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Abstract

The problem of super-resolution is concerned with the reconstruction of temporally/spatially 

localized events (or spikes) from samples of their convolution with a low-pass filter. Distinct 

from prior works which exploit sparsity in appropriate domains in order to solve the resulting 

ill-posed problem, this paper explores the role of binary priors in super-resolution, where the spike 

(or source) amplitudes are assumed to be binary-valued. Our study is inspired by the problem 

of neural spike deconvolution, but also applies to other applications such as symbol detection 

in hybrid millimeter wave communication systems. This paper makes several theoretical and 

algorithmic contributions to enable binary super-resolution with very few measurements. Our 

results show that binary constraints offer much stronger identifiability guarantees than sparsity, 

allowing us to operate in “extreme compression” regimes, where the number of measurements 

can be significantly smaller than the sparsity level of the spikes. To ensure exact recovery in this 

“extreme compression” regime, it becomes necessary to design algorithms that exactly enforce 

binary constraints without relaxation. In order to overcome the ensuing computational challenges, 

we consider a first order auto-regressive filter (which appears in neural spike deconvolution), and 

exploit its special structure. This results in a novel formulation of the super-resolution binary spike 

recovery in terms of binary search in one dimension. We perform numerical experiments that 

validate our theory and also show the benefits of binary constraints in neural spike deconvolution 

from real calcium imaging datasets.
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Index Terms—

Binary compressed sensing; super-resolution; spike deconvolution; sparsity; binary search; beta-
expansions

I. Introduction

The problem of recovering localized events (spikes) from their convolution with a blurring 

kernel, arises in a wide range of scientific and engineering applications such as fluorescence 

microscopy [1], neural spike deconvolution [2]-[4], hybrid millimeter wave (mmWave) 

communication [5], to name a few. Consider K temporal spikes, which can be represented 

as:

xhi t =
k = 1

K
ckδ t − nkThi

Here, the high-rate spikes are supported on a fine temporal grid with spacing Thi, nk ∈ ℤ is 

an integer corresponding to the time index of the kth spike and ck denotes its amplitude. The 

convolution of spikes with a filter ℎ t  is typically uniformly (down)sampled at a (low) rate 

T lo = DThi D > 1 , yielding measurements:

y n = xhi t ⋆ ℎ t t = nTlo = ∑
k = 1

K
ckℎ nT lo − nkThi

(1)

The goal of super-resolution is to recover the spike locations nk and amplitudes 

ck, k = 1,2, ⋯, K from a limited number M  of low-rate samples y n n = 0
M − 1. The problem 

is typically illposed due to systematic attenuation of high-frequency contents of the spikes 

by the low-pass filter ℎ t . In order to make the problem well-posed, it becomes necessary to 

exploit priors such as sparsity [6]-[9] and/or non-negativity [10], [11]. In recent times, there 

has been a substantial progress towards developing efficient algorithms for provably solving 

the super-resolution problem [7]-[19].

In this paper, we investigate the problem of binary super-resolution, where the amplitudes 

of the spikes are known apriori to be ck = A, but their number K  and locations nk  are 

unknown. Motivated by the problem of neural spike deconvolution in two-photon calcium 

imaging [2], [20], we will focus on a blurring kernel that can be represented as a stable 

first order auto-regressive (AR(1)) filter. Each neural spike results in a sharp rise in Ca2+ 

concentration followed by a slow exponential decay (modeled as the impulse response of 

an AR(1) filter), which results in an overlap of the responses from nearby spiking events, 

leading to poor temporal resolution [2], [21].
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A. Related Works

Early works on super-resolution date back to algebraic/subspace-based techniques such as 

Prony’s method, MUSIC [12], [22], ESPRIT [8], [23] and matrix pencil [9], [24]. Following 

the seminal work in [6], substantial progress has been made in understanding the role of 

sparsity as a prior for super-resolution [7], [25], [26]. In recent times, convex optimization-

based techniques have been developed that employ Total Variational (TV) norm and 

atomic norm regularizers, in order to promote sparsity [7], [18], [19], [25], [26] and/or 

non-negativity [10], [11], [27]. These techniques primarily employ sampling in the Fourier/

frequency domain by assuming the kernel ℎ t  to be (approximately) bandlimited. However, 

selecting the appropriate cut-off frequency is crucial for super-resolution and needs careful 

consideration [25], [28]. Unlike subspace-based methods, theoretical guarantees for these 

convex algorithms rely on a minimum separation between the spikes, which is also shown 

to be necessary even in absence of noise [29]. The finite rate of innovation (FRI) framework 

[30]-[34] also considers the recovery of spikes from measurements acquired using an 

exponentially decaying kernel, which includes the AR(1) filter considered in this paper. 

In the absence of noise, FRI enables the exact recovery of K spikes with arbitrary amplitudes 
from M = Ω K 1 measurements, without any separation condition [32]. It is to be noted 

that all of the above methods require M > K measurements for resolving K spikes. In 

contrast, we will show that it is possible to recover K spikes from M ≪ K measurements 

by exploiting the binary nature of the spiking signal. The above algorithms are designed 

to handle arbitrary real-valued amplitudes and as such, they are oblivious to binary priors. 

Therefore, they cannot successfully recover spikes in the regime M < K, which is henceforth 

referred to as the extreme compression regime.

The problem of recovering binary signals from underdetermined linear measurements 

(with more unknowns than equations/measurements) has been recently studied under the 

parlance of Binary Compressed Sensing (BCS) [35]-[42]. In BCS, the undersampling 

operation employs random (and typically dense) sampling matrices, whereas we consider a 

deterministic and structured measurement matrix derived from a filter, followed by uniform 

downsampling. Moreover, existing theoretical guarantees for BCS crucially rely on sparsity 

assumptions that will be shown to be inadequate for our problem (discussed in Section 

II-C). Most importantly, in order to achieve computational tractability, BCS relaxes the 

binary constraints and solves continuous-valued optimization problems. Consequently, their 

theoretical guarantees do not apply in the extreme compression regime M < K.

As mentioned earlier, our study is motivated by the problem of neural spike deconvolution 

arising in calcium imaging [3], [4], [20], [32], [43]-[45]. A majority of the existing spike 

deconvolution techniques [4], [43], [44] infer the spiking activity at the same (low) rate 
at which the fluorescence signal is sampled, and a single estimate such as spike counts or 

rates are obtained over a temporal bin equal to the resolution of the imaging rate. Although 

sequential Monte-Carlo based techniques have been proposed that generate spikes at a rate 

higher than the calcium frame rate [3], no theoretical guarantees are available that prove that 

these methods can indeed uniquely identify the high-rate spiking activity. Algorithms that 

1This notation essentially means that there exists a positive constant c such that M ≥ cK.
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rely on sparsity and non-negativity [43], [44] alone are ineffective for inferring the neural 

spiking activity that occurs at a much higher rate than the calcium sampling rate. On the 

other hand, at the high-rate, the spiking activity is often assumed to be binary since the 

probability of two or more spikes occurring within two time instants on the fine temporal 

grid is negligible [2], [46]. Therefore, we propose to exploit the inherent binary nature of 

the neural spikes and provide the first theoretical guarantees that it is indeed possible to 

resolve the high-rate binary neural spikes from calcium fluorescence signal acquired at a 

much lower rate.

B. Our Contributions

We make both theoretical and algorithmic contributions to the problem of binary super-

resolution in the setting when the spikes lie on a fine grid. We theoretically establish 

that at very low sampling rates, sparsity and non-negativity are inadequate for the exact 

reconstruction of binary spikes (Lemma 2). However, by exploiting the binary nature of the 

spiking activity, much stronger identifiability results can be obtained compared to classical 

sparsity-based results (Theorem 1). In the absence of noise, we show that it is possible to 

uniquely recover K binary spikes from only M = Ω 1  low-rate measurements. The analysis 

also provides interesting insights into the interplay between binary priors and the “infinite 

memory” of the AR(1) filter.

Although it is possible to uniquely identify binary spikes in the extreme compression regime 

M ≪ K , the combinatorial nature of binary constraints introduce computational hurdles 

in exactly enforcing them. Our second contribution is to leverage the special structure 

of the AR(1) measurements to overcome this computational challenge in the extreme 

compression regime M < K (Section III-A). Our formulation reveals an interesting and novel 

connection between binary superresolution, and finding the generalized radix representation 

of real numbers, known as β-expansion [47]-[49] (Section III). In order to circumvent the 

problem of exhaustive search, we preconstruct and store (in memory) a binary tree that is 

completely determined by the model parameters (filter and undersampling factor). When 

the low-rate measurements are acquired, we can efficiently perform a binary search to 

traverse the tree and find the desired binary solution. This ability to trade-off memory for 

computational efficiency is made possible by the unique structure of the measurement model 

governed by the AR(1) filter. The algorithm guarantees exact super-resolution even when the 

measurements are corrupted by a small bounded (adversarial) noise, the strength of which 

depends on the AR filter parameter and the undersampling factor. When the measurements 

are corrupted by additive Gaussian noise, we characterize the probability of erroneous 

decoding (Theorem 3) in the extreme compression regime M < K and indicate the trade-off 

among the filter parameter, SNR and the extent of compression. Finally, we also demonstrate 

how binary priors can improve the performance of a popularly used spike deconvolution 

algorithm (OASIS [43]) on real calcium imaging datasets.

II. Fundamental Sample Complexity of Binary Super-resolution

Let yhi n  be the output of a stable first-order Autoregressive AR(1) filter with parameter 

α, 0 < α < 1, driven by an unknown binary-valued input signal xhi n ∈ 0, A , A > 0:
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yhi n = αyhi n − 1 + xhi n

(2)

In this paper, we consider a super-resolution setting where we do not directly observe yhi n , 

and instead acquire M measurements y10 n n = 0
M − 1 at a lower-rate by uniformly subsampling 

yhi n  by a factor of D:

ylo n = yhi Dn , n = 0,1, ⋯, M − 1,

(3)

The signal y10 n  corresponds to a filtered and downsampled version of the signal xhi n  where 

the filter is an infinite impulse response (IIR) filter with a single pole at α. Let ylo ∈ ℝM be a 

vector obtained by stacking the low-rate measurements y10 n n = 0
M − 1:

ylo = ylo 0 , ylo 1 , ⋯, ylo M − 1 ⊤

Since (2) represents a causal filtering operation, the low rate signal ylo only depends on 

the present and past high-rate binary signal. Denote L: = M − 1 D + 1. The M low-rate 

measurements in y10 are a function of L samples of the high rate binary input signal 

xhi n n = 0
L − 1. These L samples are given by the following vector xhi ∈ 0, A L:

xhi ≔ xhi 0 , xhi 1 , ⋯, xhi L − 1 ⊤ .

