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Summary

1. Ecologists have argued about the commonness and strength of interspecific competition

between insect herbivores, but facilitation between herbivores has received much less consider-

ation. We previously found that when two species of folivorous caterpillars co-occurred on a

shared host plant, feeding by early season tigermoth caterpillars reduced the growth and reproduc-

tion of later season tussock caterpillars. However, densities of tussock caterpillars in summer were

positively correlated with densities of tiger moth caterpillars the following spring.

2. In this study, we experimentally manipulated numbers of feeding tussock caterpillars and found

that they facilitated tiger moth caterpillars.

3. The depth of the litter layer beneath host lupine bushes was positively correlated with the num-

ber of tussock caterpillars feeding on each bush. Experimental additions of litter beneath lupine

canopies during summer resulted in increased numbers of tiger moth caterpillars in the following

spring, indicating a causal role of litter. Litter potentially provides food, habitat and protection

from desiccation and predation.We failed to find evidence that tussock caterpillars facilitated tiger

moth caterpillars bymechanisms independent of litter.

4. Our study demonstrates that facilitation may operate between insect herbivores, across life-

stages through indirect interactions that are non-trophic. Facilitation operated by a novel mecha-

nism, the accumulation of litter which was a by-product of feeding by one species was valuable to a

second species. Facilitation persisted in time and space far beyond the creation of litter by tussock

caterpillars which should be considered important ecosystem engineers from the point of view of

tiger moths. Facilitations that involve habitat modification may generally connect species that do

not interact directly or trophically, and have not previously been considered to affect one another.

Key-words: caterpillar, competition, ecosystem engineer, food web, herbivore, interactions,

litter

Introduction

Almost every plant is fed upon by several herbivore species,

although these herbivores may be separated in space (which

plant tissues they exploit) and in time (when they are active).

Traditionally, interactions between different herbivore spe-

cies were assumed to be relatively weak and unimportant

(Hairston, Smith & Slobodkin 1960; Lawton & Strong 1981)

and to involve mainly interference or exploitative competi-

tion.More recently, researchers have come to appreciate that

indirect interactions between herbivores are common and

important (Karban 1986; Kaplan & Denno 2007; Ohgushi

2008). In particular, herbivores frequently alter their shared

host plant (Karban & Baldwin 1997), their shared natural

enemies (Holt & Lawton 1994), or their shared physical habi-

tat (Jones, Lawton & Shachak 1994, 1997). Such alterations

can have profound indirect effects on co-occurring herbivore

species. When the interacting species do not overlap in time

and space, it becomes important to explicitly include their

indirect effects as these significant elements may be easily

overlooked (Hastings et al. 2007; Ohgushi 2008).

Coincidental with this appreciation of indirect inter-

actions, there has also been a slower realization that many

interactions among species involve facilitation (Bertness &

Callaway 1994; Bruno, Stachowicz & Bertness 2003; Crain &

Bertness 2006; Ohgushi 2008). Some of the under-representa-

tion of positive interactions in the literature stems from a

difficulty in elucidating the responsible mechanisms. For

example, there have been many reported cases of ‘induced

susceptibility,’ in which prior feeding by one herbivore*Correspondence author. E-mail: rkarban@ucdavis.edu
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appears to make the host plant more suitable to a second her-

bivore (Karban & Baldwin 1997:116–119). However, this

common empirical finding has not been incorporated into

ecological theory because we have not understood themecha-

nisms involved. For example, early work by Williams &

Myers (1984) showing that trees attacked by tent caterpillars

subsequently supported larger populations of fall webworm

caterpillars was interpreted as ‘contradicting’ reports of

induced resistance, but not as demonstrating a different and

important phenomenon of facilitation because mechanisms

responsible were unknown.

Positive interactions have been hypothesized to be most

important in environments with high levels of abiotic stress

or high consumer pressure (Bertness & Callaway 1994;

Bruno, Stachowicz & Bertness 2003; Crain & Bertness 2006).

