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Abstract

The Carlson-Simpson Lemma in Reverse Mathematics

by

Julia Christina Erhard

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Theodore Slaman, Chair

We examine the Carlson-Simpson Lemma (VW (k, l)), which is the combinatorial core of the
Dual Ramsey Theorem, from the perspective of Reverse Mathematics. Our results include
the following:

Working in the system BΣ0
2, we carry out the construction of a failure of the ordered

version of the Carlson-Simpson Lemma OVW (k, l), which was introduced in [9]. This obser-
vation implies that we can construct such a recursive counterexample in the model of SRT 2

2

that was discussed in [13]. It follows that SRT 2
2 does not prove OVW (k, l) over RCA0.

We also show that the strength of the principle VW (k, l) is independent of the number
of colors l being used.

By proving that VW (k, l) is not conservative over RCA0 for arithmetical sentences, we
conclude that VW (k, l) is not provable from any theory that is conservative over RCA0 for
arithmetical sentences.
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Chapter 1

Preliminaries

1.1 Reverse Mathematics

In ordinary mathematics, we usually specify first an axiom system and then state a the-
orem θ that we aim to prove from the axioms. If no axiom system is mentioned explicitly,
Zermelo-Fraenkel Set Theory (ZFC) implicitly takes the role of this axiom system since al-
most all mathematics can be interpreted in it. The basic idea of Reverse Mathematics is to
turn this question around and we ask

Which axioms are needed to prove the theorem θ?

Of course, this question demands some framework to be become non-trivial: We work
in the very weak base theory RCA0 (Recursive Comprehension axiom, cf. Definition 1.1.4),
which is a subsystem of second-order arithmetic, and we attempt to prove in it the equiv-
alence of θ with the axioms needed. Let us call these axioms φ. So the goal is to give two
proofs in RCA0, one of φ→ θ and one of θ → φ. If this can be accomplished, we know that
φ is exactly the right amount of axioms we need to prove the theorem θ.

Definition 1.1.1: (IΣ0
1)

The Σ0
1-induction scheme is the universal closure of

(φ(0) ∧ ∀n(φ(n)→ φ(n+ 1)))→ ∀n φ(n)

where φ(x) is any Σ0
1-formula, i.e. a formula that can be written with only one unbounded

existential quantifier ranging over numbers.

Remark: The induction scheme can analogously be defined for many other classes of for-
mulas, e.g. Σ0

2-induction, arithmetical induction for formulas that can be written with any
combination of number quantifiers and no set quantifiers, or bounded induction for formulas
that can be expressed without unbounded quantifiers.
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Definition 1.1.2:
The ∆0

1-comprehension scheme is the universal closure of

∃X∀n(n ∈ X ↔ φ(n))

where φ is any ∆0
1-formula, i.e. a formula that can be written with only one unbounded

existential number quantifier, and can also be written with one unbounded universal number
quantifier.

Remark: The comprehension scheme can also be defined for other classes of formulas, e.g.
Π1

1-comprehension for formulas that can be written with just a single unbounded universal
quantifier that ranges over sets and any combination of number quantifiers.

Definition 1.1.3:
P− denotes the universal closure of the following basic statements of number theory, which
characterize the basic properties of natural numbers

• n+ 1 6= 0

• m+ 1 = n+ 1 implies m = n

• m+ 0 = m

• (m+ n) + 1 = m+ (n+ 1)

• m ∗ 0 = 0

• m ∗ (n+ 1) = m ∗ n+m

• ¬(m < 0)

• m < n+ 1 if and only if (m < n or m = n)

Definition 1.1.4: (Recursive comprehension axiom)
RCA0 is the subsystem of second-order arithmetic consisting P− together with Σ0

1−induction
and ∆0

1-comprehension.

The base theory RCA0 is intentionally chosen to be very weak to allow a better sep-
aration of theorems. It is only strong enough to prove the existence of computable sets.
However, in a model of RCA0 non-computable sets may exist. Most of mathematics cannot
be proven in RCA0 since most mathematics will use sets that are not necessarily computable.

The minimum model of RCA0 is the model M = (N, REC), consisting of the non-
negative integers and the sets of the model are the recursive sets. However, there are other
models of RCA0. For example, we can take some non-recursive set A ⊆ N and add all the
sets recursive in A to the model M, this will again be a model of RCA0. Models of RCA0
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have the property that they are closed under Turing computability ≤T and join ⊕.

The idea of Reverse Mathematics dates back to Steel and Fridman in the 1970s (see
[16]). It has been extensively studied by Simpson and his book [12] is a good collection of
most results. Reverse Mathematics is a very fruitful approach to understand the connection
and compare the strength of theorems from all parts of mathematics. The arguments are
usually recursion theoretic. Several axiom systems show up repeatedly and form a nice
hierarchy. Many theorems of any branch of mathematics are equivalent to one of these. We
will define three of the most important ones in increasing order of strength. Each is a system
is a subsystem of second-order arithmetic, including RCA0 and strictly stronger than the
previous one.

Definition 1.1.5: (Weak Koenig’s Lemma)
WKL0 is the system RCA0 together with the statement
”Every infinite binary tree has an infinite path”.

Definition 1.1.6: (Arithmetical comprehension axiom)
ACA0 is the system P− together with the comprehension axiom for arithmetical formulas
and the induction axiom

(0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X)

Definition 1.1.7: (Π1
1-comprehension axiom)

Π1
1 − CA is the system ACA0 together with comprehension axiom for Π1

1-formulas

Many of today’s open questions in Reverse Mathematics originate in combinatorics. Some
important combinatorial principles turned out to be rather difficult to classify and do not
fit as nicely into this simple hierarchy as the theorem from other fields. This may be either
because the Reverse Mathematics idea is more sensitive to distinguish combinatorial argu-
ments, or because combinatorics is the only subject where truly new ideas are needed in
every proof. Unsurprisingly, the result we are writing about is a statement of combinatorics
and hence many arguments will have a discrete and pure flavor.

1.2 The Dual Ramsey Theorem

One of the most famous theorems in combinatorics is the infinite Ramsey Theorem and
it is a very interesting example of Reverse Mathematics.

Definition 1.2.1:
An n-set of natural numbers is a subset of N of size n. We write [A]n to denote the set of
all n−sets of elements of a set A.
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Remark: For n-sets repetitions are not allowed. This should not be confused with our nota-
tion for sequences of elements of a set A of length n, which will be denoted throughout by
An.

Theorem 1.2.2: (Ramsey Theorem)
For every k-coloring c : [N]n → {0, 1, . . . , l− 1} of the n-sets of natural numbers, there is an
infinite set A ⊆ N such that c takes the same color on every element of A<N, i.e. c restricted
to A is monochromatic. Such a set A is called homogeneous for c.

Let RT n
l denote the principle of RCA0 plus Ramsey’s Theorem with the given parame-

ters l, n ≥ 2.

The mathematical dual theorem has been formulated and studied by Carlson and Simpson
in [1]. The latter author continued with a recursion theoretic analysis of this theorem in [11].
28 years later, very little is known about the strength of this principle and the combinatorial
core. We will summarize the known Reverse Mathematical results about the Dual Ramsey
Theorem in Section 1.4.

Definition 1.2.3:
Given a finite alphabet A, e.g. A = {a, b, c}. An A-partition is a collection of pairwise
disjoint non-empty subsets of A ∪ N, called blocks, whose union is A ∪ N and no block
contains more than one element of A.

For example,

{a, 0, 2, 4, 6, 8, . . . }, {b, 3, 9, 27, . . . }, {c}, {5, 25, . . . }{1, 11}, {7, 13}, . . .

Blocks that contain no letter from the alphabet A, are called free. Note that, unlike in
the combinatorial principles we discuss later, free blocks are allowed to be infinite here.

Definition 1.2.4:
Let (ω)ωA denote the set of all A-partitions with infinitely many free blocks.
Let (ω)kA denote the set of all A-partitions with k free blocks.
If A = ∅, we omit the subscript A.

Definition 1.2.5:
Let X and Y be A-partitions. We say Y is coarser than X if each block of X is contained
in some block of Y . In other words, Y can be obtained from X by merging some of its blocks.

Definition 1.2.6:
Let X ∈ (ω)ωA be an A-partition with infinitely many free blocks. Then

(X)kA := {Y ∈ (ω)kA | Y is coarser than X . }

After fixing the notation, we are now ready to state the Dual Ramsey Theorem.
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Theorem 1.2.7: (Dual Ramsey Theorem)
For all k, l ≥ 2, if (ω)k = C0 ∪ C1 ∪ · · · ∪ Cl−1 is an l-coloring of the set of all partitions
of N with k blocks, where each Ci is Borel (cf. Definition 4.10 in [6]), then there exists a
partition X ∈ (ω)ω such that (X)k is monochromatic, i.e. (X)k ⊆ Ci for some i < l.