Assuming the system to be initially at rest, i.e., yhi n = 0, n < 0, we can represent the M
samples from (3) in a compact matrix-vector form as:

ylo ≔ SDyhi = SDGαxhi

(4)

where Gα ∈ ℝL × L is a Toeplitz matrix given by:

Gα =

1 0 ⋯ 0
α 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

αL − 1 αL − 2 ⋯ 1

(5)

and SD ∈ ℝM × L is defined as:

SD i, j = 1, j = i − 1 D + 1
0, else .
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The matrix SD represents the D-fold downsampling operation. Our goal is to infer 

the unknown high-rate binary input signal xhi n  from the low-rate measurements y10 n . 

This is essentially a “super-resolution” problem because the AR(1) filter first attenuates 

the high-frequency components of xhi n , and the uniform downsampling operation 

systematically discards measurements. As a result, it may seem that the spiking activity 

xhi n − 1 D + k k = 1
D  occurring “in-between” two low-rate measurements y10 n − 1  and y10 n

is apparently lost. One can potentially interpolate arbitrarily, making the problem hopeless. 

In the next section, we will show that surprisingly, xhi still remains identifiable from ylo in the 

absence of noise, due to the binary nature of xhi and “infinite memory” of the AR(1) filter.

A. Identifiability Conditions for Binary super-resolution

Consider the following partition of xhi into M disjoint blocks, where the first block is a 

scalar and the remaining M − 1 blocks are of length D, xhi = xhi
0 , xhi

1 ⊤, …, xhi
M − 1 ⊤ ⊤. Here, 

xhi
0 = xhi 0  and xhi

n ∈ 0, A D
 is given by:

xhi
n

k = xhi n − 1 D + k , 1 ≤ n ≤ M − 1

(6)

The sub-vectors xhi
n , and xhi

n − 1 n ≥ 1  represent consecutive and disjoint blocks (of length 

D) of the high-rate binary spike signal. In order to study the identifiability of xhi from ylo, 

we first introduce an alternative (but equivalent) representation for (4), by constructing a 

sequence c n  as follows c 0 = y10 0 ,

c n = ylo n − αDylo n − 1 , 1 ≤ n ≤ M − 1

(7)

Given the high rate AR(1) model defined in (2), it is possible to recursively represent yhi Dn
in terms of yhi Dn − 1 , which in turn, can be represented in terms of yhi Dn − 2 , and so on. By 

this recursive relation, we can represent yhi Dn − 1  in terms of yhi Dn − D  and xhi Dn − i i = 0
D−1

and re-write ylo n  as

ylo n = yhi Dn = αyhi Dn − 1 + xhi Dn
= αDyhi Dn − D + αD−1xhi D n − 1 + 1 + ⋯
+ αxhi Dn − 1 + xhi Dn ,

ylo n − αDylo n − 1 = αD−1xhi D n − 1 + 1 + ⋯
+ αxhi Dn − 1 + xhi Dn

(8)

The last equality holds due to the fact that ylo n − 1 = yhi Dn − D . Combining (7) and (8), the 

sequence c n  can be re-written as c 0 = ylo 0 = xhi
0 , and for 1 ≤ n ≤ M − 1
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c n =
i = 1

D
αD−ixhi n − 1 D + i = hα

Txhi
n

(9)

where hα = αD−1, αD−2, …, α, 1 T ∈ ℝD. This implies that c n  depends only on the 

block xhi
n . Denote c ≔ c 0 , c 1 , …, c M − 1 ⊤ ∈ ℝM. For any D, (9) can be compactly 

represented as:

c = HD α xhi

(10)

where HD α ∈ ℝM × L is given by:

HD α =

1 0⊤ 0⊤ ⋯ 0⊤

0 hα
⊤ 0⊤ ⋯ 0⊤

0 0⊤ hα
⊤ ⋯ 0⊤

⋮ ⋮ ⋮ ⋱ ⋮

0 0⊤ 0⊤ ⋯ hα
⊤

The following Lemma establishes the equivalence between (4) and (10).

Lemma 1. Given y10, construct c following (7). Then, there is a unique binary xhi ∈ 0, A L

satisfying (4) if and only if xhi is a unique binary vector satisfying (10).

Proof. First suppose that there is a unique binary xhi ∈ 0, A L satisfying (4) but (10) has a 

non-unique binary solution, i.e., there exists xhi′ ∈ 0, A L, xhi′ ≠ xhi, such that

c = HD α xhi = HD α xhi′

(11)

Define yhi′ ≔ Gαxhi′ whose entries are given by:

yhi′ n =
k = 0

n
αn − kxhi′ k , 0 ≤ n ≤ L − 1

(12)

Notice that (7) can be re-written as
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ylo 0 = c 0 = xhi 0 , ylo 1 = c 1 + αDylo 0 = c 1 + αDc 0
ylo 2 = c 2 + αDylo 1 = c 2 + αDc 1 + α2Dc 0
⋮

Following this recursive relation, and using (9) and (11), we can further re-write y10 n  as:

ylo n = ∑
i = 0

n
α n − i Dc i = αnDx′hi

0 + ∑
i = 1

n
α n − i Dhα

⊤xhi′(i)

= αnDx′hi
0 + ∑

i = 1

n
∑

j = 1

D
αnD − i − 1 D − jx′hi i − 1 D + j

=a ∑
k = 0

nD
αnD − kx′hi k =b y′hi nD

(13)

The equality a  follows by a re-indexing of the summation into a single sum, and (b) 

follows from (12). By arranging (13) in a matrix form we obtain the following relation:

ylo = SDGαxhi′

However from (4), we have ylo = SDGαxhi. This contradicts the supposition that (4) has a 

unique binary solution.

Next, suppose that (10) has a unique binary solution but the binary solution to (4) is 

non-unique, i.e., there exists xhi′ ∈ 0, A L, xhi′ ≠ xhi such that

ylo = SDGαxhi′ = SDGαxhi

By following (7) and (10), we also have c = HD α xhi′ = HD α xhi which contradicts the 

assumption that solution of (10) is unique. □

Lemma 1 assures that a binary xhi is uniquely identifiable from measurements ylo if and 

only if there is a unique binary solution xhi ∈ 0, A L to (10). From (9), it can be seen that 

c n  and c n − 1  have contributions from only disjoint blocks of high rate spikes xhi
n , and 

xhi
n − 1 . Hence effectively, we only have a single scalar measurement c n  to decode an 

entire block xhi
n  of length D, regardless of how sparse it is. The task of decoding xhi

n  from 

a single measurement seems like a hopelessly “ill-posed” problem, caused by the uniform 

downsampling operation. But this is precisely where the binary nature of xhi can be used as a 

powerful prior to make the problem well-posed. Theorem 1 specifies conditions under which 

it is possible to do so.

Theorem 1. (Identifiability) For any α ∈ 0,1 , with the possible exception of α belonging to 

a set of Lebesgue measure zero, there is a unique xhi ∈ 0, A L that satisfies (10) for every 

D ≥ 1.
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Proof. In Appendix A. □

Using Lemma 1 and Theorem 1, we can conclude that xhi is uniquely identifiable from y10 for 

almost all α ∈ 0,1 . It can be verified that for α = 1 the mapping is non-injective. Theorem 

1 establishes that it is fundamentally possible to decode each block xhi
n  of length D, from 

effectively a single measurement c n . Since xhi
n  can take 2D possible values, in principle, 

one can always perform an exhaustive search over these 2D possible binary sequences 

and by Theorem 1, only one of them will satisfy c n = hα
⊤xhi

n . Since exhaustive search is 

computationally prohibitive, this leads to the natural question regarding alternative solutions. 

In Section III, we will develop an alternative algorithm that leverages the trade-off between 

memory and computation to achieve a significantly lower run-time decoding complexity.

B. Comparison with Finite Rate of Innovation Approach

In a related line of work [30]-[32], [34], the FRI framework has been developed to 

reconstruct spikes from the measurement model considered here. However, in the general 

FRI framework, there is no assumption on the amplitude of the spikes, and there are a total 

of 2D real valued unknowns corresponding to the locations and amplitudes of D spikes. In 

[32], it was shown that by leveraging the property of exponentially reproducing kernels, it 

is possible to recover arbitrary amplitudes and spike locations using Prony-type algorithms, 

provided at least 2D+1(> D) low-rate measurements are available. However, since we exploit 

the binary nature of spiking activity, we can operate at a much smaller sample complexity 

than FRI. In fact, Theorem 1 shows that when we exploit the fact that the spikes occur on 

a high-resolution grid with binary amplitudes, M = Ω 1  measurements suffice to identify D 

spikes regardless of how large D is. A direct application of the FRI approach cannot succeed 

in this regime, since the number of spikes is larger than the number of measurements. That 

being said, with enough measurements, FRI techniques are powerful, and they can also 

identify off-grid spikes. In future, it would be interesting to combine the two approaches by 

incorporating binary priors to FRI based techniques and remove the grid assumptions.

C. Curse of Uniform Downsampling: Inadequacy of sparsity and non-negativity

By virtue of being a binary signal, xhi is naturally sparse and non-negative. Therefore, 

one may ask if sparsity and/or non-negativity are sufficient to uniquely identify xhi from 

c, without the need for imposing any binary constraints. In particular, we would like to 

understand if the solution to the following problem that seeks the sparsest non-negative 

vector in ℝL satisfying (10) indeed coincides with the true xhi ∈ 0, A L

min
x ∈ ℝL

x 0 subject toc=HD(α)x, x ≥ 0

(P0)

Lemma 2. For every xhi ∈ 0, A L (except xhi = Ae1), and c ∈ ℝM satisfying (10), the 

following are true

i. There exists a solution x⋆ ≠ xhi to (P0) satisfying
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∥ x⋆ ∥0 ≤ ∥ xhi ∥0

(14)

ii. The inequality in (14) is strict as long as there exists an integer n0 ≥ 1 such that 

the block xhi
n0  of xhi (defined in (6) satisfies ∥ xhi

n0 ∥0 ≥ 2.

Proof. The proof is in Appendix B. □

Lemma 2 shows there exist other non-binary solution(s) to (10) (different from xhi) that 

have the same or smaller sparsity as the binary signal xhi ∈ 0, A L. Furthermore, there exist 

problem instances where the sparsest solution to (P0) is strictly sparser than xhi. Hence, 

sparsity and/or non-negativity are inadequate to identify the ground truth xhi uniquely.