Under these conditions, facilitation allows species to thrive

where conditions would otherwise be inhospitable. When

abiotic stress is great, positive interactions help to ameliorate

these conditions, as exemplified by ‘nurse plants’ that provide

shade and moisture (e.g., Callaway 1992) or ‘foundation spe-

cies’ that provide habitat for other species (e.g., Dayton 1971;

Irving & Bertness 2009). Under conditions where herbivore

pressure is high, positive interactions allow palatable species

to escape bymaking them less detectable or less vulnerable to

herbivores (e.g., Barbosa et al. 2009). When species affect

each other indirectly by modifying their shared physical envi-

ronments we refer to these species as ‘ecosystem engineers’

(Jones, Lawton & Shachak 1994, 1997). Interactions involv-

ing ecosystem engineering often persist over time and extend

over large spatial scales (Hastings et al. 2007; Ohgushi 2008).

This study examines the relationship between two exter-

nally feeding macro-lepidoptera that share Lupinus arboreus

as a primary host plant. Early experiments with these two

caterpillars examined whether feeding by each of the species

affected the other. Tussock moth caterpillars grew less

quickly, attained smaller female pupal weights, and produced

fewer eggs when fed on leafy branches that had previously

hosted tiger moth caterpillars (Harrison & Karban 1986). In

a later common garden study, L. arboreus plants that had

supported higher numbers of tussock caterpillars during the

summer of 1997 also supported higher numbers of tiger moth

caterpillars during the spring of 1998, the opposite of a priori

predictions based on an expectation of induced resistance

(Karban & Kittelson 1999). In this common-garden study,

we did not experimentally manipulate the levels of tussock

caterpillars which prevented us from distinguishing effects

that were caused by tussock caterpillars from other differ-

ences among bushes that both caterpillar species may have

responded to in a correlatedmanner.

In the present study, we sought to evaluate the effects of

tussock caterpillars active during summer on abundances of

tiger moth caterpillars active from summer through the fol-

lowing spring, as well as the causes for those effects. We

experimentally removed or added tussock caterpillars to

lupine bushes at 12 sites during the summer, and monitored

the number of tiger moth caterpillars that were present on

those bushes during the following spring. As tussock moth

caterpillars had positive effects on tiger moth caterpillars we

sought to determine the ecological mechanisms responsible.

Differences in the abundance of tiger moth caterpillars could

have been caused by indirect effects mediated by shared

predators or by changes in the quality and quantity of lupine

litter, the habitat of early instar tiger moth caterpillars. We

evaluated these two possibilities by assaying survival of tiger

moth caterpillars exposed to predation and by measuring

litter depth at bushes that had received varying levels of

tussock caterpillars. Finally, we conducted an experiment in

which we added or removed litter from beneath the canopies

of lupine bushes to examine if this habitat characteristic

affected numbers of tiger moth caterpillars.

Materials andmethods

STUDY SYSTEM

Western tussock moths (Orgyia vetusta Boisduval, Lymantriidae)

occur in localized outbreaks that exceed 100 caterpillars per bush,

and outbreaksmay persist for at least a decade at sites along the coast

of California (Harrison 1997). During non-outbreak years, this spe-

cies becomes rare and densities fall below detectable levels. Western

tussock moths generally have a single generation per year and cater-

pillars may defoliate lupine bushes during the summer. Bushes that

were attacked and even defoliated by tussock moth caterpillars often

recovered and produced full complements of leaves, flowers and

seeds in the following growing season (Harrison & Maron 1995). At

the study site, tussock moths overwinter as eggs, and caterpillars feed

most actively during summer on L. arboreus and to a lesser extent on

L. chamissonis (Harrison&Maron 1995;Harrison 1997).

The ranchman’s tiger moth (Platyprepia virginalis Boisduval,

Arctiidae) is also found in association with Lupinus arboreus and to a

lesser extent with other host species (Karban et al. 2010). Although

its populations vary widely among years (by almost three orders of

magnitude), this species never reaches the outbreak densities of the

tussock moth and does not defoliate lupine bushes (Karban & de

Valpine 2010).Mating occurs in the late spring and early instar cater-

pillars pass the summer and autumn feeding in lupine litter. Later

instar caterpillars feed on leaves of lupine and other host species dur-

ing winter and spring before pupating in late spring (Karban et al.

