying neural diversity (Macosko et al.,
2015).

Unlike model organisms, human samples exhibit a vast array of genetic backgrounds and
environmental exposures, necessitating more sophisticated experimental and analytical ap-
proaches to unravel cellular heterogeneity and disease mechanisms (Tanay and Regev, 2017;
Stuart and Satija, 2019). As scRNA-Seq technologies have advanced, with improvements in
sensitivity, throughput, and computational methods, the focus has expanded to more com-
plex and diverse systems, including human tissues. This progression has led to ambitious
projects such as the Human Cell Atlas, which aims to create comprehensive reference maps
of all human cells (Regev et al., 2017). Such initiatives leverage cutting-edge scRNA-Seq
techniques to catalog the myriad cell types in the human body, uncover their functions, and
understand how they contribute to health and disease.

With the motivation from the accessibility and advancement of human scRNA-seq stud-
ies, an increasing number of scRNA-Seq investigations target patient populations and empha-
size the impact of single-cell variation on human health outcomes. These population-based
scRNA-Seq studies typically involve scRNA-Seq data from larger cohorts of individuals who
are selected from populations exhibiting various health-related phenotypes. Such clinical
relevance of scRNA-seq in human studies demands robust methods for uncovering and deci-
phering genetic information with diagnostic and therapeutic implications, while adequately
accounting for human sample variations.

1.3 Motivation for Population Level Analysis of

scRNA-Seq

Although there have been many methodological advances in human scRNA-Seq study, most
published methods primarily aim to interpret single-cell level information and do not address
population-level analysis adequately. Typically, human scRNA-Seq data is analyzed with
individual cells as the primary unit of data such as identifying marker genes for specific cell
types, or differentially expressed genes among phenotypes. During the early stage, sample
variation is usually omitted and cells from different samples are used together to perform
differential expression analysis. However, this raises problems when we deal with multi-
sample scRNA-Seq data. For instance, during the exploratory data analysis process of a
skin rash disease data (Liu et al., 2022), we discovered population scale heterogeneity issues
for patients within the same condition group. Certain genes have higher expression in some
of the patients and lower in others, such as the gene PI3 in Monocyte-Derived Macrophages,
shown in Figure 1.3. More importantly, the multi-sample scRNA-Seq data is a nested design
for samples and the phenotypic groups where the differentially expressed genes are to be
identified. Ignoring the sample effect in such a nested design can lead to an underestimation
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of the variance, as it does not account for the hierarchical structure or the correlation between
nested observations. This underestimation often results in smaller p-values, which increases
the likelihood of incorrectly rejecting the null hypothesis. Some existing tools focusing on
detecting differentially expressed genes accounts for population variability by implementing
methods such as mixed effects or hurdle models (Crowell et al., 2020; Finak et al., 2015;
Tiberi et al., 2020; Zhang et al., 2022).

Figure 1.3: Violin plot of PI3 gene expression in Monocyte-Derived Macrophages
(Liu et al., 2022) Each column represents a patient, with y-axis showing the gene expression
values. AD = Atopic Dermatiti, N = Normal, PV = Psoriasis vulgari. One of the PV patient
(173) has relatively more abundant PI3 expression than other patients belong to PV class.

Beyond differentially expressed genes analysis, the available methods for sample-level
analysis are mostly limited to comparing the relative proportions of cell subgroups between
samples with different phenotypes (Li et al., 2020a), or comparing samples through ag-
gregation methods to summarize sample’s single-cell profile into one observation, such as
pseudo-bulk. However, such methods diminish the advantage of scRNA-Seq in revealing
cellular or genetic heterogeneity, thereby obscuring the detailed diversity of cell populations
that single-cell resolution offers. The drawbacks are further discussed in section 4.1.

Because there is such a need to appropriately address sample level variation for multi-
sample scRNA-Seq data, we investigate into this issue and propose an analysis protocol:
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creating a global representation of samples using their entire single-cell profiles. With such
global representation, we could perform essential downstream analysis such as visualization
and quality control. We refer to such an approach as the patient-level (or sample-level)
analysis.

1.4 Overview of the Population-level Analysis

Common computational approaches assume that each sample is measured using a shared set
of features. However, when we first attempt to perform patient-level analysis on scRNA-Seq
data, where we consider each patient, instead of cells, as the unit, we note that the format
of scRNA-Seq data is not applicable for such approaches. More specifically, for each sample
i, we obtain a matrix Xi ∈ Rmi×g, containing gene expression measurements for that sample
across all its cells (here g represents the number of genes and mi represents the number of
cells sequenced from sample i). It is obvious that there is no direct alignment for mi,1 cell in
sample i to mj,1 cell in sample j, or so on. As there is no direct correspondence between the
cells in different samples, it is difficult to align data from the samples for use in a statistical
model or predictive algorithm.

To address this challenge, we propose an analysis pipeline that uses the entire single-cell
profile of a sample instead of focusing on cells as units. More specifically, we propose that
there exists such a global profile Fi, which could summarize and represent each patient i,
across all cells Xi. Such approach does not require explicitly aligning individual cells across
samples, but utilize the properties of observed data to represent each sample in a comparable
space. We would note that this pipeline is not designed for gene level study such as differential
expression analysis mentioned above. Instead, with such global representation Fi, we would
use it as input to perform analysis in population scale such as patients’ phenotype prediction,
visualization, and quality control tasks. In Chapter 2, we introduce the framework we created
for global representation of patient and detailed application to different scRNA-Seq data1.

1The work was accomplished with joint collaboration with William Torous, PhD candidate in Statistics,
University of California, Berkeley, and Boying Gong, PhD in Biostatistics, University of California, Berkeley.
The work has been accepted by Genome Biology.
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Chapter 2

Visualization at population scale with
GloScope

2.1 Introduction to GloScope

For generality, we refer ”sample” as tissue samples in single-cell studies, instead of ”cells”,
which are collected from each sample. Furthermore, there might be multiple ”samples” for
one patient where the patient’ single-cell profile was measured more than once.

To create the global representation Fi for each sample i as discussed in Chapter 1, we
propose to represent each sample as a distribution of cells. More specifically, we consider
the gene measurements for each cell to be a random draw from entire population of cells
within each sample, and we summarize each sample with a probability distribution describing
the statistical behaviors of cells’ gene expression within the sample. Such representation
allows us to summarize the overall scRNA-profile of a sample into a single mathematical
object, while preserving useful information about the variability among single cells. This
global representation can be used in a wide variety of downstream tasks, such as exploratory
analysis of data at the sample-level or prediction of sample phenotypes. Furthermore, this
representation does not require the classification of individual cells into specific cell types
(e.g. via clustering) and, therefore, is not affected by any choice made during cell-type
identification processes, such as resolution or clustering algorithm.

Probability Distribution

The full population of cells defines a probability distribution we designate as Fi on Rg. Fi

is a representation of the sample’s entire single-cell profile across all cells and importantly is
a mathematical object that can be compared across samples. We do not observe Fi, but we
do observe mi samples from this distribution (the sequenced cells), allowing us to estimate
Fi from the data. Thus, we transform each sample from the matrix Xi of observed gene
expression measurements to an estimate of the sample’s distribution, F̂i. Then we define a
measure of divergence d on the space of probability distributions in Rg.
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We make the simplifying assumption that the sequenced cells are independent and iden-
tically distributed (i.i.d) draws from the sample’s full population of cells, Fi. However, even
with this assumption, density estimation is complicated in this setting. For scRNA-Seq
datasets, g is often in the range of 2,000-30,000 (the number of detectable genes given the
sequencing depth). The number of cells per sample, mi, can vary by experiment, and often
ranging from 500 to 10,000 cells per sample. Furthermore, in any given cell, only a small
subset of genes is actively transcribed, leading to many genes having zero or very low ex-
pression levels across the dataset. Therefore, the data from each cell is high dimensional and
sparse, a distributional structure known to be impactful in the analysis of scRNA-Seq data
(Pierson and Yau, 2015; Risso et al., 2018; Eraslan et al., 2019; Van den Berge et al., 2018;
Jiang et al., 2022).

Defining a Latent Space

Because gene expression data lie in a high dimensional space, with the number of genes
g in the thousands, estimating Fi directly from the cells is intractable. Even with several
thousand cells per sample, it is infeasible to estimate the density in such a high dimensional
space without the assumption of an underlying lower dimensional latent space. Thus, we
assume that there exists a lower dimensional representation or latent variable Zi in Rmi×d

which governs the gene expression of each sample i. Specifically, for each cell c in sample
i, there exist a latent random variable Zic that we predict and we assume that the Zic is
distributed as Hi, a distribution on Rd. Instead of estimating Fi in Rg, we estimate Hi from
the mi cells in the lower-dimensional space Rd and obtain the estimated density Ĥi.

Unlike the Xi, which have different, unrelated, dimensions for each sample i, the Ĥi lies
in the space of distributions on Rd and can be compared. As probability measures, these
representations are now familiar mathematical objects and sample-level analysis can be done
in the space of probability measures.

We estimate Ĥi by first estimating a lower dimensional representation of our all our cells.
More specifically, let X be the count matrix contains all samples’ cell information,

X =


X1

X2

...
Xn

 , Xi ∈ Rmi×g (2.1)

By applying dimension reduction techniques onX, we obtain the lower embedding matrix
Ẑ for all cells:

Ẑ =


Ẑ1

Ẑ2

...

Ẑn

 , Ẑi ∈ Rmi×d (2.2)
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There, for each sample i, we estimate Ĥi from each X̂i, the mi observed cells contained
in Zi.

PCA is a common choice for representing the data in lower dimension. But it is not
the only option, and our approach can incorporate different dimension reduction methods’
outputs. For example, Lopez et al. (2018) propose an alternative method, scVI, which
uses a variational autoencoder (VAE) that optimizes the encoder and decoder networks
to reconstruct the original data in a lower-dimensional latent space Ẑi. In Chapter 4, we
elaborate on the comparison of different dimension reduction techniques.

Estimation of Statistical Divergence

Now having estimated each Ẑi from X, we turn to estimating the density Hi so that we can
estimate d(Hi, Hj) to obtain divergence measure on probability measures.

There are many well-known metrics defined on the space of probability measures, such as
the Hellinger Distance, Wasserstein Distance, or Bhattacharyya Distance, and downstream
analysis can be performed after choosing a metric to quantify pairwise sample differences.
For our examples, we implemented the Kullback-Leibler (KL) divergence

DKL(P ∥ Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(2.3)

to quantify the differences between sample probability distributions P and Q (Kullback and
Leibler, 1951). Traditional KL divergence measures the information loss when one probability
distribution is used to approximate another, but it is not symmetric: the divergence from
distribution P to Q is not the same as from Q to P . To address this, we use symmetrized
KL divergence DSKL(P,Q) = DKL(P ∥ Q)+DKL(Q ∥ P ). However, though the symmetrized
version of KL divergence solve the symmetry issue, it does not satisfy other properties of a
true metric (e.g., the triangle inequality). Another popular choice of divergence matrix is
Jensen-Shannon (JS) divergence

DJS(P,Q) =
1

2
DKL (P ∥ M) +

1

2
DKL (Q ∥ M) . (2.4)

JS Divergence is a symmetrized and smoothed version of KL divergence. It is known as
an alternative of KL divergence for its adherence to metric properties, including symmetry
and the triangle inequality (Lin, 1991). On the other hand, many commonly used distance
measures, such as Euclidean distance, are inherently based on the square root of squared
differences. Therefore, adapting from JS divergence and square root calculation, we use the
square root of the symmetrized KL divergence to make the measure becomes more consistent
with these traditional metrics and helps approximate these metric properties better; while
not a proper metric, this divergence can be effectively used to create a global representation
of probability distributions and has been used in a similar manner in the case of facial
recognition (Arandjelovic et al., 2005).