Implicit Bias of Relaxation: The optimization problem (P0) is non-convex and the 

binary constraints are not enforced. In binary compressed sensing [35], [36], it is common 

to relax the binary constraints using box-constraint and l0 norm is relaxed to l1 norm in the 

following manner:

min
x ∈ ℝL

∥ x ∥1 subject to c = HD α x, 0 ≤ x ≤ A1

(P1-B)

In the following Lemma, we show that there is an implicit bias introduced to the solution of 

(P1-B).

Lemma 3. For every xhi ∈ 0, A L, and c ∈ ℝM satisfying (10). There exists a solution x⋆ to 

(P1-B) satisfying

∥ x⋆ ∥1 ≤ ∥ xhi ∥1 .

(15)

Moreover, for all n ≥ 1, the blocks x n ⋆ ∈ ℝD of x⋆ satisfy:

supp x n ⋆ = D, D − 1, ⋯, D − jn , ifc n ≠ 0

(16)

for some 0 ≤ jn ≤ D − 1 and x n ⋆ = 0 if c n = 0, irrespective of the support of xhi.

Proof. The proof is in Appendix B. □

Lemma 3 shows that even in the noiseless setting, introducing the box-constraint as a means 

of relaxing the binary constraint introduces a bias in the support of the recovered spikes. 

The optimal solution always results in spikes with support clustered towards the end of each 
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block of length D, irrespective of the ground truth spiking pattern xhi that generated the 

measurements. This bias is a consequence of the nature of relaxation, as well as the specific 

structure of the measurement matrix HD α  arising in the problem.

D. Role of Memory in Super-resolution: IIR vs. FIR filters

The ability to identify the high-rate binary signal xhi ∈ 0, A L from D-fold undersampled 

measurements ylo (for arbitrarily large D) in the absence of noise, is in parts also due 

to the “infinite memory” or infinite impulse response of the AR(1) filter. Indeed, for 

an Finite Impulse Response (FIR) filter, there is a limit to downsampling without losing 

identifiability. This was recently studied in our earlier work [40] where we showed that the 

undersampling limit is determined by the length of the FIR filter. To see this, consider the 

convolution of a binary valued signal xhi with a FIR filter u = u 0 , u 1 , ⋯, u r − 1 T ∈ ℝr of 

length r:zf n = ∑i = 0
r − 1 u r − 1 − i xhi n + i . These samples are represented in the vector form as 

zf ≔ u ⋆ xhi ∈ ℝL (by suitable zero padding). Suppose, as before, we only observe a D-fold 

downsampling of the output zD n = zf Dn . Two consecutive samples zD p , zD p + 1  of the 

low-rate observation are given by:

zD p =
i = 0

r − 1
u r − 1 − i xhi Dp + i ,

zD p + 1 =
i = 0

r − 1
u r − 1 − i xhi D p + 1 + i

If D > r, notice that none of the measurements is a function of the samples 

xhi Dp + r , xhi Dp + r + 1 , ⋯, xhi D p + 1 − 1 . Hence, it is possible to assign them arbitrary 

binary values and yet be consistent with the low-rate measurements zD n . This makes it 

impossible to exactly recover xhi (even if it is known to be binary valued) if the decimation is 

larger than the filter length D > r . The following lemma summarizes this result.

Lemma 4. For every FIR filter u ∈ ℝr, if the undersampling factor exceeds the filter length, 

i.e. D > r, there exist x0, x1 ∈ 0, A L, x0 ≠ x1 such that SD u ⋆ x0 = SD u ⋆ x1 .

This shows that the identifiability result presented in Theorem 1 is not merely a consequence 

of binary priors but the infinite memory of the autoregressive process is also critical in 

allowing arbitrary undersampling D > 1 in absence of noise. For such IIR filters, the 

memory of all past (binary) spiking activity is encoded (with suitable weighting) into every 

measurement captured after the spike, which would not be the case for a finite impulse 

response filter.

III. Efficient Binary Super-Resolution Using Binary Search with Structured 

Measurements

By Theorem 1, we already know that it is possible to uniquely identify xhi from c (or 

equivalently, each block xhi
n  from a single measurement c n ) by exhaustive search. 
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We now demonstrate how this exhaustive search can be avoided by formulating the 

decoding problem in terms of “binary search” over an appropriate set, and thereby 

attaining computational efficiency. We begin by introducing some notations and definitions. 

Given a non-negative integer k, 0 ≤ k ≤ 2D − 1, let b1 k , b2 k , ⋯, bD k  be the unique D-bit 

binary representation of k:k = ∑d = 1
D 2D−dbd k , bd k ∈ 0,1 ∀1 ≤ d ≤ D. Here b1 k  is the most 

significant bit and bD k  is the least significant bit. Using this notation, we define the 

following set:

Sall ≔ v0, v1, v2, ⋯, v2D − 1 ,

(17)

where each vk ∈ 0, A D is a binary vector given by

vk d = Abd k . 1 ≤ d ≤ D

(18)

In other words, the binary vector 1
Avk is the D-bit binary representation of its index k. 

Using this convention, v0 = 0 (i.e., a binary sequence of all 0’s) and v2D − 1 = A1 (i.e., a 

binary sequence of all A′s). Recall the partition of xhi defined in (6), where each block 

xhi
n n ≥ 1  is a binary vector of length D and xhi

0 ∈ 0, A  is a scalar. It is easy to see that 

(17) comprises of all possible values that each block xhi
n  can assume. According to (9) 

each scalar measurement c[0] = x(0), c[n] = hα
⊤xhi

(n), 1 ≤ n ≤ M − 1. For every α, we define the 

following set:

Θα ≔ θ0, θ1, ⋯, θ2D − 1 , whereθk ≔ hα
⊤vk

(19)

Observe that every measurement c n = ∑i = 1
D αD−ixhi n − 1 D + i  takes values from this set 

Θα, depending on the value taken by the underlying block of spiking pattern from Sall. Our 

goal is to recover the spikes xhi n − 1 D + i i = 1
D  from c n .

In the following, we show that this problem is equivalent to finding the representation of 

a real number over an arbitrary radix, which is known as “β-expansion” [49]. Given a real 

(potentially non-integer) number β > 1, the representation of another real number p ≥ 0 of 

the form:

p =
n = 1

∞
anβ−n, where0 ≤ an < β

(20)
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is referred to as a β-expansion of p. The coefficients 0 ≤ an < β  are integers. This is a 

generalization of the representation of numbers beyond integer-radix to a system where the 

radix can be chosen as an arbitrary real number. This notion of representation over arbitrary 

radix was first introduced by Renyi in [49], and since then has been extensively studied [47], 

[48], [50]. There is a direct connection between β-expansion and the binary super-resolution 

problem considered here. In the problem at hand, any element θk ∈ Θα can be written as:

θk = hα
⊤vk =

i = 1

D
αD−i vk i

When 1/2 < α < 1, by letting β = 1/α, we see that the coefficients in (20) must satisfy 

0 ≤ an < 1/α < 2, i.e., they are restricted to be binary valued an ∈ 0,1 . Therefore, decoding 

the spikes vk from the observation θk is equivalent to finding a D-bit representation for 

the number θk/A over the non-integer radix β = 1/α. Questions regarding the existence of 

β-expansion, and finding the coefficients of a finite β-expansion (whenever it exists) has 

been an active topic of research [47], [48], [50], [51]. When β ≥ 2 (equivalently, 0 < α ≤ 1/2), 

it is possible to find the coefficients using a greedy algorithm which proceeds in a fashion 

similar to finding the D-bit binary representation of an integer [47], [51]. However, the 

regime β ∈ 1,2  (equivalently 1/2 < α < 1), is significantly more complicated and is of 

continued research interest [47], [48], [50]. To the best of our knowledge, there are no 

known computationally efficient ways to find the finite β-expansion when 1/2 < α < 1 (if it 

exists) [N. Sidorov, personal communication, May 24, 2022]. In practice, we encounter filter 

values α = 1/β  that are much closer to 1, and hence, we need an alternative approach to find 

this finite β-radix representation for θk. In the next section, we show that by performing a 

suitable preprocessing, finite β-radix representation can be formulated as a binary search 

problem which is guaranteed to succeed for all values of β that permit unique finite 

β-expansions.

A. Formulation as a Binary Search Problem

Before describing the algorithm, we first introduce the notion of a collision-free set.

Definition 1 (Collision Free set). Given an undersampling factor D, define a class of 
“collision free” AR(1) filters as:

GD = α ∈ 0,1 s.t.hα
⊤vi ≠ hα

⊤vj ∀i ≠ j, vi, vj ∈ Sall

The set GD denotes permissible values of the AR(1) filter parameter α such that each of the 

2D binary sequences in Sall maps to a unique element in the set Θα. In other words, every 

θk ∈ Θα has a unique D-bit expansion for all α ∈ GD. This naturally raises the question “How 

large is the set GD?”. Theorem 1 already provided the answer to this question, where the 

identifiability result implies that for every D, almost all α ∈ 0,1  belong to this set GD (with 

the possible exception of a measure zero set). Hence, Theorem 1 ensures that there are 

infinite choices for collision-free filter parameters.
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Lemma 5. For every α ∈ GD, the mapping Φα . : . Sall Θα, Φα v = hα
⊤v forms a bijection 

between Sall and Θα.

Proof. Since α ∈ GD, from the definition of the set GD, it is clear that for any vi, vj ∈ Sall, vi ≠ vj

we have hα
⊤vi ≠ hα

⊤vj. Therefore, the mapping is injective. Furthermore, from (19) we also 

have Θα ≤ Sall = 2D. Since Φα ⋅  is injective, we must also have Θα = 2D and hence the 

mapping Φα .  forms a bijection between Sall and Θα. □

When α ∈ GD, Lemma 5 states that the finite beta expansion for every θk ∈ Θα is unique. 

Lemma 5 provides a way to avoid exhaustive search over Sall, and yet identify xhi
n  from c n

in a computationally efficient way. From Lemma 5, we know that each of the 2D spiking 

patterns in Sall maps to a unique element in Θα, and each element in Θα has a corresponding 

spiking pattern. Hence instead of searching Sall, we can equivalently search the set Θα in 

order to determine the unknown spiking pattern. Since Θα permits “ordering”, searching 

Θα has a distinct computational advantage over searching Sall. This ordering enables us to 

employ binary search over (an ordered) Θα and find the desired element in a computationally 

efficient manner. To do this, we first sort the set Θα (in ascending order) and arrange the 

corresponding elements of Sall in the same order. Given Θα as an input, the function SORT(·) 

returns a sorted list Θα
sort, and an index set ℐ = i0, i1, ⋯, i2D − 1  containing the indices of the 

sorted elements in the list Θα.