2010). Like the tussockmoth, the ranchman’s tiger moth is univoltine

although most feeding occurs in spring. Both caterpillar species are

attacked by parasitoids, primarily tachinids, although there is no

overlap in the parasitoid species that attack the two moth species

(Brodmann, Wilcox & Harrison 1997; Karban & English-Loeb

1999). Ants, particularly Formica lasioides, are important predators

of caterpillars of both species, particularly small caterpillars

(Harrison & Wilcox 1995 and R. Karban, personal observation).

F. lasiodes have been found to become satiated at sites of high densi-

ties of tussock caterpillars whichmay allow individuals of both cater-

pillar species to escape predation during tussock outbreaks (Harrison

&Wilcox 1995).

Lupinus arboreus is the most common shrub throughout the

reserve, although its densities fluctuate over time (Barbour et al.

1973; Strong et al. 1995). Bushes are roughly 1 m tall with a radius of

1–2 m and they occur in both wet and dry habitats. Litter accumu-

lates during summer, reaching depths >15 cm thick in summer, but

it decays during winter months. The litter layer is underlain by

organic material or mineral soil, depending uponmicrosite.

1096 R. Karban et al.
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EFFECTS OF THE NUMBER OF TUSSOCK CATERPILLARS

ON TIGER MOTH CATERPILLARS

We added or removed tussock caterpillars from lupine bushes (L. ar-

boreus) and recorded the number of tiger moth caterpillars on these

bushes the following spring, once they became conspicuous. These

experiments were conducted at 12 sites in largely grassland and dune

habitats at the Bodega Marine Reserve, CA (sites are described in

Appendix A; one site was excluded from this experiment because an

insufficient number of L. arboreus bushes were present). We selected

15 healthy bushes separated by at least 5 m at each site and randomly

assigned five bushes to each of three treatments consisting of tussock

caterpillar addition, tussock caterpillar removal and unmanipulated

controls. The three treatments were unbiased with respect to initial

litter depth on 14 August (anova F2,161 = 0Æ37, P = 0Æ69). We

removed all visible tussock caterpillars from removal bushes on 15

August, 23August, 26August and 7 September 2009 and added them

to the caterpillar addition bushes. We transferred a mean of 19Æ2
(±3Æ2 SE) tussock caterpillars per bush. We recorded the number of

tiger moth caterpillars on these same bushes on 27 February 2010, by

which time they had become large enough to be conspicuous.We had

observed that the ground beneath the canopy of bushes that were

defoliated by tussock moths accumulated a thick layer of shed leaves,

partly consumed leaf fragments and frass in late summer. This is the

time when early instar tiger moth caterpillars are living hidden in the

litter.Wemeasured the thickness of the litter layer beneath each bush

on 23 August 2009, 1 week after applying the tussock caterpillar

treatments.

As appropriate for count data with frequent zero values (e.g.,

Crawley 2007), we analysed the number of tiger moth caterpillars

observed on each bush using General LinearModels (GLM’s) with a

Poisson distribution of sampling error and a natural logarithmic link

function performed. The analysis was performed in R version 2Æ13Æ1
(R Development Core Team 2011) with site as a random factor, tus-

sock caterpillar treatment (removal, addition, control) as a fixed fac-

tor and litter depth as a covariate. We used model selection based on

Akaike’s Information Criterion (AIC), where models were preferred

if AIC values were lower and the change in AIC (DAIC) was <2Æ0.
As the model with the lowest AIC value and the next best model dif-

fered byDAIC<2Æ0, out of parsimony we selected the model with the

fewest parameters as our preferred model (e.g., Crawley 2007). We

considered all possible models up to the three way interaction of

site*tussock treatment*litter depth interaction. The tussock caterpil-

lar addition treatment was more effective at increasing the number of

tussock caterpillars than the removal treatment was at producing

bushes that were completely free of tussock caterpillars. Addition

treatments had approximately 50% more tussock caterpillars than

controls, but removals were not noticeably different than controls

(personal observation).