Remark: Note that the Dual Ramsey Theorem is false, if we drop the Borel assumption.
However, it has also been studied with different restrictions, e.g. in [9] with the requirement
for the Ci to be open sets.

Let DRT (k, l) denote RCA0 together with the statement of the Dual Ramsey Theorem
with the parameters k, l.

Theorem 1.2.8: (Open Dual Ramsey Theorem)
For all k, l ≥ 2, if (ω)k = C0∪C1∪ · · · ∪Cl−1 is an l-coloring of the set of all partitions of N
with k blocks, where each Ci is open, then there exists a partition X ∈ (ω)ω such that (X)k

is monochromatic, i.e. (X)k ⊆ Ci for some i < l.

Let ODRT (k, l) denote RCA0 together with the statement of the Open Dual Ramsey
Theorem for parameters k, l.

In the proof of the Dual Ramsey Theorem, Carlson and Simpson isolate the combinatorial
core as a combinatorial lemma involving infinite sequences of letters from the alphabet A
and an infinite set of variables. These sequences will be called infinite variable words (cf.
Definition 1.3.1). We are interested in the strength of this key combinatorial lemma, to
which we refer to as the Carlson-Simpson Lemma and which we denote by VW (k, l).

1.3 Infinite variable words

Let us recall the most important terminology for studying the Dual Ramsey Theorem,
for which we follow [9].

Throughout, A denotes a finite alphabet of letters with |A| ≥ 2. Unless otherwise stated,
we usually can safely assume A = {a, b}. Many arguments carry over straightforwardly to
different parameters. V ar denotes an infinite collection of variables disjoint from A.

Definition 1.3.1:
An infinite variable word is an N-sequence of elements of A ∪ V ar in which infinitely
many distinct variables occur, each finitely often.
A finite variable word is any proper initial segment of an infinite variable word.

Remark: The letters of the alphabet A may occur any number of times, even infinitely often
or never.
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Definition 1.3.2:
Let W be a (finite or infinite) variable word. A substitution instance of W is a word V
of the same length as W in which all occurrences of some (possibly all) variables have been
replaced by some letter from A. We do allow different variables to be substituted by different
letters.

For example,
U = a b a a x1 b b b x1 a

is a substitution instance of the finite variable word

W = a b x0 x0 x1 b x2 x3 x1 a

where we replaced all occurrences of the variable x0 by the letter a, all occurrences of x2 and
x3 by the letter b.

Definition 1.3.3:
A substitution instance is complete if it contains no more variables.
A substitution instance is infinite variable if it contains infinitely many distinct variables.

Given an infinite variable word W , we consider the set of finite words derived from it
W (A) consisting of all strings α ∈ A<N that are initial segments of a complete substitution
instance ending just before the first occurrence of a new variable.

For example, if W = a x0 x0 x1 b a b x0 . . . then a, abb, aaa are elements of W (A), but
∅, ab, aba, abba are not elements of W (A).

Definition 1.3.4: (The Carlson-Simpson Lemma)
The principle VW (k, l) is RCA0 together with the the statement, that if |A| = k and c :
A<N → {0, 1, . . . , l− 1} is an l-coloring of the finite words in A, then there exists an infinite
variable word W such that W (A) is monochromatic, i.e. W (A) ⊆ c−1(j) for some j < l.
We call such W homogeneous for c.

In the definition of W (A), it is essential for the truth of the statement that we cannot
take all possible initial segments of W , only the ones ending before the first occurrence of a
new variable. To see this, let us consider the following recursive coloring of {a, b}<N.

c(w) =

{
1 if w contains an odd number of a′s

0 if w contains an even number of a′s

We claim that there is no infinite variable word, such that every substitution instance of
every initial segment receives the same color. Suppose W is an infinite variable word, whose
first variable is x0. Let W0 be the initial segment cut off right after the first occurrence of
x0. Then the substitution instance of W0 in which x0 receives letter a and the substitution
instance of W0 in which x0 receives letter b receive different colors by the choice of c. The
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parity of how many times the letter a occurs in the word changes.

However, when W (A) only contains substitution instances of initial segments cut off
before the first occurrence of a new variable, V = x0x0x1x1x2x2x3x3 . . . is homogeneous for
c.

Proposition 1.3.5:
If W is an homogeneous infinite variable word for the coloring c : A<N → {0, 1, . . . , l − 1},
then any infinite variable substitution instance V of W is also homogeneous for c.

Proof. Let V be an infinite variable substitution instance of W . The set V (A) is a subset of
W (A), since it contains all substitution instances of certain substitution instances of finite
initial segments of W . So

V (A) ⊆ W (A) ⊆ c−1(i) for some i < l

i.e. V (A) is monochromatic with the same color as W (A). Thus V is also homogeneous for
c.

Definition 1.3.6:
An infinite variable word is ordered if all occurrences of the n-th variable come before the
first occurrence of the (n+ 1)-st variable.

Definition 1.3.7: (Ordered Carlson-Simpson Lemma)
The principle OVW (k, l) is RCA0 together with the statement that for each l-coloring c of the
finite words A<N as above, there exists an ordered infinite variable word that is homogeneous
for c.

1.4 Reverse Mathematics diagrams

Just like for the Dual Ramsey Theorem, not much is known about the strength of these
principles in terms of Reverse Mathematics. In this thesis, we investigate this question fur-
ther, proving some results that will help to classify them.

The following diagrams summarize the previously known results regarding the principles
of the Dual Ramsey Theorem and the Carlson-Simpson Lemma in comparison with selected
other known subsystems of second-order arithmetic. Stronger systems are written above
weaker systems. Straight lines indicate an extension, that is known to be strict. Arrows
indicate an extension that may or may not be strict.
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Π1
1 − CA

!!

DRT (3, l)

�� ((

ODRT (3, l)

ww ((
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��
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vv
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For the Carlson-Simpson Lemma:
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!!
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��

ACA0 VW (k, l)

WKL0

|

77

RCA0

The references for these are as follows: Placing OVW (k, l) and VW (k, l) between Π1
1−CA

and RCA0 was observed in [11]. It was left open, whether this means the Dual Ramsey The-
orem is also provable in Π1

1 − CA since multiple applications of the lemma are required
and may push up the complexity. It was answered in [13], who proved that DRT (k, l) lies
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between Π1
1 − CA and RCA0.

The non-implication from WKL0 was proved in [9]. In the same paper they prove that
ODRT (n + 1, l)→ RT n

l . Since ACA0 and RT n
l for any n ≥ 3, l ≥ 2 have been established

equivalent in [7], it follows that ODRT (k, l)→ ACA0 for k ≥ 3.

Overall, very little is known about the Reverse Mathematical strength of the Dual Ramsey
Theorem and the Carlson-Simpson Lemma. The gap between Π1

1−CA and WKL0 is huge.
Our goal is to uncover some more relationship between these principles, which hopefully will
lead to an exact classification of them in the future.
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Chapter 2

The Miller-Solomon example

2.1 Introduction

In [9], Miller and Solomon show that WKL0 does not suffice to prove OVW (2, 2) by
constructing a computable coloring c : {a, b}<N → {0, 1} such that no ∆0

2-definable ordered
infinite variable word is homogeneous for c. Since there is an ω-model of WKL0 in which all
sets are low (see Corollary VIII.2.18 in [12]), OVW (2, 2) fails in this model and the result
follows.

Moreover, from a homogeneous infinite variable word W , they derive a homogeneous
ordered infinite variable word V computable in W ′. Thus, any ω-model of VW (2, 2) which
contains the computable sets must also contain non-low sets. Because otherwise, take the
computable coloring c as in the main theorem and let W be an homogeneous infinite variable
word of low Turing degree. Then the homogeneous ordered infinite variable word V derived
from W is computable in W ′, hence it is ∆0

2. Contradiction to the choice of c.

So WKL0 does neither prove VW (2, 2) nor OVW (2, 2) and hence also not the stronger
principles VW (k, l) or OVW (k, l) for any k, l ≥ 2. We discuss the role of the parameters
more in Chapter 4.

We will demonstrate that their proof for OVW (2, 2) can be carried out entirely in the sys-
tem BΣ0

2 (cf. Definition 2.2.1), not making use of IΣ2 or even higher levels of the Bounding-
Induction hierarchy. We will summarize the proof in the following section and point out why
each step works in the system BΣ0

2.