Θα
sort, ℐ SORT Θα

Let us denote the elements of the sorted lists as Θα
sort = θ0, ⋯, θ2D − 1 , and Sall

sort = v0, ⋯, v2D − 1

where:

θ0 < θ1 < ⋯ < θ2D − 1 andθj = θij, vj = vij ∀j .

It is important to note that this sorting step does not depend on the measurements c, and can 

therefore be part of a preprocessing pipeline that can be performed offline. However, it does 

require memory to store the sorted lists. In the noiseless setting, we know that every scalar 

measurement c n = hα
⊤xhi

n  belongs to the set Θα
sort. Therefore, if we identify its index, say i⋆, 

then we can successfully recover xhi
n  by returning the corresponding binary vector vi⋆ from 

Sall
sort. Therefore, we can formulate the decoding problem as searching for the input c n  in the 

sorted list Θα
sort. This can be efficiently done by using “Binary Search”. The noiseless spike 

decoding procedure is summarized as Algorithm 1. Since the complexity of performing a 

binary search over an ordered list of N elements is O log N , the complexity of Algorithm 1 

is logarithmic in the cardinality of Θα
sort, which results in a complexity of O log 2D = O D . 

We summarize this result in the following Lemma.
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Lemma 6. Assume α ∈ GD. Given the ordered set Θα
sort, and an input c n = hα

⊤xhi
n , Algorithm 

1 terminates in O D  steps and its output xhi
n  satisfies xhi

n = xhi
n .

B. Noisy Measurements and 1 D Nearest Neighbor Search

We demonstrate how binary search can still be useful in presence of noise by formulating 

noisy spike detection as a one dimensional nearest neighbor search problem. Suppose 

zlo n n = 0
M − 1 denote noisy D-fold decimated filter output

zlo n = ylo n + w n , 0 ≤ n ≤ M − 1

(21)

Here w n  represents the additive noise term that corrupts the (noiseless) low-rate 

measurements ylo n . Similar to (7), we compute ce n  from zlo n  as follows:

ce n = zlo n − αDzlo n − 1

(22)

=
i = 1

D
αD−ixhi n − 1 D + i + e n = c n + e n

(23)

where c n = hα
⊤xhi

n ∈ Θα
sort, and e n = w n − αDw n − 1 . We can interpret ce n  as a noisy/

perturbed version of an element c n ∈ Θα
sort, with e n  representing the noise. This perturbed 

signal may no longer belong to Θα
sort (i.e. ce n ∉ Θα

sort  and hence, we cannot find an exact 

match in the set Θα
sort. Instead, we aim to find the closest element in Θα

sort (the nearest neighbor 

of ce n ) by solving the following problem:

xhi
n = arg min

v ∈ Sall
sort

ce n − hα
⊤v

(24)

Solving (24) is equivalent to finding the spike sequence v ∈ Sall
sort that maps to the nearest 

neighbor of ce n  in the set Θα
sort. By leveraging the sorted list Θα

sort, it is no longer necessary to 

parse the list sequentially (which would incur O 2D  complexity), instead we can perform a 

modified binary search as summarized in Algorithm 2, that keeps track of additional indices 
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compared to the vanilla binary search. Finally, we return the unique spiking pattern from Sα
sort

that gets mapped to the nearest neighbor of the noisy measurement ce n . It is well-known 

that the nearest neighbor for any query could be found in O log 2D = O D  steps, instead 

of the linear complexity of O 2D . This guarantees a computationally efficient decoding of 

spikes by solving (24).

Next, we characterize the error events that lead to erroneous detection of a block of spikes. 

Recall that the set Θα
sort is sorted, and its elements satisfy the ordering:

0 = θ0 < θ1 < ⋯ < θlD = 1 + α + ⋯ + αD−1

where lD ≔ 2D − 1. We also have θk = hα
⊤vk, where vk ∈ Sall

sort is a binary spiking sequence of 

length D.

For each vk and each n, we will determine the error event xhi
n ≠ xhi

n , when 

xhi
n = vk. First, consider the scenario when xhi

n = vk for some 0 < k < lD (excluding 

v0, vlD). The corresponding noiseless measurement is c n = θk = hα
⊤vk which satisfies 

θk − 1 < c n = θk < θk + 1. Since Θα
sort is sorted, it can be easily verified that the nearest neighbor 

of ce n  will be θk, if and only if ce n  satisfies the following condition:

θk − 1 + θk /2 ≤ ce n ≤ θk + 1 + θk /2

(25)

Since θk = hα
⊤vk, the solution to (24) is attained at vk ∈ Sall

sort, and the decoding is successful. 

Therefore Algorithm 2 produces an erroneous estimate of vk if and only if ce n  violates (25). 

The event ce n ∉ θk − 1 + θk
2 , θk + 1 + θk

2  is equivalent to e n ∈ ℰk (e n  is defined earlier in (23)), 

where

ℰk = e n < − θk − θk − 1
2 , or e n > θk + 1 − θk

2

(26)

Finally, we characterize the error events for k = 0, lD. The error events for c n = θ0 = 0 or 

c n = θlD are given by:

ℰ0 = e n ≥ θ1/2 , ℰlD = e n ≤ − θlD − θlD − 1 /2

(27)

Define the “minimum distance” between points in Θα
sort:
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Δθmin α, D = min
1 ≤ k ≤ lD

θk − θk − 1 .

This minimum distance depends on A, α and D. From (26), (27) it can be verified that if 

2 w n < Δθmin α, D /2 (which would imply e n < Δθmin α, D /2  for all n, then xhi
n = xhi

n . 

As summarized in Theorem 2, Algorithm 2 can exactly recover the ground truth spikes 

from measurements corrupted by bounded adversarial noise, the extent of the robustness is 

determined by the parameters A, α, D.

Theorem 2. Assume α ∈ GD. Given the ordered set Θα
sort, the output of Algorithm 2 with input 

ce n  exactly coincides with the solution of the optimization problem (24) in at most O D
steps. Furthermore, if for all n, w n < Δθmin α, D /4, then the output of Algorithm 2 satisfies 

xhi
(n) = xhi

(n).

From Theorem 2, it is evident that Δθmin α, D  plays an important role in characterizing the 

upper bound on noise. We attempt to gain insight into how Δθmin α, D  varies as a function of 

α when D is held fixed.

Lemma 7. Given D, Δθmin α, D = AαD−1 for α ∈ 0,0.5 .

Proof. The proof for A = 1 is in Appendix C and it can be scaled to obtain the desired bound. 

□

When α ∈ 0,0.5 , Δθmin α, D  is monotonically increasing with α. However, for α > 0.5 the 

trend fluctuates with α differently for different D, and becomes quite challenging to predict. 

This is also confirmed by the empirical plot in Fig. 1 A refined analysis of Δθmin α, D  to gain 

insight into desirable filter parameters α is an interesting direction for future work.

C. Trade-off between memory and computational complexity

A crucial aspect of Algorithms 1 and 2 is that they achieve efficient run-time complexity by 

leveraging the offline construction of the sorted list Θα
sort and Sall

sort. These lists, each with 2D 
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elements, need to be stored in memory and made available during run-time. Since there is 

no free lunch, the resulting computational efficiency of O D  at run-time is attained at the 

expense of the additional memory that is required to store the sorted lists Θα
sort, Sall

sort.

D. Parallelizable Implementation

Algorithm 2 (also Algo. 1) only takes ce n c n  as input and returns xhi
n , and is completely 

de-coupled from any other xhi
n′ , n′ ≠ n. Recall that in reality, we are provided with 

measurements zlo n ylo n , and ce n  respectively c n  needs to be computed. Due to this 

de-coupling, we can compute ce n ′s in parallel using two consecutive low-rate samples 

zlo n , zlo n − 1  and perform a nearest neighbor search without waiting for any previously 

decoded spikes. Therefore, the total decoding complexity can be further improved depending 

on the available parallel computing resources.

IV. Error Analysis for Gaussian Noise

Algorithm 2 solves (24) without requiring any knowledge of the noise statistics. However, in 

order to analyze its performance, we will make the following (standard) assumptions on the 

statistics of the high-rate spiking signal xhi and the measurement noise w n  as follows:

• (A1) The entries of the binary vector xhi ∈ 0, A L are i.i.d random variables 

distributed as xhi n ABern p .

• (A2) The additive noise w n , 0 ≤ n ≤ M − 1 is independent of xhi n , and 

distributed as w n N 0, σ2

A. Probability of Erroneous Decoding

Under assumption (A2), the ML estimate of xhi is given by the solution to the following 

problem:

xML = arg min
v ∈ 0, A L

∥ zlo − SDGαv ∥2

(PNN)

The proposed Algorithm 2 does not attempt to solve PNN , which is computationally 

intractable. Instead, it solves a set of M − 1 one dimensional nearest neighbor search 

problems, by finding the nearest neighbor of ce n  for each n = 1,2, ⋯, M − 1. This scalar 

nearest neighbor search is implemented in a computationally efficient manner by using 

parallel binary search on a pre-sorted list. Notice that by the operation (22), the variance of 

the equivalent noise term e n  gets amplified by a factor of at most 1 + α2D < 2. This can 

be thought of as a price paid to achieve computational efficiency and parallelizability. The 

following theorem characterizes the dependence of certain key quantities of interest, such 

as the signal-to-noise ratio (SNR), undersampling factor D, and filter’s frequency response 

(controlled by α) on the performance of Algorithm 2.
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Theorem 3. Suppose α ∈ GD and assumptions (A1-A2) hold. Given δ > 0, if the following 

condition is satisfied:

Δθmin
2 α, D /σ2 ≥ 4 ln 2M /δ

(28)

then Algorithm 2 can exactly recover the binary signal xhi with probability at least 1 − δ.

Proof. The proof follows standard arguments for computing the probability of error for 

symbol detection in Gaussian noise, followed by certain simplifications and is included in 

Appendix D for completeness. □

In Fig. 1, we plot Δθmin α, D  as a function of D for different values of α. As expected, 

Δθmin α, D  decays as the D increases. Understandably, for a fixed α, as D increases, it 

becomes harder to recover the spikes exactly, and higher SNR is needed to compensate for 

the lower sampling rate. This can be interpreted as the price paid for super-resolution in 

presence of noise. This phenomenon is also reminiscent of the noise amplification effect 

in super-resolution, where the ability to super-resolve point sources becomes more severely 

hindered by noise as the target resolution grid becomes finer [6]. In Fig. 1, we plot Δθmin α, D
as a function of α and as predicted by Lemma 7, it monotonically increases upto 0.5, but 

for α > 0.5, the behavior becomes much more erratic and a precise characterization becomes 

challenging. It is to be noted that in Theorem 3, we aim to exactly recover xhi. The SNR 

requirement can be relaxed if our goal is to recover only spike counts instead of the true 

spikes as discussed in the next subsection. One can define other notions of approximate 

recovery, the analysis of which will be a topic of future research.

