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I’m not going to talk about something new today.

Multi-disciplinary collaboration and innovation in echocardiography is not new(1). Since 

the days of Edler and Hertz, clinicians and engineers have worked to develop ultrasound 

technology in service of patient care.

The push to scale and standardize echocardiography is also not new. Through collaborative 

guidelines and practice statements as well as accreditation and board certification programs, 

professional organizations such as the American Society of Echocardiography are striving 

to standardize and scale delivery of quality echocardiography around the world (Figure 1A). 

What has become more prominent in recent years is the idea that machine learning, a type 

of computer algorithm that learns patterns from data, can be used to further these goals(2–

4). Ultimately, we hope that machine learning will help us achieve accurate, reproducible, 

expert ultrasound for every patient, in every hospital and clinic worldwide.

AI for medical imaging: progress and open questions

Over the past several years, AI algorithms have been tested echocardiography in myriad use 

cases for echocardiography, including detection of congenital heart disease, quantification of 

LVEF, and analysis of HFpEF and diastolic function, to name just a few(5–11). But like all 

science, the more we study machine learning, especially as applied to echocardiography and 

medical imaging, the more questions arise.

One open question is how to free machine learning from human labeling. Remember that in 

supervised machine learning, algorithms learn from the data and corresponding ground truth 

labels. These ground truth labels may be measurements traced from image or interpretations 
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of a certain image or study. When relying on human-annotated labels for training or testing, 

however, we must remember there are limits to the accuracy and reproducibility of clinical 

measurements and interpretations, especially in busy, real-world clinical settings (Figure 

1B–E). Training AI algorithms with sub-optimal labels runs the risk of teaching a model to 

re-create human error and variability, while evaluating AI algorithms against flawed labels 

makes determining their true performance difficult.

Another open question in AI for medical imaging is how to make AI models generalize 

better to datasets outside those upon which they were trained. While a trained clinician can 

interpret an imaging study no matter what hospital it came from, for example, current AI 

algorithms can struggle in this task(12,13), overfitting on image features that are specific to 

a certain dataset but don’t port well to a new dataset because they are not clinically relevant 

(Figure 1F–I).

Rise of large foundational models

Given current shortcomings in AI, researchers have been hard at work. Consequently, this 

year has seen the rise of Large Language Models (LLMs)(14,15). As their name suggests, 

these AI algorithms are designed to model human language. Different LLMs can model 

language-to-language tasks (Figure 2A), or language-to-imaging tasks (Figure 2B).

In addition to modeling language tasks, some recent AI algorithms can even model image-

to-image tasks. For example, the Segment Anything Model (SAM) aims to trace out 

shapes in any image, aided again by user prompts (Figure 2C)(16). Researchers are already 

attempting to use this model for medical imaging(17–19).

For simplicity, one can refer to all of the models described above as ‘foundation models,’ 

because whether they model language, imaging, or both, they aspire to be models upon 

which several different tasks can be accomplished.

While foundation models have existed for several years, two main features have improved 

their utility. First, improved user interfaces allow a user to input a text-based question 

or request—a user prompt—and receive a response from the model (Figure 2). Second, 

increased size of these models has translated to more realistic results, at least for many 

creative and/or non-medical tasks (Figure 3A). These advancements have caused a lot of 

excitement, investment, hope, and hype(20–22) (Figure 3B).

In this setting, it is natural to ask whether these newer foundation models may help address 

gaps and open questions about AI for medical imaging, and especially for echocardiography. 

With respect to freeing AI from human labeling, for example, researchers hope that fine-

tuning a foundation model for a certain task may require less domain-specific, clinician-

labeled data than if they had to train that task from scratch. With respect to generalization, 

some feel that improved performance will always correlated with model size. Some even 

feel that foundation models could learn to perform reasoning tasks(23), while others think 

that evidence of reasoning capabilities is spurious(24); assessing foundation models’ true 

capabilities is currently an active area of study.
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Therefore, while foundation models have certainly shown impressive performance so far on 

many tasks, applying these models to echocardiography and other high-stakes clinical tasks 

currently still requires caution and further research.

Caveats and failure modes of foundation models to date

Labeling and prompting.

One drawback of current foundation models is a continued need for time-consuming manual 

human input in the form of user prompts. Prompt engineering, as it is called, runs the risk 

of being variable and extremely laborious for a human user(25). In the course of preparing 

examples for this talk, each example required several text prompt attempts before generating 

an acceptable result. In several cases, no acceptable result was possible despite numerous 

prompts.

Examples of imaging prompts fared similarly. The Segment Anything Model may trace 

shapes from an image, but it still relies on user prompts both to achieve better results and 

to obtain semantic information (i.e., which of the many segmented shapes is relevant). A 

brief comparison between SAM and a completely human-label free approach designed for 

echocardiographic images(26) suggests that smaller, task-specific models still have a role 

in AI for medical imaging, especially when those required no manual labels (Figure 4). (In 

contrast, in addition to user prompts at the point of care, SAM also required over 1 billion 

masks during its training(16).)

Diversity.