This means that this example of a failure of OVW (2, 2) can be constructed in the model
that Slaman, Chong and Yang worked with in [2]. They construct a model of Stable Ramsey
Theorem for pairs and BΣ0

2, that is not a model of RT 2
2 nor of IΣ0

1. Thus it follows that
SRT 2

2 does not prove OVW (2, 2).
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The main theorem that we are interested in [9] is

Theorem 2.1.1:
There is a computable two-coloring c : A<N → 2 such that W (A) is not monochromatic for
any ∆0

2-definable infinite variable word W.

Since there is an ω-model of WKL0 in which all sets are low, OVW (2, 2) fails in this
model.

2.2 The Miller-Solomon proof in BΣ0
2

Definition 2.2.1:
BΣ2 consists of all the sentences

∀p∀a((∀x < a)(∃y)φ(x, y, p)→ (∃b)(∀x < a)(∃y < b)φ(x, y, p))

where φ is any Σ0
2-definable formula, i.e. a formula that can be written with one unbounded

existential quantifier followed by one unbounded universal quantifier only.

For more information on this principle, see [14]. All we need to know is that, working in
the base theory PA− + IΣ0 + exp, BΣ0

2 is weaker than induction for Σ0
2-definable formulas,

and equivalent to induction for ∆0
2-definable formulas. This means that we need to con-

vince ourselves that the only infinitary constructions used in the proof are no stronger than
induction for ∆0

2-definable formulas or the Bounding principle for Σ0
2 or less complicated

formulas.

Definition 2.2.2:
A finite set of finite variable words W0,W1, . . . ,Wn with distinguished variables x0, x1, . . . , xn
respectively is admissible if the positions of first occurrences of the distinguished variable
are pairwise distinct.

Definition 2.2.3:
Let W be a variable word with x being one of its variables. Let V be a substitution instance
of W with all variables replaced except for x. We write V (x/a) to refer to the substitution
instance of V in which all occurrences of x get replaced by the letter a.

An admissible set of finite variable words W0,W1, . . . ,Wn induces a graph G as follows:
Let s ∈ N be bigger than the length of each word, i.e. s > |Wi| for all i ≤ n. The vertices of
the graph G are the elements of As. Two vertices v1, v2 are connected by an edge labelled
Wi if there exists a string δ ∈ As−|Wi| such that the two vertices are the concatenation of an
substitution instance Vi of all variables of Wi except the variable xi with the string δ, i.e.
Vi(xi/a) = v1 and Vi(xi/b) = v2 or vice versa.
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We refer to a graph of this form as induced graph.

Let us consider an example: Let W0 = abx0, with distinguished variable x0, W1 = x0

with x0 also, and W2 = x0x1 with distinguished variable x1. The induced graph of this
admissible set of variable words on A3 is:

aaa
W1

W2

baa

aba
W1

W0

bba

W2

abb
W1

W2

bbb

aab
W1 bab

W2

Looking at the first position of discrepancy between any two vertices and knowing that
two vertices are adjacent if and only if they differ solely by the substitution of the distin-
guished variable. It is clear that in an induced graph there is at most one edge between any
two vertices.

Definition 2.2.4:
A 2-coloring of a graph G with vertex set V is a map c : V → {0, 1} such that adjacent
vertices receive different colors.

Lemma 2.2.5:
Let W0,W1, . . . ,Wn be an admissible set of finite variable words. Then the induced graph on
As is two-colorable for any s ≥ maxi≤n|Wi|.

Moreover, this result holds in BΣ2.

Proof. To see this, we first observe that an induced graph has no cycles of odd length. Pick
any cycle in an induced graph. We claim, that each edge label must occur an even number
of times as we traverse the cycle. This is because the first occurrences of the distinguished
variables are all different.
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More precisely, let the first position of the distinguished variable of Wi be position ki.

By possible renaming of the indices, we assume

k0 < k1 < k2 < · · · < kn

Fix any cycle in G and a vertex α in this cycle. We prove by induction, that each label
occurs an even number of times on this cycle.

Consider W1. Traverse around the cycle exactly once. Only when we cross an edge la-
belled W1 the letter at position k1 can change. So it must change an even number of times,
before we reach the starting position.

Once we know that W1 occurs on an even number of edges of the cycle, we continue with
W2. Let k2 be the position of the distinguished variable of W2. Then k2 can only change if we
cross an edge labelled W2 or possibly W1. We do not know whether it changes on W1 edges or
not, but if it changes once, it changes at all edges labelled W1 of which there is an even num-
ber of times. The total number of times it changes must be even. Thus, since the number of
times W1 occurs is already known to be even, there must be an even number of W2 labels also.

Continuing this way, we see that every label W1,W2, . . . ,Wn occurs an even number of
times on the cycle. No edge can have two labels and there are no un-labelled edges, thus
every cycle in an induced graph is of even length.

Claim: Any graph without odd cycles is two-colorable.

We give a proof by induction on the number of edges: Let G be a graph on n vertices. If
the graph has no edges, we can assign a randomly chosen colors to each vertex and we will
have no conflict.

Assume now that every graph with only even cycles and fewer than m edges is 2-colorable.
Let G be a graph with m edges that has only even cycles. Let e = (u, v) be one of its edges.
Consider the graph H obtained from G by deleting e. H has only even cycles and fewer than
m edges, hence by assumption it is 2-colorable.

Let c : V → {0, 1} be a coloring of H. If u and v receive different colors in c, then c is
also a 2-coloring of G and we are done. If u and v receive the same color, then there are no
paths between u and v. If there was a path between u and v in H, pick the shortest such.
The colors of the vertices on this path must alternate hence, knowing that u and v end up
with the same color, this path must be of even length. Thus this path together with the
edge e is an odd cycle in G contradicting our assumption. Thus there are no paths between
u and v, so we can recolor the connected component of u and assign each of its vertices the
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opposite color. Then this modified coloring is a 2-coloring of G. This finishes the induction
and hence the proof of the claim.

To see that this proof works in BΣ2, we observe that it can be proved with bounded
induction, since all quantifiers used can naturally be bounded by the fact that the problem
is a finite graph with n vertices. The number of possible cycles is bounded above by (n+1)!,
the number of possible colorings is bounded above by 2n and so on. Hence we can express
everything by formulas that use only bounded quantifiers. Thus the induction we do is a
Σ0

0 induction, which is a weaker principle than BΣ0
2. Thus this result holds in the system

BΣ0
2.

Lemma 2.2.6:
Let c : A<N → {0, 1} be a coloring. Let W be an ordered finite variable word, in which the
variables x0, x1, . . . , xe occur. Let k0 ∈ N be such that for every k > k0 there exists an index
i(k) ≤ e such that for all substitution instances Ŵ of W of all variables except xi(k) and all
strings α ∈ Ak we have

c(Ŵ (xi(k)/a)∩α) 6= c(Ŵ (xi(k)/b)
∩α)

Then W is not the initial segment of an homogeneous infinite variable word U in which
all occurrences of x0, x1, . . . , xe in U occur in W .

Moreover, this result holds in BΣ2.

Proof. Let W , k0 and i : N→ {0, 1, . . . , e} be as in the statement of the Lemma. Let U be
any ordered infinite variable word such that W ⊂ U so that all occurrences of x0, x1, . . . , xe
are in W .

Fix a variable xm such that the position of the first occurrence of it is greater than
|W | + k0. Let k be the difference between this position and the length of W . Note that we
have k > k0. Choose any substitution instance Ŵ of W of all variables except the variable
xi(k).

Pick a string α ∈ Ak such that the concatenation Ŵ∩α is a possible substitution instance
of an initial segment of U , i.e. places where U has occurrences of the same variable receive
the same letter in Ŵ∩α. This substitution instance was cut off before the first occurrence of
xm. Filling in the variable xi(k) with a or with b must result in different colors since k > k0
and by our assumption. Both these words are in U(A) by our choice of k. Thus U(A) is not
monochromatic, thus U is not homogeneous for c.

Again, the statement is just finite combinatorics, so it even holds in RCA0 plus bounded
induction.

Now we will give a proof of Theorem 2.1.1.
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Proof. We will construct the desired coloring c of A<N in stages. At each stage s we will
color the words in As.

The requirements to diagonalize against all ∆2
0 ordered infinite variable words are as

follows:

Re: If Ue(n) = lims φe,s(n, s) is total and codes an ordered infinite variable word,
then Ue is not homogeneous for c.

At stage s, let Ue,s be the approximation to Ue, that is the longest converging initial
segment with computations of at most s steps. If Ue is an ordered infinite variable word, we
will see longer correct initial segments over time.

Color the empty sequence with 0.

At stage s: Consider the set

Ss = {Ve,s|Ve,s is the initial segment of Ue,s with variables x0, x1, . . . xe

that is cut off just before the first occurrence of xe+1}
If a word has fewer variables, ignore it at this stage. We assume that the indices of the

variables are ordered by the positions of their first occurrences.