B. Relaxed Spike reconstruction: Count Estimation

As shown in Theorem 2, exact recovery of spikes is possible under somewhat restrictive 

condition on the noise in terms of Δθmin α, D , which becomes quite small as D increases. 

This naturally calls for other relaxed notions of recovery which can handle larger noise 

levels. In neuroscience, it is believed that information is encoded as either the spike timing 

(temporal code) or the firing rates (rate coding) of individual neurons in the brain. Therefore, 

the spike counts over an interval can be informative to understand neural functions, even 

when it is impossible to temporally localize the neural spikes. For example, neurons in the 

visual cortex encode stimulus orientations as their firing rates [52]. We will therefore focus 

on spike count as an approximate recovery metric, which concerns estimating the number 

of spikes occurring between two consecutive low-rate measurements instead of resolving the 

individual spiking activity at a higher resolution.

Let γ n  denote the total number of spikes occurring between two consecutive low-

rate samples zlo n  and zlo n − 1 . Since xhi and its estimate xhi are both binary valued 

(amplitude A), the true spike count γ n  and estimated count γ n  are given by: 

γ n = ∥ xhi
n ∥0, γ n = ∥ xhi

n ∥0, n = 1, ⋯, M − 1, γ 0 = xhi 0 /A and γ 0 = xhi 0 /A since the 

first block is of size 1 as described in (6). Define a set Ck
D as:
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Ck
D ≔ v ∈ 0, A D, ∥ v ∥0 = k , 0 ≤ k ≤ D

It is a collection of all binary vectors (of length D) with spike count k. The ground truth 

spike block belongs to Cγ n
D . Any element from Cγ n

D  will give the true spike count. Hence, 

exact recovery of count can be possible even when spikes cannot be recovered.

For a fixed D, we define a set of α denoted by ℱD:

ℱD ≔ α ∈ 0,1 ∣ αD − αD−k0 − 1 − αk0 + 1 < 0

(29)

where k0 = D/2 . We will obtain a sufficient condition for robust spike count estimation 

when α ∈ ℱD. It can be shown that for any D, ℱD will always be non-empty. Define

θmin
k ≔ min

u ∈ Ck
D

hα
⊤uθmax

k ≔ max
u ∈ Ck

D
hα

⊤u

(30)

Observe that if

θmin
k + 1 > θmax

k , k = 0,1, ⋯, D − 1

(31)

then all spike patterns ui ∈ Ck
D (with the same spike count k) are clustered together when 

mapped on to the real line by the transformation hα
⊤u as shown in Figure 2 When (31) holds, 

we can define a “cluster-restricted minimum distance” as:

Δmin
c α, D ≔ min

0 ≤ k ≤ D − 1
θmin

k + 1 − θmax
k

(32)

Given a noisy observation ce n = hα
⊤xhi

n + e n , the solution to the nearest neighbor problem 

(24) may return an incorrect neighbor θj ≠ hα
⊤xhi

n . However, when (31) holds and if the noisy 

observation satisfies the following conditions:

θmin
γ n + θmax

γ n − 1 /2 < ce n < θmin
γ n + 1 + θmax

γ n /2

(33)

then the nearest-neighbor decision rule in Algorithm 2 will still ensure that θj ∈ Cγ n
D . This 

has also been visualized in Fig. 2 where each colored band represents the “safe-zone” 

for each count and the black dotted-line denotes the boundary. This will result in correct 
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identification of the spike count but will incur error in terms of spiking pattern. We formally 

summarize this in the following Theorem that provides robustness guarantee for exact count 

recovery from measurements corrupted by adversarial noise (similar to Theorem 2 for spike 

recovery).

Theorem 4. Assume α ∈ ℱD. Given the ordered set Θα
sort, let γ n  be the estimated spike count 

obtained from Algorithm 2 with input ce n . If for all n, w n < Δmin
c α, D /4, then the count 

can be exactly recovered, i.e., γ n = γ n .

Proof. Proof is in Appendix E. □

It is clear that when (31) holds, Δmin
c α, D  is no smaller than Δθmin α, D , since the former 

is computed over neighboring elements of the cluster whereas Δθmin D, α  computes the 

minimum distance over all consecutive elements (both inter-cluster as well as intra-cluster) 

in Θα
sort. This essentially suggests that estimation of counts (for this range of α and D) can 

be more robust compared to inferring the individual spiking patterns. We also illustrate this 

numerically in Figure 1 (top), where we plot both Δmin
c  and Δθmin as a function of α and the 

start of the interval ℱD (computed numerically) is denoted using dotted lines. For both values 

of D, we can see that Δmin
c > Δθmin and the gap grows as α increases.

V. Numerical Experiments

We conduct numerical experiments to evaluate the performance of the proposed super-

resolution spike decoding algorithm on both synthetic and real calcium imaging datasets.

A. Synthetic Data Generation and Evaluation Metrics

We create a synthetic dataset by generating high-rate binary spike sequence 

xhi ∈ 0,1 L A = 1 and L = 1000  that satisfies assumption (A1). The spiking probability 

p controls the average sparsity level given by s ≔ E ∥ xhi ∥0 = Lp. We aim to reconstruct 

xhi from M ≈ L/D low-rate measurements zlo n  defined in (21). Notice that we operate 

in a regime where the expected sparsity is greater than the total number of low-rate 

measurements, i.e., s > M. We employ the widely-used F-score metric to evaluate the 

accuracy of spike detection [4], [10]. The F-score is computed by first matching the 

estimated and ground truth spikes. An estimated spike is considered a “match” to a ground 

truth spike if it is within a distance of t0 of the ground truth (many-to-one matching is not 

allowed) [4], [10]. Let K and K′ be the total number of ground truth and estimated spikes, 

respectively. The number of spikes declared as true positives is denoted by T p. After the 

matching procedure, we compute the recall R = T p
K  which is defined as the ratio of true 

positives T p  and the total number of ground truth spikes K . Precision P = T p
K′  measures 

the fraction of the total detected spikes which were correct. Finally, the F-score is given by 

the harmonic mean of recall and precision F−score = 2PR/ P + R .
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B. Noiseless Recovery: Role of Binary priors and memory

We first consider the noiseless setting w n = 0 in (21)). We compare the performance of 

Algorithm 2 against box-constrained l1 minimization method [35], [36], where we solve:

min
x ∈ ℝL

∥ x ∥1 s.t.∥ ylo − SDGαx ∥2 ≤ ϵ, 0 ≤ x ≤ A1

(P1)

For synthetic data, ϵ is chosen using the norm of the noise term ∥ w ∥2. This oracle choice 

ensures most favorable parameter tuning for the (P1), although a more realistic choice would 

be to set ϵ = Mσ according to the noise power σ . In the noiseless setting, we choose ϵ = 0. 

The problem (P1) is a standard convex relaxation of (P0) which promotes sparsity as well as 

tries to impose the binary constraint via the box-relaxation (introduced in Section II-C). In 

Fig. 3 (Top), we plot the F-score t0 = 0  as a function of D. As can be observed, Algorithm 

2 consistently achieves an F-score of 1, whereas the F-score of l1 minimization shows a 

decay as D increases. This confirms Lemma 3 that for D > 1, using box-constraints with l1

norm minimization is not enough to enable exact recovery from low rate measurements. In 

absence of noise, the performance of Algorithm 2 is not affected by the filter parameter α as 

shown in Fig. 3 (Top).

Next, we compare the reconstruction from the decimated output of (i) an AR(1) filter and 

(ii) an FIR filter of length r driven by the same input xhi ∈ 0,1 1000. We choose the FIR 

filter h = 1, α, ⋯, αr − 1 ⊤ (truncation of the IIR filter) with α = 0.5. Algorithm 2 is applied 

to the low-rate AR(1) measurements, whereas the algorithm proposed in [40] is used for 

the FIR case. The algorithm applied for the FIR case can provably operate with the optimal 

number of measurements when α = 0.5 and hence, we chose this specific value for the filter 

parameter. In Figure 3 (Bottom), we again compare the average F-score as a function of 

D, averaged over 10000 Monte Carlo runs, for p = 0.5. As predicted by Lemma 4 despite 

utilizing binary priors, the error for the FIR filter shows a phase transition when D > r. This 

demonstrates the critical role played by the infinite memory of the AR(1) filter in achieving 

exact recovery with arbitrary D.

C. Performance of noisy spike decoding

We generate noisy measurements of the form (21), where w n  and xhi n  satisfy assumptions 

(A1-A2). We illustrate some representative examples of recovered spikes on synthetic data. 

In Fig. (4), we display the recovered super-resolution estimates on synthetically generated 

measurements for two undersampling factors D = 5 (left), 10 (right). For each D, the top 

plots show the spikes recovered using Algorithm 2 and l1 minimization with box-constraint 

where the noise realization obeys the bound in Theorem 2, while the bottom plots show 

the same for noise realization violating the bound. The output of l1 minimization with 

box-constraint is inaccurate, and the spikes are clustered towards the end of each block 

of length D. This bias is consistent with the prediction made by our theoretical results in 

Lemma 3. When the noise is small enough (top), Algorithm 2 exactly decodes the spikes, 
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including the ones occurring between two consecutive low-rate samples as predicted by 

Theorem 2. In presence of larger noise (violating the bound), the spikes estimated using l1

minimization continue to be biased to be clustered towards the end of the block. Although 

the spikes recovered using Algorithm 2 are not exact, most of the detected spikes are within 

a tolerance window of ground truth spikes. In fact, the spike count estimation is perfect 

as predicted by Theorem 4. We next quantitatively evaluate the performance in presence 

of noise, where the metrics are computed with t0 = 2. In Fig. 5 (Top), we plot the F-score 

as a function of D for different values of α. For a fixed α, the F-score of both methods 

decays with increasing D, but Algorithm 2 consistently attains a higher F-score compared to 

l1 minimization. We observe that α = 0.5 leads to a higher F-score potentially due to having 

a larger Δθmin α, D  compared to α = 0.9. Next, in Fig. 7, we study the behavior of spike 

detection as a function of the spiking probability p, while keeping D fixed at D = 5. When 

σ is fixed, the performance trend is not significantly affected by the spiking probability. 