Other concerns about current foundation models pertain to diversity. As with all AI models, 

foundation models represent any bias or error in the data they trained on. If that data lacks 

important types of diversity, so could the model itself, as well as any AI algorithms one 

may build from that foundation(27,28). While diversity in imaging datasets is important 

to measure(29), foundation models such as GPT-4 did not provide details on its dataset 

construction or algorithm(14).

In addition, exclusive reliance on a few, large, foundation models has the potential to affect 

the diversity of the AI research community. Training a very large model requires computing 

infrastructure and resources on a scale that few researchers have access to. Task-specific AI 

algorithms all built on the same handful of foundational models may reduce diversity of AI 

algorithm development. Furthermore, models such as ChatGPT, began as open-source but 

did not remain so(30). Fortunately, it appears that language models both large and small 

will continue to be part of the AI landscape, and several are arising from the open-source 

domain(31).

Performance for high-stakes tasks.

Current foundation models appear to excel in two areas: (i) tasks utilizing everyday text 

and images, of the type one presumes were abundant during training, and (ii) creative 

tasks for which a good result will be realistic and/or plausible but does not have to be 

measured against a specific ground truth (Figure 2B). Foundation models often generate 
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realistic-seeming results that are factually incorrect, irrelevant, or physically impossible 

(Figure 5). This behavior has been termed “hallucination,” and it is clearly problematic 

when using these AI algorithms for medicine(32).

Hallucination occurs because, as AI pioneer and Meta’s chief data scientist Yann LeCun 

says, they “have no idea of the underlying reality that language describes… Those systems 

generate text that sounds fine, grammatically, semantically, but they don’t really have some 

sort of objective other than just satisfying statistical consistency with the prompt.”(33) In 

fact, inaccurate and hallucinatory information coming from foundation models has caused 

thousands in the field to sign onto an open letter calling for a 6-month moratorium on 

developing them further(34), while others feel this is an overreaction.

Research, as well as spirited debate, regarding large foundation models will almost certainly 

continue as scientists strive to resolve outstanding problems and develop best practices for 

their use. With luck, foundation models will soon overcome current limitations and be ready 

to aid in medical imaging tasks.

We as clinicians need to be ready for that day. Whether or not they are actively involved 

in technical AI research, sonographers, echocardiographers, medical imaging companies, 

clinical IT staff, and hospital administrators all have roles to play in the responsible adoption 

of AI for clinical use, across imaging modality and at several stages in the imaging 

pipeline(35). These include readying imaging data formats and infrastructure for AI(36), 

understanding the potential and pitfalls of AI models, understanding how data is used for AI, 

advocating for patients as needed, and testing AI-enabled products(2).

After several prompt attempts, the title for this talk was inspired, but not actually generated, 

by ChatGPT. While foundation models have potential, they are not quite ready for clinical 

use. However, given the pace of AI research, that may change quickly—especially if, in the 

tradition of echocardiography, clinicians, computer scientists, and engineers come together 

to push this new technology forward.
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Figure 1. 
(A) A histogram of guidelines documents per year produced by the American Society 

of Echocardiography and partner institutions. Arrows depict the start of the Intersocietal 

Accreditation Commission for Echocardiography and the American National Board 

of Echocardiography. (B)-(E) Bland-Altman limits of agreement on several common 

echocardiography measurements, demonstrates that there is still significant measurement 

variability. Adapted with permission from . Examples of benign skin lesions (F)-(G) 

compared to malignant ones (H)-(I), where a model attempting to diagnose a malignant 
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lesion may overfit on image features such as ink marks, rulers, and scar rather than on 

clinically relevant features. (Images from DuckDuckGo search for images free to share, 

modify, and use.)
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Figure 2. 
(A) Example text prompt and text response from ChatGPT large language model. (B) 

Example text prompt and image response from DALL-E model, via Microsoft Bing. 

(C) Example image with segmentation results from Meta’s (formerly Facebook) Segment 

Anything Model, adapted from (37–42). The white cursor represents a user who may prompt 

the model by choosing an automatic segment and/or indicating an object in the image to 

receive segmentation.
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Figure 3. 
(A) Model size by year for selected foundation models. Adapted with permission from (43). 

(B) Selected job categories along an index of how those jobs may be affected (positively or 

negatively) by AI imaging models (y-axis) and AI language models (x-axis). Adapted from 

(22).
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Figure 4. 
(A) An example apical 4-chamber ultrasound image, with (B) all four chambers segmented 

by an ML model that required no user labels(26). (C) An attempt to use the Segment 

Anything Model (SAM) for ultrasound chamber segmentation required several user clicks 

(green and red stars) to segment the leq ventricle alone (D); this process would need to 

be repeated to get the rest of the chambers. (SAM without user prompts fared poorly, not 

shown.)
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Figure 5. 
(A) Human-drawn response to a Pictionary task, “draw the continuity equation,” holds 

physical and clinical meaning. (B) the same prompt to a foundation model (shown here, 

DALL-E via Microsoft Bing) produced an image that lacked meaning.
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