CHAPTER 2. VISUALIZATION AT POPULATION SCALE WITH GLOSCOPE 10

Here we offers two approaches for the estimation of d(Hi, Hj). The first method directly
estimates the density Hi for each sample. The second method does not explicitly estimate
Hi, but focuses only on d(Hi, Hj)

Estimating Hi with Gaussian Mixture models

The first approach involves applying density estimation methods to the Ẑic to estimate hi,
the density associated with the distribution Hi, and then calculates d(Ĥi, Ĥj) as our estimate
of d(Fi, Fj). Here we propose to use a Gaussian Mixture Model (GMM), a widely used prob-
abilistic model for representing normally distributed mixtures within an overall population.
In single-cell data, different cell types exhibit distinct genetic profiles. Intuitively, GMMs
would make an ideal tool for modeling these variations by representing each potential cell
type as a separate Gaussian component.

Single-cell methods utilizing dimensionality reduction, described above, often include a
regularizing assumption that the latent variables Z ∼ N(0, Σ). This Gaussian regularization
in the model and the fact that many single-cell datasets are mixtures of cell type populations,
motivates our use of GMMs. Therefore, in our pipeline, GMM is employed to characterize
different cell types and states by modeling the gene expression profiles of individual cells as a
mixture of multiple Gaussian distributions, with each Gaussian component corresponding to
a specific cell subpopulation, defined by its mean and covariance structure, and mixing coef-
ficients representing the prior probabilities of each Gaussian component (or the probability
of observing each cell types).

We use the R package mclust (Scrucca et al., 2016) to implement the GMM estimation.
As there is no closed form expression for the KL divergence between GMM distributions, we
use Monte Carlo integration to approximate the KL divergence between two GMM densities;
this is based on R = 10, 000 samples drawn from the estimated GMM distributions, again
using the mclust package. Specifically, for R draws of x from Hi, we have

KL(Ĥi||Ĥj) ≈
1

R

R∑
u=1

log
ĥi(xu)

ĥj(xu)
(2.5)

Estimating d(Hi, Hj) Directly via Non-parametric Nearest Neighbor Approach

We also provide a second approach that estimates d(Hi, Hj) directly using a k-nearest neigh-
bor approach without explicitly estimating the density Hi.

Denote rj(xi, u) as the distance from the uth cell in sample i to its kth nearest neighbor
in sample j, the KL divergence can be estimated directly as

K̂L(Hi||Hj) =
d

mi

mi∑
u=1

log
rj(xi,u)

ri(xi,u)
+ log

mj

mi − 1
(2.6)



CHAPTER 2. VISUALIZATION AT POPULATION SCALE WITH GLOSCOPE 11

where d is the dimension of the latent space (Wang et al., 2006; Boltz et al., 2009). We
implement this strategy using the FNN package to estimate the symmetrized KL divergence
between sample i and sample j (Beygelzimer et al., 2024).

2.2 Usage of GloScope

In summary, our proposed representation method consists of representing each sample as
a distribution along with a corresponding divergence or distance; we then estimate the
distance or divergence between each pair of samples based on their estimated distributions.
We call this representation of samples the GloScope representation, a global representation
of scRNA-Seq data, and we illustrate this pipeline in Fig. 2.1. The detailed implementation
of each step of GloScope is available in an accompanying Bioconductor package GloScope.
 

 

 

 

 

 

 

 

…
 

a. b. c. d. 

Figure 2.1: Illustration of the GloScope representing a sample’s scRNA-Seq data
matrix Xi as a distribution F̂i. (a) Each sample contributes a g × mi matrix of gene
expression values. (b) A lower dimensional latent representation is estimated across all
cells and samples, resulting in each cell being represented in a lower-dimensional space (c)
GloScope estimates the distribution F̂i for each sample, and then (d) calculates the statistical
divergence between each pair of samples, d(F̂i, F̂j).

The final output of GloScope is a n × n matrix D of the pairwise divergences between
the samples. The pairwise divergences between GloScope-represented samples can be given
as input to canonical divergence analysis methods such as Multidimensional Scaling (MDS)
(Cox and Cox, 2001). MDS takes a distance matrix as input and creates a coordinate system,
a matrix M in Rn×l to represent the samples in lower dimensions while preserve the pairwise
divergences. The primary objective of MDS is to position each object in this low-dimensional
space such that the distances between points correspond as closely as possible to the original
dissimilarities. Such coordinate system is most widely used across various fields such as
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psychology, marketing, and bioinformatics to visually interpret complex data and uncover
underlying patterns and relationships, as shown in the remaining chapter. Though we would
note here that as D is not a Euclidean distance matrix, there is loss in information, unlike
if D was a Euclidean distance matrix. However, such information still provides us with
useful inference regarding the data behavior. For example, beyond EDA, the output of MDS
can also be used for other important downstream tasks, include clustering of samples and
prediction of phenotypes (for example via kernel prediction methods, e.g. Hofmann et al.
(2008); Wang et al. (2014)).

We can also use the divergences to numerically quantify the separation of groups of sam-
ples using silhouette width or ANOSIM statistics shown in Chapter 3. This allows us to
quantify how separated samples are due to a biological condition of interest (e.g. healthy vs
diseased samples), or alternatively how separated samples are due to a design artifact (e.g.
different processing centers). We will demonstrate that such a representation enables detec-
tion of possible batch effects or outliers and exploratory assessment of phenotypic differences
between our samples through simulation and hypothesis testing in Chapter 3 and 4.

Furthermore, there are many existing methods for working with scRNA-Seq data, and
GloScope is designed to fit into standard pipelines and complement existing quality-control
and EDA strategies. Gloscope takes as input low-dimensional latent representations of the
individual cells, which can come from PCA, scVI, or from batch-correction methods like
Harmony (Korsunsky et al., 2019). As shown in Figure 2.2, GloScope can be performed
at different stages of the pre-processing, allowing checks at each stage of whether patient-
level artifacts, like processing batches, are inappropriately contributing to differences in the
samples.

2.3 Visualization of patient phenotypes using

GloScope

In the previous section, we introduced the concept of population-level analysis of scRNA-Seq
data and the framework of GloScope Representation. The remainder of this chapter builds
on that foundation by exploring the practical application of GloScope across a diverse range
of datasets, with study designs varying from as few as 12 samples to more than 300 samples.
Through these varied examples, we aim to demonstrate the versatility and robustness of
GloScope in handling datasets of different scales and complexities.

We will showcase how GloScope facilitates critical bioinformatic tasks, particularly focus-
ing on the visualization of scRNA-Seq data at the population level. By enabling researchers
to visualize complex data in an intuitive and interpretable manner, GloScope helps uncover
patterns and insights that might be obscured in cell-level analysis. This capability is crucial
for understanding and identifying meaningful biological variations and heterogeneity within
large populations.

Moreover, we will discuss specific case studies where GloScope has been applied to differ-
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Figure 2.2: Illustration of the utility of GloScope representing in single-cell data
analysis pipeline.

ent types of scRNA-Seq datasets, highlighting its adaptability to various research contexts
and objectives. Whether dealing with small pilot studies or large-scale projects, GloScope
provides a powerful tool for researchers aiming to perform comprehensive and insightful anal-
yses of single-cell data. Through these examples, we hope to illustrate not only the technical
advantages of GloScope but also its practical benefits in advancing the field of single-cell
genomics.

Real World Data Overview

To illustrate the effectiveness of GloScope, we have applied it to several diverse datasets,
as summarized in Table 2.1. The datasets vary significantly in size, including small-scale
studies with as few as 12 samples and large-scale studies with over 300 samples. The table
details each dataset’s sample size and key characteristics, providing a clear overview of the
diverse applications of GloScope.

Data processing procedures

This section details the steps undertaken to estimate GloScope representations of samples
from publicly available scRNA-Seq data. These steps broadly consisted of ensuring the data
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Dataset #Genes #Cells #Samples #Batches
Allenmouse 26,877 1,169,213 59 0
Skin Rash 19,769 92,889 12 0
Covid Lung 29,925 116,313 27 0
Colon Cancer 28,951 359,318 99 0
Covid PBMC 24,929 647,366 143 3
Lupus PBMC 30,933 1,263,676 336 4
Lung Fibrosis 19,680 714,923 144 6
Liver Fibrosis 21,045 326,351 50 6

Table 2.1: Properties of datasets analyzed through GloScope Representation

we used had quality control matching the corresponding paper, estimating the cells’ latent
embeddings, and applying the GloScope methodology. For most datasets we performed the
first two steps with data structures and functions from the R package Seurat. For the larger
Lupus PBMC and mouse brain datasets, we instead utilized the SingleCellExperiment

data structure and applied functions from other packages. Code for running these analyses,
as well as text files containing data sources and specific processing choices, are available in
the following GitHub repository: https://github.com/epurdom/GloScope_analysis

Examples of Applying GloScope for Visualizing scNRA-Seq data
at Population Scale

In this section we demonstrate the utility of the GloScope representation to visualize and
evaluate sample-level phenotypic differences. As an initial illustration, we consider two
datasets with replicate samples collected for each phenotype, where the phenotypes have
well-known biological differences in cell-type structure. These serve as an initial proof-of-
concept of the GloScope representation.

The first dataset is scRNA-Seq data from the mouse cortex (Yao et al., 2021). Here the
samples are cells from different regions of the brain with replication in each from three genet-
ically identical mice. This is a dataset where we know the regions have distinct compositions
of cell types and gene expressions. When we visualize these samples using the GloScope
representation in Figure 2.3A, we see these distinctions clearly. The samples from the two
main subdivisions of the cortex, isocortex (CTX) and hippocampal formation (HPF), clearly
separate. Furthermore, we see that replicate samples from the same region strongly cluster
with each other, while different regions are generally well separated. Within the CTX region,
we observe blocks of biologically meaningful brain region groups such as the sensory and vi-
sual area: primary somatosensory (SSp), posterior parietal association (PTLp), visual area
(VIS), and the Somatomotor areas: primary motor (MOp) and secondary motor (MOs).
We also observe clustering of physically adjacent brain regions such as temporal associa-
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A B

Figure 2.3: Demonstration of the GloScope representation on 59 mice samples
(Yao et al., 2021). (A) Heatmap representation of the estimate of the divergences between
the samples based on the GloScope representation. (B) A two dimensional representation
via MDS of the divergences shown in A. GloScope used the GMM estimate of the density
in the first 10 PCA dimensions. The individual regions represent subregions of two main
divisions of the cortex: the isocortex (CTX) and hippocampal formation (HPF). HPF is
further divided into hippocampal region (HIP), and the retrohippocampal region (RHP)
which is represented by the entorhinal region (ENT) and the remaining RHP, a joint dis-
section region of postsubiculum (POST)-presubiculum (PRE)-parasubiculum (PAR) region,
subiculum (SUB), and prosubiculum (ProS) region (i.e, PPP-SP). The remaining regions are
divisions of the CTX.

tion, perirhinal, and ectorhinal areas (TEa-PERI-ECT), agranular insular (AI), prelimbic,
infralimbic, orbital area (PL-ILA-ORB) and anterior cingulate (ACA).