At first, this may seem surprising as the expected sparsity is growing while the number of 

measurements is unchanged. However, since our algorithm exploits the binary nature of the 

spikes (and not just sparsity), it can handle larger sparsity levels. The spikes reconstructed 

using l1 minimization achieve a much lower F-score than Algorithm 2 since the former fails 

to succeed when the sparsity is large. As expected, smaller σ leads to higher F-scores.

In Fig. 8, we study the probability of erroneous spike detection as a function of D and 

validate the upper bound derived in Theorem 3. Recall that the decoding is considered 

successful if “every” spike is detected correctly. Therefore, it becomes more challenging 

to “exactly super-resolve” all the spikes in presence of noise as the desired resolution 

becomes finer. We calculate the empirical probability of error and overlay the corresponding 

theoretical bound. As shown in Fig. 8, the empirical probability of error is indeed upper 

bounded by the bound computed by our analysis. The empirical probability of error 

increases as a function of undersampling factor D.

Finally, we evaluate the noise tolerance of the proposed methodology by comparing the 

average F-score as a function of the noise level σ, while keeping the spiking rate and 

undersampling factor fixed at p = 0.35 and D = 5, respectively. As seen in Fig. 6 (Top), 

the performance of both algorithms degrades with increasing noise level and this is also 

consistent with the intuition that it becomes harder to super-resolve spikes with more noise. 

However, for both filter parameters considered in this experiment Algorithm 2 has a higher 

F-score compared to box-constrained l1 minimization. For large noise levels (comparable to 

spike amplitude A = 1), the performance gap decreases for α = 0.9 but Algorithm 2 achieves 

a much higher F-score for α = 0.5 at all noise levels.

As discussed in Section IV-B, we next study a relaxed notion of spike recovery which 

focuses on the spike counts occurring between two consecutive low-rate samples. Let 

Γ = γ 0 , ⋯, γ M − 1 ⊤ be the vector of counts and Γ be its estimate. In Fig. 6 (Bottom) 

we plot the average l1 distance ∥ Γ − Γ ∥1 as a function of the noise level. We observe that for 

α = 0.9 (it can be verified from Fig. 1 (Top) that 0.9 ∈ ℱ5), it is possible to exactly recover 

the spike counts at higher noise even though the F-score (for timing recovery) has dropped 

below 1. However, this is not the case for α = 0.5, since 0.5 ∉ ℱ5. This is consistent with the 
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conclusion of Theorem 4 which states that when α ∈ ℱD, the noise tolerance for exact count 

recovery can be much larger than exact spike recovery since Δmin
c α, D > Δθmin α, D .

D. Spike Deconvolution from Real Calcium Imaging Datasets

We now discuss how the mathematical framework developed in this paper can be used 

for super-resolution spike deconvolution in calcium imaging. Two-photon calcium imaging 

is a widely used imaging technique for large scale recording of neural activity with high 

spatial but poor temporal resolution. In calcium imaging, the signal xhi corresponds to 

the underlying neural spikes which is modeled to be binary valued on a finer temporal 

scale [2], [46]. Each neural spike results in a sharp rise in Ca2+ concentration followed by 

a slow exponential decay, leading to superposition of the responses from nearby spiking 

events [2]–[4]. This calcium transient can be modeled by the first order autoregressive 

model introduced in Section II. The decay time constant depends on the calcium indicator 

and essentially determines the filter parameter α. The signal yhi n  is an unobserved signal 

corresponding to sampling the calcium fluorescence at a high sampling rate (at the same rate 

as the underlying spikes). The observed calcium signal ylo n  corresponds to downsampling 

yhi n  at an interval determined by the frame rate of the microscope. The frame rate of a 

typical scanning microscopy system (that captures the changes in the calcium fluorescence) 

is determined by the amount of time required to spatially scan the desired field of view, 

which makes it significantly slower compared to the temporal scale of the neural spiking 

activity. We model this discrepancy by the downsampling operation (by a factor D). 

Therefore, the mathematical framework developed in this paper can be directly applied 

to reconstruct the underlying spiking activity at a temporal scale finer than the sampling 

rate of the calcium signal. Using real calcium imaging data, we demonstrate a way to fuse 

our algorithm with a popular spike deconvolution algorithm called OASIS [43]. OASIS 

solves an l1 minimization problem similar to (P1) with only the non-negativity constraint, 

in order to exploit the sparse nature of the spiking activity. Unlike our approach where 

we wish to obtain spikes representation on a finer temporal scale, OASIS returns the spike 

estimates on the low-resolution grid. This is typically used to infer the spiking rate over a 

temporal bin equal to the sampling interval. We demonstrate that our proposed framework 

can be integrated with OASIS and improve its performance. As we saw in the synthetic 

experiments, the noise level is an important consideration. By augmenting Algorithm 2 with 

OASIS, referred as “B-OASIS”, the denoising power of l1 minimization can be leveraged.Let 

x11 ∈ ℝM be the estimate obtained on a low-resolution grid by solving the l1 minimization 

problem such as the one implemented in OASIS. We can obtain an estimate of the denoised 

calcium signal as ylo n = αDylo n + x11 n , n ≥ 1 and ylo 0 = x11 0 . We can now utilize the 

denoised calcium signal ylo n  generated by OASIS to obtain the estimate ce n  indirectly. 

Due to the non-linear processing done by OASIS, it is difficult to obtain the resulting noise 

statistics. An important advantage of Algorithm 2 is that it does not rely on the knowledge of 

the noise statistics. Hence, we can directly apply Algorithm 2 on ce n = ylo n − αDylo n − 1
(instead of ce n ) to obtain a binary “fused super-resolution spike estimate”.
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E. Results

We evaluate the algorithms on the publicly available GENIE dataset [53], [54] which 

consists of simultaneous calcium imaging and in vivo cell-attached recording from the 

mouse visual cortex using genetically encoded GCaMP6f calcium indicator GCaMP6f [53], 

[54]. The calcium images were acquired at a frame rate of 60 Hz and the ground truth 

electrophysiology signal was digitized at 10 KHz and synchronized with the calcium frames. 

In addition to using the original data, we also synthetically downsample it to emulate the 

effect of a lower frame rate of 30 Hz, and evaluate how the performance changes by this 

downsampling operation.

In Fig. 10, we extract an interval of ~ 2 sec (from the neuron 1 of the GCaMP6f 

indicator dataset) and qualitatively compare the detected spikes with the ground truth. We 

downsample the data by a factor of 2 to emulate frame rate of 30 Hz, the low-rate grid 

becomes coarser. As a result of which, we observe an offset between ground truth spikes and 

estimate produced by OASIS. However, with the help of binary priors (B-OASIS), we can 

output spikes that are not restricted to be on the coarser scale, and this mitigates the offset 

observed in the raw estimates obtained by OASIS.

We quantify the improvement in the performance by comparing the F-scores of OASIS and 

B-OASIS at both sampling rates (60 and 30 Hz). Since the output of OASIS is non-binary, 

the estimated spikes are binarized by thresholding. To ensure a fair comparison, we select 

the threshold by a 80 – 20 cross-validation scheme that maximizes the average F-score 

on a held-out validation set (averaged over 3-random selections of the validation set). The 

tolerance for the F-score was set at 100 ms. The dataset consisted of 34 traces of length ~ 

234 s. The OASIS algorithm has an automated routine to estimate the parameter α, which 

we utilize for our experiments. The amplitude A is estimated using the procedure described 

in Appendix F. We use D = 12 to obtain the spike representation for B-OASIS. In order to 

quantify the performance boost achieved by augmentation, we isolate the traces where the 

F–score of OASIS drops below 0.5 and compare the average F-score and recall for these 

data points. As shown in Fig. 9, at both sampling rates, we see a significant improvement 

in the average F-score of B-OASIS over OASIS, attributed to an increase in recall while 

keeping the precision unchanged. Additionally, despite downsampling, the spike detection 

performance is not significantly degraded with binary priors, although the detection criteria 

were unchanged.

VI. Conclusion

We theoretically established the benefits of binary priors in super-resolution, and showed 

that it is possible to achieve significant reduction in sample complexity over sparsity-based 

techniques. Using an AR(1) model, we developed and analyzed an efficient algorithm that 

can operate in the extreme compression regime M ≪ K  by exploiting the special structure 

of measurements and trading memory for computational efficiency at run-time. We also 

demonstrated that binary priors can be used to boost the performance of existing neural 

spike deconvolution algorithms. In the future, we will develop algorithmic frameworks for 

incorporating binary priors into different neural spike deconvolution pipelines and evaluate 
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the performance gain on diverse datasets. The extension of this binary framework for 

higher-order AR filters is another exciting future direction.
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Appendix

APPENDIX A: Proof of Theorem 1

Proof. We show that for any α in 0 < α < 1, except possibly for a set consisting of only 

a finite number of points, (10) always has a unique binary solution. Consider all possible 

D–dimensional ternary vectors with their entries chosen from {−1, 0, 1}, and denote them 

as v i = v1
i , v2

i , ⋯, vD
i T ∈ − 1,0, 1 D, 0 ≤ i ≤ 3D − 1. We use the convention that v 0 = 0. For 

every i > 0, we define a set Ƶv i  determined by v i  as Ƶv i ≔ x ∈ 0,1 ∣ ∑k = 1
D vk

i xD−k = 0 . 

Notice that pi x ≔ ∑k = 1
D vk

i xD−k denotes a polynomial (in x) of degree at most D–1, whose 

coefficients are given by the ternary vector v i . The set Ƶv i  denotes the set of zeros of pi x
that are contained in (0, 1). Since the degree of pi x  is at most D − 1, Ƶv i  is a finite set with 

cardinality at most D–1.