One possible mechanism that could affect numbers of tiger moth

caterpillars associated with tussock treatments is predation by ants,

particularly F. lasioides, a common ant at our study site (Harrison &

Wilcox 1995). We have found that most caterpillars are removed by

ants within the first 72 h that they are experimentally placed at sites

with ants (personal observation). We tested whether ant access

reduced caterpillar survival. We placed one-second-instar tiger moth

caterpillar in a plastic deli container (11 cm diameter, 540 ml; Solo

Cup Co., Highland Park, IL, USA) beneath the canopy of each of

the 15 bushes at each of the 11 sites and recorded the fates of the cat-

erpillars over a 72 h period during August 2010. Deli containers were

modified to contain fiberglass window screen (mesh opening 1Æ1 mm)

on the bottom to allow contact with the soil and to allow workers of

F. lasioides and other ants to enter and leave at will. Lids on the con-

tainers prevented the caterpillars from leaving and several flowering

stems of lupine were placed in each container to provide food for the

caterpillars. We compared survival of tiger moth caterpillars beneath

bushes which had had tussocks added, removed, or unmanipulated

controls using aG-test of association (Sokal &Rohlf 1969).

EFFECTS OF TUSSOCK MOTH CATERPILLARS ON L ITTER

DEPTH AND QUALITY

We hypothesized that prior feeding by tussock moths increased litter

depth and altered litter composition beneath lupine canopies. We

selected lupine bushes and measured the number of tussock caterpil-

lars on each bush, the depth of the litter beneath that bush and the

ratio of carbon to nitrogen in the litter for use in correlational tests.

Three bushes were haphazardly selected at each of the 12 sites

(Appendix A) that had not been used in the tussock manipulation

experiment and an additional 12 bushes were selected from one of the

sites (‘Artemisia’). We estimated the mean number of tussock cater-

pillars feeding on each selected bush during weekly visual censuses in

August, 2008, when they were most abundant. We measured the

depth of litter beneath each bush on 13 August by placing a ruler

through the litter until it hit the mineral soil. This is the time when

early instar tiger moth caterpillars are living in the litter.We obtained

an estimate of litter quality by examining the concentrations of C and

N in litter samples collected at this time from 24 bushes (one bush

from each of the 12 sites plus the additional 12 bushes from the ‘Arte-

misia’ site). Litter samples were dried in an oven, ground, and analy-

sed for total carbon and nitrogen at the UC Davis Analytical Lab

(http://anlab.ucdavis.edu). We hypothesized that feeding by tussock

caterpillars increased litter depth and affected litter quality. We

analysed the relationship between the number of tussock caterpillars

on each bush and the litter beneath it using linear regression with the

number of tussock moths on each bush as a predictor and litter depth

andC toN ratio as responses variables in two analyses.

EFFECTS OF LITTER DEPTH ON TIGER MOTH

CATERPILLARS

Wehypothesized that the positive effect of tussock caterpillar feeding

on tiger moth caterpillars was mediated by an increase in litter depth;

we tested this hypothesis by experimentally manipulating the litter

beneath bushes during the summer of 2010, and observing the num-

ber of tiger moth caterpillars on those bushes the following March.

We selected 90 L. arboreus bushes east of the ‘housing’ at the reserve

(38Æ319�N, 123Æ058�W) and randomly assigned them to one of the

three treatments: litter addition, litter removal, or an unmanipulated

control. We selected this site for this experiment because it consis-

tently supported high densities of tiger moth caterpillars making it

more likely that we would have a sufficiently large number of cater-

pillars to measure a result. We collected the existing litter and above-

ground vegetation (all forb and grass species in the understory) from

beneath those bushes assigned to the litter removal treatment on 5

July, before P. virginalis oviposition occurred for the season. It was

difficult to separate the litter from living forbs and grasses. As such,

our litter addition and removal treatments included lupine litter as

well as other plant material in small amounts. This litter was added

beneath the canopies of those bushes assigned to the litter addition

treatment at approximately the same time that litter was naturally

accumulating beneath bushes hosting tussock moth caterpillars. It

also coincides with the time when tiger moth caterpillars reside in the

litter. We measured the depth of litter on 16 August to assess the

Facilitation between herbivores 1097
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success of our treatments. We visually assayed the number of tiger

moth caterpillars on each bush on 17 March 2011 and analysed the

effects of our litter manipulation treatments using a simple single fac-

tor GLM with Poisson errors and a natural log link function con-

ducted in R.