Pick a pivot variable for each word in this set so that the positions of their first occur-
rences are pairwise distinct. This is possible, since we can proceed in order and each chosen
pivot variable rules out at most one variable of the later words. So they have enough vari-
ables remaining. Construct the induced graph for the set Ss on As and 2-color the words in
As accordingly.

It can be verified that the so constructed coloring meets all the requirements: If the limit
of Ue,s as s approaches infinity represents an ordered infinite variable world, then the correct
initial segment with e distinct variables cut before the e+ 1st variable will eventually be in
the set Ss at every stage, so we make sure to rule out all further positions for possible places
where new variables can occur by assigning different colors to some substitution instance in
which only one variable of x0, x1, . . . , xe−1 is switched, as in Lemma 2.2.6. This finishes the
proof of Theorem 2.1.1

Theorem 2.2.7:
The proof of Theorem 2.1.1 can be carried out in the system BΣ2.

Proof. The construction is effective and all sets involved can be defined by formulas with
bounded quantifiers. The only place where we need to be careful is the claim that we will see
longer correct initial segments. To know that we will eventually see all positions of correct
initial segments, we require BΣ2.



CHAPTER 2. THE MILLER-SOLOMON EXAMPLE 16

2.3 OVW (k, l) and Stable Ramsey Theorem

Definition 2.3.1:
A coloring c : [N]2 → {0, 1} of the pairs of natural numbers is stable if for every x ∈ N
there exists y ∈ N such that {x, z} receives the same color for all z > y.

Definition 2.3.2: (Stable Ramsey Theorem)
The system SRT 2

2 is RCA0 together with the statement that Ramsey’s Theorem restricted to
stable colorings holds.

This system is clearly extended by RT 2
2 , but for a long time it was not known whether

SRT 2
2 is strictly weaker than RT 2

2 . In a recent result [2], Chong, Slaman and Yang answer
this question by constructing a model of RCA0+BΣ0

2+SRT 2
2 in which RT 2

2 fails. This model
is non-standard, so it is not an ω-model. Moreover, Σ0

2-induction does not hold in this model.

Since the construction of the counterexample to OVW (k, l) of [9], which we presented
in the previous section does only use principles weaker than or equal to bounding for Σ0

2-
definable formulas, one can carry out this construction in model of [2], obtaining a model of
SRT 2

2 in which OVW (k, l) fails. Thus we have the following Reverse Mathematics result:

Corollary 2.3.3:
Over RCA0, SRT

2
2 does not prove OVW (k, l) for any k, l ≥ 2.

Unfortunately, the reduction from OVW (k, l) to VW (k, l) given in [9] uses Σ0
2-induction,

so we do not get the same result for VW (k, l).
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Chapter 3

Ordered versus unordered infinite
variable words

3.1 Introduction

We are interested in investigating the difference between the Carlson-Simpson Lemma
VW (k, l) and the ordered version OVW (k, l), which was introduced in [9], in more depth
from a recursion theoretic point of view.

Clearly, an homogeneous ordered infinite variable word is an homogeneous infinite vari-
able word. Thus OVW (k, l) is the stronger principle out of the two; i.o.w. OVW (k, l)
proves VW (k, l) over RCA0. It is not known, whether this implication is reversible or
whether OVW (k, l) is strictly stronger than VW (k, l).

At first glance it may seem easy to revert: Given a coloring c : A<N → {0, 1, . . . , l − 1}
and an homogeneous infinite variable word W , we can always convert it to an ordered infinite
variable word as follows:

Substitute all other variables that have an occurrence between the first and the last oc-
currence of x0 by letters. Make sure to substitute all occurrences of these variables, including
the ones occurring after the last occurrence of the variable we keep.

Every variable may only occur finitely often, so there is only finitely many substitutions
made and infinitely many variables left. Then take the next variable after the last occurrence
of x0 that has not been substituted yet and continue to fill in all variables between its first
and last occurrence and so on. Call this word V . We know that V (A) ⊆ W (A), since V is
a substitution instance, c.f. Proposition 1.3.5. Hence V (A) is monochromatic for the same
color and by construction V is ordered.
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For example, let

W = x0 x1 x1 x2 b a x0 x2 x3 x1 x4 x4 x3 . . .

be the beginning of an homogeneous infinite variable word and assume that x0 occurs exactly
twice. Then

V = x0 a a a b a x0 a x3 a b b x3 . . .

would be the the beginning of the homogeneous ordered substitution instance. All oc-
currences of x1 and x2 were filled in by the letter a, making x3 the second variable that we
keep. Occurrences of x4 were filled in with the letter b. Note that it does not matter which
letter we pick to substitute variables that we do not keep. We could always use a.

However, this construction is not recursive. It uses 0′ as an oracle since we need to obtain
the information to find the last occurrence of the variables that we keep. The question we
want to answer is whether there is a more clever construction of an infinite variable ordered
substitution instance that avoids having 0′ as an oracle.

We answer this negatively as follows: We will construct a recursive infinite variable word
such that every ordered infinite variable substitution instance computes ∅′. This implies
that that the reduction from the unordered case to the ordered case recursive in ∅′ is best
possible, i.e. it cannot be done without using an oracle that is computationally at least as
powerful as ∅′.

Moreover, it follows that the statement ”Every infinite variable word has an ordered in-
finite variable substitution instance” implies ACA0.

3.2 Necessity of the oracle

We prove the following result:

Theorem 3.2.1:
There exists a recursive infinite variable word W such that every ordered infinite variable
substitution instance of W computes ∅′.

Proof. Construction of W :

The variable xi is assigned to the computation of φi(i). The positions of the occurrences
of this variable will give us an upper bound on the time it takes φi(i) to converge, if it
converges at all.
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The construction is a finite extension argument: At each stage s, we specify a finite initial
segment of W of length at least s+1, denoted Ws, compatible with all Wt for t < s. Since the
length increases at each stage, the so constructed word is infinite. Then we let W =

⋃
s∈NWs.

At stage 0: Let W0 = x0.
At stage s+ 1: So far Ws contains the variables x0, x1, . . . , xs. Consider the set of diagonal
computations below s+ 1 whose convergence we first see after s steps

Ss+1 = {e ≤ s|φe,s(e) ↓ and e 6∈ St for any t ≤ s}

Let

Ws+1 =

{
W∩

s xs+1 if Ss+1 is empty;
W∩

s xsxs−1 . . . x
∩
i xs+1 if i is the least element of Ss+1.

This concludes the construction of W =
⋃

s∈NWs.

Claim 1: W is a infinite variable word.

Since we append a new variable xs+1 to Ws+1 at each step, W contains infinitely many
variables and hence it is also an infinite sequence of elements of V ar ∪ A, in fact only V ar.
Every variable occurs at most finitely often, since xs is written down once at stage s and at
most s+1 times thereafter, namely once for every converging computation of φt(t) for t ≤ s.
So a variable xs is written down no more than s + 2 times. Thus W is an infinite variable
word according to Definition 1.3.1.

Claim 2: W is recursive.

The set Ss+1 only depends on the finite approximations to finitely many diagonal compu-
tations and finitely many previously computed finite sets, hence the construction is effective.
Thus W is recursive.

The result will follow once we establish the truth of the next lemma.

Lemma 3.2.2:
Let W be as constructed in Theorem 3.2.1. Then every ordered infinite variable substitution
instance of W computes ∅′.

Proof. In any ordered infinite variable substitution instance V , the last occurrence of the
n+ 1-st variable gives an upper bound on when φn(n) converges, if ever. To decide whether
n ∈ ∅′, we look at the position of the last occurrence of the n + 1-st variable in V . As V
is ordered and has infinitely many variables, we can recognize effectively the last occurrence
of the n + 1-st variable by waiting for the first occurrence of the n + 2-nd variable. Let
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y0, y1, y2, . . . be the variables of V in order.

For example:

V = a b b a y0 a a b y0 a a a b y1 a . . .

Let us assume that W ’s variables are x0, x1, x2, . . . and V ’s variables are y0, y1, y2, . . .
ordered by their first occurrences.

The variable y0 corresponds to some variable xi in V . In our example, we do not
know without further knowledge whether it corresponds to x4 ( which happens if W =
x0x1x2x3x4 . . . ) or to x3 (if W = x0x1x1x2x3 . . . ) or to x2 (if W = x0x1x1x0x2 . . . ). It all
depends on when we observe certain converging diagonal computations. The good news is
that we do not really need to know.

It is clear, that each variable yn in V corresponds to a variable xj in W with j ≥ n, so
it belongs to a computation φj(j) with j ≥ n. This follows from the fact that the first oc-
currences of the variables in V occur in order. Substituting some variables with letters, may
shift the indices to correspond to diagonal computations of larger index, but not smaller ones.