Now suppose that the binary solution of (10) is non-unique, i.e., there exist 

u, w ∈ 0, A L, u ≠ w, such that

HD α u = HD α w HD α u − HD α w = 0

(34)

By partitioning u, w into blocks u n , w n  in the same way as in (6), we can re-write (34) as 

u 0 = w 0  and

i = 1

D 1
A u j

i
− w j

i
αD−i = 0, 1 ≤ j ≤ M − 1

(35)

Since u ≠ w, they differ at least at one block, i.e., there exists some j0, 1 ≤ j0 ≤ M − 1

such that u j0 ≠ w j0 . Define b ≔ 1
A u j0 − w j0 . Then, b is a non-zero ternary vector, i.e., 

b ∈ − 1,0, 1 D. Now from (35), we have

∑i = 1
D b

i
αD−i = 0,
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(36)

which implies that α ∈ Ƶb. Since b can be any one of the 3D–1 ternary vectors v i
i = 1

3D − 1
, (36) 

holds if and only if α ∈ S ≔ ∪i = 1
3D − 1 Ƶv i , i.e., α is a root of at least one of the polynomials pi x

defined by the vectors v i  as their coefficients. For each v i , since the cardinality of Ƶv i  is at 

most D–1, S is a finite set (of cardinality at most (D–1) (3D–1)), and therefore its Lebesgue 

measure is 0. This implies that 10 has a non-unique binary solution only if α belongs to the 

measure zero set S, thereby proving the theorem. □

Appendix B: Proof of Lemma 2 and Lemma 3

Proof. (i) Let sn denote the sparsity (number of non-zero elements) of the nth block 

xhi
n  of xhi. Then, the total sparsity is ∥ xhi ∥0 = ∑n = 0

M − 1 sn. We will construct a vector 

v ∈ ℝL, v ≠ xhi that satisfies c = HD α v and ∥ xhi ∥0 ≥ ∥ v ∥0. Following (6), consider the 

partition of v = v 0 , v 1 ⊤, ⋯, v M − 1 ⊤ ⊤
. Firstly, we assign v 0 = c 0 = xhi

0 . We construct 

v n  as follows. For each n ≥ 1, there are three cases:

Case I: sn = 0. In this case, xhi
n = 0 and hence c n = 0. Therefore, we assign v n = xhi

n = 0.

Case II: sn = 1. First suppose that xhi
n

D = 0. We construct v n  as follows:

v n
k

= c n , ifk = D
0, else .

(37)

Next suppose that xhi
n

D
≠ 0. Since sn = 1, this implies that xhi

n
k

= 0, k = 1, ⋯, D–1. In this 

case, we construct v n  as follows:

v n
k

= c n /α, ifk = D − 1
0, else .

(38)

Notice that both (37) and (38) ensure that v n ≠ xhi
n  and c n = hα

Tv n . Moreover, 

∥ v n ∥0 = sn.

Case III: sn ≥ 2. In this case, we follow the same construction as (37). As before v n  satisfies 

c n = hα
⊤v n . Since ∥ xhi

n ∥0 ≥ 2 and ∥ v n ∥0 = 1, we automatically have v n ≠ xhi
n , and 

∥ v n ∥0 < sn. Therefore, combining the three cases, we can construct the desired vector v
that satisfies v ≠ xhi, c = HD α v, and ∥ v ∥0 ≤ ∑n = 0

M − 1 sn = ∥ xhi
n ∥0. Therefore, the solution x⋆ to 

(P0) satisfies ∥ x⋆ ∥0 ≤ ∥ v ∥0 ≤ ∥ xhi
n ∥0.
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(ii) In this case, we construct v n0  according to Case III. Since ∥ v n0 ∥0 < sn0, and 

∥ v n ∥0 ≤ sn, n ≠ n0, we have ∥ v ∥0 < ∥ xhi ∥0, implying ∥ x⋆ ∥0 ≤ ∥ v ∥0 < ∥ xhi ∥0. □

A. Proof of Lemma 3

Proof. We will construct a vector v ∈ ℝL whose support is of the form (16), that is feasible 

for (P1-B), and we will prove that it has the smallest l1 norm. Using the block structure given 

by (6), we choose v 0 = c 0 . For each n ≥ 1, we construct v n  based on the following two 

cases:

Case I: c n ≥ A. Let kn be the largest integer such that the following holds: 

μ n ≔ A 1 + α + ⋯ + αkn − 1 ≤ c n , where 1 ≤ kn ≤ D. Note that kn = 1 always produces a 

valid lower bound. However, we are interested in the largest lower bound on c n  of the 

above form. We choose

v n
k

=
A, if D − kn + 1 ≤ k ≤ D
c n − μ n /αkn, ifk = D − kn

0, else

It is easy to verify that hα
⊤v n = c n . From the definition of kn, it follows that 

μ n ≤ c n < μ n + Aαkn and hence, 0 ≤ c n − μ n /αkn < A, which ensures that v obeys the 

box-constraints in (P1-B). Now, let vf ∈ ℝL be any feasible point of (P1-B) which must be 

of the form vf
0 = c 0 , vf

n = v n + r n , where r n ∈ N hα
⊤  is a vector in the null-space of hα

⊤. It 

can be verified that the following vectors wt t = 1
D − 1 form a basis for hα

⊤ :

wt k =
1, k = t
−α, k = t + 1
0, else

,

Therefore, ∃ βt
n

t = 1
D−1 such that r n = ∑t = 1

D−1 βt
n wt. We further consider two scenarios: (i) 

1 ≤ kn ≤ D − 2. In this case v n
1

= 0, and for k = 1,2, ⋯D, vf
n

k satisfies2

vf
n

k =

βk
n , if k = 1

βk
n − αβk − 1

n , if 2 ≤ k ≤ D − kn − 1

v n
k

+ βk
n − αβk − 1

n , if k = D − kn

A + βk
n − αβk − 1

n , if D − kn + 1 ≤ k ≤ D − 1
A − αβk − 1

n , if k = D

To ensure vf
n  is a feasible point for (P1-B), the following must hold: 0 ≤ βD−1

n ≤ A/α and 

0 ≤ β1
n ≤ A. For 2 ≤ k ≤ D − kn − 1, the constraint vf

n
k ≥ 0 implies βk

n ≥ αβk − 1
n . Since β1

n ≥ 0, 

2In the definition of vf
n , an assignment will be ignored if the specified interval for k is empty.
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it follows that βk
n ≥ 0 for all 2 ≤ k ≤ D − kn − 1. For D−kn + 1 ≤ k ≤ D − 1, the constraint 

vf
n

k ≤ A implies βk − 1
n ≥ βk

n /α. Since βD−1
n ≥ 0, it follows that βk

n ≥ 0 for all D−kn ≤ k ≤ D − 1. 

(ii) kn ∈ D − 1, D . In this case, for k = 1,2, ⋯, D, vf
n

k satisfies

vf
n

k =
v n

1
+ β1

n , if k = 1

A + βk
n − αβk − 1

n , if 2 ≤ k ≤ D − 1
A − αβk − 1

n , if k = D

For 2 ≤ k ≤ D − 1, the box-constraint vf
n

k ≤ A implies βk − 1
n ≥ βk

n /α. Since βD−1
n ≥ 0, it follows 

that βk
n ≥ 0 for all 1 ≤ k ≤ D − 1. Summarizing, we have established that βi

n ≥ 0, ∀i.

Case II: c n < A. In this case, v n  is constructed following (37), and hence vf
n  has the 

following structure:

vf
n

k =
βk

n , if k = 1
−αβk − 1

n + βk
n , if 2 ≤ k ≤ D − 1

c n − αβk − 1
n , if k = D

To ensure vf
n  is a feasible point, it must hold that β1

n ≥ 0, βk
n ≥ αβk − 1

n ≥ 0 for 2 ≤ k ≤ D − 1. 

Hence, in both Cases I and II, we established that βk
n ≥ 0. For each case, since vf

n  is a 

non-negative vector ∀n, it can be verified that

∥ vf ∥ 1 = ∑
n = 0

M − 1
∥ vf

n ∥ 1 = vf
0 + ∑

n = 1

M − 1
∑

k = 1

D
vf

n
k

= c 0 + ∑
n = 1

M − 1
∑

k = 1

D
v n

k

∥ v ∥1

+ ∑
n = 1

M − 1
∑

k = 1

D−1
1 − α βk

n

We used the fact that ∑k = 1
D ∑t = 1

D − 1 βt
n wt k = ∑t = 1

D−1 1 − α βt
n . If vf ≠ v, we must have βk

n ≠ 0 for 

some k and n > 0. This implies that ∥ vf ∥1 > ∥ v ∥1. It is easy to see that the support of the 

constructed vector is of the form (16). Moreover, based on the above argument, v is the only 

vector that has the minimum l1 norm among all possible feasible points of (P1-B). □

APPENDIX C: Proof of Lemma 7

Proof. For any 0 < α ≤ 0.5, we begin by showing that for an integer p ≥ 1 the following 

inequality holds:

k = 1

p
αD−k = αD−p − 1 1 − αp

1/α − 1 < αD−p − 1

(39)
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since 1/α − 1 ≥ 1 and 1 − αp < 1 in the regime 0 < α ≤ 0.5. Let 

S1 = 0, αD−1, αD−2, αD−1 + αD−2 . Notice that the elements of S1 are sorted in ascending 

order for any α and D. Now, we recursively define the sets Si as follows:

Si ≔ Si − 1, Si − 1 + αD−1 − i , 2 ≤ i ≤ D − 1

(40)

Our hypothesis is that for every 2 ≤ i ≤ D − 1α ∈ 0,0.5  and D, the set Si as defined 

in (40), is automatically sorted in ascending order. We prove this via induction. For 

i = 2, the sets S1 and S1 + αD−3 are individually sorted. Moreover from (39), we can 

show that: maxa ∈ S1 a = αD−1 + αD−2 < αD−3 = minb ∈ S1 + αD−3 b. This shows that S2 is ordered, 

establishing the the base case of our induction. Now, assume Si is ordered for some 

2 ≤ i ≤ D − 2. We need to show that Si + 1 is also ordered. As a result of the induction 

hypothesis, both Si and Si + αD−2 − i are ordered. Using the ordering of Si, we have: 

maxa ∈ Si a = ∑j = 1
i + 1 αD−j, minb ∈ Si + αD−2 − i b = αD− i + 1 − 1. From (39), we can conclude that 

maxa ∈ Si a < minb ∈ Si + αD−2 − i b and hence, Si + 1 is also ordered. This completes the induction 

proof. Also, note that for α ∈ 0,0.5 , we have Θα
sort = SD−1.

Let Δmin Si  be the min. distance between the elements of the set Si. It is easy to see that 

Δmin Si = Δmin Si + αD−2 − i . Since Si is sorted for α ∈ 0,0.5 , Δmin Si  is given by:

Δmin Si = min Δmin Si − 1 , min
x ∈ Si − 1 + αD−1 − i

x − max
y ∈ Si − 1

y

= min Δmin Si − 1 , αD−i − 1 − ∑
j = 1

i
αD−j .

(41)

Now, we use induction to establish the following conjecture:

Δmin Si = αD−1, 1 ≤ i ≤ D − 1

(42)

For the base case i = 1, Δmin S1 = min αD−1, αD−2 − αD−1 = αD−1, where the last equality 

holds since α ∈ 0,0.5 αD−1 1/α − 1 ≥ αD−1. Suppose (42) holds for some 1 ≤ i ≤ D − 2. 