Next we consider skin cell samples from a study of twelve patients (Cheng et al., 2018),
consisting of nine healthy skin samples from the foreskin, scalp, and trunk alongside three
inflamed skin samples collected from truncal psoriatic skin. We expect marked differences
between cellular distributions collected at the different locations in the body due to varying
proportions of cell types in certain tissues. For instance the authors note different types of
main basal keratinocytes and melanocytes dominate in scalp and trunk samples, as compared
to foreskin tissues. Our visualization of the GloScope representations of this data in Figure



CHAPTER 2. VISUALIZATION AT POPULATION SCALE WITH GLOSCOPE 16

A B

Figure 2.4: GloScope representation of 12 skin rash patients collected in various
locations and conditions in Cheng et al. (2018).(A) A heatmap visualization of the
estimate of the symmetrized KL divergence between the samples’ GloScope representation.
(B) A two dimensional MDS representation of the divergences. The divergences were calcu-
lated using the GMM density estimation based on PCA estimation of the latent space in 10
dimensions.

2.4 shows a clear clustering of skin samples collected from similar locations on the body,
and a separation of both the foreskin and psoriasis samples from scalp and trunk samples,
echoing the conclusions of the authors who identified a keratinocyte subpopulation which
separates these phenotypes from the scalp and trunk control samples (Cheng et al., 2018).

Next we demonstrate the GloScope representation on additional datasets of patient co-
horts where the samples are patients with differing disease phenotypes: 1) COVID lung atlas
data from Melms et al. (2021), which contains 27 samples, either diagnosed with COVID-19
or healthy control samples, and 2) Colorectal cancer data with 99 samples (after quality con-
trol), grouped into three phenotypes: healthy, mismatch repair-proficient (MMRp) tumors,
and mismatch repair-deficient (MMRd) tumors (Pelka et al., 2021).

The use of GloScope on these datasets demonstrates its utility for the visualization of
both sample and phenotype variability. For the COVID lung samples (Figure 2.5A), we
can easily see the separation between COVID-infected and healthy donors, matching the
observation of Melms et al. (2021) that lung samples from COVID patients were highly
inflamed. For the colorectal cancer data, visualization of the GloScope representation shows
healthy samples well separated from the tumor samples (Figure 2.5B). Though the two types
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of tumors do not separate in this visualization, an Analysis of Similarities (ANOSIM, Clarke
(1993)) test of significance applied to their GloScope divergences between these two groups
does find their representations to be significantly different (p = 0.001), indicating that the
representation is encapsulating systematic differences between the two tumors (see Section
3.2).

A B

Figure 2.5: Examples of MDS plot of the dissimilarities calculated from GloScope
representation. (A) 27 samples of COVID lung atlas data that are either healthy samples
of COVID patients from Melms et al. (2021); (B) 99 samples colon samples from mismatch
repair-proficient (MMRp) tumors, mismatch repair-deficient (MMRd) tumors and healthy
samples from Pelka et al. (2021). The dissimilarity matrices were calculated using the GMM
density estimate based on PCA estimates of the latent space in 10 dimensions.

2.4 Summary

In this Chapter, we demonstrated the use of GloScope for exploratory analysis, and in
particular how the GloScope divergences can be used to create two-dimensional scatter plots
of samples, similar to that of PCA plots of bulk mRNA-Seq data.

While we focus on the utility of the GloScope representation to visualize scRNA-Seq
data at the sample level, the representation can be used more broadly with other statistical
learning tools. For example, we can use the GloScope divergences between samples as input
to a prediction algorithm in order to predict a phenotype. With the COVID PBMC data, we
apply the SVM algorithm to the GloScope divergences which results in a prediction algorithm
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that was able to separate the normal from the COVID samples with a 5-fold cross-validated
prediction accuracy of around 0.88. This simple example serves as an illustration of the
power of a global representation of the entire scRNA-Seq profile.

Finally, we note that GloScope can easily be incorporated into existing scRNA-Seq
pipelines at multiple stages of analysis to assess the progress. Latent-varible representa-
tion, via PCA or scVI is a standard initial step in an analysis, while many popular batch
correction methods provide low-dimensional representations of corrected data. Even multi-
modal integrations usually result in a low-dimensional latent space estimation. The output
of all of these tasks can be provided to GloScope for evaluation of sample-level similarities,
resulting in a flexible tool for exploratory analysis of the results.

In the next chapter, we would demonstrate the ability of the GloScope representation to
detect important artifacts in the data, as well as assess batch-correction methodologies. In
chapter 4, we would also compare GloScope to the limited available strategies for summa-
rizing the data from a single patient: cell-type composition and pseudobulk.
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Chapter 3

Batch Effect and Correction Methods
Evaluation via GloScope

3.1 GloScope representation for Quality Control

In this section, we demonstrate the use of GloScope for exploratory data analysis of relatively
large sample cohorts and illustrate the utility of having a sample-level representation of the
data for exploratory data analysis and batch effect detection.

The first dataset is a study of COVID-19 (Stephenson et al., 2021) consisting of 143
samples of peripheral blood mononuclear cells (PBMC); samples in the study originated
from patients that were either identified as infected with COVID-19 with varying levels of
severity (COVID), negative for COVID-19 (Healthy), healthy volunteers with LPS stimulus
as a substitute of an acute systemic inflammatory response (LPS), or having other disease
phenotypes with similar respiratory symptoms as COVID-19 (non-COVID). Figure 3.1A
shows these samples after applying MDS to the pairwise divergences calculated from the
GloScope representation for the 143 samples of the study.

The visualization shows that both COVID patients and healthy donors are clearly sep-
arated from patients with other respiratory conditions (LPS and non-COVID). The other
noticeable pattern is that the remaining patients do not show a strong separation between
the COVID and Healthy phenotypes, but do appear to separate into at least two groups
unrelated to these main phenotypes of interest – an observation that is further strengthened
when considering the MDS representation of only the COVID patients and healthy donors
(Figure 3.1B). Exploration of the provided sample data from Stephenson et al. (2021) shows
that these groups correspond to different sequencing locations, indicating a strong batch
effect due to sequencing site, with samples sequenced at the Cambridge site clearly sepa-
rated from those at the New Castle (Ncl) and Sanger sites. When the individual cells are
visualized (Figure 3.2), the distributional differences between these sequencing sites validate
these differences, with cells from the Cambridge site lying in quite different spaces from cells
of the same cell type from the other sequencing sites. Furthermore, Stephenson et al. (2021)
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A B

Figure 3.1: GloScope representation applied to samples sequenced in Stephenson
et al. (2021). Shown are the MDS representation in two dimensions of the KL divergence
estimates calculated from the GloScope representation for (A) all 143 samples and (B) the
subset of 126 samples that were either healthy or diagnosed with COVID-19 (MDS was rerun
on the reduced subset of divergences between these 126 samples). Each point corresponds
to a sample and is colored by the sample’s phenotype; the plotting symbol of each sample
indicates the site at which the sample was sequenced (see legend). Estimated GloScope
divergences used the GMM estimate of density and latent variables were estimated with
PCA in 10 dimensions.

indicates that samples from these different sites underwent different sequencing steps such as
cell isolation and library preparations (and the original analysis in Stephenson et al. (2021)
corrected for potential batch effects by applying the batch correction method, Harmony
(Korsunsky et al., 2019)).

A similar analysis was applied to a Systemic lupus erythematosus (SLE) dataset, with
scRNA-Seq data of the PBMC cells of 261 patients; some patients had multiple samples
resulting in total 336 samples (Perez et al., 2022). Again, our GloScope representation
clearly shows that there are distinct patterns among different batch sources, in addition
to separation of normal samples from the other conditions (Figure 3.3A). After application
of Harmony to this data based on the batch, our GloScope representation shows much
greater intermingling of the data from different batches (Figure 3.3B). We can quantify the
improvement by measuring the separation between samples within a batch compared to those
in separate batches using measures such as the ANOSIM R statistic or Silhouette width (see
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Figure 3.2: UMAP plot of a subset of 50,000 cells from the original, uncorrected
single-cell data from (Stephenson et al., 2021). The UMAP embedding was calculated
based on all cells, and then cells from different sequencing sites were plotted in separate
panels. The plot does not indicate the individual samples, but plots all cells from the
same sequencing site together regardless of sample or disease status. The cells are color-
coded in each panel by the cell-type of the cell, as identified by Stephenson et al. (2021)
following batch correction with Harmony. The UMAP was calculated from the first 30 PCA
dimensions. This visualization shows the clear differences due to sequencing site in the cells
which were identified to be in the same subtype, such as B-cells, CD4 cells and NK 56 high
(CD56 bright NK cells).

Section 3.2). We see the improvement due to batch correction, but some loss of separation
between biological conditions, which is a common trade-off when correcting for batch effects
(Figure 3.3C and 3.3D). This type of exploratory analyses of data is a common task in
the analysis of scRNA-Seq data, and the GloScope representation provides a meaningful
strategy for evaluating these types of processing choices. We further note that in addition
to finding differences amongst the sequencing sites in the Lupus PBMC data, we observe
further clustering of samples in Batch 4 (highlighted in Figure 3.3A). These subgroups do
not correspond with any patient covariates provided by the authors, but further exploration
clearly show strong differences in the gene expression and cell density in certain cell types
such as CD4 T cells, Natural Killer cells, and B cells. (Figure 3.4 and 3.5).

Similar concerns are frequently explored when integrating data from different studies.
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Figure 3.3: GloScope representation applied to a Systemic lupus erythematosus
(SLE) dataset of 336 samples from 261 patients (Perez et al., 2022). Shown is the
MDS of the GloScope representation applied to latent variables defined by (A) the first 10
PCA components of the original data and (B) the latent variables defined by Harmony after
normalizing on processing cohort. (C) the ANOSIM statistics changing regarding capturing
batch or condition signal, before and after applying batch correction (i.e Harmony) with
bootstrap confidence interval. (D) the Silhouette widths changing regarding capturing batch
or condition signal, before and after applying batch correction with bootstrap confidence
interval.
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Figure 3.4: UMAP visualization of the cell density of data from Perez et al. (2022),
Each panel is the subgroups of batch identified by GloScope Representation.

We applied GloScope on the dataset of Fabre et al. (2023) which integrated six lung fibrosis
scRNA-Seq studies, resulting in 144 samples after quality control. Application of GloScope
(Figure 3.7A) immediately shows one of the studies (Adams et al., 2020) as quite different
from the other five; further investigation shows that the study of Adams et al. (2020) has
quite obvious differences in both gene expression and cell type composition than the other
five studies. In particular, we observed quite obvious gene expression shifting in myeloid cells
and Natural Killer cells in Adams et al. (2020) (See Figure 3.9), and samples collected from
Adams have a higher portion of myeloid cells compared to samples from other studies (Figure
3.8). The remaining five studies show relatively smaller differences, but some separation is
clearly visible. In addition to large batch effects, we observed a potential outlier (sample
092C lung), from the Adams et al. (2020) study detected by the GloScope representation
(Figure 3.7A). Further evaluation of that outlier sample shows that 092C lung is missing
most of the cell types except for B cells and lymphocytes (Figure 3.10).