Suppose the last occurrence of the (n + 1)-st variable, yn, happens at the s-th position
of V . Then we claim that

n ∈ ∅′ if and only if φn,s(n) converges.

If φn(n) never halts, then φn,s(n) will not halt for any choice of s, so we will draw the
correct conclusion, namely that n 6∈ ∅′, regardless of which position the (n + 1)-st variable
occurs at.

Otherwise, suppose φn(n) converges first at stage t. Our goal is to establish, that t ≤ s.

Then at stage t+ 1 the set St+1 was not empty since it contains n. So

Wt+1 = W∩
t xtxt−1 . . . xn+1x

∩
nxs+1

or, more likely,
Wt+1 = W∩

t xtxt−1 . . . xn+1xnxn−1 . . . x
∩
i xs+1

depending on whether n was the least element of St+1 or not. In either case, the variable xn
was written down at this stage and all variables with indices between n and t were written
down also. Observe that |Wt| ≥ t. Recall that yn corresponds to a computation with index
j ≥ n.
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We distinguish two cases:

Case 1: xj is one of the variables xn, xn+1, . . . , xt−1xt. Then it was written down at stage
t+ 1, so its last occurrence happens at a position s ≥ t.

Case 2: j > t. Then all its occurrences, in particular the last occurrence, happens after
stage t+ 1, hence s > t.

Corollary 3.2.3:
Lemma 3.3 in [9] is best possible, i.e. the bound V ≤T W

′ is tight.

Proof. In Theorem 3.2.1 we have shown that in general we cannot do better than using the
jump as an oracle when trying to pass from an infinite variable word to an ordered infinite
variable word.

The observation that the use of ∅′ cannot be avoided when introducing order into infinite
variable words does not however imply that OVW (k, l) is strictly stronger than VW (k, l),
because given a coloring c : A<N → {0, 1, . . . , l − 1} and an homogeneous unordered infinite
variable word W , it may be that there is an homogeneous ordered infinite variable word V
unrelated to W , i.e one that is not an substitution instance of W at all.

So, the Reverse Mathematics relationship between OVW (k, l) and VW (k, l) is still open.

3.3 Relativizing the result

Theorem 3.3.1:
For every set X. There exists a X-computable infinite variable word W such that for every
ordered infinite variable substitution instance V of W

X ′ ≤T V

Proof. Relativizing the proof to computations with oracle X gives immediately that

X ′ ≤T V ⊕X.

However, we can drop the use of X on the right hand side by observing, that we can code
X into W :

Since our alphabet has at least two letters, take a, b ∈ A and let a denote 0, b denote 1.
The odd positions of W will be reserved for the code of X using the letters a and b. When
we take a substitution instance of W , the odd positions have not been changed and contain
all information we need to recover X. Thus V itself computes X, so we can drop the use of
X on the right hand side, yielding the stronger result.
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Corollary 3.3.2:
Over RCA0, the statement ”For every infinite variable word, there is an ordered infinite
variable substitution instance” implies ACA0.

Proof. By Theorem 3.3.1, every model of RCA0 in which this statement holds must be closed
under the Turing jump, hence it is a model of ACA0 (cf. [12]).
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Chapter 4

On the parameters

4.1 Introduction

The Carlson-Simpson Lemma depends on two parameters: The size of the alphabet k
and the number of colors l. So for each choice of k, l ≥ 1 we have a corresponding subsys-
tem VW (k, l). We are interested in finding out whether any of these principles are equivalent.

If l = 1, i.e. if there is only one color, then the principle is trivial for any choice of k ≥ 1,
since all words in A<N get the same color, hence any infinite variable word W is homogeneous
for such a coloring. This is clearly provable in RCA0.

If k = 1, i.e. if the alphabet has only one letter, it is a little less obvious. Let us assume
A = {a}. Then A<N = {∅, a, aa, aaa, aaaa, . . . }. If c : A<N → {0, 1, . . . , l − 1} is a coloring,
we know by the infinite pigeon hole principle that there must be some color that is used
infinitely often, let’s say S := c−1(i) is infinite. From this set we can easily construct an infi-
nite variable word W putting first occurrences of new variables at positions n such that the
string in A<N of length n− 1 is in S. So in this case we can always construct a homogeneous
infinite variable word from c. So in this case it is also effectively true.

For k, l ≥ 2, the Carlson-Simpson Lemma is not provable in RCA0, which follows for
example from Theorem 2.1.1. It is unknown, whether some of the principles are equivalent.
To our knowledge, there has never been a written prove that

VW (k + 1, l)→ VW (k, l)

or
VW (k, l + 1)→ VW (k, l + 1)

although this is expected. We will give a proof of these two results in RCA0 and we also
prove the reverse direction for the number of colors l, showing that this parameter does not
influence the strength of the principles VW (k, l) when l ≥ 2.
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4.2 Number of colors

We will give a direct proof, that the number of colors does not influence the strength of
the Carlson-Simpson Lemma.

Theorem 4.2.1:
RCA0 ` VW (k, l + 1)↔ VW (k, l).

Proof. Given an alphabet A of size k and assume that VW (k, l+ 1) holds. Given a coloring
c : A<N → l. We need to exhibit an infinite variable word U such that U(A) is monochro-
matic.

Since VW (k, l + 1) holds and c can be viewed as an (l + 1)-coloring with one color not
being used, we can take the U that is homogeneous for c and whose existence is guaranteed
by VW (k, l + 1).

Conversely, given the same alphabet A and assume that VW (k, l) holds. Given a coloring
c : A<N → l+1, we need to find an infinite variable word U such that U(A) is monochromatic
with respect to c.

Identify two colors as one color. For example, if blue and green are two of the colors
used and turquoise is a color not in the range of c, we will define c′ by just sending all blue
or greens to turquoise and otherwise assign the same colors as c. Now this identification
induces a coloring c′ : A<N → l with l colors. By VW (k, l), there exists an infinite variable
word U homogeneous for c′.

If U(A) is of a color other than turquoise, we are done, as this case U is also homogeneous
for c. If U(A) is turquoise, construct a two-coloring d : A<N → { blue, green } as follows.

The color of a word w of length k is the same as the finite variable word obtained by
cutting U just before the first occurrence of the (k+ 1)-st variable and substituting the vari-
ables according to the letter of the word. More precisely, let us assume the variables of U are
x0, x1, x2, . . . when ordered by the positions of their first occurrence. Then all occurrences
of the first variable x0 in U is replaced by the first letter of w, all occurrences of the second
variable x1 will be replaced by the second letter etc.

For example, consider the word w = abb, then

d(abb) = c( the initial segment of U cut off before the first occurrence of x3

with the substitutions x0 → a, x1 → b, x2 → b)

Observe that this is a well-defined 2-coloring of A<N: It is defined on strings of every
length, since U has infinitely many distinct variables. Because U(A) is turquoise, the color-
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ing d only assigned the colors blue and green to those words, thus it is a two-coloring.

Also note that d is defined recursively in the infinite variable word U and the l+1-coloring
c.

Since 2 ≤ l, we can apply VW (k, 2) again to obtain an infinite variable word W homo-
geneous for d. From U and W we will construct an infinite variable word U ′ such that U ′ is
homogeneous for c.

The infinite variable word U ′ will be obtained from U by substituting some of its variables
by letters of A and renaming some variables. Assume that x0, x1, x2, . . . are the variables of
U sorted by the position of their first occurrence. W is like a recipe how we need to modify
U to become homogeneous for c.

Proceed as follows: The n-th symbol of W will tell us what we need to do with the n-th
variable xn−1. If the n-th symbol is a letter, then we fill in all occurrences of xn−1 in U by
this letter. If the n-th symbol is a variable that is not equal to any variables in any positions
we have seen so far, then we keep xn−1. If the n-th symbol is a variable that we have seen
before, then replace all occurrences of xn−1 in U by xj−1, where j is the first position at
which the variable was seen in W .

Let us do an example. Suppose our words starts like

W = a b y0 y1 y0 b y2 . . .

then in U we replace all occurrences of x0 by the letter a, all occurrences of x1 by b, we keep
the variables x2 and x3, we replace all occurrences of x4 by x2, we replace all occurrences of
x5 by b and so on.

Claim 1: U ′ is an infinite variable word.

U and W both contain infinitely many distinct variables each used finitely often by Def-
inition 1.3.1. So there is infinitely many variables in U that will not be replaced, because
W instructs us to keep the variables around. Out of those infinitely many variables, finitely
many will be merged; leaving still infinitely many variables in U ′.

Claim 2: U ′ is homogeneous for c.