From the definition of Δmin Si + 1  and the induction hypothesis that Δmin Si = αD − 1, it follows 

that Δmin Si + 1 = min αD−1, αD− i + 1 − 1 − ∑j = 1
i + 1 αD−j . Again, from the definition of Δmin Si

in (41), and the induction hypothesis we also have αD−i − 1 − ∑j = 1
i αD−j ≥ Δmin Si = αD−1. 

Using this and the fact that α ≤ 0.5, we can show:
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αD−i − 2 − αD−i − 1 −
j = 1

i
αD−j ≥ αD−i − 2 − 2αD−i − 1 + αD−1

≥ αD−1 + αD−i − 1 1/α − 2 ≥ αD−1

Therefore Δmin Si + 1 = min αD−1, αD−i − 2 − ∑j = 1
i + 1 αD−j = αD − 1. Thus, we can conclude that 

Δmin α, D = Δmin SD−1 = αD−1. □

APPENDIX D: Proof of Theorem 3

Proof. The probability of incorrectly identifying xhi
n  from a single measurement ce n  is 

given by

pe ≔ ℙ xhi
n ≠ xhi

n =
k = 0

lD

ℙ xhi
n ≠ xhi

n ∣ xhi
n = vk ℙ xhi

n = vk

Given a binary vector z ∈ 0,1 D, define the function ψ z ≔ ∑k = 1
D zk, 

which denotes the count of ones in z. Since the noisy 

observations are given by ce n = c n + e n , where e n = w n − αDw n − 1 , 

it follows from assumption (A2) that e n N 0, σ1
2  where σ1

2 = 1 + α2D σ2. 

From [27], we obtain ℙ xhi
n ≠ xhi

n ∣ xhi
n = v0 = ℙ e n ∈ ℰ0 = Q αD−1/ 2σ1 . 

Similarly, ℙ xhi
n ≠ xhi

n ∣ xhi
n = vlD = ℙ e n ∈ ℰlD = Q θlD − θlD − 1 / 2σ1 ≡ Q αD−1/ 2σ1 . 

The last equality follows from the fact that θlD − θlD − 1 = αD−1. Finally, 

when conditioned on xhi
n = vk for 0 < k < lD, from (26), we obtain 

ℙ x n ≠ xhi
n ∣ xhi

n = vk = ℙ e n ∈ ℰk = Q θk − θk − 1
2σ1

+ Q θk + 1 − θk
2σ1

. Due to Assumption 

(A1) on xhi, we have ℙ xℎi
n = vk = pψ vk (1 − p)D − ψ vk . Therefore, pe is given by

pe = Q αD−1/ 2σ1 1 − p D + Q αD−1/ 2σ1 pD + ∑
k = 1

lD − 1
Q θk − θk − 1

2σ1
+ Q θk + 1 − θk

2σ1

pψ vk (1 − p)D−ψ vk

(43)

The spike train xhi is incorrectly decoded if at least one of the blocks are decoded 

incorrectly, hence, the total probability of error is given by:
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ℙ ∪
n = 0

M
x n ≠ xhi

n ≤ ∑
n = 0

M − 1
ℙ x n ≠ xhi

n = Mpe ≤
a

2MQ

Δθmin α, D / 2σ1 ∑
j = 0

D
pj 1 − p D−j D

j

≤
b

2M exp −Δθmin
2 α, D / 4σ1

2

(44)

where the first inequality follows from union bound and second equality is a consequence of 

(43). The inequality (a) follows from the monotonically decreasing property of Q .  function 

and the sum can be re-written by grouping all terms with the same count, i.e., ψ vk = j. The 

inequality (b) follows from the inequality Q x ≤ exp −x2/2  for x > 0. If the SNR condition 

(28) holds then from (44) the total probability of error is bounded by δ. □

Appendix E: Proof of Theorem 4

Proof. We first begin by showing that α ∈ ℱD implies that (31). holds and hence the 

mapping of spikes with the same counts are clustered. Notice that for k = 0, θmax
k = θmin

k = 0. 

For k ≥ 1, it is easy to verify that θmax
k  and θmin

k  are attained by the spiking patterns 00…1111 

(with k consecutive spikes at the indices D−k + 1 to D) and 111…000 (with consecutive 

spikes at the indices 1 to k), which allows us to simplify (31) as αD−1 > 0 for k = 0 and 

∑i = 1
k + 1 αD−i > ∑j = 0

k − 1 αj, k = 1, ⋯, D − 1. The values of α that satisfy each of these relations can 

be described by the following sets:

G0 = α ∈ 0,1 ∣ αD−1 > 0 , Gk = α ∈ 0,1 ∣ rk α < 0 ,

where rk α = αD − αD−k − 1 − αk + 1 for 1 ≤ k ≤ D − 1. It is easy to see that ℱD = Gk0. 

Observe that the relations are symmetric, i.e., Gk = GD−k − 1. Furthermore, for 1 ≤ k ≤ D/2, 

we show that Gk ⊆ Gk − 1 as follows. Trivially, G1 ⊂ G0. For 2 ≤ k ≤ D/2, observe 

that rk α − rk − 1 α = αD−k 1 − 1/α − αk 1 − 1/α = 1/α − 1 αk − αD−k ≥ 0. Therefore, 

α ∈ Gk α ∈ Gk − 1, k = 1,2⋯, k0. Moreover, since Gk = GD−k − 1, it follows that 

ℱD = Gk0 = ∩k = 0
D−1 Gk. Hence, α ∈ ℱD α ∈ Gi for all 0 ≤ i ≤ D − 1, which implies that (31) 

holds. If the noise perturbation satisfies w n < Δmin
c α, D /4, it implies e n < Δmin

c α, D /2. 

For any block xhi
n ∈ Ck

D, θmin
k ≤ hα

⊤xhi
n ≤ θmax

k . If e n < Δmin
c α, D /2, we have

hα
⊤xhi

n + e n < θmax
k + Δmin

c α, D
2 < θmax

k + θmin
k + 1 − θmax

k

2

hα
⊤xhi

n + e n > θmin
k − Δmin

c α, D
2 > θmin

k − θmin
k − θmax

k − 1

2
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This shows that whenever α ∈ ℱD, the condition e n < Δmin
c α, D /2 is sufficient for (33) to 

hold ∀γ n  and hence the spike count can be exactly recovered. □

APPENDIX F: Amplitude Estimation

We suggest a procedure to estimate the binary amplitude A, if it is unknown. We 

first evaluate the signal c n  from different time instants n = 1,2, ⋯, M − 1. For some 

1 ≤ n0 ≤ M − 1, we estimate a set A = Ak  of candidate amplitudes: Ak ≔ c n0 /hα
Tvk where 

vk ∈ Sall. Only a certain amplitudes can generate c n0  from a valid binary spiking pattern 

vk ∈ Sall. Our goal is to prune A by sequentially eliminating certain candidate amplitudes 

from the set based on a consistency test across the remaining measurements c n . At the tth

stage t = 2,3, ⋯ , for every remaining candidate amplitude Ak ∈ A, we perform the following 

consistency test with c n , to identify if a candidate amplitude can potentially generate the 

corresponding measurement c n . Suppose there exists a spiking pattern vl ∈ Sall such that

c n = Akhα
Tvl

(45)

then Ak remains a valid candidate. If we cannot find a corresponding vl ∈ Sall for an 

amplitude Ak, we remove it, A = A ∖ Ak. In presence of noise, (45) can be modified to allow 

a tolerance γ as we may not find an exact match. The tolerance γ is chosen to be 0.5 in 

the experiments on the GENIE dataset. This procedure prunes out possible values for the 

amplitude by leveraging the shared amplitude across multiple measurements c n .
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Fig. 1: 
Variation of Δθmin α, D  as a function of undersampling factor D and α. The cluster-distance 

Δmin
c α, D  vs. α is also overlaid. Each dotted line denotes the start of the interval ℱD.
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Fig. 2: 
Visualization of the sets Ck

D for D = 3. In this scenario, the spiking patterns corresponding to 

the same count are clustered together and hence, are favorable for robust count estimation.
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Fig. 3: 
(Top) Quantitative comparison of Algorithm 2 against box-constrained l1 minimization 

method with noiseless measurements (with tolerance t0 = 0). (Bottom) (Role of Filter 

Memory): Average F-score vs. D for FIR and IIR (AR(1)) filters. Each dotted line indicates 

the corresponding theoretical transition point D = r .
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Fig. 4: 
Qualitative comparison of Algorithm 2 and box-constrained l1 minimization on simulated 

data. For each simulation noisy measurements are generated with α = 0.9 such that the noise 

realization (Top) obeys the bound w n ≤ Δθmin (from Theorem 2) and (Bottom) violates the 

bound. For larger noise (Bottom), the spike recovery is imperfect but the spike count can still 

be exactly recovered using Algorithm 2.
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Fig. 5: 
Spike detection performance with noisy measurements. (Top) F-score vs. D for different 

filter parameters α σ = 0.01 . Here, L = 1000 and expected sparsity s = 350 where we operate 

in the regime s > M. The F-score is computed with a tolerance of t0 = 2.
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Fig. 6: 
Spike detection performance with noisy measurements for different filter parameters α. 

(Top) F-score vs. noise level σ  (Bottom) Count estimation error vs. noise level. Here, 

L = 1000 and expected sparsity is fixed at s = 350 where we operate in the regime s > M. 

The F-score is computed with a tolerance of t0 = 2.
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Fig. 7: 
Spike detection performance with noisy measurements. F-score vs. spiking probability p) 

for different noise levels σ (fix α = 0.9, D = 5, L = 1000  in the extreme compression regime 

s > M.
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Fig. 8: 

Probability of erroneous detection of high-rate spikes xhi ∈ 0,1 L as a function of the 

undersampling factor D. Theoretical upper bounds are overlaid using dotted lines. Here, 

L = 100.
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Fig. 9: 
Spike detection performance of OASIS and B-OASIS on GCaMP6f dataset sampled at 

(Left) 60 Hz and (Right) 30 Hz. We compare the average F-score of data points where the 

F-score of OASIS is < 0.5. Standard deviation is depicted using the error bars.

Sarangi et al. Page 45

IEEE Trans Signal Process. Author manuscript; available in PMC 2024 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10: 
Example of spike reconstruction on GENIE dataset (GCaMP6f indicator) using OASIS and 

B-OASIS (binary augmented) with calcium signal sampled at 30 Hz.
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