CHAPTER 3. BATCH EFFECT AND CORRECTION METHODS EVALUATION VIA
GLOSCOPE 24

Figure 3.5: UMAP visualization of the potential subgroups of batch 4 from Perez
et al. (2022). For description of UMAP calculations and color annotations, see Fig. 3.6.
The upper panel is the first 3 original processing batches provided by Perez et al. (2022), as
shown in Fig. 3.6. The lower panel further separates the fourth batch into the subgroups
identified by GloScope.
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Figure 3.6: UMAP visualization of the gene expression per batch of data from
Perez et al. (2022). Cells are separated in different panels for batches provided by Perez
et al. (2022). The number of cells (M) plotted in each panel are indicated in the panel title.
The cells are color-coded in each panel by the cell-type identified by Perez et al. (2022) using
canonical marker genes. The first 10 PCs were used to calculate the UMAP representation
across all samples.
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In contrast, a similar analysis of data from (Fabre et al., 2023) which integrated stud-
ies of 50 human liver samples (after quality control) from 6 published scRNA-Seq studies
of liver fibrosis shows far less distinction among the studies compared to the lung samples
(Figure 3.11). Following application of Harmony for batch correction/integration, the Glo-
Scope shows effective integration of the lung studies and a corresponding clearer grouping
of biological conditions. (Figure 3.7C,D).

3.2 Quantification of Batch Effects and Evaluation of

Batch Correction Methods

Evaluating batch effects involves considering various aspects crucial to ensuring data integrity
and accuracy in scientific research. Key considerations include selecting the appropriate
batch correction method tailored to the specific experimental setup and data characteristics.
Different correction methods, such as Harmony and scVI, offer distinct advantages depending
on the nature of the batch effects and the type of data being analyzed (Korsunsky et al.,
2019; Lopez et al., 2018). Additionally, choosing the correct batch effect unit, such as
individual samples, or batches, is pivotal as it influences the scope and effectiveness of
correction strategies. Each unit choice impacts how batch effects are identified, quantified,
and ultimately corrected.

On the other hand, although batch correction is a valuable tool in data preprocessing to
mitigate technical variations, its application must be approached with caution to preserve
biological signal integrity. Blindly correcting for batch effects across datasets runs the risk
of oversimplifying data variability and thereby obscuring genuine biological differences. For
example, in Section 3.1 where we tried different batch correction methods, we noticed that
some biological differences were diminished as well (e.g see Figure 3.3). By assuming that
all differences are solely attributable to technical artifacts, batch correction methods may
inadvertently attenuate or even eliminate meaningful biological signals that underlie varia-
tions of interest. Hence, while prioritizing data alignment for integration, we must also pay
attention to the loss of biological signals.

The following sections will provide a comprehensive and detailed introduction to the
application of GloScope in both assessing and quantifying batch effects in the sample level.

Numerical metrics for evaluating performance

As further discussed in Section 4.1, various quality-control tools have been developed to
evaluate batch effects at the cell level (Korsunsky et al., 2019; Tran et al., 2020). These tools
are effective in identifying and quantifying batch effects that may influence individual cell
data, ensuring the integrity of single-cell analyses. However, despite the availability of these
cell-level tools, there is a significant gap in the field when it comes to evaluating batch effects
at the sample level. Currently, there are no dedicated tools designed to assess how batch
effects might impact the overall sample, which can be crucial for studies that involve multiple
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Figure 3.7: GloScope representation applied to samples sequenced in Fabre et al. (2023).
Shown are the MDS representation in two dimensions of the KL divergence estimates cal-
culated from the GloScope representation for (A) PCA embedding before batch correction
and (B) PCA after applying Harmony batch correction. Each point corresponds to a sample
and is colored by the sample’s phenotype; the plotting symbol of each sample indicates the
studies at which the sample was collected (see legend). Estimated GloScope divergences
used the GMM estimate of density and latent variables were estimated with PCA in 10 di-
mensions. (C) and (D) visualize the ANOSIM R statistics and Silhouette width, quantifying
the changes of batch and biological signals before and after batch correction
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Figure 3.8: Barplot visualization of celltype proportion per sample of lung study
in Fabre et al. (2023). Each column represent a sample and grouped into different panels
by the study where the samples were collected. Bars are color-coded by the cell types
identified by Fabre et al. (2023) following batch correction with Harmony. We are able to
detect significant cell proportion differences (e.g myeloid cells) between Adams et al. (2020)
and other studies.

samples or comparisons across different experimental conditions. Our method GloScope,
instead, is capable of addressing this unmet need by utilizing the output divergence matrix
as input for various statistical tests, such as ANOSIM.

In order to quantify how well our representation was able to differentiate sample groups
or batch effects, and to compare with competing methods, we relied on the following metrics
for evaluation:

1. ANOSIM R statistic

2. PERMANOVA effect size ω2

3. Average Silhouette width using silhouette in R package cluster.

ANOSIM

The Analysis of Similarities (ANOSIM) test is a non-parametric test based on a metric of
dissimilarity to evaluate whether the between group distance is greater than the within group
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Figure 3.9: UMAP visualization of individual cells from lung study in Fabre et al.
(2023). Each panel corresponds to cells in the six studies being integrated by Fabre et al.
(2023), with Adams et al. (2020) showing widespread differences from the other studies. The
cells are color-coded in each panel by the cell-type identified by Fabre et al. (2023) following
batch correction with Harmony. The first 10 PCs calculated on all the cells jointly are used
for UMAP calculation.



CHAPTER 3. BATCH EFFECT AND CORRECTION METHODS EVALUATION VIA
GLOSCOPE 30

Figure 3.10: UMAP visualization of individual cells of outlier sample compared to
other samples from Adams et al. (2020). For UMAP calculation and color annotation,
see Fig. 3.9. Left panel is the cells from Adams et al. (2020) where the samples are not
considered as outliers, and right panel is the cells from the outlier sample (092C lung). Most
of the cell types are missing for the outlier samples.
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Figure 3.11: Visualization of sample from liver study in Fabre et al. (2023). (A)
A MDS plot of the divergences calculated by GloScope, with samples color-coded by their
biological condition and with the shape of the point indicating the study of origin. The
liver study shows less obvious study effects compared to lung study. (B) Comparison of the
ANOSIM Statistic (R) based on GloScope divergences to quantify the separation between
samples in different studies for both the liver and lung studies; larger values of R indicate
more separation between groups. Individual points show the ANOSIM statistic, with boot-
strap confidence intervals indicated by whiskers.
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distance. We used the function anosim in the R package vegan to perform the test (Clarke,
1993). The test statistic is calculated as:

R =
rB − rW

N/2(N/2− 1)/4
(3.1)

where rB is the mean of rank similarities of pairs of samples from different groups, rW is
the mean of rank similarity of pairs within the same groups, and N is the total number of
samples. The test statistics ranges from -1 to 1. Strong positive test statistics means greater
between group distances than the within groups; strong negative test statistics means the
opposite and may represent wrong group assignments; and test statistics near zero indicate
no differences. Finally, p-values are calculated based on a null permutation distribution: the
distribution of R recalculated after randomly shuffling the samples’ group assignment. The
p values are calculated as the proportion of times that the permuted-derived statistics are
larger than the original test statistic.

PERMANOVA

A similar metric as ANOSIM test statistics is PERMANOVA test effect size ω2, which
is caculated based on the actual distance values (Kelly et al., 2015). PERMANOVA is
a non-parametric method and tests whether the centroid or the spread of samples among
the batches are the same. It extends traditional ANOVA by utilizing a distance matrix.
PERMANOVA computes the within-group sum of squares SSW , the average of the squared
distances within each group, divided by the number of subjects in each group, and total
sum of squares SST , from which the between-group sum of squares SSA is derived as the
difference between the total sum of squares SST and SSW . The test statistic, referred to
as the pseudo F-ratio, is similar to Fisher’s F-ratio. It is calculated as the ratio of the
between-group sum of squares to the within-group sum of squares. While the test statistics
evaluates the significance of these group differences, we relied on effect size calculation, which
measures the strength of the relationship we observed. For PERMANOVA test, the effect
size is quantified by

R2 = 1− SSW

SSW + SSA

=
SSA

SST

, (3.2)

though it can be biased due to that it is solely based on the sample sums of squares and does
not adjust to accurately estimate the effect size for the general population. Instead, Omega-
squared ω2 offers a less biased measure by incorporating mean-squared error, enhancing
accuracy in estimating the effect size for ANOVA-type analyses, which is defined as

ω2 =
SSA − (a− 1)SSW

N−a

SST + SSW

N−a

, (3.3)

where a is the number of group or batch.
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Silhoutte

The silhouette width is a statistical measure used to assess the quality of clustering in data
analysis. It provides a concise yet informative evaluation by quantifying how well each data
point fits into its assigned cluster compared to neighboring clusters. Specifically, for each
point, the silhouette width is calculated as

s(i) =
b(i)− a(i)

max(a(i), b(i))
(3.4)

where a(i) represents the average distance between the data point i and all other points
within the same cluster, known as the intra-cluster distance, and b(i) denotes the minimum
average distance from the data point i to all points in any other cluster, referred to as the
inter-cluster distance.

A higher silhouette width indicates that the data points are appropriately clustered, with
distinct and well-separated clusters. To assess the overall clustering quality of the entire
dataset, we obtain the average silhouette width by calculate the mean of the silhouette
widths across all data points in the dataset, as shown below

Average Silhouette Width =
1

n

n∑
i=1

s(i). (3.5)

Bootstrap

After obtaining the above values from the calculated distance matrix D, we calculated boot-
strap confidence intervals for each of the metrics. To do so, we defined the unique com-
binations of batch and biological condition. For each unique combination, we repeatedly
sampled with replacement from samples in that combination; the union of the sampled sam-
ples from each combination resulted in a single full bootstrap sample. After obtaining the
bootstrap sample for each run, we obtained the bootstrap distance matrix Dboot from the
original distance matrix D by subsetting to the bootstrap sample ids. Finally, we calculate
the two metrics based on Dboot. We repeated this for B = 100 bootstrap samples. For each of
the metrics, we calculated percentile bootstrap confidence intervals by taking the 2.5% and
97.5% quartiles from the empirical distribution of the bootstrap distribution of the metrics.

Batch Correction Methods Summary

Various batch correction methods have been developed to mitigate these unwanted variations.
These methods include simple statistical techniques, such as mean or median centering, as
well as more advanced approaches like Harmony and Seurat’s integration technique, which
leverage machine learning and data integration principles to correct batch effects. Each
method has its strengths and limitations, and the choice of the most appropriate technique
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often depends on the specific characteristics of the dataset and the biological questions being
investigated.

In the following sections, we mainly use GloScope and the numeric metrics introduced
above on comparing the following popular batch correction methods: Harmony, scVI, fastMNN,
and Liger.