The set of words U ′(A) is a subset of U(A), thus c assigns every element of U ′(A) either
one of the colors blue and green by assumption. The definition of d tells us exactly which
substitution instances end up colored blue and which substitution instances end up being
colored green. W is a strategy how to make sure to get a monochromatic set U ′(A).
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More precisely, if W is homogeneous for the color blue, we claim that all words in U ′(A)
receive color blue from c.

Suppose
W = x0 a x1 x0 b x2 . . .

Then, since W is homogeneous for d, we know d colors the following words all blue:

∅, aabab, babbb, aaaab, baabb, aa, ba
By construction of W , this means that the substitution instances of U cut off just before

the first occurrence of x5 in which all letters are substituted according to one of the first four
letters of W receive blue by the coloring c, as well as the substitution instances of U cut off
just before the first occurrence of x2, as long as we substitute all occurrences of x1 by the
letter a.

This is exactly the same as allowing all elements of U(A) as long as x1 gets substituted
by a, x4 gets substituted by b, x0 and x3 get the same color. This is achieved by merging
x0 and x3 to be one variable in U and replacing all occurrences of x1 by the letter a, all
occurrences of x4 by the letter b.

Thus the construction of U ′ is exactly what we need to do to make sure all words in
W (U ′) will be colored with the same color. Thus we have constructed a homogeneous infi-
nite variable word for the (l + 1)-coloring using only VW (k, l).

So in RCA0 we have that

VW (k, l)↔ VW (k, l + 1)

4.3 Alphabet size

In the previous section, we saw that the parameter l does not matter in the principle
VW (k, l). For the alphabet size k, it is very easy to verify that VW (k + 1, l) → VW (k, l).
It is open whether this can be reversed.

We include our proof of the easy direction for completeness:

Proposition 4.3.1:
RCA0 ` VW (k + 1, l)→ VW (k, l)

Proof. Suppose VW (k + 1, l) holds. Let |A| = k and let c : A<N → {0, 1, . . . , l − 1} be an
l-coloring. We need to find an infinite variable word W that is homogeneous for c.
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Extend the alphabet by a new symbol, i.e. let B = A ∪ {∗}, where ∗ is a letter not
contained in A.

Define an l-coloring d on B<N as follows: The color of a word w ∈ B<N is the same as
the color of it where all ∗ have been deleted. For example

d(∗ ∗ ∗ b a ∗) = c(b a)

This is a well-defined coloring recursive in c. By VW (k + 1, l) there is an infinite variable
word U homogeneous for d. Since we extended the alphabet, U may contain the special
character ∗.

Let W be U with all special characters ∗ deleted. Notice that W still has infinitely
many variables, thus it is an infinite variable word. Moreover, W is homogeneous for c by
construction and it is obtained from U in a recursive way. Thus VW (k, l) holds.
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Chapter 5

Forcing notions

5.1 Introduction

In this chapter, we consider the Carlson-Simpson Lemma together with the method of
forcing. We will work with the ordered version OVW (k, l). Our goal is to find a coloring c
without homogeneous ordered infinite variable word, i.e. an instance of failure of OVW (k, l),
that continues to fail when we add generic reals.

Forcing is a powerful method developed in set theory to prove the independence of the
continuum hypothesis; see [3] for details. Later it was simplified [4] and adapted to forcing
in arithmetic, which is what we will be concerned with here.

The basic idea is to expand the universe to contain more sets than before. While doing
this, we ensure some properties that we want the new set to have, are met. A condition
specifies some finite piece of information about the set. If every real G that is compatible
with the condition has some property, we say the condition forces the property, i.e. this
partial information is sufficient to guarantee the property. The set G that we construct, is
the set that is compatible with all the countably many conditions and hence will have all
these properties we want. G is called a generic real.

5.2 Cohen forcing

Let us recall the basic definitions of Cohen forcing. We will mostly follow the notation
of [5].

Definition 5.2.1:
Let (P,4) be a partial order, called a notion of forcing. The elements of P are called
conditions.
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In Cohen forcing, the conditions p are just finite partial functions from N to the set {0, 1}.
A condition is meant to describe a set of objects G that are compatible with it, in this case
the object G is a total functions from N to {0, 1} that agree with the partial function p on
its domain dom(p).

Definition 5.2.2:
Let p, q ∈ P be two conditions. We say p extends q and we write p 4 q if p ⊇ p as subsets
of N× {0, 1}.

The idea is that a condition p that extends q contains the same information and possibly
more, hence narrowing down the possible choices of the real G that we are constructing.
Thus the counterintuitive direction of the inequality sign.

Definition 5.2.3:
A subset D ⊆ P of conditions is dense if for every p ∈ P there is an element of D that
extends p.

Intuitively, a set D is dense if it describes a property that, independent of what finite
amount of G we have specified so far, it is still possible for G to have this property, i.e. to
meet D.

Definition 5.2.4:
A non-empty subset F ⊆ P is a filter, if the following two properties hold

p ∈ F ∧ p 4 q → q ∈ F and

p, q ∈ F → ∃r ∈ F (r 4 p ∧ r 4 q).

Given a collection D of dense subsets of P . A filter F is D-generic if it meets every
element of D, i.e. for every D ∈ D, D ∩ F 6= ∅. When D is the collection of all definable
dense sets, we will drop the D and call it a generic filter.

We often identify a filter F with the object G that it defines. For Cohen forcing,
any generic filter defines a total function from N into {0, 1}. Total, because the sets
En = {p ∈ P |p(n) is defined} are definable dense sets.

The key fact about forcing is stated in the following proposition.

Proposition 5.2.5: (Forcing)
Let (P,4) be a notion of forcing, let D be a countable collection of dense subsets of P and
let p ∈ P . Then there is a D-generic filter containing p. [5]

The method of forcing is really an immediate consequence of the Baire Category Theorem,
cf. [set theory].

Theorem 5.2.6: (Baire Category Theorem)
The system BCT is RCA0 together with the statement
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”If D0, D1, D2, . . . are a definable collection of dense open sets of reals, then the
intersection D =

⋂
n∈NDn is dense in R.

Later we will use the fact that a model is closed under Cohen-generics if and only if it is
a model of BCT .

5.3 OVW(k,l) and Cohen forcing

First we consider the notion of Cohen forcing together with OVW (k, l). We will conclude
that the Baire Category Theorem does not imply OVW (k, l) over RCA0.

More precisely, we start with a model in which OVW (k, l) fails, we pick an instance of
failure of OVW (k, l) i.e. a coloring c with no homogeneous ordered infinite variable word in
the model, and show that we can add Cohen generic reals for any given family of dense sets
without adding an infinite variable word homogeneous for this instance c.

Let M |= WKL0 + ¬OVW (k, l) as discussed in Chapter 2. Let c : {a, b}< → {0, 1}
be a (recursive) coloring that has no homogeneous infinite variable word computable in the
model M. Note that the same proof works for any choice of k, l ≥ 2.

First, we need to extend our definition of W (A) to finite variable word.

Definition 5.3.1:
For any finite variable word W , let W (A) be the set of all complete substitution instances
that are cut off just before the first occurrence of a new variable.

The following is a trivial observation, which we use later.

Proposition 5.3.2:
If W is a finite initial segment of an infinite variable word U , then W (A) ⊆ U(A)

Throughout we fix some effective coding of sequences of elements of in A∪ V ar by reals,
i.e. subsets of N.

Lemma 5.3.3:
Let c be a coloring as above. Let e ∈ N be fixed. For every set Y in the model M, the set of
forcing conditions p such that

p  ΦG⊕Y
e does not code a homogeneous infinite variable word for c

is dense in (P,4).
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Proof. Given a forcing condition q ∈ P . We need to show that it can be extended to a
condition p 4 q such that p  ΦG⊕Y

e does not code an homogeneous ordered infinite variable
word for c.

First, we use ∅′ to decide, whether there exists a number n ∈ N and a condition p ∈ P
such that p 4 q and p  ΦG⊕Y

e,n is unordered or inhomogeneous for c.

More precisely, let Wp,n be the finite word that is the longest converging sequence com-
puted with oracle p⊕Y by the e-th Turing machine after n steps. Wp,n is an initial segment
of WG := ΦG⊕Y

e .

So, if the variables in We,n are not ordered, then WG cannot be ordered either. We will
refer to this situation as unorder.

Consider Wp,n(A). This is a finite set and it is a subset of WG(A). If this set is not
monochromatic in c, then we know WG will not be homogeneous for c either. We will refer
to this situation as an inhomogeneity.

We can recognize the unorder of the variables and the inhomogeneity of We,n effectively,
hence ∅′ is sufficient as an oracle.

If ∅′ tells us that such n and p exist, start looking for such a pair in an effective way and
take the first such p as our extension of q. Then we are done.