Results

EFFECTS OF THE NUMBER OF TUSSOCK CATERPILLARS

ON TIGER MOTH CATERPILLARS

The preferred General Linear Model showed that lupine

bushes to which we added tussock caterpillars had, on

average, approximately 90% more tiger moth caterpillars

that survived the following spring as unmanipulated bushes

or those from which we removed tussock caterpillars

(Fig. 1, Table 1b, z = 2Æ69, 1 d.f., P = 0Æ007). The pre-

ferred model included site, tussock moth addition ⁄ removal

treatment as factors and litter depth as a covariate. We

conducted censuses of tiger moth caterpillars in February,

when they became more conspicuous, although the effect

could have occurred any time between August and the fol-

lowing February. In fact, most mortality occurs during the

summer when tiger moth caterpillars are early instars in

the litter.

Recalling that earlier investigations indicated an absence

of induced effects through plants (Karban &Kittelson 1999),

this effect (Fig. 1) could potentially have been caused by

differences in litter depth or quality associated with tussock

caterpillar feeding. Litter depth, measured 1 week after the

first manipulation (addition ⁄ removal) of tussock caterpillars,

had a statistically significant and substantial effect on tiger

moth caterpillar numbers (z-values in Table 1b, Fig. 1).

However, removing site from the preferred model produced

a large change in AIC, indicating a strong effect of site on

tiger moth caterpillar numbers (Table 1a; in addition, based

on z-values in Table 1b four sites differed from site 1 in tiger

moth caterpillar numbers at P < 0Æ05). Alternatively, the

effect we observed (Fig. 1) could have been caused by differ-

ences in predation rates experienced by early instar tiger

moth caterpillars beneath bushes with different densities of

tussock caterpillars. However, we found no differences in

rates of survival of tiger moth caterpillars associated with the

three tussock caterpillar treatments during a 72-h assay con-

ducted during summer (Table 2; G = 0Æ20, d.f. = 2,

P = 0Æ90). Nonetheless, 18Æ4% of tiger moth caterpillars

were consumed in 72 h, showing that predation rates on

exposed caterpillars can be substantial.

EFFECTS OF TUSSOCK MOTH CATERPILLARS ON L ITTER

DEPTH AND QUALITY

Bushes with more tussock caterpillars naturally occurring

had deeper litter than those with fewer caterpillars (Fig. 2,

R2 = 0Æ49, d.f. = 47, P = 0Æ001). This litter contained frass

from the tussock caterpillars, partially consumed leaf frag-

ments and damaged leaves that had been abscised. There was

no detectable relationship between the number of tussock

caterpillars feeding on a bush and the C toN ratio of the litter

beneath that bush (data not shown, R2 = 0Æ07, d.f. = 23,

P = 0Æ20) although we had a smaller sample size and less

power to detect this effect.

EFFECTS OF LITTER DEPTH ON TIGER MOTH

CATERPILLARS

Our litter manipulations created bushes with the desired

differences in litter depths: by 16 August, 6 weeks following

the manipulations, mean litter depths were 0Æ82 ± 0Æ23
(SE) cm for removal, 2Æ51 ± 0Æ39 cm for control and

2Æ83 ± 0Æ52 cm for addition treatments, and these were sta-

tistically distinguishable (F2,86 = 14Æ4, P = 0Æ001). Most

of the change in litter depth came from the litter removal

treatment. The litter manipulations affected the number of

tiger moth caterpillars found on bushes of the three treat-

ments in the following spring (Fig. 3, v2 = 22Æ5,
P < 0Æ001). Comparisons of tiger moth caterpillar num-

bers for litter treatments indicated that the differences were

primarily between the litter addition treatment and other

two treatments, which were similar to one another (com-

parison of GLM parameter estimates using z-tests:

z = 3Æ7, P < 0Æ001 for addition vs. control, z = 4Æ1
P < 0Æ001 for addition vs. removal, z = 0Æ6 P = 0Æ5 for