Harmony

Harmony is a sophisticated batch correction method designed to handle complex datasets
commonly encountered in biological research. Harmony utilizes an iterative algorithm to
integrate multiple datasets, effectively mitigating batch effects while preserving the intrinsic
biological variation. It operates on the uncorrected latent embedding (e.g PCA), where
it harmonizes the data by iteratively adjusting the embedding to ensure that similar cell
types from different batches are aligned in the same space. Harmony is particularly adept
at handling high-dimensional single-cell RNA sequencing data, making it a powerful tool
for researchers aiming to combine datasets from different experiments or sequencing runs
without losing critical biological information (Korsunsky et al., 2019).

scVI

scVI (single-cell Variational Inference) is another cutting-edge batch correction method
designed specifically for single-cell RNA sequencing data. Utilizing deep learning tech-
niques,scVI employs a variational autoencoder (VAE) framework that captures the under-
lying biological variation while accounting for technical noise and batch effects. The model
uses a negative binomial distribution to model gene expression counts, which helps in dealing
with over-dispersion common in single-cell data. By using the VAE techniques, where the
encoder maps the observed data to a latent space and the decoder reconstructs the data
from this latent space, scVI learns a low-dimensional representation of the gene expression
profiles. (Lopez et al., 2018).

fastMNN

fastMNN employs a scalable mutual nearest neighbors (MNN) algorithm that efficiently
identifies and corrects batch-specific variations (Zhang et al., 2019). The method first calcu-
lates mutual nearest neighbors to identify pairs of cells that are closest to each other across
batches. Using those pairs, fastMNN computes a correction vector for each cell, which is the
average shift needed to align mutual nearest neighbors. FastMNN operates in a hierarchical
manner, iteratively merging batches at a time and correcting them based on the identified
MNNs, ensuring that the global structure of the data is preserved.
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LIGER

LIGER corrects batch effects in scRNA-Seq data through a mathematical framework in-
volving matrix factorization. It decomposes the gene expression matrix Xi for each batch b
into shared factors W capturing common biological signals, batch-specific loadings Hb, and
dataset-specific factors Vb representing batch-specific variations. The method minimizes an
objective function that balances reconstruction error and sparsity constraints, iteratively op-
timizing W , Hb, and Vb. By aligning shared components across batches, LIGER harmonizes
the data, allowing for accurate cross-batch comparisons and revealing underlying biological
insights (Welch et al., 2019).

Tran et al. (2020) has conducted sophisticated comparison of different batch correction
methods. However, they mainly focused on cell level comparison and, as discussed in Chapter
4, many potential artifacts stem from variables that differ per sample or patient. Therefore,
we rely on GloScope, which addresses this problem by incorporating the sample-level batch
comparisons, allowing for a more holistic evaluation and detection of artifacts that impact
the data on a larger scale.

Evaluating Batch Unit Choice and Biological Signal

Batch correction methods aim to remove unwanted variation arising from technical sources
(e.g processing batchs or sequencing cites) for each cell. Different batch correction methods
work by identifying and adjusting for batch effects based on the chosen batch unit per cell
(See Section 3.2). When performing batch correction, it’s essential to consider the choices
between using sample ID or batch ID as the batch unit, as each option represents different
underlying factors that can influence the correction results. For instance, cells’ sample IDs
often contain the information of both the batch group where the sample belongs to and the
samples’ phenotypes, such as disease vs healthy. Adjusting based on sample IDs would lead
to a risk of overcorrecting, which can inadvertently reduce or obscure the biological signal
targeted for downstream analyses. Therefore, finding the right balance in batch correction
task is challenging and requires careful consideration and assessment of the specific context
and the interest of the study.

In the COVID PBMC dataset, the original analysis performed by the author employed
Harmony on the initial PCA embedding, utilizing sample ID to correct for batch effects
(Stephenson et al., 2021). We redo the analysis by using sequencing site as the correction
unit instead. As shown in Figure 3.12, though R statistics’ bootstrap confidence interval
overlap between the sample ID and Batch ID, PERMANOVA ω2 value showed that correc-
tion based on Batch ID effectively reduces batch effects and also enhances the detection of
biological signals between COVID-19 patients and healthy individuals (We also observe that
the different values between GMM vs KNN and would discuss such comparison further in
Chapter 4, Section 4.2).

Similarly, in the Lung fibrosis study, our findings indicate that correcting for Study,
rather than sample ID (Figure 3.13), yields more substantial removal of batch effects. This
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Figure 3.12: Numeric evaluation of Harmony batch correction applied to COVID
PBMC data from Stephenson et al. (2021). (A) ω2 values for evaluating batch (Left)
and biological signal (Right) among different batch units. (B) R values for evaluating batch
(Left) and biological signal (Right) among different batch units.



CHAPTER 3. BATCH EFFECT AND CORRECTION METHODS EVALUATION VIA
GLOSCOPE 37

approach allows us to maintain or even increase the power of detecting biological signals.
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Figure 3.13: Numeric evaluation of Harmony batch correction applied to Lung
fibrosis data from Fabre et al. (2023). (A) ω2 values for evaluating batch (Left) and
biological signal (Right) among different batch units. (B) R values for evaluating batch
(Left) and biological signal (Right) among different batch units.

However, the same conclusion or observation may not be held for all cases. Utilizing
batch IDs can present challenges, particularly when there is an uneven distribution of sample
phenotypes across batches. This uneven distribution can lead to biased corrections, as
the batch correction algorithms may disproportionately adjust certain batches, skewing the
results. In such scenarios, the batch correction may fail to adequately address the variability
introduced by the batch effects, thereby compromising the accuracy of the data analysis.

In the study of Lupus PBMC, we observed that samples labeled as Flare and Treated

were exclusively present in Processing Batch 3, while Processing Batch 1 contained only
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Flare Managed Normal Treated
1.0 0 0 47 0
2.0 0 120 22 0
3.0 19 4 18 10
4.0 0 52 44 0

Table 3.1: Table of sample distribution among processing batches and conditions in Perez
et al. (2022)

Normal samples, as detailed in Table 3.1. Given this distribution, we applied the GloScope
along with two numeric metrics and we saw in Figure 3.14 that although using Processing
Cohort as the batch unit resulted in a slightly more effective reduction of batch effects, it
simultaneously diminished the biological signal. Conversely, correcting based on sample ID
enhanced the ability to accurately identify sample phenotypes.

Thus, when correcting for batch effects, a careful assessment and quantification of batch
effects is required. Researchers should balance the need to remove unwanted batch variation
while preserving the true biological variation. Additionally, careful consideration of the
distribution of sample phenotypes across batches is essential to avoid introducing new biases
or exacerbating existing ones. The above examples demonstrate that GloScope provides
a valuable approach for offering researchers insights into better selecting the appropriate
correction strategies.

Comparative Analysis of Batch Correction Methods

In Figure 3.15, we noticed that most of the correction methods are consistent on choosing
batch unit: using batch id improves the batch effect removal, as well as perserve or improve
the biological signals. Among the methods, applying fastMNN on PCA does not yield as
satisfying effects as other methods in removing batch effects. While Liger has compara-
ble performance on removing batch effects as Harmony or scVI, it failed in improving the
distinguish samples based on biological conditions. Overall, for the particular dataset of
Stephenson et al. (2021), we would recommend applying Harmony or scVI and using batch
id.

While for the dataset from Perez et al. (2022), one of the methods, fastMNN failed due
to excessive computational cost and memory constraints. Hence, we focus on comparing
Harmony, Liger, and scVI. Here we noticed that unlike Harmony and scVI, Liger on batch id
has better results in removing batch and preserving wanted differences, as shown in Figure
3.16. However, Harmony of scVI on sample ID has comparable perforamnce as Liger on
batch ID. Hence, for this particular dataset, we are left with an opening question for what
are the best technique and batch ID choice to use. Researchers could choose based on their
resources and need, and use our method as the evaluation tool.
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Figure 3.14: Numeric evaluation of Harmony batch correction applied to Lupus
PBMC data from Perez et al. (2022). (A) ω2 values for evaluating batch (Left) and
biological signal (Right) among different batch units. (B) R values for evaluating batch
(Left) and biological signal (Right) among different batch units.
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Figure 3.15: Numeric evaluation of different batch correction techniques applied
to COVID PBMC data from Stephenson et al. (2021). (A) ω2 values for evaluating
batch (Upper) and biological signal (Lower) among different batch units and different batch
correction methods. (B) R values for evaluating batch (Upper) and biological signal (Lower)
among different batch units and different batch correction methods.
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Figure 3.16: Numeric evaluation of different batch correction techniques applied to
Lupus PBMC data from Perez et al. (2022). (A) ω2 values for evaluating batch (Upper)
and biological signal (Lower) among different batch units and different batch correction
methods. (B) R values for evaluating batch (Upper) and biological signal (Lower) among
different batch units and different batch correction methods.
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3.3 Summary

Batch effects are common concerns with large sets of data, especially in human subject data
where the samples are likely to be collected and possibly sequenced at different sites. In this
chapter, we demonstrated the ability of the GloScope representation to detect important
artifacts in the data. These examples immediately showed the power of our GloScope repre-
sentation for exploratory data analysis. We also showcase GloScope’s strength in performing
quantitative evaluation of batch effects and batch correction methods at the sample level. By
incorporating GloScope with different numeric metrics, we provide a quantitative framework
for evaluating and comparing different batch unit choices and correction methods in the
population scale. This approach enables a detailed analysis of how various batch correction
techniques and choices might impact the quality of scRNA-seq data, with a focus on sample
level integrity, ensuring more accurate downstream analyses and better reproducibility in
single-cell studies.
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Chapter 4

Evaluation of GloScope with
Competing Methods and Simulation

In this chapter, we undertake a comprehensive qualitative evaluation of GloScope. The eval-
uation is divided into two main sections to provide a thorough understanding of GloScope’s
effectiveness and reliability. First, we compare GloScope with several established methods in
the field using EDA and nuemric metric introduced in Chapter 3. This comparative analysis
is crucial for demenstrating GloScope’s strength and advantages, and positioning GloScope
within the existing landscape of scRNA-Seq data analysis tools, as discussed in Chapter
2. Second, we employ scRNA-Seq simulation to rigorously test GloScope’s performance to
accurately identify and characterize samples’ phenotype heterogeneity in different situations.

4.1 Comparison with Competing Methods

In addition to GloScope, several other methods also tackle the analysis of scRNA-seq data at
the sample level. These approaches often differ in their underlying assumptions and compu-
tational strategies, providing various ways to handle the complexities inherent in scRNA-seq
datasets.

Comparison with other Quality-control tools

Existing tools for EDA and evaluation of potential quality concerns are generally focused
on analysis at the level of the individual cell. Numerous metrics exist for evaluating the
quality of individual cells and filtering poor cells, such as the the number of detected genes,
the number of sequenced reads, or the percentage of mitochondrial DNA (Osorio and Cai,
2020; Ilicic et al., 2016). Yet, many sources of possible artifacts are often due to variables
that vary per sample or patient, such as the hospital of collection, the sequencing site, or the
laboratory running the experiment. These effects have large-scale effects beyond individual
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Figure 4.1: Boxplot of iLISI value for individual cells for data in Stephenson et al.
(2021). The left panel showed the changes of iLISI value of each cell for batch quantification:
the closer the values to 1, the more clear batch separation, indicating significatn batch effects;
the closer the values to 3 (i.e. the number of batches), the better mixture among cells,
indicating better batch correction. We saw that after applying Harmony on sample id and
batch id, the iLISI values increased, suggesting the effectiveness of Harmony. The right panel
showed the changes of iLISI value of each cells for separation of biological signal (COVID vs
Healthy).

cells and are best detected by comparisons of the cells as a group. However, there are limited
options for detecting artifacts that vary by sample or individually poor samples.