Otherwise, if ∅′ tells us that there is no such n and p ∈ P , then we proceed as follows:

Start extending
q = p0 � p1 � p2 � · · · � pi � . . .

where pi+1 is the first extension of pi that we see where

ΦG⊕Y
e is defined on {0, 1, . . . , i} and

ΦG⊕Y
e has at least i distinct variables

This process must stop. Suppose it keeps going forever, then it is a way to construct
from q and Y recursively an homogeneous ordered infinite variable word. Note that we have
already ensured that there is no extension that would give us inhomogeneity for c or unorder
in the word, so at this stage we only need to find extensions to make the word longer and
have more and more variables. So we have a contradiction to the assumption that c has no
homogeneous ordered infinite variable word computable in the model.

Let p = pi so that pi cannot be extended in the described way. Any filter G compatible
with this p will be partial or have finitely many distinct variables.
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For any condition q we found an extension p that forces ΦG⊕Y
e does not code an homo-

geneous infinite variable word for c. Thus the set of such conditions is dense.

We would like to point out that this Lemma cannot straightforwardly adapted to the
VW (k, l) case, because of the requirement that variables in an infinite variable word must
occur finitely often.

If we are trying to construct an ordered infinite variable word and we know that it is
not possible to extend to an unordered word, then waiting for a new variable automatically
ensures that variables occur only finitely often. However, if we are working with VW (k, l),
the infinite word constructed by the pn may have some variables occur infinitely often and
at no finite stage can we make sure this does not happen.

Even though this proof cannot be adapted to VW (k, l), we will obtain the result that
being closed under Cohen-generic reals does not imply VW (k, l) as a consequence of the
next chapter.

The argument would naturally carry over to the principle VWI(k, l) (cf. [9] Chapter
4) which is the version of the Carlson-Simpson Lemma, in which variables are allowed to
occur infinitely often. Except for the fact that to our knowledge it is unknown whether there
exist any models of RCA0 in which VWI(k, l) fails. Thus we cannot get our construction
started. However, if one succeeds to prove that VWI(k, l) is strictly stronger than RCA0,
then our argument would immediately imply that VWI(k, l) cannot be proved from the
Baire Category Theorem.

Theorem 5.3.4:
For any M-definable family of dense sets Ei there is a real G ∈

⋂
n∈NEn such that M[G]

does not compute an homogeneous infinite variable word for c.

Proof. Let De ⊆ P be the set of conditions such that p ∈ De implies

p  Φe(G) is not an homogeneous ordered infinite variable word for c

This set is dense, by Lemma 5.3.3. Let Cn = {p : |dom(p)| ≥ n}. These sets are also dense.
Let D be the collection of De, En and Cn. Let G be a D-generic filter. Let G =

⋃
p∈G p.

Then M [G] computes no homogeneous infinite variable word for c.

Corollary 5.3.5:
BCT 6` OVW (k, l)

Proof. Start with our model of WKL0 +¬OVW (k, l) and let c be an instance of a failure of
OVW (k, l). We have shown that for any definable family of dense sets in the model, we can
add a Cohen generic while preserving the fact that c has no homogeneous infinite variable
word computable in the model. Repeat the process to add generics for all (countably many)
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definable families of dense sets. Now we have a model of BCT where OVW (k, l) fails for
the coloring c.

Corollary 5.3.6:
Closure under Cohen-generic reals, does not prove OVW (k, l).

5.4 OVW(k,l) and Mathias forcing

The same argument works for adding Mathias-generic reals.
In Mathias forcing, a condition p = (s,X) ∈ P consists of two parts, a finite set of natural

numbers s and an infinite set of natural numbers X definable in the model such that

max s < minX

Definition 5.4.1: (extensions in Mathias forcing)
Let p1 = (s1, X1) ∈ P and p2 = (s2, X2) ∈ P be two conditions. We say p1 extends p2 and
we write p1 4 p2 if

s1 ⊇ s2

X1 ⊆ X2

s1 ∩ s̄2 ⊂ X2

In other words, a conditions p1 is an extension of p2 if s1 is obtained from s2 by adding
some elements from X2 to the finite part, and X1 is X2 with some elements removed. So we
extend the finite part s2 with elements taken from the infinite part X2 and we ”thin” the
infinite part.

We can carry out the same argument as for Cohen forcing. The only difference is that the
process must terminate, otherwise there is an X-computable homogeneous infinite variable
word in the model already.

Lemma 5.4.2:
Let c be a coloring as above. Let e ∈ N be fixed. For every set Y in the model M, the set of
forcing conditions p such that

p  ΦG⊕Y
e does not code a homogeneous infinite variable word for c

is dense in (P,4).

Proof. Given a forcing condition q = (s,X) ∈ P . We need to show that it can be extended
to a condition p 4 q such that p = (t, Z)  ΦG⊕Y

e does not code an homogeneous ordered
infinite variable word for c.
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First, we use ∅′ to decide, whether there exists a number n ∈ N and an extension t with
elements of X such that p = (t,X − {x ∈ X|x > max t}) and p  ΦG⊕Y

e,n is unordered or
inhomogeneous for c.

More precisely, let Wp,n be the finite word that is the longest converging sequence com-
puted with oracle s⊕Y by the e-th Turing machine after n steps. Wp,n is an initial segment
of WG := ΦG⊕Y

e .

So if the variables in We,n are not ordered, then WG cannot be ordered either.

Consider Wp,n(A). This is a finite set and it is a subset of WG(A). If this set is not
monochromatic in c, then we know WG will not be homogeneous for c either.

We can recognize the unorder of the variables and the inhomogeneity of We,n effectively,
hence ∅′ is sufficient as an oracle.

If ∅′ tell us that such n and p exist, start looking for them in an effective way and take
the first such p as our extension of q. Then we are done.

Otherwise, if ∅′ tells us that there is no such n and p ∈ P , then we proceed as follows:

Start extending with elements from X

q = p0 � p1 � p2 � · · · � pi � . . .

where pi+1 = (si+1, Xi+1) is the first extension of pi that we see where

ΦG⊕Y
e is defined on {0, 1, . . . , i} and

ΦG⊕Y
e has at least i distinct variables

For each extension we only thin the set Xi from below, making sure to throw out elements
smaller than the maximum element of si+1.

This process must stop. Suppose it keeps going forever, then it is a way to construct
from q, X and Y recursively an homogeneous ordered infinite variable word. Note that we
have already ensured that there is no extension that would give us inhomogeneity for c or
unorder in the word, so at this stage we only need to find extensions to make the word grow
longer and have more and more variables. If this process does not terminate, we have a
contradiction to the assumption that c has no homogeneous ordered infinite variable word
computable in the model. Recall that Y and X are both sets definable in the model.

Let p = pi so that pi cannot be extended in the described way. Any filter G compatible
with this p will be partial or have finitely many distinct variables.
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For any condition q we found an extension p that forces ΦG⊕Y
e does not code an homo-

geneous infinite variable word for c. Thus the set of such conditions is dense.

Theorem 5.4.3:
For any M-definable family of dense sets Ei there is a real G ∈

⋂
n∈NEn such that M[G]

does not compute an homogeneous infinite variable word for c.

Proof. Let De ⊆ P be the set of conditions such that p ∈ De implies

p  Φe(G) is not an homogeneous ordered infinite variable word for c

This set is dense, by Lemma 5.4.2. Let Cn = {p : |dom(p)| ≥ n}. These sets are also dense.
Let D be the collection of De, En and Cn. Let G be a D-generic filter. Let G =

⋃
p∈G p.

Then M [G] computes no homogeneous infinite variable word for c.

Corollary 5.4.4:
Closure under Mathias-generic reals, does not prove OVW (k, l).
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Chapter 6

Non-conservation for arithmetical
sentences

6.1 Introduction

Definition 6.1.1:
Let T2 be an extension of a theory T2. We say T2 is conservative over T1 for arithmetical
sentences, if every arithmetical sentence provable in T2 is also provable in T1. In other
words, T1 and T2 prove the same arithmetical sentences.

From a Reverse Mathematics point of view, if we can prove that T2 is not conservative
over T1 for two subsystems of second-order arithmetic T1, T2, then we know that T1 and T2
are not the same system in our Reverse Mathematics chart.

Definition 6.1.2:
[8] A cut of a model of arithmetic is a non-empty proper initial segment that has no maximum
element. We denote cuts by I ⊆M.

In this section, we work with a particular strong failure of the Σ0
2 bounding principle.

We consider the first order modelM of P− + IΣ0
1 in which there is a ∆0

2-definable injection
π of the whole model into a proper cut I ⊂M (cf. Lemma 3.4 in [10]).

M |= P− + IΣ0
1 + ∃∆0

2 injection π :M→ I

We will prove that the principle VW (k, l) cannot hold in any second-order extension of
this model.