control vs. removal). Number of tiger moth caterpillars

in the litter-addition treatment was 86% greater than

controls.
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Fig. 1. The number of Platyprepia virginalis (tiger moth) caterpillars

on bushes with tussock caterpillars added (solid circles and solid

line), removed (solid triangles and dashed line), or unmanipulated

controls (unfilled circles and dotted line). The dotted and dashed lines

overlap. Curves are exponential curves because they are back-

converted from ln(number of tiger moth caterpillar) that are used in

Poisson models. Mean numbers (± 1 SE) of tiger moth caterpillars

on bushes with tussock caterpillars added was 0Æ93 ± 0Æ26, on con-

trol bushes was 0Æ49 ± 0Æ15 and on bushes with tussock caterpillars

removedwas 0Æ49 ± 0Æ14.
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Discussion

We initially expected these two herbivore species to compete

either directly for food or habitat or indirectly by changing

the quality of their L. arboreus hosts or through a shared

predator. This expectation was fulfilled in part as bushes that

supported tiger moth caterpillars were diminished as hosts

for tussock caterpillars that feed later in the season (Harrison

& Karban 1986). These negative effects were substantial and

resulted in reductions in larval growth rates of 10–27%,

reductions in female pupal weights of 25% and reductions in

egg production of 48%. However, bushes that had supported

tussock caterpillars hosted greater, not reduced, numbers of

tiger moth caterpillars, suggesting a positive interaction

rather than competition (Karban & Kittelson 1999). Our

present results corroborated this pattern as bushes to which

we added tussock caterpillars had an average of approxi-

mately 90%more tiger moth caterpillars than control bushes

Table 1. Effects of experimental manipulation of tussock caterpillars on number of Platyprepia virginalis caterpillars from general linear models

with Poisson errors and a log link function

(A)Model fit comparisons

Model Model terms Residual d.f. AIC DAIC

1. Full model S+L+T+S*L+S*T+L*T+S*L*T 94 323Æ6 45Æ5
2. Full model – S*L*T S+L+T+S*L+S*T+L*T 114 294Æ1 16

3.Model 2 – S*L S+L+T+S*T+L*T 124 288Æ3 10Æ2
4.Model 3 – S*T S+L+T+L*T 144 278Æ1 0

5.Model 4 – L*T S+L+T 146 279Æ2 1Æ1
6.Model 5– L S+T 147 300Æ6 22Æ5
7.Model 5 – T S+L 148 287Æ6 9Æ5
8.Model 5 – S L+T 156 371Æ62 93Æ52

(B) Parameter estimates for model 5

Estimate SE z-value P

Intercept (Site 1, Tussock addition) )0Æ701 0Æ374 )1Æ87 0Æ06
DSite 2 )1Æ85 1Æ06 )1Æ75 0Æ08
DSite3 )17Æ8 1367 )0Æ01 0Æ99
DSite 4 0Æ43 0Æ42 1Æ04 0Æ30
DSite 5 )1Æ63 0Æ78 )2Æ09 0Æ04
DSite 6 0Æ67 0Æ43 1Æ54 0Æ12
DSite 7 )2Æ25 1Æ05 )2Æ13 0Æ03
DSite 8 )17Æ3 1452 )0Æ01 0Æ99
DSite 9 )2Æ23 1Æ05 )2Æ11 0Æ04
DSite 10 1Æ16 0Æ38 3Æ06 0Æ002
DSite 12 0Æ03 0Æ44 0Æ06 0Æ95
Tussock removal )0Æ66 0Æ24 )2Æ69 0Æ007
Tussock control )0Æ71 0Æ25 )2Æ86 0Æ004
Litter (slope) 0Æ175 0Æ036 4Æ82 <0Æ001

InAmodels with the lowest AIC value are preferred and those withDAIC<2 are considered to be equivalent in fit and simpler models of equiva-

lent fit are preferred.DAIC is expressed relative to themodel with the lowest AIC value. S, Site; L, Leaf litter; T, tussockmoth caterpillar treat-

ment; and d.f., degrees of freedom. B presents the parameter values for the preferredmodel (Model 5 in A). Values expressedwith a delta value

are differences in intercepts of Ln(tigermoth caterpillars) from site 1 tussock addition treatment.