In particular, analyses at the individual cell-level are less flexible for detecting these
sample-level differences. There are metrics at the individual cell-level, such as iLISI (Kor-
sunsky et al., 2019) that can assess the presence of a batch effect for known batch variables.
These are similar to our use of ANOSIM or Silhouette width to quantify the separation
between samples in batches, only these methods are applied to the individual cells. Such
methods can highlight similar effects, such as showing an improvement in Harmony corrected
data for the Stephenson et al. (2021) data (Figure 4.1), but they are ineffective for discover-
ing effects de novo, nor do they provide the ability to compare multiple effects, such as our
visualizations of both batch and biological effects in Section 3.1.
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A common exploratory visualization strategy for scRNA-Seq data consists of applying
tools such as UMAP or tSNE to create a two-dimensional visualization of the individual cells.
Individual cells can be color-coded by potential variables or plotted separately per sample
for exploration of possible known artifacts, as we provided for the Stephenson et al. (2021)
data in Figure 3.2. UMAP visualizations can be helpful in retrospect for understanding the
nature of the problem, but are not particularly effective in discovering such effects de novo
given the difficulty in visualizing sample effects for large numbers of cells. The example of
the Perez et al. (2022) data is illustrative, where our GloScope representation allowed us to
immediately determine unexplained groupings of samples within Batch 4; we were able to
follow this discovery with further investigation at the individual cell-level using UMAPs to
discover that there were shifts in gene expression and cell density among these subgroups
GloScope identified within Batch 4. These differences are not detectable in plotting all
cells, and only after identifying the subgroups of patients can a UMAP help in further
investigation. Furthermore, differences due to shifts in cell distributions can be tricky to
see in UMAP visualizations of individual cells, due to the overplotting of cells. Even after
identifying the different subgroups in Batch 4 with GloScope (Figure 3.3), the differences
seen clearly in the GloScope representation were subtle to detect using standard UMAP
visualization (Figure 3.5, 3.6, and 3.4). This exploratory analysis of the (Perez et al., 2022)
data shows the complementary nature of GloScope with other visualization tools. Similarly,
outlying individual patients, as we detected in the lung samples of Fabre et al. (2023) (Section
3.1), would require plotting and comparing of UMAPs of each individual sample which is
simply not feasible for large cohorts.

There are some limited alternatives to GloScope available for the comparison at the
sample-level, and they take different strategies for summarizing the data from a single patient
which we next consider: cell-composition and pseudobulk.

Comparison with cell-composition analysis

Grouping patients based on their celltype proportion has been a popular methods for com-
paring and grouping samples. Reducing each sample to their cell-type composition has been
proposed for globally comparing single-cell samples (Orlova et al., 2016; Wagner et al., 2019;
Li et al., 2020b; Chen et al., 2020; Joodaki et al., 2023), and there has been some limited
work in analysis of data from flow-cytometry using cell-type compositions to globally com-
pare samples which has similarities to using GloScope on the proportions (Orlova et al.,
2016; Johnsson et al., 2016; Bruggner et al., 2014; Orlova et al., 2018).

Specifically, if each cell can be classified into one of K subtypes (K = 1, ..., k), then
we observe for each sample the proportion of cells πk in each cell-type k. Cells are jointly
clustered, and patients summarized and compared by their relative cluster frequencies. A
simple version of this strategy is to visualize the proportions per sample in a barplot. Like
UMAPs of individual cells, such barplots can be useful tools for greater investigation of
differences found by GloScope, but do not scale for easy comparisons of large number of
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Figure 4.2: Bar plot visualization of cell type proportion per samples in the original
batches of the Lupus PBMC study (Perez et al., 2022). For plot details and color
annotation, see Fig. 4.3. Panels are separated by original batch annotated by the Perez
et al. (2022), without further separation of batch 4.0 into subgroups identified by GloScope.

samples and do not aid in discovering possible differences, such as the potential subgroups
of batch identified by GloScope (Figure 4.3, 4.2).

The cell-type proportions can also be analyzed more quantitatively– for example the
GloScope methodology can also be used for cluster proportions, which we call GloProp,
as opposed to our standard implementation which calculates an estimate of the full gene
expression density. GloProp take a sample’s cluster proportion vector πi = πi,1, ..., πi,K as
input and calculate the symmetrised KL divergences between each sample pair as below
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Figure 4.3: Barplot visualization of cell-type proportion differences in subgroups
identified by GloScope for Lupus PBMC study Perez et al. (2022). Each col-
umn/bar represents a sample. The bars are broken into different color-coded segments, with
a segment for each cell-type and the size of the segment proportion to the proportion of cells
in the data identified with the cell-type. The annotation of individual cells into cell-types
are based on the annotation provided by Perez et al. (2022) using canonical marker genes.
Samples are separated in different panels based on their processing batches provided in Perez
et al. (2022), with the de novo subgroups found by GloScope in the fourth processing batch
shown separately. For the subgroups of the fourth processing batch, we see samples in batch
4.1 has relatively larger proportion of CD4 T cells than batch 4.2 and 4.3.
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DSKL(πi, πj) =
K∑
k=1

[
πi,k log

(
πi,k

πj,k

)
+ πj,k log

(
πj,k

πi,k

)]
(4.1)

Unlike a full GloScope representation, applying GloScope on the cluster proportion vector
requires classifying cells into subtypes before application of the method. Accurate identifica-
tion of cells into subtypes is often a manual and time-consuming process, which makes this
approach less useful for the exploratory data analysis that is often upstream of the subtype
identification step. However, GloScope applied to the clusters can be used for more formal
hypothesis testing of significant global differences in cell-type composition, as discussed in
Section 4.2.

Concurrently, Joodaki et al. (2023) has proposed a similar metric strategy for comparing
cell-type proportions named PILOT, using Wasserstein distance rather than symmetric KL
divergence. These approaches require determination of cell-type proportions and can only
be run after clustering the individual cells. Such clustering is typically done after EDA and
correction of possible batch effects, making it irrelevant for EDA. But in principle clustering
could be done earlier in the pipeline for the sole purpose of using PILOT (or GloProp) for
EDA (the discovered clusters would not be biologically meaningful until the data has been
appropriately pre-processed). We do this clustering on the uncorrected data and compare
PILOT and GloProp to GloScope. We see that PILOT performs much worse than GloScope
or GloProp in detecting separations between the batches in all of the datasets (Figure 4.6,
4.7).

Comparison with pseudo-bulk analysis

Another potential strategy for sample-level exploratory analysis is using a pseudo-bulk cre-
ated from the scRNA-Seq data. This is a strategy of aggregating over each sample’s cells
to obtain a single observation per sample (Crowell et al., 2020); the most common is to
simply sum the counts. Then standard methods from bulk mRNA-Seq, such as PCA, can
be applied at the sample level. Ramirez Flores et al. (2023) propose a strategy, MOFA, for
finding lower-dimensional latent embeddings per sample based on combining pseudo-bulk
measures per cell-type, to better reflect cell-type variability.

We create such a PCA visualization of the pseudo-bulk of several of the datasets men-
tioned above (Figure 4.4, 4.5). For the COVID-19 PMBC samples, for example, the pseudob-
ulk analysis does not clearly separate out the LPS and non-COVID samples, nor is the strong
batch effect due to sequencing site as clearly identified. Similarly, for the Lupus PBMC data,
the pseudobulk representation does not identify the strong batch effects seen in our GloScope
representation. This is borne out by the quantification of the average silhouette width or
R statistic (Figure 4.6 and 4.7). On the other hand, these quantification statistics show
MOFA to have similar performance in detecting batches as GloScope; however, on closer
examination of the visualization of the results of MOFA, we see less clear separation of the
effects seen by GloScope. For example, MOFA did not show clear of a separation of all the
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Figure 4.4: Visualization of the first 2 PC components of the pseudobulk. (A)
samples from COVID PBMC study of Stephenson et al. (2021). (B) Covid and Healthy
samples from COVID PBMC study of Stephenson et al. (2021). Removing LPS and non-
COVID samples yield similar results as in (A). (C) samples from lupus PBMC study of
Perez et al. (2022). Note that the PCA coordinates are equivalent to performing the MDS
on the matrix of pair-wise Euclidean distance between the samples.

non-COVID and LPS samples from other samples and the separation of the groupings found
de novo by GloScope are attenuated and difficult to find (Figure 4.5).

There are other limitations to either of these pseudo-bulk strategies. The pseudo-bulk
strategy, including MOFA, is based on summarizing for each gene the expression level of
all the cells in a sample, usually the sum of the raw counts. However, in many public
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Figure 4.5: Visualization of the first 2 factors of the MOFA results for data in
Stephenson et al. (2021) and Perez et al. (2022). (A) samples from COVID PBMC
study of Stephenson et al. (2021). (B) Covid and Healthy samples from COVID PBMC
study of Stephenson et al. (2021). Removing LPS and non COVID samples yield similar
results as in (A). (C) samples from Lupus PBMC study of Perez et al. (2022). Each point is
a sample, color-coded by their biological condition and with different shapes corresponding
to their batch.
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Figure 4.6: Separation of different sample-level methods on COVID PBMC study
Stephenson et al. (2021). The separation of samples in different batches or biological
conditions based on the (A) ANOSIM Statistic and (B) Average Silhouette Width. The
orange point is the value of the statistic calcualted by the indicated method, along with
bootstrap confidence intervals.

datasets provide other normalized versions of the data (e.g. residuals); similarly many batch-
correction methods, like Harmony (Korsunsky et al., 2019), provide a batch-corrected latent
variable representation. None of these are obvious candidates for either of these pseudo-bulk
approaches. Our GloScope representation requires as input only a latent-variable representa-
tion per cell and thus is flexible to accommodate all of these types of input. This is important,
for example, in evaluating the effect of batch correction methods. With GloScope, we can
evaluate the data before and after batch correction with the Harmony algorithm (Chapter
3 Figure 3.3B,C,D), allowing us to confirm that the Harmony algorithm has removed much
of the differences between batches. Moreover, the pseudo-bulk methods can often need nor-
malization across samples in addition to normalization that may be done to individual cells
so that they do not reflect simply the number of cells, similar to bulk RNA, which adds
another layer of complexity since there are many strategies for such a normalization. Glo-
Scope summarizes the individual cells as a density, which is a measurement unaffected by
the number of cells per sample.
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Figure 4.7: Separation of different sample-level methods on on Lupus PBMC
study Perez et al. (2022). The separation of samples in different batches or biological
conditions based on the (A) ANOSIM Statistic and (B) Average Silhouette Width. Orange
point is the value of the statistic calcualted by the indicated method, along with bootstrap
confidence intervals.

4.2 Quantitative Evaluation of GloScope via

Simulation

scRNA-Seq Simulation

Simulating single-cell RNA sequencing (scRNA-Seq) count data is a crucial step in the de-
velopment and benchmarking of bioinformatics tools designed to analyze such data. This
process involves creating artificial datasets that mimic the complexities and variability in-
herent in real scRNA-Seq experiments. These simulations allow researchers to evaluate
the performance of computational methods under controlled conditions, ensuring they can
accurately identify gene expression patterns, cell types, and other biological insights from
single-cell data. By generating realistic synthetic scRNA-Seq datasets, researchers can sys-
tematically assess the sensitivity, specificity, and robustness of their analytical pipelines,
ultimately advancing our understanding of cellular heterogeneity and function.

We proposed to use simulation experiments to quantify GloScope’s efficacy at detecting
various classes of single-cell differences that might be observed due to differences in samples’
phenotype. We simulate sample-level data where different aspects of the single-cell compo-
sition of a sample vary depending on their group assignment; for simplicity we consider only
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two different phenotypic groups. Count matrices were generated from a pipeline modified
from that presented in the R package muscat (Crowell et al., 2020).

We focus on two basic biological scenarios that could causes phenotypic-based dissim-
ilarity between scRNA-Seq samples which we would want the GloScope representation to
accurately reflect: differential cell-type composition and differential gene expression. By
cell-type composition, we refer to the proportion of various cell-types found in a sample; for
example an inflammatory disease phenotype might result in a higher proportion of immune
cells in the patient than in a healthy sample. Cell-type gene expression differences (DE)
refers to differences across samples in the marginal gene expression levels within cells of a
certain type. For example the IL2 gene has more expression within the T-cells of inflamma-
tion tissue samples when compared to the its expression in T-cells of healthy samples. Both
types of differences are biologically plausible and can co-exist. We also note that in prac-
tice the distinction between these two can blur: many genes exhibiting sufficiently strong
differential expression between phenotypes will result in the creation of a novel cell-type for
all practical purposes, thereby corresponding to differential cell-type composition and vice
versa.