From this it follows that VW (k, l) is not conservative for arithmetical sentences over
RCA0 since the non-existence of such a ∆0

2 injection is an arithmetical sentence that is not
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provable in RCA0.

Let us give an outline and some notation first:

By the Shoenfield Limit Lemma (cf. Lemma III.3.3 in [15]), a set X is ∆0
2 if and only if

it can be computably approximated, i.e. X is the limit of a computable sequence of finite sets.

At every stage s in the construction, we have an approximation of the injection π, given
by sets of possible pre-images of each number. Let F s

i be the set of possible pre-images of
the number i at stage s.

For each non-empty F s
i , pick the smallest element to be its representative asi at this

stage. We think of these numbers to code finite variable words ws
i for some effective coding

of variable words, which is fixed throughout the construction.

Using this approximation, we can effectively diagonalize against all sets that are coded
in the model by making sure our coloring is not monochromatic for any words coded.

In order to make the coloring well defined, we take substitution instances of the words
coded, ensuring that they are incompatible. To do that, we require them to have sufficiently
many variables.

Definition 6.1.3:
Two finite variable words V and W are compatible, if there exists a variable word U
(possibly using only letters) of length

|U | ≥ max{|V |, |W |}

whose initial segment of length |V | is a substitution instance of V and whose initial segment
of length |W | is a substitution instance of W . Otherwise call them incompatible.

For example V = x0 a b x0 x0 and W = a a x1 b are incompatible since x0 must be
replaced by a in U because of position 0, yielding an contradiction at position 3. V = x0 x0
and W = x1 b are compatible, as witnessed by U = b b.

Proposition 6.1.4:
Let V and W be finite variable words. If there exists a position n ≤ min{|V |, |W |} such that
V (n) and W (n) are two distinct elements of A, then V and W are incompatible.

Proof. A substitution instance can only fill in variables and not change the letters of a word.
Thus any substitution instance of V must have the same letter at position n, hence a different
letter than any substitution instance of W has at position n.
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6.2 The main result

We will fix an alphabet A = {a, b}, but we note that the same proof works if the alphabet
of size |A| ≥ 2.

Theorem 6.2.1:
There is a coloring c : A<N → {0, 1}, recursive in the model M, such that if W is a infinite
set in the model M and M[W ] |= IΣ1(W ), then W does not code an infinite variable word
homogeneous for c.

Proof. Let I ⊆ M be the cut and π : M → I be the ∆0
2-definable injection as described

above.

Construction of c:
Fix some number t0 ∈ M− I outside of the cut I for the rest of the construction. At each
stage s, we will color all words in As.

At stage 0: Color the empty string red.

At stage s > 0: Consider the set

Ss = {ws
i | i < t0 and ws

i codes a finite variable word of length ≤ s

and ws
i contains at least t0 distinct variables}

If Ss is empty, color As arbitrary and move on to the next stage. Otherwise, for simplicity
of notation we will drop the superscript, so let wi for i ≤ t0 be the words that elements of
Ss code.

For each pair of indices i < j ≤ t0, make wi and wj incompatible as follows:

Determine the position n of the first occurrence of the first variable in either wi or wj

(which ever occurs first), y say. Without loss of generality, assume that it occurs in wi; the
other case being identical with the roles of i and j reversed.

We distinguish three cases:

If wj(n) = a, substitute all occurrences of y in wi by b.

If wj(n) is some letter 6= a, substitute all occurrences of y in wi by a.

If wj(n) is a variable z, substitute all occurrences of y in wi by a and all occurrences of
z in wj by b.
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These are the only possible cases, since wj(n) cannot be undefined by our assumption
that both wi and wj have enough variables.

After this substitution both words wi and wj may have one less variable than before.
This is why we require them to have t0 many variables to begin with. Moreover, wi and wj

are now guaranteed to be incompatible because at position n one of them has letter a, the
other one has some other letter.

Continue with the next pair of indices.

Having replaced at most t0 − 1 variables by letters in each word wi (one for each index
j 6= i < t0), we are now left with a set of pairwise incompatible words w′i, each containing at
least one variable.

For i ≤ t0, color all the words in As that are extensions of some complete substitution
instance of w′i as follows:

Pick the first remaining variable y in w′i. Take all complete substitution instances of w′i
in which y is substituted by a, concatenated with any string of length s−|w′i| and color them
red. Color all other complete substitution instances of w′i concatenated with any string of
length s− |w′i| and color them blue.

Having done so for all i ≤ t0, color all remaining words in As red.

This coloring is well-defined, since the words w′i are pairwise incompatible, thus for any
two distinct such words, the sets of their substitution instances are disjoint. This follows
immediately from Definition 6.1.3.

The construction is effective since the set Ss is bounded. Thus the coloring c is recursive.

Claim: If W is an infinite subset ofM as in the statement of the theorem that codes an
infinite variable word, then W is not homogeneous for c.

Let W ⊆M be a subset such thatM[W ] |= IΣ0
1. Then by bounded induction, we know

that for every l ∈M, the restriction of W to length l, W |l, is coded inM. By Σ0
1 induction,

we can prove that if W is an infinite variable word, then there exists some l such that W |l
mentions t0 distinct variables.

Let w0 be the first such initial segment that mentions t0 many variables. Let a0 be its
code. Then π(a0) = k for some k ≤ t0 since t0 6∈ I. As π is a ∆0

2 injection, from some point
onwards, say from stage s0, π

−1(k) will always consist only of a0 and thus, w0 will be one of
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the words in our set Ss for all stages s > s0.

Thus we diagonalize against w0 at every stage s > s0. More precisely, at every stage
s > s0, if s + 1 is the location of a first occurrence of a new variable, then W (A) will not
be monochromatic since at stage s the color of words compatible with w0 changes with the
distinguished variable chosen in the construction; this means the color is different for different
substitution instances of w0, hence of initial segments of W . Since W has infinitely many
distinct variables, there must be infinitely many places that are locations of first occurrences
of a variable. Thus, there must be one beyond s0. Hence W (A) is not monochromatic. Thus
W is not homogeneous for c.

6.3 Reverse Mathematics consequences

We proved that that

RCA0 + VW (k, l) ` ¬∃∆0
2 injection of the model into a proper cut

and since RCA0 does not prove the non-existence of such a cut, we conclude that VW (k, l)
is not conservative for arithmetical sentences over RCA0.

Let us summarize these consequences in a number of corollaries.

As we noted earlier, the same proof works for more than 2 colors and bigger alphabet
size. Thus we have proved the following result.

Corollary 6.3.1:
The model M cannot be extended by adding reals to obtain a second-order model (M, S) |=
RCA0 + VW (k, l)

Corollary 6.3.2:
RCA0 + VW (k, l) ` ¬∃∆0

2 injection of the model into a proper cut.

Corollary 6.3.3:
VW (k, l) is not conservative for arithmetical sentences over RCA0.

Corollary 6.3.4:
If T is a theory that is conservative over RCA0 for arithmetical sentences, then T does not
prove VW (k, l) for any k, l ≥ 2.

Proof. The non-existence of a ∆0
2-definable injection of the entire model into a proper cut

is not provable from RCA0, since the model M can be extended to a model of RCA0 by
adding the reals recursive in M.
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So, VW (k, l) is not conservative over RCA0 for arithmetical sentences, hence every theory
that is conservative over RCA0 for arithmetical sentences cannot prove VW (k, l) for any
k, l ≥ 2.

Examples of such theories include COH, WKL0, closure under 1-generics and closure
under Mathias generics.

This Reverse Mathematics non-implication was left open in Chapter 5, where we proved
it for OVW (k, l), so we specifically mention it again here.

Corollary 6.3.5:
Closure under Mathias generics does not prove VW (k, l).
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Chapter 7

Reverse Mathematics diagram
revisited

Putting all the Reverse Mathematics results of this thesis into our Reverse Mathematics
diagram, we have a slightly better idea of the strength of the Carlson-Simpson Lemma.
Symbolic for our result that the number of colors does not make a difference, we drop the l
in the Carlson-Simpson principles.

Π1
1 − CA

  

OVW (k)

��

ACA0 VW (k)

WKL0

|

88

COH

−

OO

BCT

|

ee

SRT 2
2

|

dd

RCA0

In this thesis, we proved that VW (k, l) proves that there is no ∆0
2-injection of the model

into a proper cut. To our knowledge this is the first example in recursion theory, where
something has been proven from the Carlson-Simpson Lemma.

A lot of work still has to be done to classify the Carlson-Simpson Lemma completely in
Reverse Mathematics. For the interested reader, we suggest to try to establish any implica-
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tions regarding VW (k, l) and RT l
k or VW (k, l) and ACA0. It is feasible that just like the

Dual Ramsey Theorem these principles are actually stronger than ACA0.
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