Table 2. Fates of second instar tiger moth caterpillars over 72 h

beneath bushes with tussock caterpillars added, removed or

unmanipulated controls

Treatments Survived Died Total % survived

+ tussocks 44 11 55 80

Control 45 9 54 83

) tussocks 44 10 54 81

Number of tussock moth caterpillars
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Fig. 2. The depth of litter beneath 48 bushes as a function of the

number of tussock caterpillars feeding on those bushes. The line

shows the least squares regression.
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or those from which we removed tussock caterpillars

(Fig. 1). The experimental manipulation confirmed that tus-

sock caterpillars caused the increase in tiger moth caterpillar

numbers. The interaction between these two species was

highly asymmetric; tiger moth caterpillars reduced the suc-

cess of tussock caterpillars whereas tussock caterpillars

increased the numbers of tiger moth caterpillars. In this case,

the positive effect size of facilitation was greater than the neg-

ative effect size, although the two are not necessarily directly

comparable.

Tussock caterpillars acted as ecosystem engineers, convert-

ing lupine leaves into litter. Tussock caterpillars caused an

increase in the litter depth beneath bushes (Fig. 2) and add-

ing litter increased numbers of tiger moth caterpillars

(Fig. 3). It is not clear why a small increase in litter depth

achieved by our litter addition treatment translated into a

large increase in tiger moth caterpillar numbers. Litter serves

as a food source for early instar tiger moth caterpillars and

provides habitat that may protect them from natural ene-

mies, desiccation and other dangers. These services are diffi-

cult to isolate and evaluate independently. We doubt that

tiger moth caterpillars ever experience absolute food short-

ages as they never defoliate lupine bushes and there always is

live lupine foliage available to them (RK personal observa-

tion). In optimal, wet, habitat there was no detectable

relationship between lupine cover and abundance of tiger

moth caterpillars although in suboptimal, upland habitat the

correlation between lupine cover and caterpillar numbers

was strong (unpublished data). This pattern fits with recent

generalizations that ecosystem engineers and facilitationmay

both have stronger effects in suboptimal environments and

are less likely to be important where conditions are otherwise

more favourable (Bruno, Stachowicz & Bertness 2003; Crain

&Bertness 2006).

Our results consistently indicate that litter is important for

early instar tiger moth caterpillars, but do not indicate the

precise mechanisms involved. In addition to food, litter may

also provide a complex habitat that makes it harder for pre-

dators, such as ants, to find or handle young caterpillars

(Freitas & Oliveira 1992). Young tiger moth caterpillars were

also more vulnerable to entomopathogenic nematodes when

there was no litter and spent most of their time above the soil

surface and away from nematodes when this was possible

(Karban et al. 2011). At the study site, outbreaks of tussock

caterpillars had no measurable effects on numbers of forag-

ing ants, but the percentage of tussock caterpillars attacked

by ants was reduced in areas with outbreak densities of

tussock caterpillars (Harrison & Wilcox 1995). We have

observed ant predation of early instar tiger moth caterpillars

and hypothesized that a similar benefit may accrue to them in

the litter beneath bushes supporting outbreaks of tussock

caterpillars. If this mechanism was operating, we expected

that rates of mortality of early instar tiger moth caterpillars

would be reduced beneath bushes with added tussock cater-

pillars, although our data failed to meet this expectation

(Table 2). One possible explanation for these negative results

is that our experiments in deli-containers may not have

allowed caterpillars to hide in the leaf litter. We failed to find

evidence that predation on caterpillars by invertebrate or

vertebrate predators, other than ants, was important

(unpublished data).

Litter may provide other benefits important to young

caterpillars. P. virginalis has a large range throughout west-

ern North America, although most of the locations where it

is found are at higher elevations with cooler temperature

regimes than the study site, as well as close proximity to water

(Opler et al. 2011). Caterpillars in lab colonies do poorly on

warm days, but survive in a refrigerator (personal observa-

tion). Thick littermay allow caterpillars to findmicrohabitats

that are cooler andmoister than litter-free conditions.