Motivation from the Muscat Package

To simulate population-level scRNA-Seq data with which we benchmark our methodology,
we follow the model introduced by the muscat R package.

The muscat package is a versatile tool designed for the simulation of single-cell RNA
sequencing (scRNA-Seq) data. It provides a comprehensive framework for modeling gene
expression patterns at the single-cell level, allowing researchers to generate synthetic datasets
that closely resemble real-world scRNA-Seq data. The package offers flexibility in simulating
diverse biological scenarios, enabling users to mimic various experimental conditions and cell
types accurately. muscat incorporates advanced statistical models to capture the complexi-
ties of gene expression variability within and between cells, ensuring the generated data are
representative of biological processes. Additionally, the package provides functionalities for
quality control, visualization, and benchmarking of analysis methods, facilitating rigorous
evaluation and optimization of computational tools in the field of single-cell transcriptomics.
Overall, muscat serves as a valuable resource for researchers seeking to simulate scRNA-Seq
data for experimental design, algorithm development, and validation purposes.

We would note that this is a model for simulating count data for each gene, and unlike our
GloScope representation does not assume any latent variable representation in generating
the data. The muscat package assumes a simple two-group setting in which each sample i
may come from one of two groups, denoted by the variable T (i) ∈ {1, 2}. The mi cells from
sample i come from K different cell-types with the proportion of cells from cell-type k given
by πi,k, where

∑
k πi,k = 1. Thus the gene expression vector x ∈ Rg of a cell c from sample

i is assumed to follow a negative binomial mixture model :
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Fi,c(x) =
∑
k

πkPNB(µi,c,k, ϕ)(x) (4.2)

where Pnb(µi,c,k, ϕ) is a CDF on Rg representing a product distribution of independent neg-
ative binomials, i.e. each gene’s expression value is independent and follows a negative
binomial distribution with mean given by the j the element of the vector µi,c,k ∈ Rg and
dispersion parameter ϕ ∈ R.

The vector of gene means for cell c in sample i is parameterized in muscat as

µi,c = λi,ce
βi,k · θk,j, (4.3)

where λi ∈ R is the library size (total number of counts); βi,k ∈ Rg is the relative abundance
of g genes in cells belonging to sample i and cell-type k; θk,j ∈ Rg is the fold-change for
genes in cluster k if the sample belongs to group j ∈ {1, 2}. Notice, as mentioned above,
that because of different sequencing depths per cell, each cell within sample i has a different
mean µi,c,k governed by the sequencing-depth parameter λi,c, hence our notation Fi,c.

Modified Pipeline for Simulating scRNA-Seq Data

We make adjustments to the above model in the muscat package to more fully explore sample
variability. To explore the effect of library size variation at both the cell and sample level, we
introduce the decomposition λi,c = λ̄+ λi + δc, where λ̄ is the overall (average) library size,
and λi and δc are variations from that due to sample or cell level differences, constrained
so that λi,c > 0. We also adjusted the model to allow sample-specific proportions vectors
πi,k, with

∑
k πi,k = 1. We define proportions per treatment group, Πj ∈ RK , for treatments

j = 1, 2, such that
∑

k Πj,k = 1 and randomly generate probability vectors πi for sample
i from a Dirichlet distribution according to its treatment group, πi ∼ Dirichlet(ΠT (i) ∗ α),
with sample level variation parameter α.

Selection of Parameters

The muscat package also provides methods for creating these many parameters based on a
few input parameters by the user and estimating the other parameters based on reference
data provided by the user. We followed their strategy, with the following additions.

We chose the group fold change difference per cell-type, θk,j following the schema of
muscat, which allows for various types and size of changes between the different groups.
Briefly, the simulation of θk,j is controlled by parameters 1) Ω ∈ R, which is a user-defined
average log2 fold change across all DE genes, 2) ωk ∈ Rk, which varies the magnitude of
gene expression difference for cluster k, and 3) a proportion vector ρ which is the proportion
of genes that follow six different gene expression patterns (see Crowell et al. (2020)); for
simplicity, we allowed only the two most typical gene expression patterns, which are EE
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(equally expressed) and DE (differentialy expressed) genes for our simulations, resulting in
ρ effectively being a single scalar, the proportion of genes that are differentially expressed.

The selection ofmi, the number of cells per sample i, also followed the strategy of muscat,
where the user provides a value m̄, representing the average number of cells per sample across
all samples, and the value of each individual mi for each sample is assigned via a multinomial
with equal probability and total number of cells across all samples equal to n ∗ m̄.

The parameters ϕ, and initial values of λi,c and βi,k were obtained by estimating these
parameters from the reference data, following the muscat package: after performing quality
control, we used the filtered gene matrix and the edgeR package to estimate the parameters
from the reference data.

Using our modified parameterization described above, λ̄ was then chosen as the average
of the λi,c estimated from the reference samples. Sample-level sequencing depth variability
λi were simulated as λi ∼ Unif(−τλ, τλ). Per-cell variability, δc, was simulated as δc ∼
Unif(−τδ, τδ).

Finally, the selection of βi,k used in our simulation diverged from muscat package strategy.
The muscat estimates of βi,k created overly large differences between the treatment groups
and samples (Figure 4.8); furthermore their strategy recycles the same set of parameters
βi,k if the simulated sample sizes are larger than provided reference sample sizes (i.e. the
same value of βi,k would be given to multiple simulated samples), resulting in unintended

batches of samples. Instead, we estimated β̂i,k from the reference data using the muscat

strategy, and chose a single sample i∗ whose initial estimates β̂i,k were representative. We

then set β̂k = β̂i∗,k and created individual βi,k with variation per sample by adding noise to

β̂k, βi,k = β̂k/2+ξi,k, where ξi,k ∼ N(0, σξ). σξ controled the degree of sample-level variation.
Figure 4.9 shows the effect of changing different parameters (σ and log-fold change),

visualized using UMAP on an illustrative example.

Simulation Settings

In following the above strategy of selecting parameters, we randomly chosen 5 COVID sam-
ples from the COVID-19 PBMC dataset, (Stephenson et al., 2021). After estimating ϕ and
β̂k as described above from the reference samples, the values were fixed for all simulations.
The value m̄ was chosen as 5,000, which is similar to the average cell per samples in several
datasets (e.g. Stephenson et al. (2021); Melms et al. (2021); Pelka et al. (2021)). The default
value for α to control the sample level cluster proportion variability was set to be 100, except
where explicitly noted, which keeps the variation in cluster proportions to be relatively small
among samples (see Figure 4.10D).

Once these parameters were fixed, the following user-defined parameters were set differ-
ently for different simulation settings: n (the number of samples in a single group), the vector
group proportions Πj (j = 1, 2), average library size λ̄, and the DE parameters Ω, ω, and ρ.
With these global parameters chosen for a simulation setting, the remaining sample-specific
parameters are generated anew in each simulation:
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A B

Figure 4.8: UMAP plot demonstration of original muscat simulation pipeline ver-
sus modified simulation pipeline. A shows the umap representation of simulated data
from original muscat pipeline, where strong sample batch was observed: samples from first
row was simulated from the same reference sample and sample from the second row was
simulated from the same reference sample. B shows that after modifying βk, some clusters
were brought closer to or mixed with each other, and remove the strong sample batch due to
the recycled parameters. Such modification allows the simulated data to have more reason-
able and similar behavior to the real scRNA-Seq data than the data simulated using muscat

pipeline.

1. for each cell-type k, n values of βi,k as described above based on β̂k,

2. for each cell-type k, a single vector θk,j ∈ RG for the population log-fold-change between
groups, based on the parameters Ω, ω, and ρ,

3. for each sample i a single value λi and mi values of δc, one for each of the mi cells from
each sample. This results in mi values of λi,c = λ̄+λi+ δc for each sample. (Note that
some simulations set λi and/or δc to 0 for all c and i).

Combining these parameters result in the µi,c,k needed for each sample in a single simulation,
and then the cell-counts for each sample i are simulated from Fi,c.
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A B

C D

Figure 4.9: UMAP plot demenstration of different parameter effects, including
gene expression changes and sample level variation. Each plot is drawn from 1 par-
ticular simulation realization. B shows that increasing σ, the gene expression level variation,
leads to more varied expression among samples compared to A. D shows the increased log-
fold change effect compared to C.
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Results

In our simulations we evaluate how well these two types of differences are detected by Glo-
Scope. We create datasets demonstrating either differentially expressed genes or differential
cell-type composition. We see that the average differences between samples in different differ-
ent phenotype groups, as measured by our GloScope representation, appropriately increase in
response to both increased differences in global cell composition (Fig. 4.10A) and increased
differential gene expression (Fig. 4.10B). This indicates that our representation effectively
reflects both types of changes. Similarly, when increased sample variability is added, both
in global cell composition and gene expression, our GloScope representation correspondingly
shows increased within-group variability (Fig. 4.10C and 4.10D).

We can also use our GloScope representation to compare different choices of the design
or analysis of the experiment, based on how well the two phenotypic groups separate in
the GloScope representation. To do so, we perform analysis of similarities (ANOSIM), a
hypothesis test for differences between groups based on observed pairwise divergences on
samples (Clarke, 1993). ANOSIM takes as input divergences between samples and tests
whether divergences are significantly larger between samples in different groups compared
with those found within groups based on permutation testing (see Section 3.2).

We used the results of ANOSIM to calculate the power in different simulation settings,
creating a quantitative metric for evaluating the sensitivity of the GloScope representation
in different scenarios. For a choice of input parameters, we repeated the simulation 100
times. For each simulation, we calculated the pairwise distances between all 2n samples,
then used ANOSIM p-values to determine whether we would reject the null hypothesis.
Finally, we calculated the power as the proportion of the 100 simulations’ test statistics that
have p values smaller than α = 0.05. Evaluation of ANOSIM over many simulations gives
the power of the test in different settings, resulting in a metric to compare choices in our
analysis.

Using these power computations, we also see that changes in the sample variability and
sample size are reflected as expected in these power calculations: increasing all of these
sources of variability naturally reduces the power (Figure 4.15). These types of simulations,
in conjunction with our GloScope representation, can be used to evaluate design choices
at the sample-level, such as the number of samples needed to reach a desired power level.
Unsurprisingly, differences in cell-composition in large clusters are more easily detected than
similar differences in small clusters (Figure 4.16A), and gene expression differences con-
centrated in small clusters are harder to detect than those found in large clusters (Figure
4.16C).

We can also compare choices in the data analysis pipeline. For example, GloScope relies
on a user-provided choice of latent variable representation of the single-cell data. We compare
the choice of PCA versus scVI in a wide range of our simulation settings. The most striking
difference is in detection of cell-composition differences, where scVI has much less power
in detecting differences between the two phenotypic groups than PCA (Figure 4.17). The
latent variable representations given by scVI demonstrates much greater variability between
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A B

C D

Figure 4.10: GloScope captures simulated effects Plots (A) and (B) show how the
average GloScope divergence between samples in different phenotype groups increases with
(A) increased cell composition differences and (B) increased gene expression differences. The
cell composition differences in (A) are color-coded as to whether the major changes were
in the two groups’ largest cluster or smallest cluster (the actual values of the proportion
changes in the largest or smallest group, Π1 vs Π2, are labeled in the legends). Plots (C) and
(D) shows how the average GloScope divergence between samples in the same phenotype
group increases with (C) increased sample variability in gene expression differences and (D)
increased cell composition differences. All boxplots show these averages over 100 simulations.
The dissimilarity matrices were calculated using the GMM-based GloScope representation
based on PCA estimates of the latent space in 10 dimensions. For choices of kNN with scVI
or PCA and GMM with scVI, see Figure 4.11-4.14
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Figure 4.11: Boxplot demonstration of global cell type composition changes detec-
tion by GloScope. The major changes were in the two groups’ largest cluster or smallest
cluster (the actual values of the proportion changes in the largest or smallest group, Π1 vs
Π2, are labeled in the legends). Each box is drawn from 100 simulation’s average between
group distance, calculated using 10 dim embeddings.
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Figure 4.12: Boxplot demonstration of gene expression changes detection by Glo-
Scope. Each box is drawn from 100 simulation’s average between group differences, calcu-
lated using either GMM or kNN density estimation with either 10 dimensional PCA or scVI
10 embeddings. Upward trend of distance was observed in each combination when log-fold
change and percentage of DE genes increase.
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Figure 4.13: Boxplot demonstration of detecting increased sample level variation
in the gene expression differences by GloScope. Each box is drawn from 100 simu-
lations’ average divergences among sample within a single phenotype group distance using
either GMM or kNN density estimation with either 10 dimensional PCA or scVI 10 em-
beddings. 10 dimensions. Larger variation of average within group distance could be easily
detected in most combination when sample level gene expression variation σ increases.
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Figure 4.14: Boxplot demonstration of detecting increased cluster proportion vari-
ation α by GloScope. Each box is drawn from 100 simulations’ average divergence among
samples within a single phenotype group, calculated using eitherr GMM or kNN density
estimation with either 10 dimensional PCA or scVI 10 embeddings. Larger variation in the
average within group distances can be easily observed When sample level cluster proportion
variation 1/α gets larger.
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A B

C

Figure 4.15: Effect of changing various sources of sample variability on the power
to detect group differences. (A) Power to detect log-fold change differences in the pres-
ence of variation in the average library sizes between samples (λ) and individual cells within
a sample (τ); (B) Power to detect log-fold change differences in the presence of variation
in the baseline expression levels between samples (σ); (A) and (B) have log-fold changes
on average of 0.15 in 10% of DE genes. (C) Power to detect log-fold change differences in
the presence of variation in the sample size within a single groups (n). Power of ANOSIM
calculated based GloScope representation using GMM density estimation and reduced di-
mensionality representation via PCA with 10 dimensions.
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A

B C

Figure 4.16: ANOSIM power on simulated data (y-axis) under different conditions
(A) Changes in only the cell-type composition (no DE genes), with major changes in the
two groups’ largest cluster (left) or smallest cluster (right). The cell-type composition is
visualized in the lower panels. (B) Increasing percentage of DE genes (ρDE) with average
log-fold change changing from 0.05, 0.1, and 0.15 (x-axis). (C) Changes of log-fold-changes
concentrated in specific cell-types/clusters (ωk), quantified as relative to the baseline log-fold
change θ =0.05; the two lines correspond to whether the log-fold changes were in the largest
cluster (representing πk = 40% proportion of cells) or for the 4 smallest cluster (representing
πk = 30% proportion of cells). Power calculations were done on relatively small groups
to show the full range of changes (n=10 samples in each group) with m = 5, 000 cells per
sample; the sample level variability parameter σ is fixed at 0.13, and the sequencing depth
λ = 8.25 (see Methods for details on these parameters). GloScope was calculated based
on GMM density estimation with latent space representation via the first 10 dimensions of
PCA.
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samples than the those of PCA (Figure 4.18), potentially resulting in less power to detect the
shared phenotypic differences. On the other hand, scVI representations have more power
than their PCA counterparts when the source of differences is due to log-fold changes in
genes (Figure 4.19), perhaps due to better accounting for sparse low-count data.
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Figure 4.17: Change in cell-type composition (no DE genes). Major changes were in
the two groups’ largest cluster (left) or smallest cluster (right). The cell-type composition
is visualized in the lower panels. Each group consists of n=10 samples with m = 5000 cells
per sample (the sample level variability parameter σ is fixed at 0.13, and the sequencing
depth λ = 8.25, see Methods for details on these parameters). Power calculated based on
cluster proportion vector, GMM or kNN density estimation, and reduced dimensionality
representation via PCA or scVI with 10 dimensions.

Finally, we can also consider choices made in implementing GloScope, in particular in
the choice of estimation of the density of the latent variables Z in each sample. We consider
two popular density estimation strategies as mentioned in Chapter 2: parametric Gaussian
mixture models (GMMs) and non-parametric k -nearest neighbors (kNNs). We do not ob-
serve large differences in the power of these methods when varying the level of differential
expression (Figure 4.19), but kNN is somewhat more powerful in the presence of cell-type
composition changes (Figure 4.17).

4.3 Summary

In this chapter, we compared GloScope to the cell-level visualization tool, and limited avail-
able strategies for summarizing the data from a single patient: cell-type composition and
pseudobulk. We show that alternative methods are not as sensitive in as diverse of settings.
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Figure 4.18: Evaluation of PCA and scVI discrimination of samples and group
variability. Individual cells were simulated from 10 sample with sample-level variability
(σ = 0.13) and reduced to 10 dimensions, either with PCA or scVI. For each simulation, the
silhouette score of the reduced dimensionality reduction was calculated at the individual cell-
level to assess the similarity of cells within the same sample, compared to the similarity of cells
within the same subtype. Larger values indicate larger separation between either samples or
subtypes. PCA shows small variation between samples compared to the variation between
subtypes, while Each boxplot consists of the silhouette scores for assessing the goodness of
clustering different factors for dimension reduction embeddings obtained from either PCA
or ScVI. 100 simulations were made to estimate the distance matrics.
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Figure 4.19: Evaluation of the different choices by calculating the power of de-
tecting gene expressios. 100 simulations were made to estimate the distance matrics.
Power of ANOSIM calculated based GloScope representation using kNN or GMM density
estimation and reduced dimensionality representation via scVI or PCA with 10 dimensions.
ScVI shows much stronger power of between group difference detection compared to PCA,
while there is not much distinction observed when compare GMM vs kNN.

In particular, these competing approaches each focus on one aspect of the sample data (cell-
type proportions or gene expression) and are not sensitive to changes found in the other.
GloScope uses the entire distribution of the data, thus effectively combining both cell-type
proportions and gene expression in a single summary. Furthermore, GloScope is far more
flexible for incorporation at different stages of the analysis, whether working with raw counts
or normalized data.

We also delves into the application and modification of a scRNA-seq count data simula-
tion pipeline for the quantitative evaluation of GloScope. By integrating specific alterations
into the established pipeline by Crowell et al. (2020), we tailored it to better suit the unique
requirements of our evaluation process for sample level analysis. Through comprehensive
and rigorous simulation experiments, we assessed the accuracy, robustness, and overall per-
formance of GloScope, thereby demonstrating its potential utility of the simulation pipeline
in potential hypothesis testing and advanced single-cell data analysis.
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Joodaki, M., Shaigan, M., Parra, V., Bülow, R. D., Kuppe, C., Hölscher, D. L., Cheng, M.,
Nagai, J. S., Goedertier, M., Bouteldja, N., Tesar, V., Barratt, J., Roberts, I. S., Coppo,
R., Kramann, R., Boor, P., and Costa, I. G. (2023). Detection of patient-level distances
from single cell genomics and pathomics data with optimal transport (pilot). Molecular
Systems Biology, 20(2):57–74.



BIBLIOGRAPHY 71

Kelly, B. J., Gross, R., Bittinger, K., Sherrill-Mix, S., Lewis, J. D., Collman, R. G., Bushman,
F. D., and Li, H. (2015). Power and sample-size estimation for microbiome studies using
pairwise distances and permanova. Bioinformatics, 31(15):2461–2468.

Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Bren-
ner, M., Loh, P.-r., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration
of single-cell data with harmony. Nature Methods, 16(12):1289–1296.

Kulkarni, A., Anderson, A. G., Merullo, D. P., and Konopka, G. (2019). Beyond bulk: A
review of single cell transcriptomics methodologies and applications. Current Opinion in
Biotechnology, 58:129–136.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86.

Lexogen (2024). Demystifying single-cell rna sequencing: A comprehensive guide.

Li, C. M.-C., Shapiro, H., Tsiobikas, C., Selfors, L. M., Chen, H., Rosenbluth, J., Moore,
K., Gupta, K. P., Gray, G. K., Oren, Y., and et al. (2020a). Aging-associated alterations
in mammary epithelia and stroma revealed by single-cell rna sequencing. Cell Reports,
33(13):108566.

Li, C. M.-C., Shapiro, H., Tsiobikas, C., Selfors, L. M., Chen, H., Rosenbluth, J., Moore,
K., Gupta, K. P., Gray, G. K., Oren, Y., Steinbaugh, M. J., Guerriero, J. L., Pinello, L.,
Regev, A., and Brugge, J. S. (2020b). Aging-associated alterations in mammary epithelia
and stroma revealed by single-cell rna sequencing. Cell Reports, 33(13):108566.

Li, X. and Wang, C.-Y. (2021). From bulk, single-cell to spatial rna sequencing. International
Journal of Oral Science, 13(1).

Lin, J. (1991). Divergence measures based on the shannon entropy. IEEE Transactions on
Information Theory, 37(1):145–151.

Liu, Y., Wang, H., Taylor, M., Cook, C., Mart́ınez-Berdeja, A., North, J. P., Harirchian, P.,
Hailer, A. A., Zhao, Z., Ghadially, R., Ricardo-Gonzalez, R. R., Grekin, R. C., Mauro,
T. M., Kim, E., Choi, J., Purdom, E., Cho, R. J., and Cheng, J. B. (2022). Classification
of human chronic inflammatory skin disease based on single-cell immune profiling. Science
Immunology, 7(70).

Llorens-Bobadilla, E., Zhao, S., Baser, A., Saiz-Castro, G., Zwadlo, K., and Martin-Villalba,
A. (2015). Single-cell transcriptomics reveals a population of dormant neural stem cells
that become activated upon brain injury. Cell Stem Cell, 17(3):329–340.

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef, N. (2018). Deep generative
modeling for single-cell transcriptomics. Nature Methods, 15(12):1053–1058.



BIBLIOGRAPHY 72

Luecken, M. D. and Theis, F. J. (2019). Current best practices in single-cell rna-seq analysis:
A tutorial. Molecular Systems Biology, 15(6).

Macosko, E., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas,
A., Kamitaki, N., Martersteck, E., and et al. (2015). Highly parallel genome-wide expres-
sion profiling of individual cells using nanoliter droplets. Cell, 161(5):1202–1214.

Melms, J. C., Biermann, J., Huang, H., Wang, Y., Nair, A., Tagore, S., Katsyv, I., Rendeiro,
A. F., Amin, A. D., Schapiro, D., Frangieh, C. J., Luoma, A. M., Filliol, A., Fang, Y.,
Ravichandran, H., Clausi, M. G., Alba, G. A., Rogava, M., Chen, S. W., Ho, P., Montoro,
D. T., Kornberg, A. E., Han, A. S., Bakhoum, M. F., Anandasabapathy, N., Surárez-
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