By indirectly causing a thick accumulation of litter under

bushes that they defoliated (Figure 2), tussock caterpillars

facilitate tiger moth caterpillars (Fig. 3). This unexpected

result adds to a growing list of examples of facilitation among

species that live with stressful abiotic conditions and the

threat of predation (see Introduction). Most of the published

examples of facilitation involve plants and marine inverte-

brates, although numerous examples of positive interactions

between herbivores have been reported (Karban & Baldwin

1997; Denno & Kaplan 2007; Ohgushi 2007). These litera-

tures dealing with facilitation and with interactions between

herbivores have historically been poorly integrated, and (as

our study reveals) the mechanisms behind such positive

effects merit more attention.

Facilitation of one herbivore by the actions of another has

been reported to occur by one of several mechanisms: feeding

by one herbivore (i) improves the apparency or nutritional

quality of a shared host plant, (ii) causes the shared host plant

to regrow highly suitable tissues, or (iii) involves the con-

struction of structures that provide habitat, food, or enemy-

free space for other species (Marquis & Lill 2007; Ohgushi

2007). The mechanism described here involves a waste prod-

uct or induced plant response to feeding by tussock caterpil-

lars in the lupine canopy that provides food, habitat and

probably improved microclimate and enemy-free space in a

different microhabitat, the litter layer, for tiger moth caterpil-

lars. There are several other examples of above-ground feed-

ing by herbivores that change the quality of litter inputs

below-ground, although these emphasize decomposition and

mineralization processes in the soil and do not link herbivory
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Fig. 3. The number of Platyprepia virginalis (tiger moth) caterpillars

(mean ± 1 SE) on bushes beneath which litter had been added (+),

removed ()), or unmanipulated controls. Error bars are asymmetric

because values were back-converted from ln-values.
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in the canopy to feeding on living or decaying leaves at the

soil surface (Bardgett,Wardle &Yeates 1998). At this time, it

is unclear whether facilitations of the sort described here will

prove to be common as ecologists have only recently begun

to examine interactions between above-ground herbivores

and those that reside or feed on or in the soil (Bardgett,

Wardle & Yeates 1998; Bardgett & Wardle 2003; van der

Putten et al. 2009; van Dam & Heil 2011). Regardless of the

mechanisms involved, it is clear that this facilitation involves

‘ecosystem engineering’ of the physical environment rather

than the trophic interactions that ecologists have examined

in the past. Althoughwe do not know the precisemechanisms

of facilitation, in this example it probably involves differences

in mortality rather than movement as early instar tiger moth

caterpillars seldommove between bushes (unpublished data).

This facilitation occurs between two herbivores that are sepa-

rated in both time and space. Separation may by common for

interactions involving induced plant responses to herbivory

(Karban & Baldwin 1997) or ecosystem engineering

(Hastings et al. 2007). The consequences of negative interac-

tions between organisms that are separated in time and space

can have important theoretical and management implica-

tions (Ratikainen et al. 2008) and further consideration of

consequences for positive interactions is merited as well. We

agree with Ohgushi (2008) that a broader consideration of

interaction webs, rather than trophic food webs, will enable

our field to progress most rapidly.
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Appendix A

Location and description of study sites.

Site Name

Latitude –

38�N
Longitude –

123�W Habitat

S curve 0Æ3137 0Æ0618 Grassland

NE of curve 0Æ3145 0Æ0616 Juncus

Lower draw 0Æ3143 0Æ0666 Grassland

Across from lab 0Æ3183 0Æ0698 wet grassland

Top of the hill 0Æ3185 0Æ0693 Dune

Hemlock 0Æ3191 0Æ0710 wet grassland

Artemisia 0Æ3217 0Æ0749 Grassland

N dune 0Æ3215 0Æ0724 Dune

Top ofMussel Pt. 0Æ3221 0Æ0766 Grassland

Dormmarsh 0Æ3194 0Æ0572 Juncus nearmarsh

Rabbit valleya 0Æ3207 0Æ0593 Dune

Edge ofmarsh 0Æ3201 0Æ0567 Grassland

nearmarsh

aNot included in experiment manipulating tussock caterpillars.
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